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Computation Energy Efficiency Maximization for a

NOMA Based WPT-MEC Network

Liqin Shi, Yinghui Ye, Xiaoli Chu, and Guangyue Lu

Abstract—Emerging smart Internet-of-things (IoT) applica-
tions are increasingly relying on mobile edge computing (MEC)
networks, where the energy efficiency of computation is one
of the most pertaining issues. In this paper, considering the
limited computation capacity at the MEC server and a practical
non-linear energy harvesting (EH) model for IoT devices, we
propose a scheme to maximize the system computation energy
efficiency (CEE) of a wireless power transfer (WPT) enabled
non-orthogonal multiple access (NOMA) based MEC network
by jointly optimizing the computing frequencies and execution
time of the MEC server and the IoT devices, the offloading time,
the EH time and the transmit power of each IoT device, as well as
the transmit power of the power beacon. We formulate the joint
optimization into a non-linear fractional programming problem
and devise a Dinkelbach-based iterative algorithm to solve it. By
means of convex theory, we derive closed-form expressions for
parts of the optimal solutions, which reveal several instrumental
insights into the maximization of the system CEE. In particular,
the system CEE increases as the optimal computing frequencies
of both the IoT devices and the MEC server decrease, and
the system CEE is maximized when the MEC server and the
IoT devices use the maximum allowed time to complete their
computing tasks. Simulation results demonstrate the superiority
of the proposed scheme over benchmark schemes in terms of
system CEE.

Index Terms—Wireless power transfer, mobile edge computing,
NOMA, computation energy efficiency.

I. INTRODUCTION

IN the era of Internet of Things (IoT), there will be massive

smart devices irregularly deployed in various communi-

cation systems, e.g., intelligent agriculture and smart home

automation, to monitor, generate data, and process the da-

ta timely for intelligent services [1], [2]. However, owing

to the stringent device size constraint and production cost

consideration, the IoT devices are usually energy-constrained

and computation-limited [3]–[6], and thus how to efficiently

solve the above two major limitations is of importance for the

application of IoT.
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Wireless power transfer (WPT) [3], [4], [7] and mobile edge

computing (MEC) [5], [6] are two promising technologies to

prolong the device lifetime and enhance the device compu-

tation capacity, respectively. The key idea of WPT is to let

the energy source, e.g., power beacon, base station, to charge

the IoT devices on demand via microwave irradiation. For

example, the authors in [7] considered an energy harvesting

(EH)-based cognitive Machine-to-Machine (M2M) communi-

cation system underlaying a single-cell cellular network, where

multiple M2M transmitters harvest energy from ambient radio

frequency (RF) signals and investigated the energy efficiency

(EE) maximization problem. While in MEC, the IoT devices

are able to offload their partial tasks to nearby MEC servers

with more computation capabilities so that the tasks can be

successfully processed within the delay budge. However, only

using WPT or MEC cannot address the energy-constrained and

computation-limited problems simultaneously in IoT systems,

and this motivated us to combine the above two advanced

technologies together.

To date, there are a considerable number of studies on

the combination of WPT and MEC [8]–[22]. In [8], the

authors maximized the successful computation probability

for a WPT-MEC network with a single edge user (EU) by

proposing a binary computation offloading scheme, where

each task is either computed locally or completely offloaded

as a whole. Note that in this work, the IoT device and the

EU are used interchangeably. This work was extended into a

multiple EUs scenario where the weighted sum computation

bits were maximized by using convex theory [9] and deep

learning [10]. Recently, partial offloading schemes, where a

task can be divided into independent parts for offloading or

local computing, were proposed [11]–[17]. In [11], the partial

offloading decisions, computation resource allocation, and the

trajectory of the unmanned aerial vehicle (UAV) were jointly

designed to maximize the weighted sum computation bits in

a UAV assisted wireless powered MEC network. The energy

consumption of the MEC server was minimized subject to

the energy-causality constraint and the maximum computation

latency constraint in the EU non-cooperation scenario [12] and

in the EU cooperation scenario [13].

To evaluate the tradeoff between the computation bits and

the energy consumption, the authors in [14]–[17] introduced a

new performance metric, called the computation EE (CEE), in-

to wireless powered MEC networks and defined it as the ratio

of the computation bits to the energy consumption for commu-

nication and computation. In [14], the authors proposed a joint



computation offloading and resource allocation algorithm to

maximize the minimum CEE among EUs in wireless powered

full-duplex MEC systems. The authors in [15] maximized the

CEE of all the EUs for a wireless powered MEC network. The

minimum CEE among EUs was maximized in a two-EU WPT-

MEC network [16] and in a wireless powered MEC network

[17]. In [14]–[17], EUs adopted orthogonal multiple access

(OMA) to offload tasks to the MEC server.

To better support computation offloading in WPT-MEC

networks, the spectral and energy efficiency of transmission

links need to be enhanced. Since non-orthogonal multiple

access (NOMA) can offer a spectral efficiency gain over OMA,

NOMA has been recently considered for task offloading in

MEC and WPT-MEC networks [18]–[22]. For a NOMA based

WPT-MEC network, the max-min CEE problem for the EUs

was investigated under a partial offloading scheme in [21] and

under both partial and binary offloading schemes in [22].

However, there are limitations in the above existing works

on CEE maximization [14]–[17], [21], [22], which are listed

below.

• The CEE maximization based resource allocation scheme

can be designed from the EU’s perspective or the system’s

perspective [23]. We note that most existing studies [14]–

[17], [21], [22] focused on the CEE maximization from

the user’s perspective, i.e., maximizing the CEE of all

the EUs [15], or solving the max-min CEE problem for

improving fairness among EUs [14], [16], [17], [21], [22].

There has not been any work reported on designing the

CEE maximization based resource allocation scheme for

a WPT-MEC network from the system’s perspective.

• All the existing works [14]–[17], [21], [22] assumed that

the computing capacity of the MEC server is unlimited

and the execution time at the MEC server is negligible.

However, in practice, although the MEC server has a

more powerful computing capacity than that of the EUs, it

may still take non-ignorable time to execute the received

tasks [18].

In this paper, we consider a limited computing capacity and

non-negligible execution time at the MEC server, and study

the CEE problem of a WPT-MEC network from the system’s

perspective. Following [21], [22], we employ uplink NOMA

for task offloading at each EU.

Our contributions are summarized as follows.

• We study the CEE maximization for a NOMA based

WPT-MEC network under the partial offloading scheme

from the system’s perspective while considering the com-

putation resource allocation of the MEC server and a

practical non-linear EH model for the EUs. More specifi-

cally, we propose to maximize the system CEE by jointly

optimizing the computing frequencies and execution time

of the MEC server and the EUs, and the transmit power,

offloading time and EH time of EUs, as well as the

transmit power of the power beacon (PB). This joint

optimization is formulated into a non-convex fractional

programming problem.
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Fig. 1. The frame structure of the considered network.

• To solve the formulated non-convex fractional program-

ming problem, we develop a Dinkelbach-based itera-

tive algorithm to obtain the optimal resource allocation

scheme. Besides, we derive closed-form expressions for

parts of the optimal solutions by means of convex theory.

Based on the derived results, we obtain several key

insights into the maximization of the system CEE as

follows. Firstly, the system CEE increases as the optimal

computing frequencies of both the EUs and the MEC

server decrease. Secondly, the system CEE is maximized

when the total task bits offloaded by all the EUs equal the

maximum computation bits for the MEC server during

the task execution phase, and the MEC server and the

EUs use the maximum allowed time to complete their

computing tasks, e.g., each EU performs local computing

throughout each time block.

The remainder of this paper is organized as follows. The

system model is presented in Section II. Sections III presents

a system CEE maximization problem by jointly optimizing

the computing frequencies and execution time of the MEC

server and the EUs, and the transmit power, offloading time

and EH time of EUs, etc, and provides a Dinkelbach-based

iterative algorithm to obtain the optimal solutions, as well as

shows several instrumental insights into the maximization of

the system CEE. Simulation results are provided in Section

IV. The paper is concluded in Section V.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a NOMA based WPT-

MEC network that consists of one MEC server, one PB

and K EUs, each equipped with a rechargeable battery.

Following [9], [11], [20]–[22], we assume that each device

is equipped with a single antenna. Following the “harvest-

then-transmit” protocol, in each transmission block, the K

EUs first harvest energy from the RF signals transmitted by

the PB, and then use the harvested energy to process and

offload their tasks, thus avoiding consuming the energy in



their batteries and prolonging the operation time of each EU1.

Accordingly, we assume that in each transmission block, the

energy consumed at each EU for processing and offloading

their tasks is less than the energy harvested from the RF signals

transmitted by the PB [8]–[11], [17], [22]. Assuming the EU

transceivers working in the half-duplex mode [20], [22], task

offloading can only start after the EH has finished. We assume

that the data bits of each task are bit-wise independent [11]–

[14], [17]–[19], [22] and the partial offloading scheme can be

used for efficient computation within a given time block T .

Let gk (k 2 {1, 2, ...,K}) and hk denote the channel power

gains of the PB-to-the k-th EU link and the MEC server-to-

the k-th EU, respectively. All the channels are modeled as

quasi-static fading, i.e., remain static within T but may change

between adjacent time blocks. Assuming perfect channel state

information available at the MEC server, the MEC server

determines the optimal resource allocation scheme. Following

[8]–[15], [20]–[22], we assume that all the devices in the

considered system are time synchronized.

The entire time block T is divided into four phases. In the

first phase of duration ⌧e, PB broadcasts energy signals and the

K EUs work in the EH mode. The second phase of duration

⌧o is used for task offloading, where the K EUs offload parts

of their tasks to the MEC server via uplink NOMA. The third

phase of duration ⌧c is the task execution phase, in which the

K EUs stop offloading tasks and the MEC server executes

all the received computation tasks. In the fourth phase, the

MEC server sends the computation results to the EUs, where

we assume that the downlink transmission time is negligible

as the size of the computation results is much smaller than

that of the task data [11]–[14], [17]–[20], [22]. Accordingly,

the fourth phase of each time block will be ignored hereafter.

Note that during the second to the fourth phase, the PB keeps

silent. Following [9], [11], [22], we assume that each EU can

perform local computation at any time during the time block

as each EU can have separate circuits for the computation unit

and the transmission unit.

A. Energy Harvesting Phase

In this phase, the PB transmits energy signals to the K

EUs with the transmit power Pt, and each EU works in the

EH mode. The existing works, e.g., [24]–[26], have shown

that resource allocation schemes designed under the linear EH

model will lead to a significant performance loss in practice

owing to the mismatching between the linear EH model and

the non-linear behavior of EH circuits. This motivates us to

consider a non-linear EH model, i.e., the piecewise linear

EH model with N + 1 segments [24], to characterize the

energy harvester at each EU. Note that different EH models

are designed based on different functions and have different

1In this work, we focus on the computation-intensive scenarios where the
EUs are not able to compute all their computation bits locally within a given
delay budget and have to offload partial data to the MEC server [21], [22].
It is worth noting that in scenarios where some EUs can process all their
computation bits locally within a given delay budget, allowing such EUs to
perform completely local computing may further improve the system CEE,
which is outside the scope of this work.

accuracies. Compared with the non-linear EH models in [25]

and [26], the piecewise linear EH model with N � 3 is more

accurate. Besides, each segment of the piecewise linear EH

model is given by a simple linear function, which facilitates

analytical tractability in the design of the optimal resource

allocation scheme. Thus, we employ the piecewise linear EH

model in this work.

Based on [24], the harvested power at the k-th EU is given

by

P k
h =

8

>

<

>

:

0, P k
RF 2

⇥

P 0
th, P

1
th

⇤

;

ajkP
k
RF + bjk , P

k
RF 2

h

P
jk
th , P

jk+1
th

i

P k
m, P k

RF 2
⇥

PN
th , P

N+1
th

⇤

,

, jk=1,...,N�1;

(1)

where P k
RF = Ptgk is the received RF power at the k-th EU;

Pth = {P jk
th |0  jk  N+1} with P 0

th = 0 and PN+1
th = +1

denotes thresholds on P k
RF for the N + 1 linear segments;

ajk and bjk denote the slope and the intercept of the linear

function in the jk-th (jk 2 {1, ..., N�1}) segment at the k-th

EU, respectively, and P k
m is the maximum harvestable power

at the k-th EU when the EH circuit is saturated. Note that P 1
th

also denotes the circuit sensitivity of the EH circuit (i.e., the

minimum required received power). For convenience, we let

a0 (aN ) and b0 (bN ) be the slope and the intercept for the

0-th (N -th) segment. Since in the 0-th (N -th) segment, the

harvested power is 0 (P k
m) for any P k

RF 2
⇥

P 0
th, P

1
th

⇤

(P k
RF 2

⇥

PN
th , P

N+1
th

⇤

), we have a0 = b0 = 0 (aN = 0 and bN = P k
m).

Based on (1), the total harvested energy at the k-th EU can

be computed as Ek
h = ⌧eP

k
h .

B. Task Offloading Phase

In this phase, K EUs offload parts of their tasks to the MEC

server simultaneously via uplink NOMA. The MEC server

performs successive interference cancellation (SIC) to obtain

each EU’s task. Based on the principle of uplink NOMA, the

MEC server decodes the message from the EU with the best

channel condition first, subtracts the decoded message from

the received composite signal, and then continues to decode

the message from the EU with the next best channel condition

[18]. Accordingly, we assume that {hk}
K
k=1 is ranked in the

descending order, i.e., h1 � h2 � · · · � hK . For the k-th

EU, the offloaded task is denoted by ck, k 2 {1, ...,K}. After

the MEC server has decoded ck and subtracted it from the

received composite signal, it continues to decode ck+1, until

all K received tasks are decoded. Such a decoding order allows

decoding the weakest EU’s message without interference, thus

maximizing the sum uplink transmission throughput. Note

that the system CEE under different decoding orders may

be different and including the decoding order in the joint

optimization may further improve the system CEE, while this

is outside the scope of this work and will be studied in our

future work. Denote the achievable throughput for the k-th EU



by Rk
o , which can be calculated as

Rk
o = ⌧oBlog2

0

B

B

B

@

1 +
pkhk

K
P

i=k+1

pihi + �2

1

C

C

C

A

, (2)

where B is the bandwidth of uplink NOMA, pk denotes the

transmit power of the k-th EU, and �2 is the noise power.

Based on (2), we can first compute RK
o +RK�1

o as

RK
o +RK�1

o =⌧oBlog2

✓

1+
pKhK

�2

◆

+⌧oBlog2

✓

1+
pK�1hK�1
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=⌧oBlog2
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+
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�2
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pKhKpK�1hK�1

(pKhK + �2)�2

◆

=⌧oBlog2

 

1+
pK�1hK�1

�

�2 + pKhK

�

+
�
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�
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!

= ⌧oBlog2

✓
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◆
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Based on (3) and the expression of RK�2
o ,

we can obtain RK
o + RK�1

o + RK�2
o =

⌧oBlog2

⇣

1 + pK−1hK−1+pKhK+pK−1hK−1+pK−2hK−2

σ2

⌘

.

Continuing with such calculations, the total achievable

throughput of the K EUs can be computed as

Ro
total =

K
X

k=1

Rk
o = ⌧oB

K
X

k=1

log2

0

B

B

B

@

1+
pkhk

K
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C
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pkhk
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. (4)

C. Task Execution Phase

After successfully decoding the received tasks, the MEC

server starts to execute the received tasks. Let fm denote the

central processing unit (CPU) frequency at the MEC server.

Then the maximum bits computed by the MEC server during

the task execution phase are given by

Rm =
⌧cfm

Cm
cpu

, (5)

where Cm
cpu is the number of CPU cycles required for com-

puting one bit at the MEC server.

Let Re
m denote the number of effective computation bits at

the MEC server and Re
m is determined by not only the total

achievable throughput of all the EUs, but also the maximum

computation bits at the MEC server. That is, when the comput-

ing time and frequency of the MEC server are large enough,

i.e., Rm > Ro
total, R

e
m is determined by Ro

total. Otherwise, the

MEC server cannot compute all the received tasks within the

given time and Re
m is equal to Rm. Accordingly, Re

m is given

by

Re
m = min {Rm, R

o
total} , (6)

where Ro
total is the total achievable throughput given in (4).

Let "m be the energy consumption coefficient (ECC) of

the processor’s chip at the MEC server. Then the energy

consumption of the MEC server in this phase is given by [27]

Ee
m = "mf

3
m⌧c. (7)

Note that each EU can perform local computation at any

time during the time block. Let ⌧k (0  ⌧k  T ) and fk be

the local computation time and the CPU frequency for the k-

th EU, respectively. Then the effective computation bits at the

k-th EU are calculated as

Re
k =

⌧kfk

Ck
cpu

, (8)

where Ck
cpu is the number of CPU cycles required for

computing one bit at the k-th EU. Accordingly, the energy

consumption for local computation at the k-th EU is given by

Ee
k = "kf

3
k ⌧k, (9)

where "k is the ECC of the processor’s chip at the k-th EU.

III. COMPUTATION ENERGY EFFICIENCY MAXIMIZATION

A. Problem Formulation

We define the system CEE of the considered network

as the ratio of the total achievable computation bits of the

whole network to the total energy consumption of the sys-

tem. The total computation bits in a time block consist of

the local computation bits completed by the K EUs and

the bits computed at the MEC server, which can be given

by Re
m +

K
P

k=1

Re
k. According to [8], [11], the total energy

consumption of the system in a time block consists of three

parts, which are the energy consumed for the EH, the local

computing and task offloading of the K EUs, and the informa-

tion decoding and task computing of the MEC server. Thus,

the system energy consumption in a time block can be com-

puted as



(Pt + Psc) ⌧e �
K
P

k=1

P k
h ⌧e

�

+
⇥

Prc⌧o + "mf
3
m⌧c

⇤

+


K
P

k=1

(pk + pc,k) ⌧o +
K
P

k=1

"kf
3
k ⌧k

�

, where Psc and Prc denote

the constant circuit power consumption of the PB during

the EH phase and that of information decoding at the MEC

server, respectively, and pc,k denotes the constant circuit power

consumption of the k-th EU during the task offloading phase.

Accordingly, the system CEE of the considered network is

given by

qs

⇣

⌧e, ⌧o, ⌧c, {⌧k}
K
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K
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K
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3
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.

(10)

On this basis, we propose to maximize the system CEE of

the NOMA based WPT-MEC network under the non-linear



EH model, by jointly optimizing the transmit power of the

PB and the EUs, the CPU frequencies and execution time

of the MEC server and the EUs, the offloading time and

the EH time. Accordingly, we formulate the system CEE

maximization problem for the considered network as

P0 : max
{pk},{fk},{τk},τe,τo,τc,fm,Pt

qs

s.t. C1 : Re
m +

K
P

k=1

Re
k � Lmin,

C2 : (pk + pc,k) ⌧o + "kf
3
k ⌧k  Ek

h , 8k,
C3 : pkhk

K
P

i=k+1

pihi+σ2

� �k
th, 8k,

C4 : ⌧e + ⌧o + ⌧c  T,

C5 : 0  fm  fmax, 0  fk  fmax
k , 8k,

C6 : 0  Pt  Pmax, pk � 0, 8k,
C7 : ⌧e, ⌧o, ⌧c � 0,
C8 : 0  ⌧k  T, 8k,

where Lmin denotes the minimum required computation bits of

all the EUs; fmax
k and fmax are the maximum CPU frequencies

for the k-th EU and the MEC server, respectively; �k
th denotes

the minimum required signal to interference and noise ratio

(SINR) for the k-th EU; Pmax is the maximum transmit power

for the PB.

In P0, constraint C1 guarantees the minimum required

computation task bits of the whole system, where Lmin can

be adjusted to obtain a desirable trade-off between the CEE

and the total computation bits. C2 constrains that the total

energy consumption at the k-th EU should not exceed its

total harvested energy over each EH phase. Note that it

is not definite that each EU will use up all the harvested

energy when the maximum system CEE is achieved and any

residual harvested energy in the current time slot can be saved

into its battery for future use. C3 is the minimum required

SINR constraint for the k-th EU. C4 constrains that all the

offloaded computation task bits should be executed within

T . C5 constrains the maximum CPU frequencies of each

EU and the MEC server, while C6 is the constraint on the

transmit power of the PB and each EU. C8 states that the

local computation task bits at each EU should be executed

within T .

It is worth noting that P0 is a typical non-convex fractional

optimization problem, where the coupling relationships be-

tween different optimization variables (i.e., Pt and ⌧e, fk and

⌧k, etc.) exist in both the objective function and the constraints,

making them non-convex. In the next subsection, we design

an efficient iterative algorithm to obtain the optimal solution

to P0.

B. Solution and Iterative Algorithm

In order to deal with the coupling relationship between

variables Pt and ⌧e, we firstly divide both the numerator and

the denominator of (10) by ⌧e and then let te =
1
τe

, to = τo

τe
,

tc = τc

τe
and tk = τk

τe
. Correspondingly, the optimization

problem P0 is reformulated as

P1 : max
{pk},{fk},{tk},te,to,tc,fm,Pt

q
(1)
s

s.t. C1�1 : min

⇢

tcfm
Cm

cpu
, toBlog2

✓
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K
P

k=1

pkhk
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◆�

+
K
P

k=1
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cpu

� Lminte,

C2�1 : (pk + pc,k) to + "kf
3
k tk  P k

h , 8k,
C3,C5,C6,
C4�1 : 1 + to + tc  Tte,

C7�1 : te, to, tc � 0,
C8�1 : 0  tk  Tte, 8k,

where q
(1)
s =

min

⇢
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K
P

k=1

εkf
3
k
tk

.

To further simplify the optimization problem P1, we

introduce a slack variable � (� � 0), where � =

min

⇢

tcfm
Cm

cpu
, toBlog2

✓

1 +
K
P

k=1

pkhk

σ2

◆�

, to remove the min

function in the objective function and C1 � 1. Then, P1 is

equivalently transformed into

P2 : max
{pk},{fk},{tk},te,to,tc,fm,Pt,λ

q
(2)
s

s.t. C1�2 : �+
K
P

k=1

tkfk
Ck

cpu

� Lminte,

C2�1,C3,C4�1,C5,C6,C8�1,
C7�2 :te, to, tc,� � 0,
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Cm
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� �,
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where q
(2)
s =

λ+
K
P

k=1

tkfk

Ck
cpu

Pt+Psc�
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k=1

Pk
h
+Prcto+εmf3
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K
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k=1

εkf
3
k
tk

.

Since the optimization problem P2 is still a non-convex

fractional optimization problem, based on the Dinkelbach’s

method [28], we introduce Proposition 1 so that we can

transform P2 into a more tractable optimization problem in

the subtractive form.

Proposition 1. Let {p⇤k}
K

k=1 , {f
⇤
k}

K

k=1 , {t
⇤
k}

K

k=1 , t
⇤
e , t

⇤
o, t

⇤
c ,

f⇤
m, P

⇤
t ,�

⇤ denote the optimal solution to P2 and q⇤ be the

corresponding maximized CEE of the considered network.

Then the optimal solution can be obtained if and only if the



following equation holds.

max
{pk},{fk},{tk},te,to,tc,fm,Pt,λ
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K
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cpu
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K
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X
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⇤
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✓
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K
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⇤
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⇤
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⇤
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= 0, (11)

whereEtotal

⇣

{pk}
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K
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3
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K
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3
k tk.

Proof. Proposition 1 can be proven based on the generalized

fractional programming theory following a method similar to

[28]. The detailed proof is omitted here for brevity.

Algorithm 1 Dinkelbach-based Iterative Algorithm for P2

1: Set the maximum error tolerance ✏;

2: Set the iteration index l = 1 and the maximum system

CEE q = 0;

3: repeat

4: Solve P3 with a given q, and ob-

tain the optimal solution, denoted by
n

�

p+k
 K

k=1
,
�

f+
k

 K

k=1
,
�

t+k
 K

k=1
, t+e , t

+
o , t

+
c , f

+
m, P

+
t ,�

+
o

;

5: Compute the CEE of the system as q+ =

λ
++

K
P

k=1

t
+
k

f
+
k

Ck
cpu

Etotal

⇣

{p+

k }
K

k=1
,{f+

k }
K

k=1
,{t+k }

K

k=1
,t

+
e ,t

+
o ,t

+
c ,f

+
m ,P

+
t ,λ+

⌘ ;

6: if |q+ � q|  ✏ then

7: The obtained solution is the optimal solution to P2

and set Flag = 1;

8: else

9: Set q = q+, Flag = 0 and l = l + 1;

10: end if

11: until Flag = 1.

According to Proposition 1, we develop a Dinkelbach-based

iterative algorithm to obtain the optimal solution to P2, which

is summarized in Algorithm 1. As shown in Algorithm 1, in

each iteration, the optimization problem P3 (defined below)

is solved for a given q, returning the corresponding solution
n

�

p+k
 K

k=1
,
�

f+
k

 K

k=1
,
�

t+k
 K

k=1
, t+e , t

+
o , t

+
c , f

+
m , P+

t ,�+
o

.Then

based on the obtained solution, the CEE

of the system is computed as q+ =

λ
++

K
P

k=1

t
+
k

f
+
k

Ck
cpu

Etotal

⇣

{p+

k }
K
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+
o ,t

+
c ,f

+
m ,P
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t ,λ+

⌘ . Given an

error tolerance ✏, if |q+ � q|  ✏ is satisfied, then the obtained

solution is the optimal solution to P2. Otherwise, we should

update q as q+ and repeat the above steps.

P3 : max
{pk},{fk},{tk},te,
to,tc,fm,Pt,λ
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s.t. C1�2,C2�1,C3,C4�1,C5,
C6,C7�2,C8�1,C9,C10,

where q is a given parameter in each iteration and will be

updated iteration by iteration.

To solve the non-convex problem P3, which includes cou-

pling relationships between multiple variables, i.e., tk and fk,

to and pk, etc, we introduce the following auxiliary variables:

xk = tkfk, yk = tkf
3
k , xm = tcfm, ym = tcf

3
m, and

Pk = pkto. Accordingly, we have tk =
q

x3
k

yk
, fk =

q

yk

xk
,

tc =
q

x3
m

ym
, fm =

q

ym

xm
, and pk = Pk

to
. Then P3 can be

transformed as

P4 : max
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to,xm,ym,Pt,λ

�+
K
P

k=1

xk

Ck
cpu

� q
�

Pt + Psc

�
K
P

k=1

P k
h +

K
P

k=1

(Pk + pc,kto)

+Prcto + "mym +
K
P

k=1

"kyk
�

s.t. C1�3 : �+
K
P

k=1

xk

Ck
cpu

� Lminte,

C2�2 : Pk + pc,kto + "kyk  P k
h , 8k,

C3�1 : Pkhk � �k
th

 

K
P

i=k+1

Pihi + to�
2

!

, 8k,

C4�2 : 1 + to +
q

x3
m

ym
 Tte,

C5�1 : 0  ym  xmf
2
max, 0  yk  xk(f

max
k )

2
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cpu,
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Besides, the consideration of the piecewise linear EH model

also makes the optimization problem P4 more challenging to

solve. Specifically, it is hard to determine the value of P k
h since

we do not know which segment P k
RF belongs to. To address

the problem brought by the used piecewise linear EH model,

we propose the following three steps to obtain the optimal

solution to P4.

Step 1: Compute the maximum number of segments that

the energy harvester of each EU can operate on. Let sk
(sk 2 {0, 1, ..., N}) denote the maximum number of seg-

ments for the k-th EU and sk can be determined by the

maximum number of sk that satisfies Pmaxgk � P sk
th . If

min(s1, s2, · · · , sK) = 0, then at least one EU cannot harvest



energy from the RF signals. In this case, P4 is infeasible. If

min(s1, s2, · · · , sK) > 0, go to Step 2.

Step 2: Let

⇢

n

P
†
k

oK

k=1
,
n

y
†
k

oK

k=1
,
n

x
†
k

oK

k=1
, t†e, t

†
o, x

†
m, y

†
m,

�†

�

be the optimal solution to P4 and q† be the corresponding

system CEE. When the k-th EU works on the jk-th

segment where 1  jk  sk, the range of Pt is given by

PL  Pt  PU with PL = max(
P

j1
th

g1
,
P

j2
th

g2
, ...,

P
jK
th

gK
) and

PU = min(
P

j1+1

th

g1
, ...,

P
jK+1

th

gK
, Pmax). If PL  PU, go to Step

3.

Step 3: Solve the optimization problem P4 for given

{jk}
K
k=1, given by

P5 : max
{Pk},{yk},{xk},te,
to,xm,ym,Pt,λ
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cpu
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s.t. C2�3 : Pk + pc,kto + "kyk  ajkPtgk + bjk , 8k,
C1�3,C3�1,C4�2,C5�1,C6�1,
C7�3,C8�2,C9�1,C10�1,

C11 :P jk
th  Ptgk  P

jk+1
th , 8k,

where constraint C11 is to ensure that the energy harvester of

the k-th EU works on the jk-th segment. Then the correspond-

ing optimal solution can be obtained. On this basis, update

q† and

⇢

n

P
†
k

oK

k=1
,
n

y
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k
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k=1
,
n
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based on the obtained solution with the aim of obtaining a

higher q† until jk = sk, 8k, is satisfied.

In order to tackle P5, Proposition 2 is provided.

Proposition 2. The optimization problem P5 is convex and

can be solved by using existing convex methods (e.g., interior

point method, Lagrange duality, etc) efficiently.

Proof. Please see Appendix A. ⌅

The whole process for solving P4 is summarized in Al-

gorithm 2. Combining Algorithms 1 and 2, we can obtain

the optimal solution to the original optimization problem

P0. Specifically, Algorithm 1 is used to solve P0, while

in each iteration of Algorithm 1, Algorithm 2 is applied to

obtain the optimal solution to the problem P3. Note that the

proposed iterative algorithm in this work is the combination

of Algorithm 1 and Algorithm 2.

The computational complexity of the proposed iterative

algorithm is analyzed as follows. If the interior point method is

adopted to obtain the optimal solution to P5, then according to

[29], the computational complexity of the proposed algorithm

can be calculated as Nu

K
Q

k=1

skO
�p

m1 log (m1)
�

, where m1

denotes the number of inequality constraints of P5, and Nu

denotes the number of iterations required for Algorithm 1.

We can see that the computational complexity is scaled up by
K
Q

k=1

sk, due to the use of the non-linear EH model which makes

the formulated optimization problem non-convex. If without

our proposed iterative algorithm, the non-convex problem

under the non-linear EH model would need to be solved

by using the exhaustive search method, which has a much

higher complexity. Besides, the proposed iterative algorithm

can be used to maximize the system CEE under the linear

EH model after setting N = 2, P 1
th = 0, PN

th = +1 and

b1 = 0 in Algorithm 2 and its computational complexity will

be reduced accordingly. This is because the conventionally

considered linear EH model can be regarded as a special case

of our considered non-linear EH model in (1). How to further

reduce the computational complexity in maximizing the CEE

for a NOMA based WPT-MEC network will be studied in

our future work. Remark 1 is provided to summarize several

purposes served by our developed iterative algorithm.

Remark 1. Our developed iterative algorithm can serve the

following four purposes. Firstly, compared to the exhaustive

search method, our proposed iterative algorithm provides a

method with a lower complexity to obtain the optimal resource

allocation that maximizes the system CEE of the considered

network under the non-linear EH model. Secondly, the pro-

posed iterative algorithm can be used to maximize the system

CEE of the considered network under the linear EH model

by letting N = 2, P 1
th = 0, PN

th = +1 and b1 = 0.

Thirdly, our proposed algorithm can be used to maximize

the system CEE of the considered network for the non-linear

EH model under the complete offloading mode or fully local

computing mode by letting fm = 0 or fk = 0, 8k, respectively.

Fourthly, Algorithm 2 can be used to solve the computation

bits maximization problem for the considered network under

the non-linear EH model by letting q = 0, jk = sk, 8k and

solving P5 for given {jk}
K
k=1.

C. Insights

In this subsection, by means of convex theory, we provide

useful insights into the computationally energy-efficient design

of the considered network, i.e., how many task bits should be

offloaded by the EUs, how much time should be allocated for

the offloading phase and for the MEC computing phase, etc.

Toward this end, several findings are provided as follows.

Lemma 1. In order to obtain the maximum CEE of

the considered network, the total task bits offloaded by all

the EUs should equal the maximum bits computed by the

MEC server during the task execution phase, i.e.,
τ
∗

c f
∗

m

Cm
cpu

=

⌧⇤oBlog2

✓

1 +
K
P

k=1

p∗

khk

σ2

◆

, where ⇤ indicates the optimized

variable corresponding to the optimal solution.

Proof. Please see Appendix B. ⌅

Remark 2. Lemma 1 reveals that all the offloaded compu-

tation task bits being computed at the MEC server during the

task execution phase results in the maximum system CEE.

This also indicates that for maximizing the system CEE, all

the received tasks are completely computed by the MEC server

in the task execution phase and the case that the MEC server

cannot compute all the received tasks within the given time

does not exist.



Algorithm 2 Three-step based iterative algorithm for P4

1: Set s1 = s2 = · · · = sK = N ;

2: for k = 1 to K do

3: while Pmaxgk < P sk
th do

4: Set sk = sk � 1;

5: end while

6: end for

7: if min(s1, s2, · · · , sK) == 0 then

8: P4 is infeasible;

9: else

10: for jk = 1 to sk, 8k 2 {1, 2, ...,K} do

11: Set PL = max(
P

j1
th

g1
,
P

j2
th

g2
, ...,

P
jK
th

gK
) and PU =

min(
P

j1+1

th

g1
, ...,

P
jK+1

th

gK
, Pmax);

12: if PL  PU then

13: Solve P5 with given {jk}
K
k=1 and

obtain the optimal solution and the

corresponding system CEE in P5, denoted by
�

{P ⇧
k }

K

k=1 , {y
⇧
k}

K

k=1 , {x
⇧
k}

K

k=1 , t
⇧
e , t

⇧
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⇧
m, y

⇧
m,�

⇧
 

and q⇧;

14: if jk == 1, 8k 2 {1, 2, ...,K} then

15: Set q† = q⇧, P
†
k = P ⇧

k , y
†
k = y⇧k, x

†
k = x⇧

k, t
†
e =

t⇧e , t
†
o = t⇧o, x

†
m = x⇧

m, y
†
m = y⇧m and �† = �⇧;

16: else

17: Set q† = max(q†, q⇧) and update the optimal

solution accordingly.

18: end if

19: end if

20: end for

21: end if

In order to obtain closed-form solutions, we use the La-

grange duality method to solve P5 and provide the following

theorem.

Theorem 1. Given the non-negative Lagrange multipli-

ers, i.e., α = (↵0,↵1, · · · ,↵6), θ = (✓1, ✓2, · · · , ✓K),
µ = (µ1, µ2, · · · , µK), υ = (�1, �2, · · · , �K) and ϕ =
('1,'2, · · · ,'K), parts of the optimal solutions can be ob-

tained as follows, i.e.,
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o BCm
cpulog2

⇣

Gk

σ
2

⌘

f∗

m
, if f⇤

m > 0

0, otherwise
, (15)
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, 8k, (16)

where [x]
+
= max {x, 0} and Gk = α6Bhk

(q+θk�µkhk) ln 2 .

Proof. Please see Appendix C. ⌅

Remark 3. From (15) we can see that when the EUs offload

task bits to the MEC server, the MEC server will use as much

time as possible to execute the received task bits in order to

achieve the maximum system CEE. From (16) we can see that

if there are task bits to be locally executed, each EU will use

the entire time block for reducing its computing frequency

and improving the system CEE. This also explains why most

existing works, e.g., [9]–[12], [17], [20], [22], assume that

each EU can perform local computation in the entire time

block. From (14) we can see that each EU chooses to offload

task bits to the MEC server only when the channel gain

between the MEC server and the EU is good. For example,

for the k-th EU, hk >
σ
2(q+θk) ln 2

α6B+σ2µk ln 2 must hold to ensure a

non-zero throughput. From (12) and (13), we can also observe

that the system CEE increases with the decrease of the optimal

computing frequencies of both the EUs and the MEC server.

This means that both the EUs and the MEC server should

reduce their computing frequencies for maximizing the system

CEE under the given constraints.

Besides, based on ⌧⇤k=T , we have

q

x3
k

yk
= Tte, which can

be used to reduce the computational complexity of solving P5.

Specifically, yk =
x3
k

T 2t2e
should be satisfied for solving P5. By

substituting yk =
x3
k

T 2t2e
into P5, we have
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to,xm,ym,Pt,λ
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C1� 3,C3� 1,C4� 2,C6� 1,
C7� 3,C9� 1,C10� 1,C11
C5� 2 : 0  ym  xmf

2
max, xk  teTf

max
k , 8k.

Since
x3
k

T 2t2e
is convex with respect to xk and te, the transformed

problem P6 is convex. By solving P6 instead of P5 in each

iteration of Algorithm 2, the computational complexity for

achieving the proposed resource allocation scheme can be

reduced.

IV. NUMERICAL RESULTS

In this section, we verify the effectiveness and the su-

periority of the proposed iterative algorithm via computer

simulations. Unless otherwise specified, the basic simulation

parameters are given as shown in Table I [18], [22]. Similar

to [22], we set Cm
cpu = C1

cpu = C2
cpu = C3

cpu = C4
cpu = 1000

Cycles/bit. We set �1
th = �2

th = �3
th = �4

th = �th = 1. The

channel gain between the PB and the k-th EU is modeled by

gk = g0kd
�α

k with the small-scale fading g0k, distance dk and

path loss exponent ↵. Let ↵ = 3, d1 = 4.5m, d2 = 5m,

d3 = 4.8m and d4 = 4m. For convenience, let hk

σ2 = Hkh
0
k



Tabel 1: Key Simulation Settings

Parameters Notation Value

The entire time block T 1 Second

The communication bandwidth B 1 MHz

The PB’s constant circuit power Psc 10 mW

The MEC server’s constant circuit power Prc 10 mW

The k-th EU’s constant circuit power pc,k 1 mW

The PB’s maximum transmit power Pmax 3 W

The number of EUs K 4

The k-th EU’s ECC εk 10
−26

The MEC server’s ECC εm 10
−28

The k-th EU’s maximum CPU frequency fmax

k
5× 10

8 Hz

The MEC server’s maximum CPU frequency fmax 10
10 Hz

The minimum computation bits Lmin 5× 10
5 bits

1 2 3 4 5 6 7 8 9
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Fig. 2. The convergence of Algorithm 1.

with the small-scale fading h0
k. We set H1 = 110, H2 = 90,

H2 = 70 and H2 = 50 in the following simulation. We adopt

a piecewise linear EH model with N = 3 and the specific

parameters are given as: Pth = {0, 5, 29.818, 59.51,+1}mW,

{ajk}
N
jk=1 = {0, 0.8260, 0.0657, 0} and {bjk}

N
jk=1 =

{0,�1.38, 21.2905, 25.2}mW [24].

Fig. 2 demonstrates the convergence of Algorithm 1 under
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Fig. 3. System CEE under different schemes versus the minimum computation
tasks size Lmin.
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Fig. 4. System CEE under different schemes versus the maximum transmit
power of the PB Pmax.

different settings of Lmin. It can be observed that less than

8 iterations are required for Algorithm 1 to converge to

the maximum CEE of the system, which illustrates that the

proposed algorithm is computationally efficient.

For performance evaluation, we compare the proposed

scheme with the following four representative benchmark

schemes: 1) Fully local computing scheme: all the EUs per-

form local computation only; 2) Complete offloading scheme:

all the EUs offload all their task bits to the MEC server for

computation; 3) Computation bits maximization scheme: this

scheme maximizes the total achievable computation bits of

the system under the same constraints as P0; 4) User-centric

CEE maximization scheme: this scheme maximizes the CEE

of all the EUs under the same constraints as P0. Note that the

fully local computing scheme, the complete offloading scheme

and the computation bits maximization scheme are optimized

under the same constraints as P0 and can be obtained based

on the proposed algorithm following Remark 1. The user-

centric CEE maximization scheme can be obtained based on

Algorithm 1 by changing the objective function to the CEE of

all the EUs and setting the optimal transmit power of the PB

at Pmax.

Fig. 3 shows the system CEE under different schemes versus

the minimum computation tasks size Lmin. As shown in this

figure, we can see that the system CEE under all the schemes

will decrease with the increasing of Lmin since the energy

consumed by computing grows faster than the growth of the

computation bits. It can also be observed that the proposed

scheme always outperforms the other schemes in terms of

system CEE. The reasons are summarized as follows. On

the one hand, the proposed scheme can utilize the available

resources more efficiently for maximizing the system CEE

while both the computation bits maximization scheme and

the user-centric CEE maximization scheme do not aim to

maximize the system CEE. On the other hand, both the fully

local computing scheme and the complete offloading scheme

can be regarded as special cases for the proposed scheme. By



comparing the fully local computing scheme and the complete

offloading scheme, we can also see that the system CEE under

the fully local computing scheme is higher than that under the

complete offloading scheme when Lmin is small while for a

larger Lmin, the complete offloading scheme outperforms the

fully local computing scheme in terms of system CEE. This is

because with a larger Lmin, EUs may not be able to compute

their tasks locally due to the limitation of the harvested energy

and the computation capacity, and offloading tasks to the MEC

server can get the tasks computed with a less consumed energy.

Moreover, we also find that the computation bits maximization

scheme and the user-centric CEE maximization scheme are

not energy efficient for the whole system, which illustrates

the importance and rational of considering the system CEE

maximization.

Fig. 4 shows the system CEE versus the maximum transmit

power of the PB Pmax, where the above five schemes, i.e., the

proposed scheme, the fully local computing scheme, the com-

plete offloading scheme, the computation bits maximization

scheme and the user-centric CEE maximization scheme, are

considered. From this figure, we can observe that the system

CEE under the proposed scheme, the fully local computing

scheme and the complete offloading scheme will increase with

the increasing of Pmax and converge to the maximum value

when Pmax is large enough, while the system CEE under the

computation bits maximization scheme and the user-centric

CEE maximization scheme will increase first, reach the peak

value and then decrease as Pmax increases. The reasons are as

follows. For the proposed scheme, the fully local computing

scheme and the complete offloading scheme, when Pmax is

small, the optimal transmit power of the PB is constrained by

Pmax and a larger Pmax will bring a larger system CEE, while

when Pmax is large enough, the optimal transmit power of the

PB may not be influenced by Pmax, leading to an unchanged

system CEE. For the computation bits maximization scheme

and the user-centric CEE maximization scheme, the optimal

transmit power of the PB is always Pmax, which can not bring

a higher CEE for the system when Pmax is large enough. By

comparisons, we can also see that the proposed scheme can

achieve the highest system CEE among these schemes.

Fig. 5 shows the system CEE under the above five schemes

versus εm

εk
. We set "k = 10�26 and the range of "m is set to be

[10�32, 10�28]. It can be observed that with the increasing of
εm

εk
, the system CEE under the proposed scheme, the complete

offloading scheme and the computation bits maximization

scheme will decrease while the system CEE under the fully

local computing scheme remains unchanged. This is because

"m increases as εm

εk
increases and the energy consumption

at the MEC server during the task execution phase also

increases, leading to a decreasing CEE of the system for

the proposed scheme, the complete offloading scheme and

the computation bits maximization scheme, while the system

CEE under the fully local computing scheme is not influenced

by "m. By comparisons, we can still see that the proposed

scheme outperforms the other schemes in terms of system

CEE, which illustrates the superiority of the proposed scheme.
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Fig. 6. System CEE under different schemes versus the SINR threshold.

Besides, by comparing the fully local computing scheme and

the complete offloading scheme, we can also find that with a

smaller "m, EUs tend to offload more tasks to the MEC server

for computation.

Fig. 6 shows the system CEE under different schemes versus

the SINR threshold �th. It can be observed that the system

CEE under the proposed scheme and the complete offloading

scheme decreases with the increasing of �th. When �th is large

enough, the system CEE under the complete offloading scheme

approaches 0, while the EUs under the proposed scheme

tend to compute all the tasks locally, leading to a reduced

system CEE. For all the considered SINR threshold values, the

proposed scheme achieves the highest system CEE among all

the schemes under comparison. The reasons are summarized

as follows. On the one hand, the proposed scheme provides

more flexibility for resource allocation to maximize the system

CEE, while both the computation bits maximization scheme

and the user-centric CEE maximization scheme do not aim

to maximize the system CEE, leading to a reduced system

CEE. On the other hand, the fully local computing scheme

and the complete offloading scheme can not jointly utilize the



computation resources at the EUs and the MEC server.

In Fig. 7, we evaluate the optimal time allocation under

the proposed scheme and the tradeoff between the local

computation and the MEC server’s computation in terms of

the computed bits and energy consumption. Fig. 7(a) plots

the optimal EH time, offloading time, MEC server’s execution

time and EUs’ computing time versus the minimum computa-

tion tasks size Lmin. It can be observed that with the increase

of Lmin, our proposed scheme will allocate more time for

task offloading at the EUs and for computation at the MEC

server to get the required tasks computed, while the optimal

EH time will decrease. Besides, we observe that the sum

of the optimal EH time, offloading time and MEC server’s

execution time is always T and the optimal computing time

of each EU is always equal to T , which verifies Theorem 1.

It is worth noting that for the case of ⌧k = T , the k-th EU

first uses some energy from its battery for performing local

computation and then charges its battery using the harvested

energy. The upper subplot of Fig. 7(b) plots the percentage of

total computation bits computed by all the EUs locally and by

the MEC server versus Lmin, where “Computation at EUs”

denotes the percentage of total computation bits computed

locally by all the EUs, “Computation at the MEC server”

denotes the percentage of total computation bits computed

by the MEC server, and “Task offloading” denotes the ratio

of the total achievable throughput of all the EUs to the total

computed task bits. It can be seen that when Lmin grows, the

proportion of local computation decreases while more task bits

are offloaded to the MEC server for computation. The lower

subplot of Fig. 7(b) plots the energy consumption versus Lmin,

where “Computation at EUs” denotes the energy consumption

of all the EUs for local computation, “Computation at the

MEC server” stands for the energy consumed at the MEC

server for computation, and “Task offloading” denotes the

energy consumption of all the EUs for task offloading. We

can see that with the increase of Lmin, the energy consumption

at EUs for local computation decreases, while the consumed

energy for task offloading and for MEC server’s computation

increases. Meanwhile, we note that the offloaded task bits

always equal the task bits computed by the MEC server, which

verifies Lemma 1.

Fig. 8 plots the system CEE under different schemes versus

the number of EUs, K. For wireless powered OMA, all

the EUs take turns in time domain to offload their tasks to

the MEC server during the task offloading phase while the

system CEE is maximized under the same constraints as P0

by optimizing the transmit power and time of the PB, the

offloading time, transmit power, computing frequencies and

execution time of the K EUs, and the MEC server’s execution

time. It can be observed that the system CEE of the proposed

scheme increases with the increasing K due to the fact that

a larger K provides more flexibility for choosing users and

allocating resources to achieve a higher system CEE. Besides,

the proposed scheme achieves the highest system CEE among

all the considered schemes for each given K, showing the

superiority of the proposed scheme in terms of system CEE
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and the advantage of NOMA based WPT-MEC over the OMA

counterpart.

V. CONCLUSIONS

In this paper, we have studied the CEE maximization

for a NOMA based WPT-MEC network from the system’s

perspective while considering a practical non-linear EH model

at the EUs and the computation resource allocation of the MEC

server. By solving the system CEE maximization problem,

we have proposed a Dinkelbach-based iterative algorithm to

jointly optimize the transmit power and time of the PB, the

EUs’ computing frequencies, transmit power and offloading

time, as well as the computing frequency and execution time

of the MEC server. Furthermore, the closed-form expressions

for parts of the optimal solutions have been derived, leading

to several insights into the system CEE. Specifically, the

system CEE increases as the optimal computing frequencies

of both the EUs and the MEC server decrease and in order to

maximize the system CEE, the total task bits offloaded by all

the EUs should equal the maximum computation bits for the

MEC server during the task execution phase, while the MEC

server and the EUs use the maximum allowed time to complete

their computing tasks. Simulations results have verified the

superiority of the proposed scheme in terms of system CEE

over several baseline schemes.

Based on this work, the following research directions could

be explored. First, it will be interesting to include the decoding

order in the joint optimization and design a scheme to maxi-

mize the system CEE by jointly optimizing the decoding order

and system resources. Second, this work can be extended to the

case where devices are equipped with multiple antennas. Third,

the resource allocation for maximizing the system CEE will

need to be carefully redesigned when considering the battery

level of each EU.

APPENDIX A

PROOF OF PROPOSITION 2

As shown in P5, we can find that the objective function is

a linear function and all the constraints except C4�2, C8�2
and C10�1 are linear constraints. As for C4�2 and C8�2,

if the function f (x, y) =
q

y3

x
is convex, then both C4�2

and C8�2 are convex constraints. By taking the second-order

derivative of f (x, y) with respect to x and y, the Hessian

matrix is given by

r2f (x, y) =
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Since the Hessian matrix is nonnegative definite, which in-

dicates that f (x, y) is convex, C4�2 and C8�2 are convex

constraints. Besides, C10�1 can also be easily proved as a

convex constraint. Thus, P5 is a convex optimization problem,

which can be solved by using existing convex methods (i.e.,

interior point method, Lagrange duality, etc) efficiently.

APPENDIX B

PROOF OF LEMMA 1

Here we prove Lemma 1 by means of contradiction. Specif-

ically, assume that
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q⇤ be the optimal system CEE. We can construct another
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P0. Let q+ be the corresponding system CEE under the con-

structed solution. Since
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m. Based on (10), we can find that the constructed

solution can achieve the same computation bits as the

optimal one while consuming less energy. Thus, one

has q+ > q⇤, which contradicts the assumption that
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and the

detailed process is omitted here for brevity. Based on the

above analysis, Lemma 1 is proven.

APPENDIX C

PROOF OF THEOREM 1

Let α = (↵0,↵1, · · · ,↵6), θ = (✓1, ✓2, · · · , ✓K),
µ = (µ1, µ2, · · · , µK), υ = (�1, �2, · · · , �K) and ϕ =
('1,'2, · · · ,'K) denote the non-negative Lagrange multipli-

ers with respect to all the constraints. Then the Lagrangian

function of P5 is given by (C.1), as shown at the top of

the next page, where PL = max(
P

j1
th

g1
,
P

j2
th

g2
, ...,

P
jK
th

gK
) and

PU = min(
P

j1+1

th

g1
, ...,

P
jK+1

th

gK
, Pmax).

By taking the partial derivative of L with respect to each



L = �+

K
X

k=1

xk

Ck
cpu

� q(Pt + Psc �
K
X

k=1

(ajkPtgk + bjk) + Prcto + "mym +

K
X

k=1

(Pk + pc,kto) +

K
X

k=1

"kyk) +↵3 (Pt � PL)

+ ↵0

 

�+

K
X

k=1

xk

Ck
cpu

� Lminte

!

+

K
X

k=1

✓k (ajkPthk + bjk � Pk � pc,kto � "kyk)+ ↵6

 

toBlog2

 

1 +

K
X

k=1

Pkhk

to�2

!

� �

!

+ ↵1

 

Tte�1� to�

s

x3
m

ym

!

+↵2

�

xmf
2
max � ym

�

+
K
X

k=1

'k

⇣

xk(f
max
k )

2 � yk

⌘

+↵4 (PU � Pt)+
K
X

k=1

�k

0

@Tte �

s

x3
k

yk

1

A

+ ↵5

�

xm � �Cm
cpu

�

+
K
X

k=1

µk

 

Pkhk � �k
th

 

K
X

i=k+1

Pihi + to�
2

!!

. (C.1)

optimization variable, we have
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By letting ∂L
∂ym

= ∂L
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= 0, we can compute the optimal

CPU frequency of the MEC server as
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Then by letting ∂L
∂Pk

= 0 and pk = Pk

to
, the optimal transmit

power at each EU should satisfy the following equation, i.e.,
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Based on (C.7), we can see that if f⇤
m > 0 is satisfied,

then ↵1 > 0 must hold. By means of the Karush-Kuhn-

Tucker (KKT) conditions, we can also find that the optimal

time sharing among EH phase, task offloading phase and

task execution phase should satisfy the following equation:
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m > 0. Note that in the case of f⇤

m = 0, the MEC server

can not provide computation service for the EUs. Thus, the

value of ⌧⇤c does not influence the CEE of the considered

network and we let ⌧⇤c = 0 for convenience. Besides, we
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Likewise, f⇤
k > 0 leads to �k > 0 based on

(C.8). Combining the complementary slackness condition
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Tt⇤e � t⇤k = 0. Then we have ⌧⇤k = T under the case of

f⇤
k > 0. Since each EU does not perform local computation

when f⇤
k = 0, we let ⌧⇤k = 0 for the case of f⇤

k = 0.
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