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ABSTRACT
Introduction Heart failure (HF) is increasingly common 
and associated with excess morbidity, mortality, and 
healthcare costs. Treatment of HF can alter the disease 
trajectory and reduce clinical events in HF. However, many 
cases of HF remain undetected until presentation with 
more advanced symptoms, often requiring hospitalisation. 
Predicting incident HF is challenging and statistical models 
are limited by performance and scalability in routine 
clinical practice. An HF prediction model implementable in 
nationwide electronic health records (EHRs) could enable 
targeted diagnostics to enable earlier identification of HF.
Methods and analysis We will investigate a range of 
development techniques (including logistic regression 
and supervised machine learning methods) on routinely 
collected primary care EHRs to predict risk of new- onset 
HF over 1, 5 and 10 years prediction horizons. The Clinical 
Practice Research Datalink (CPRD)- GOLD dataset will be 
used for derivation (training and testing) and the CPRD- 
AURUM dataset for external validation. Both comprise 
large cohorts of patients, representative of the population 
of England in terms of age, sex and ethnicity. Primary care 
records are linked at patient level to secondary care and 
mortality data. The performance of the prediction model 
will be assessed by discrimination, calibration and clinical 
utility. We will only use variables routinely accessible in 
primary care.
Ethics and dissemination Permissions for CPRD- GOLD 
and CPRD- AURUM datasets were obtained from CPRD (ref 
no: 21_000324). The CPRD ethical approval committee 
approved the study. The results will be submitted as a 
research paper for publication to a peer- reviewed journal 
and presented at peer- reviewed conferences.
Trial registration details The study was registered on 
Clinical  Trials. gov (NCT 05756127). A systematic review 
for the project was registered on PROSPERO (registration 
number: CRD42022380892).

INTRODUCTION
An estimated 64.3 million people are living 
with heart failure (HF) worldwide,1 and the 
prevalence of HF is projected to increase.2 
HF is the most common cause of unplanned 
hospital admissions in older persons, and is 

associated with reduced quality of life and 
premature mortality.3–6 Advances in the 
treatment of HF have offered improvements 
in prognosis,7–9 however, many cases of HF 
present and are diagnosed and treated late in 
course of the disease.2 10

International guidelines define four stages 
of HF: Stage A HF (at- risk for HF), Stage B 
HF (pre- HF; structural heart disease without 
symptoms), Stage C HF (symptomatic HF), 
and Stage D HF (advanced HF).7 11 Mortality 
increases with progression through the 
stages. Accordingly, guidelines recommend 
initiatives to identify individuals with Stage 
A and Stage B HF as evidence supports that 
the onset of symptomatic HF can be delayed 
or prevented by targeting modifiable risk 
factors.12

In the UK, 98% of the populace are regis-
tered in primary care and have electronic 
health records (EHRs).13 A decision tool that 
exploits routinely collected EHR data across 
a population to calculate HF risk could offer 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ Large and nationwide dataset representative of the 
UK primary care population.

 ⇒ Investigation of regression and machine learning 
techniques for the derivation of a prediction model 
for incident heart failure in the short and long term.

 ⇒ Candidate variable data types are deliberately limit-
ed to ensure widespread applicability of the model 
given the reality of ‘missing’ data in routinely col-
lected electronic health records.

 ⇒ This study is designed to fill an implementation gap 
to enable electronic health records to provide deci-
sion support to primary care physicians.

 ⇒ The derivation and validation work will be undertak-
en in datasets collected in the UK; therefore, further 
validation work may be pursued for international 
contexts.
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a scalable, efficient and cost- effective approach to iden-
tifying individuals with Stage A/B HF.14 Previous models 
applicable to community- based EHRs to predict HF risk 
have been limited. Models have seldom been externally 
validated,15 16 which prohibits an understanding of their 
generalisability. Many have been developed in curated 
prospective cohort studies, and their performance may 
not translate to EHR data.16 17 Others include laboratory 
results (eg, natriuretic peptide measurement),18 specialist 
investigations (eg, cardiac magnetic resonance (CMR))19 
or observations (eg, blood pressure and body mass 
index)17 20 that are missing in the majority of primary 
care EHRs and which may limit their scalability and appli-
cability across the population.21 Predictive models devel-
oped using deep learning have yet to report calibration 
performance and may be limited in clinical application 
by explainability.22 Furthermore, models have either 
provided risk prediction over short (6 months) or long 
prediction horizons (10 years),16 22 and therefore may 
not be used to both inform targeting of diagnostics and 
primary prevention initiatives.

The Clinical Practice Research Datalink (CPRD) is an 
ongoing primary care database, established in 1987, that 
comprises anonymised medical records and prescribing 
data from a network of General Practices (GPs) across 
the UK.13 CPRD undertakes over 900 checks covering the 
integrity, structure and format of the daily GP data collec-
tion and is an optimal tool for undertaking real- world, 
population- based evaluations of healthcare as well as the 
development of clinical prediction models.13 23

Developing a prediction model for HF from routinely 
collected primary care EHR data could offer several 
advantages. A model created from widely available data in 
routinely collected EHRs could be translated into clinical 
practice by being embedded into existing clinical EHRs. 
Furthermore, a model embedded in EHRs could give 
risk prediction for incident HF over the next 1–10 years 
that is updated each time an individual’s clinical situation 
changes (eg, age, diagnoses recorded), which more accu-
rately reflects the dynamic nature of disease pathogenesis 
and clinical decision making.

RESEARCH AIM
The aim of the study is to develop and validate a model 
for predicting incident HF from national primary care 
EHRs(figure 1). Specifically, we wish to develop a model 
that is widely applicable and scalable in routinely collected 
community- based EHRs, test its performance across a 
range of prediction horizons, and externally validate it in 
a geographically distinct primary care EHR dataset.

METHODS AND ANALYSIS
Data sources and permissions
The derivation dataset for training and testing the model 
will be the CPRD- GOLD dataset. This is an ongoing 
primary care database, established in 1987, that comprises 
anonymised medical records and prescribing data contrib-
uted by GPs using Vision software.13 It contains data for 

Figure 1 Schematic reporesentation of the FIND- HF study.
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approximately 17.5 million patients, with 30% of contrib-
uting practices in England.13 The included patients are 
broadly representative of the UK general population 
regarding age, sex and ethnicity.13 In order to contribute 
to the database, GPs and other health centres must meet 
prespecified standards for research- quality data (‘up- to- 
standard’).13 24

To ascertain whether the prediction model is general-
isable, we will externally validate its performance in the 
geographically distinct CPRD- AURUM dataset. This was 
launched in 2017 and encompasses only practices using 
EMIS Web software. It contains data for approximately 
26.9 million patients and draws on data collected from 
practices in England only.25 Any practices which previ-
ously contributed to CPRD- GOLD have been removed 
from the CPRD- GOLD cohort to ensure that these data-
sets reflect different populations. CPRD undertakes 
various levels of validation and quality assurance on the 
daily GP data collection comprising over 900 checks 
covering the integrity, structure and format of the data.25 
The included patients are broadly representative of the 
UK general population regarding age, sex, deprivation 
and geographical spread.25

There is the possibility that patients may transfer from 
a practice in GOLD to a practice in AURUM or vice versa, 
but the proportion of transfers is small. In the study, we 
will ensure that the study period starts from registration 
with a practice and is censored from the date of transfer 
out. Therefore, there is no overlapping period for the 
same patient in the training/testing set and the valida-
tion set.

Recorded information in both datasets includes 
patients’ demography, clinical symptoms, signs, investi-
gations, diagnoses, prescriptions, referrals, behavioural 
factors and test results entered by clinicians and other 
practice staff. All clinical information is coded using 
Read Codes in CPRD- GOLD and SNOMED clinical 
terms (CT) in CPRD- AURUM.26 27 In the proposed study, 
extracted patients will have patient- level data linked 
to Hospital Episode Statistics (HES) Admitted Patient 
Care (APC) and Diagnostic Imaging Dataset (DID), 
Office for National Statistics (ONS) Death Registration, 
patient- level deprivation and practice- level deprivation 
to provide a more comprehensive dataset. The CPRD 
dataset has been used to develop or validate a range 
of risk prediction models, including in cardiovascular 
disease.23 28

Patient and public involvement
Patients and public were not involved in the design of 
this research. However, we are convening a Scientific 
Advisory Board to include representatives from patients 
and public involvement groups, clinical experts, national 
health system leaders and EHR software providers to 
provide context advice on the research, dissemination 
of results and translation of the findings into clinical 
practice.

Inclusion and exclusion criteria
The study population will comprise all available patients 
in CPRD- GOLD and CPRD- AURUM eligible for data 
linkage and with at least 1- year follow- up in the period 
between 2 January 1998 and 28 February 2022. Patients 
will be excluded if they were under 16 years of age at the 
date of the first registration in CPRD, diagnosed with HF 
before 2 January 1998, registered for less than 1 year in 
CPRD or ineligible for data linkage.

Outcome ascertainment
The models will be developed to predict new onset HF. 
HF will be defined as the first presence of one or more of 
the clinical codes related to HF developed by consensus 
with clinical members of the research team. Code lists for 
HF will include Read codes and SNOMED CT in CPRD 
datasets, and the 10th revision of the International Statis-
tical Classification of Diseases and Related Health Prob-
lems (ICD- 10) codes in HES APC events and underlying 
cause of death variable in the ONS Death Registration 
data file. The first record of HF within the study period 
will be taken as the date of diagnosis (the index date). 
To that effect, in our analytical cohorts, there are about 
100 000 HF cases in CPRD- GOLD and 800 000 HF cases 
in CPRD- AURUM. Misclassified data can lead to system-
atic prediction errors and accuracy of data may vary over 
time,29 but CPRD has converted older ICD codes to the 
newer version, increasing confidence in their validity. 
Using incidence density sampling,30 we will match HF 
cases by year of birth (±5 years) and sex with up to five 
controls in the same practice on the index date without a 
diagnosis of HF on that date.

Predictor variables
A systematic review is being conducted to identify 
candidate predictors for inclusion (PROSPERO: 
CRD42022380892). The potential predictors will include 
age, sex, ethnicity and all disease conditions during 
follow- up. Candidate disease conditions will comprise 
hospitalised diseases, such as other cardiovascular 
diseases, obesity, diabetes mellitus, thyroid disorders, 
iron deficiency and anaemia, kidney dysfunction, elec-
trolyte disorders, chronic lung disease, sleep- disordered 
breathing, hyperlipidaemia, gout, erectile dysfunction, 
depression, cancer and infection.7 Code lists for predic-
tors will be used from publications if available, otherwise, 
the CPRD code browser will be used and codes checked 
by at least two clinicians. The code lists for predictors in 
GOLD and AURUM will be adapted from CALIBER and 
HDR UK repositories or publications. If none are avail-
able from these sources then new code lists will be devel-
oped using the OpenCodelists and checked by at least 
two clinicians.

For diagnoses, if medical codes are absent in a patient 
record, we will assume that the patient does not have 
that diagnosis, or that the diagnosis was not considered 
sufficiently important to have been recorded by the GP 
in case of symptoms.31 Ethnicity information is routinely 

P
rotected by copyright.

 on F
ebruary 6, 2024 at N

IH
R

 P
ress O

ffice - U
niversity of Leeds.

http://bm
jopen.bm

j.com
/

B
M

J O
pen: first published as 10.1136/bm

jopen-2023-073455 on 22 January 2024. D
ow

nloaded from
 

http://bmjopen.bmj.com/


4 Nakao YM, et al. BMJ Open 2024;14:e073455. doi:10.1136/bmjopen-2023-073455

Open access 

collected in the UK NHS and so has increasingly high 
completeness,32 and we will include an ‘ethnicity unre-
corded’ category where it is unavailable because missing-
ness is considered to be informative.33 Accordingly, we do 
not expect any missing data for any of the predictor vari-
ables in the analytical cohort.

Sample size
To develop a prognostic prediction model, the required 
sample size may be determined by three criteria suggested 
by Riley et al.34 For example, suppose a maximum of 200 
parameters will be included in the prediction model and 
the Cox- Snell generalised R2 is assumed to be 0.01. A total 
of 377 996 patients will be required to meet Riley’s crite-
rion (1) with global shrinkage factor of 0.95; this sample 
size also ensures a small absolute difference (Δ<0.05) in 
the apparent and adjusted Nagelkerke R2 (Riley’s crite-
rion (2)) and ensures precise estimate of overall risk with 
a margin of error <0.001 (Riley’s criterion (3)). According 
to the Quality and Outcomes Framework, the prevalence 
of HF in England is 0.91%. Given an HF prevalence of 
0.91%, only 3439 patients will be expected to develop HF 
from 377 996 patients. Therefore, the number of patients 
in the CPRD dataset with HF will provide sufficient statis-
tical power to develop and validate a prediction model 
with the predefined precision and accuracy.

Data analysis plan
Data preprocessing
The CPRD- GOLD and CPRD- AURUM data will be 
cleaned and preprocessed for model development and 
validation, respectively. For categorical variables, we will 
address data quality issues such as inconsistent format-
ting and encoding errors, ensure categories are properly 
defined and resolve any inconsistencies in their repre-
sentation to maintain data integrity. For patient features 
with binary values (sex and disease conditions), 0 and 1 
will be mapped to the binary values. Continuous variable 
(age) will be kept as continuous and we will employ statis-
tical techniques to identify potential outliers (including 
the use of z- scores and inspection of the distribution of 
the variables). Preprocessed patient- level data in CPRD- 
GOLD will be randomly split into an 80:20 ratio to create 
development and internal validation samples using the 
Mersenne twister pseudorandom number generator.

Descriptive analysis
We will perform descriptive analyses of all variables and 
test the statistical difference between cases and controls 
using the t- test for normally distributed continuous 
variables, Wilcoxon rank sum test for non- normally 
distributed a continuous variable (age) and Pearson’s chi- 
squared test for categorical variables, using a p≤0.05 to 
represent significance.

Prediction model development
Our focus is on using the logistic regression model because 
it offers a more manageable approach for implementa-
tion, interpretation and training compared with machine 

learning (ML) algorithms. However, we will compare the 
performance of the logistic regression model to a broad 
range of supervised ML techniques, including random 
forest, neural network, support vector machine, discrimi-
nants analysis and naïve Bayes classifier. We will check the 
assumptions of each ML method to assess its quality and 
whether it is appropriate for the data. To examine the 
comparative performance of the ML algorithms, we will 
apply Cochran’s Q test, which allows for the evaluation of 
multiple MLs. The primary prediction window will set at 
1 year.35 We will also explore prediction models with the 
length of the prediction window set at 5 and 10 years.

Internal validation
We will evaluate the model performance using a valida-
tion cohort with internal bootstrap validation with 200 
samples. The AUROC will be used to evaluate predic-
tive ability (concordance index) with 95% CIs calculated 
using the DeLong method.36 Youden’s index will be estab-
lished for the outcome measure as a method of empiri-
cally identifying the optimal dichotomous cut- off to assess 
sensitivity, specificity, positive predictive value and nega-
tive predictive value. We will calculate the Brier score, a 
measure of both discrimination and calibration, by taking 
the mean squared difference between predicted proba-
bilities and the observed outcome. Calibration will be 
assessed graphically by plotting predicted HF risk against 
observed HF incidence at 1, 5 and 10 years. Overall ML 
performance, including distance between the predicted 
outcome and actual outcome, will be measured. Decision 
Curve Analysis will be used to assess whether the predic-
tive model would do more benefit than harm.

Clinical utility will be examined by using net benefit 
analysis, where the harms and benefits of using a model 
to guide treatment decisions will be offset to assess the 
overall consequences of using the FIND- HF model for 
clinical decision making.36 The model will be compared 
at 1 year, 5 years and 10 years with model blind methods 
of performing echocardiography for all patients, or not 
performing echo for all patients, regardless of HF risk. We 
will assess the net benefit across the full range of possible 
threshold probabilities with an HF risk. A priori we will set 
an HF risk at 1, 5 and 10 years as being the threshold of 
clinical interest, to align with the incidence of HF at these 
time points in routine practice.

The same methods will be employed in subgroups 
by age (<65 years, ≥65 years; <75 years, ≥75 years), sex 
(women, men), ethnicity (White, Black, Asian, others and 
unspecified) and HF phenotype (HF with preserved ejec-
tion fraction, HF with reduced ejection fraction) to assess 
the model’s predictive performance in these clinically 
relevant groups.

External validation of model
The CPRD- AURUM dataset will then be used to exter-
nally validate the model performance to assess general-
isability. A lack of external validation has hampered the 
implementation of previous prediction models for HF 
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in routine clinical practice.37 The prediction model will 
be applied to each individual in the external validation 
cohort to give the predicted probabilities of experiencing 
HF at 1, 5 and 10 years. Prediction performance will be 
quantified by calculating the AUROC, Brier score, the 
observed to expected ratio, and by using calibration 
plots, and the same aforementioned clinical utility and 
subgroup analysis will be conducted. We will compare 
the performance against previously published models for 
incident HF that have been externally validated and are 
scalable in EHRs.38

Software
All analysis will be conducted through Stata and R.

ETHICS AND DISSEMINATION
The study has been approved by CPRD (ref no: 
21_000324). Those handling data have completed 
University of Leeds information security training. All 
analyses will be conducted in concordance with the CPRD 
study dataset agreement between the Secretary of State 
for Health and Social Care and the University of Leeds.

The study is informed by the Prognosis Research 
Strategy (PROGRESS) framework and recommenda-
tions.39 The subsequent research paper will be submitted 
for publication in a peer- reviewed journal and will be 
written following Transparent Reporting of a multivari-
able prediction model for Individual Prognosis or Diag-
nosis (TRIPOD) reporting guidelines and the CODE- EHR 
best- practice framework.40 41

If the model demonstrates evidence of clinical utility, 
it could be made readily available through EHR system 
providers. As such, each time the model is called within 
an EHR system, the risk score should be updated with 
new information so that prediction of an individual’s HF 
risk is updated contemporaneously. The model could be 
a built- in tool for use in GPs for the targeted identifica-
tion of individuals at high risk of developing new- onset 
HF. Future rigorous prospective study will be needed to 
assess the clinical impact and cost- effectiveness of this risk 
model.14 At the point when utilisation in clinical practice 
is possible, the applicable regulation on medicine devices 
will be adhered to.41 When in clinical use, the model itself 
could also be reviewed and updated by a prespecified 
expert consensus group on an annual basis after incorpo-
rating evidence from postservice utilisation and the cura-
tion of more data. The model will have to be updated as 
population characteristics change, data quality of EHRs 
improves and new or additional risk factors emerge.
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