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Original Article 
Explainable deep learning-based survival prediction for non-small cell lung 
cancer patients undergoing radical radiotherapy 
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A B S T R A C T   

Background and purpose: Survival is frequently assessed using Cox proportional hazards (CPH) regression; 
however, CPH may be too simplistic as it assumes a linear relationship between covariables and the outcome. 
Alternative, non-linear machine learning (ML)-based approaches, such as random survival forests (RSFs) and, 
more recently, deep learning (DL) have been proposed; however, these techniques are largely black-box in na-
ture, limiting explainability. We compared CPH, RSF and DL to predict overall survival (OS) of non-small cell 
lung cancer (NSCLC) patients receiving radiotherapy using pre-treatment covariables. We employed explainable 
techniques to provide insights into the contribution of each covariable on OS prediction. 
Materials and methods: The dataset contained 471 stage I-IV NSCLC patients treated with radiotherapy. We built 
CPH, RSF and DL OS prediction models using several baseline covariable combinations. 10-fold Monte-Carlo 
cross-validation was employed with a split of 70%:10%:20% for training, validation and testing, respectively. 
We primarily evaluated performance using the concordance index (C-index) and integrated Brier score (IBS). 
Local interpretable model-agnostic explanation (LIME) values, adapted for use in survival analysis, were 
computed for each model. 
Results: The DL method exhibited a significantly improved C-index of 0.670 compared to the CPH and a 
significantly improved IBS of 0.121 compared to the CPH and RSF approaches. LIME values suggested that, for 
the DL method, the three most important covariables in OS prediction were stage, administration of chemo-
therapy and oesophageal mean radiation dose. 
Conclusion: We show that, using pre-treatment covariables, a DL approach demonstrates superior performance 
over CPH and RSF for OS prediction and use explainable techniques to provide transparency and interpretability.   

Introduction 

Although the use of radiotherapy (RT) as part of a multimodality 
treatment approach has improved outcomes for patients with non-small 
cell lung cancer (NSCLC), survival rates continue to lag behind those 
seen for many other cancers. The Radiation Therapy Oncology Group 
0617 observed that a high-dose regime of 74 Gray (Gy) in 37 fractions 
surprisingly exhibited worse overall survival (OS) when compared to the 
standard-dose regime of 60 Gy in 30 fractions in NSCLC patients [1]. The 
decreased OS has been attributed to increased radiation dose to the 
heart; incidental radiation doses to other organs-at-risk (OAR) such as 
the lungs or oesophagus, which can result in radiation-induced pathol-
ogies such as pneumonitis or oesophagitis, respectively, have also been 

associated with decreased OS in NSCLC patients receiving RT [1–3]. 
OS is frequently assessed using Cox proportional hazards (CPH) 

regression; however, this method may be too simplistic as it assumes a 
linear relationship between features (i.e. independent variables) and the 
outcome (i.e. the dependent variable) [4]. Machine learning (ML) 
methods have been adapted for use in survival analysis, including 
random survival forests (RSFs) and gradient boosting methods [5,6]; 
these approaches can capture higher-order representations compared to 
CPH. Recently, deep learning (DL) has been proposed as an alternative 
method to capture more complex, non-linear associations between fea-
tures and the outcome [7]. DeepSurv is a CPH-based feed-forward neural 
network [8] which has shown improved performance over CPH and ML 
techniques in various applications [9–11]. These survival analysis 
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methods aim to model the survival function S(t) which denotes the 
probability that a patient is either dead or alive by a given time t and is 
calculated as: 
S(t) = exp(−H(t) ) (1)  

where H(t) represents the cumulative distribution, or cumulative haz-
ard, function (CHF) and is related to the probability density function, or 
hazard, function, h(t) as follows: 

H(t) =

∫ t

0

h(x)dx (2) 

Despite the success of various survival prediction models, these 
models can largely be considered as ‘black boxes’ i.e. they are uninter-
pretable with respect to the importance of each feature on the output 
prediction. This is undesirable as the prediction is not well understood, 
leading to a lack of trust by clinicians and patients alike. 

Several methods have been proposed to provide global and local 
explanations for ML and DL models; these include local interpretable 
model-agnostic explanations (LIME) values and Shapley additive ex-
planations (SHAP) values which assess the local and global importance 
of features, respectively [12,13]. LIME values derive explanations 
locally by perturbing the dataset using synthetic feature values 
randomly generated in the neighbourhood of the specific testing case. 
LIME values are agnostic to the specific model that is to be explained; 
only the model’s input in the form of a set of features and its output is 
required to generate model explanations. In contrast, SHAP values 
derive explanations globally using a game-theoretic framework which 
interprets each feature as a player in a game where a feature’s individual 
contribution to the final ‘pay-out’ or prediction is assessed. Therefore, 
SHAP values are computed using the whole training set and not indi-
vidual testing set examples, requiring the trained model to provide ex-
planations. Both LIME and SHAP values have been adapted for use in 
survival analysis [14,15]. 

In this study, we compared the conventional CPH model with the ML- 
based RSF and the DL-based DeepSurv models to predict OS from 
baseline features in NSCLC patients receiving radical RT. We assessed 
the effects of a plethora of feature combinations on OS prediction. 
Additionally, we used explainable frameworks to interpret the impor-
tance of covariables for each survival model. 

Materials and methods 

Study participants and dataset generation 

The dataset contained clinical, demographic, treatment, and time-to- 
event survival data for 471 NSCLC patients treated with radical RT be-
tween January 2010 and October 2016. Patient data used within this 
manuscript received ethical approval from the relevant institutional 
review board. Appropriate consent and permissions have been granted 
by the sponsors to utilise this data for retrospective purposes. All data 
were pseudo-anonymised, and all investigations were conducted in 
accordance with the appropriate guidelines and regulations. Covariables 
were collected for each patient using medical records from Western Park 
Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, 
Sheffield, UK; these covariables included age, sex, stage (TNM version 
7), administration of chemotherapy, neutrophil–lymphocyte ratio 
(NLR), planning target volume (PTV) and the mean radiation dose to the 
heart, lungs, oesophagus and spinal cord. In addition to these covari-
ables, the date of death was recorded. The date of censor for the patients 
still alive was the date of their most recent follow-up in medical records 
as of September 2021. 

Patients were treated with hypofractionated accelerated RT or 
continuous hyperfractionated accelerated RT (CHART). Hypofractio-
nated accelerated RT involved 55 Gy in 20 fractions over four weeks. 
CHART involved 54 Gy in 36 fractions over 12 days. We have previously 

published work, using an overlapping dataset to the one used in this 
study, which indicates that there are no significant differences in OS 
between CHART and hypofractionated accelerated RT [16]. The dose 
per fraction was not adjusted in relation to the RT regime used. When 
using the standard biological equivalent dose (BED) calculation, CHART 
is expected to have a lower tumour dose and organ-at-risk dose 
compared to the hypofractionated accelerated RT regime. However, this 
does not match with our published clinical experience of equivalent 
disease-free survival and overall survival with minimal differences in the 
rate of toxicities between these regimes, including rates of all toxicities 
and rates of grade 3+ toxicities [16]. Using a ’daily received dose’ of 4.5 
Gy in 12 fractions provides updated BED values of 78 Gy and 135 Gy for 
tumour and organ at risk doses, respectively; given this broad range of 
BED which spans greater and lesser BED values than the hypofractio-
nated accelerated RT regime, we have not adjusted our dose for the 
different dose per fraction of the two regimes. For patients undergoing 
chemotherapy, regimens were platinum-based doublets with gemcita-
bine, vinorelbine or pemetrexed. 

Organs of interest were delineated using the Varian Eclipse treat-
ment planning software (Varian Medical Systems, Palo Alto, CA, USA) 
on each axial slice of the planning computed tomography scan. In 
accordance with trial quality assurance guidelines [17], hearts were 
manually delineated from the pulmonary artery to the heart apex and 
oesophagi were manually delineated from the cricoid cartilage to the 
gastro-oesophageal junction. Lung structures, without the gross tumour 
volume, were automatically generated using the Varian Eclipse lung 
segmentation algorithm and subsequently manually corrected. The PTV 
was generated by adding a uniform margin of 5 mm to the gross tumour 
volume and then further expanded by 15 mm craniocaudally and 10 mm 
axially. The mean planned doses to the heart, lungs, oesophagus and 
spinal cord were retrieved for each patient. 

Data split 

Monte-Carlo cross-validation with 10-folds was performed using all 
471 patients; the dataset was divided using data split percentages of 
70:10:20 for training, validation and testing, respectively. This resulted 
in 338 training, 38 validation and 94 testing patients for each cross- 
validation fold. Monte-Carlo cross-validation is a type of repeated 
random sub-sampling where for each data split defined above, training 
data is used to fit models, parameterisation is conducted to maximise 
performance on the validation dataset, and the testing set used to vali-
date proposed survival analysis models. By utilising Monte-Carlo cross- 
validation, the proportion of the training/validation/testing split is not 
dependent on the number of iterations or partitions; however, some 
patients may not be part of the testing set at all whereas other partici-
pants may be selected multiple times. 

Feature selection 

In this work, we compared different combinations of input features 
by varying the covariables included in survival prediction models. 
Several covariables were selected as features which would be included 
‘as standard’ in all survival models, namely, age, sex, stage, adminis-
tration of chemotherapy, NLR, PTV and spinal cord mean dose. We then 
added OAR dosimetric variables, namely, the heart, lung and oesopha-
geal mean dose, resulting in three new feature combinations; these 
features are added to the ‘standard’ features. Additionally, the standard 
features are combined with all OAR dosimetric variables, resulting in a 
feature combination where ‘all’ covariables are included. 

Survival analysis models 

Three survival prediction models were trained. These included the 
conventional CPH, the ML-based RSF and the DL-based DeepSurv; these 
frameworks and the specific parameters used are described in detail 
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below. 
Some features were pre-processed before entering the survival pre-

diction models. This included the stage of the participant which was 
ordinally encoded. Additionally, all non-categorical features were 
standardised to reduce large variations in non-transformed values be-
tween features. 

Cox proportional hazards 
CPH is a semi-parametric approach that models the patient-specific 

hazard function [4]. CPH assumes that the time component and 
feature component are proportional with respect to some weighting. As 
such, the proportional hazard function h(t|Xi) can be defined as: 
h(t|Xi) = λ0(t)exp(β1Xi1 + ⋯ + βnXin)

= λ0(t) exp(Xi⋅βi)
(3)  

where Xi = (Xi1,⋯,Xin) is a vector representing the covariables for a 
patient i with n covariables, λ0(t) denotes the baseline hazard function 
and βi = (βi1,⋯, βin) is a vector that represents the patient-specific co-
efficients. From Equation (3), it can be inferred that as the baseline 
hazard function is consistent between patients and is the only time- 
dependent component of h(t|Xi), the proportional difference between 
patients is only dependent on the baseline scaling factor exp(Xi⋅βi). 

CPH models were trained and evaluated in python 3.9 using the 
scikit-survival sksurv framework with a learning rate of 0.01 and L2 
regularisation of 1×10−2 with early stopping to limit the number of 
training epochs. 

Random survival forest 
RSF is an ensemble model consisting of a series of decision trees 

adapted to accommodate censored data [5]. RSFs are built by first 
drawing a set of N random samples from the dataset. A survival tree is 
grown for each of these N samples creating n trees. At each node of the 
tree, a subset of covariables x is randomly selected from all features 
using a split factor y, where y is a specific unique combination of x. The 
node is split whereby the survival difference between daughter nodes is 
maximised by searching over all possible x and y values until values are 
found that maximise the survival difference. This is repeated recursively 
until a stopping criterion is met, namely, that a terminal node has no less 
than d0 > 0 unique deaths. Once completed, a CHF is computed for each 
tree and averaged over n trees to obtain the ensemble CHF. Using the 
ensemble CHF, the prediction error can be computed using only the data 
originally first drawn from the overall dataset. 

RSF models were trained and evaluated in python 3.9 using the 
scikit-survival sksurv framework. The number of trees is limited to 200 
with a max depth of 5 and minimum node size of 20. Early stopping was 
employed to limit the number of training epochs. 

DeepSurv 
DeepSurv is a non-linear implementation of the CPH model utilising 

a multi-layer feed forward neural network to model non-linear re-
lationships between covariables [8]. This has the potential to produce 
more accurate survival predictions than the linear relationships 
modelled by the traditional CPH algorithm. Similar to Equation (3), the 
hazard function h(t|Xi) can be defined as: 
h(t|Xi) = λ0(t) exp(ψ(Xi)) (4)  

where ψ is a non-linear loss function, determined by the weights of the 
neural network, and optimised using a gradient descent-based algo-
rithm. The network structure comprised of an input layer, two hidden 
layers and an output layer with hidden layers of 32 and 16 nodes, 
respectively. A batch size of 88 was utilised where batch normalisation 
and a dropout of 0.1 was employed at each layer of the network. A 
LeakyReLU activation function, negative log-likelihood CPH-based loss 
function and adam optimisation with a learning rate optimiser was used. 
Early stopping was employed to limit potential overfitting. DeepSurv 

models were trained and evaluated in python 3.9 using the pycox 
framework. 

Evaluation metrics 

Two primary evaluation metrics were used to assess OS prediction 
accuracy, namely, the Harrell’s concordance index (C-index) and the 
integrated Brier score (IBS). The C-index is defined between 0 and 1 
where 1 corresponds to a perfect prediction and 0.5 corresponds to a 
random prediction. An IBS of 0.25 corresponds to a ‘fence-sitting’ pre-
diction and an IBS < 0.25 represents a useful model, whereby the lower 
the IBS, the more accurate the model prediction. Further details of the 
evaluation metrics used are given in the Supplementary Material. 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism 9 (Graph-
Pad, San Diego, CA, USA). A p-value of < 0.05 was considered statisti-
cally significant. Univariable and multivariable CPH models were 
assessed to indicate significant hazard ratios for all features in the 
dataset; the forced-entry method was used for multivariable analysis. 
Friedman tests with post-hoc multiple comparisons were used to assess 
significances of differences between different variable combinations for 
each survival model using both C-index and IBS. Furthermore, Friedman 
tests with post-hoc multiple comparisons were used to assess signifi-
cances of differences between the best performing variable combina-
tions for each model using both C-index and IBS. To evaluate the 
methodological risk of bias, we employed the PROBAST tool [18,19]; 
completed PROBAST forms are available in the Supplementary Material 
and indicate minimal risk of bias overall. 

Results 

A summary of covariables alongside hazard ratios and corresponding 
p-values for both univariable and multivariable CPH analyses are dis-
played in Table 1. Of the 471 NSCLC patients included, 429 (91%) were 
deceased and 42 (9%) were recorded as alive at the time of the last 
follow-up. The median (range) number of survival days, calculated be-
tween the date of first RT fraction and last follow-up, was computed as 
647 (16, 3794) days. 

The training process resulted in 150 individually trained models 
spread across three survival prediction methods and five covariable 
combinations. Table 2 indicates the C-index and IBS for the CPH, RSF 
and DL models. DeepSurv yielded the highest C-index, achieving an 
average C-index of 0.670 across all testing set cases. Additionally, 
DeepSurv generated the most accurate IBS, achieving an average IBS of 
0.121. 

A statistical comparison of each survival model was conducted to 
assess differences between feature combinations, as displayed in Fig. 1a. 
Based on these comparisons, the CPH model with ‘All’ features was 
determined as the best-performing CPH model. The RSF model with the 
‘Standard + heart mean dose’ feature combination was determined as 
the best-performing RSF model. For DeepSurv, the configuration with 
‘All’ features was determined as the best-performing DeepSurv model. 
The best-performing configurations for each approach are displayed in 
Fig. 1b. Statistical comparisons indicated that using the C-index, Deep-
Surv significantly outperformed the CPH model; no other significant 
differences were observed. Using the IBS, DeepSurv significantly out-
performed the CPH and RSF models. For the remainder of the Results, 
these best-performing feature combinations are used in subsequent 
comparisons. 

IBS values are calculated across all time points contained within the 
testing set; thus a graph of Brier scores, indicating at which time points 
the Brier score is most accurate, can be generated. Fig. 2 provides a 
visual representation of the Brier scores over time for the CPH, RSF and 
DeepSurv approaches. For each approach, the least accurate timeframe 
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Table 2 
Performance of CPH, RSF and DeepSurv models in terms of mean (95% CI) C-index and IBS, computed via 10-fold Monte-Carlo cross-validation, for each combination of feature inputs. The best testing set values for each 
approach are shown in bold; where there was a tie, all tied values are bolded.  

Method Feature combination CPH RSF DeepSurv 
Training Testing Training Testing Training Testing 

C-index 
Mean (95 % CI) 

Standard 0.586 (0.576, 0.595) 0.601 (0.578, 0.623) 0.658 (0.653, 0.662) 0.645 (0.629, 0.661) 0.664 (0.630, 0.657) 0.630 (0.610, 0.651) 
Standard + heart mean dose 0.605 (0.593, 0.617) 0.621 (0.599, 0.642) 0.665 (0.662, 0.669) 0.661 (0.647, 0.674) 0.638 (0.608, 0.668) 0.628 (0.607, 0.649) 
Standard + lung mean dose 0.600 (0.595, 0.605) 0.619 (0.597, 0.642) 0.666 (0.662, 0.669) 0.649 (0.636, 0.663) 0.637 (0.609, 0.665) 0.628 (0.609, 0.646) 
Standard + oesophageal mean dose 0.588 (0.583, 0.593) 0.607 (0.589, 0.626) 0.662 (0.656, 0.667) 0.645 (0.630, 0.660) 0.646 (0.634, 0.657) 0.642 (0.623, 0.662) 
All 0.629 (0.611, 0.648) 0.629 (0.611, 0.648) 0.674 (0.670, 0.678) 0.659 (0.646, 0.672) 0.660 (0.651, 0.668) 0.670 (0.659, 0.680) 

IBS 
Mean (95 % CI) 

Standard 0.134 (0.128, 0.141) 0.145 (0.137, 0.153) 0.110 (0.108, 0.113) 0.128 (0.120, 0.137) 0.122 (0.116, 0.128) 0.126 (0.116, 0.137) 
Standard + heart mean dose 0.135 (0.129, 0.141) 0.144 (0.135, 0.153) 0.110 (0.107, 0.112) 0.128 (0.119, 0.136) 0.123 (0.115, 0.132) 0.127 (0.116, 0.137) 
Standard + lung mean dose 0.136 (0.130, 0.141) 0.146 (0.136, 0.155) 0.109 (0.107, 0.112) 0.129 (0.120, 0.137) 0.122 (0.114, 0.130) 0.127 (0.116, 0.137) 
Standard + oesophageal mean dose 0.135 (0.128, 0.141) 0.146 (0.138, 0.153) 0.110 (0.108, 0.113) 0.128 (0.119, 0.137) 0.119 (0.112, 0.126) 0.123 (0.114, 0.133) 
All 0.139 (0.133, 0.145) 0.146 (0.137, 0.155) 0.108 (0.105, 0.110) 0.128 (0.119, 0.136) 0.117 (0.110, 0.124) 0.121 (0.112, 0.130) 

Abbreviations: C-index = Harrell’s concordance index, IBS = integrated Brier score, CPH = Cox proportional hazards, RSF = random survival forest, CI = confidence interval. 

Table 1 
Clinical characteristics of the NSCLC patients and univariable/multivariable CPH analyses. Significant variables in the univariable and multivariable CPH analyses are indicated in bold.  

Variable Number (%) or mean ± SD Univariable 
Hazard ratio (CI) 

Univariable p-value Multivariable Hazard ratio (CI) Multivariable p-value 

Sex Male 269 (57) ref  ref  
Female 202 (43) 0.837 (0.690, 1.02) 0.071 0.949 (0.773, 1.17) 0.620 

Age (years) 71.6 ± 9.19 1.01 (0.995, 1.02) 0.297 1.01 (1.00, 1.03) 0.037 
Stage (%) I 141 (30) ref  ref  

II 68 (14) 1.40 (1.03, 1.89) 0.030 1.17 (0.844, 1.62) 0.346 
III 234 (50) 1.37 (1.00, 1.71) 0.005 1.12 (0.795, 1.57) 0.524 
IV 28 (6) 1.88 (1.24, 2.85) 0.003 1.43 (0.874, 2.35) 0.154 

Chemotherapy No 273 (58) ref  ref  
Yes 198 (42) 1.02 (0.843, 1.24) 0.815 0.734 (0.563, 0.957) 0.022 

NLR 3.81 ± 3.36 1.05 (1.02, 1.08) 0.001 1.05 (1.02, 1.08) 0.002 
PTV (cm3) 378 ± 219 1.00 (1.00, 1.00) <0.001 1.00 (1.00, 1.00) <0.001 
Heart mean dose (Gy) 10.8 ± 8.19 1.03 (1.02, 1.05) <0.001 1.02 (1.00, 1.04) 0.026 
Lung mean dose (Gy) 12.3 ± 4.15 1.07 (1.04, 1.09) <0.001 1.04 (0.995, 1.08) 0.087 
Oesophageal mean dose (Gy) 14.9 ± 8.72 1.02 (1.01, 1.03) 0.001 0.983 (0.962, 1.00) 0.110 
Spinal cord mean dose (Gy) 7.49 ± 4.61 1.04 (1.02, 1.06) <0.001 0.996 (0.966, 1.03) 0.767 

Abbreviations: Gy = Gray, CI = confidence interval, SD = standard deviation, cm = centimetre, NLR = neutrophil–lymphocyte ratio, PTV = planning target volume. 
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Fig. 1. A) Comparison of trained models with various feature combinations for the cph (left), rsf (middle) and DeepSurv (right) models using the C-index (top) and 
IBS (bottom). Significant p-values between feature combinations are indicated. b) Test set C-index (left) and IBS (right) values derived from 10 models for the best- 
performing feature combinations for the CPH, RSF and DeepSurv models. Significant p-values are indicated. 
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for survival prediction was between 500 and 1500 days. 
From Equation (1), the survival function S(t) represents the proba-

bility that a patient is alive by time t; predicted survival probability 
curves generated for each testing set case can be used to calculate the 
predicted time of death T̂ as follows: 

T̂ =

∫ ∞

0

S(t)dt (5) 

Therefore, the survival error E between the actual survival time T 
and T̂ is given by E = T̂ −T. This error can be used as a quantitative 
measure to assess the biases of each model, such as over- or under- 
estimation. Fig. 3 displays the survival error for all testing set cases 
which experienced an event (i.e. death) for all three survival models 
tested. 

We utilise SurvLIME values to provide feature explanations for sur-
vival models used in this work. SurvLIME values are an extension of 
LIME values that have been adapted for survival analysis [15]. SurvLIME 
values are generated in python 3.9 using the survlimepy library [20]. 
Using the ‘Monte-Carlo explanation’ function, LIME values can be 
calculated for each testing set case and then the median weighting re-
ported, providing an overall understanding of feature importance for 
each survival model. Fig. 4 displays median SurvLIME values for the 
three models utilised in this work for all testing set cases. 

RSFs can readily provide feature importance values as nodes are split 
to maximise the predicted survival difference; therefore, features can be 
ranked by their corresponding impact at each location they appear, 
weighted by the number of observations. To further validate SurvLIME 
values, the RSF’s SurvLIME values were compared to its feature 

Fig. 2. Brier scores for the CPH (top), RSF (middle) and DeepSurv (bottom) models. The IBS value for each model is indicated by a horizontal blue dashed line. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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importance values. A Spearman’s correlation of 0.57 was observed, 
indicating that there is a moderate correlation between both importance 
measures. 

Discussion 

Here, we compare several survival models which utilise baseline 
features to predict OS on a large dataset of NSCLC patients receiving RT, 
where the DL-based DeepSurv significantly outperformed conventional 
CPH using the C-index and significantly outperformed CPH and RSF 
using the IBS. The predicted number of survival days is overestimated by 
all approaches with the CPH and DeepSurv demonstrating the least 
survival error. 

By computing survival predictions using different feature combina-
tions, the impact of various features can be assessed. For the CPH and 
RSF models, the oesophageal mean dose appears to exhibit minimal 
impact on performance, whereas, for DeepSurv, it generated improved 
performance over other dosimetric features. This potentially indicates 
that DeepSurv can capture non-linear relationships between the oeso-
phageal mean dose and OS. This is further reinforced by the significant 
improvement exhibited when all features are utilised, where DeepSurv 
can capture complex non-linear relationships between inter-related 

features more effectively than the ML-based RSF. These results indi-
cate that dose-volume features for OARs are influential in accurately 
predicting OS. Dose to normal tissue in the heart is associated with 
decreased OS as demonstrated by the RTOG 0617 study [1]. Radiation 
dose to heart tissue can damage the integrity of endothelial barriers and 
increases their permeability [21]. For the lungs, radiation dose to lung 
tissue can lead to radiation-induced lung disease [22]. Additionally, 
many NSCLC patients have respiratory comorbidities, such as COPD 
[23]; the additional impact of radiation dose to already damaged tissue 
can lead to pneumonitis and fibrosis which directly increase the likeli-
hood of clinically significant exacerbations [24]. This has led to the 
routine use of lung dose constraints in clinical practice to limit the risk of 
these toxicities for patients. In comparison to other organs, including the 
heart and lungs, radiation dose to the oesophagus in our centre is 
generally much less constrained [25]. Consequently, the oesophagus 
will have greater variation in dose, particularly at the high-dose end of 
the spectrum, potentially leading to oesophagitis; the frequency of acute 
oesophagitis has been observed to be increased in accelerated RT re-
gimes [26–28]. As the oesophagus can potentially run very close to the 
base of the heart, which itself has been shown to be more predictive of 
OS than the whole heart using CPH [29], it may provide a better 
reflection of higher dose to that region and, therefore, be particularly 

Fig. 3. Differences between actual survival and predicted survival times for testing set cases which had experienced an event (i.e. death) in number of days for the 
CPH, RSF and DeepSurv models. 

Fig. 4. SurvLIME values for the best-performing CPH (left), RSF (middle) and DeepSurv (right) models.  
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useful in survival analysis models. 
When comparing the RSF and DeepSurv, using the C-index, we did 

not observe any significant difference between the two models. 
Although significant differences are observed using the IBS, the number 
of features used in the best-performing RSF are reduced when compared 
to the best-performing DeepSurv feature combination. In particular, the 
RSF does not require the mean radiation dose to the lungs or oesophagus 
and, therefore, contouring these OARs, which can be time-consuming, is 
not required; thus, the marginal benefit in performance exhibited by the 
DeepSurv must be weighed against clinical throughput. In regard to 
clinical throughput, it is worth noting that all approaches require the 
delineation of at least two dose-volume features, potentially limiting the 
clinical translation of the proposed approaches. 

Several researchers have investigated ML- and DL-based models for 
the prediction of OS in NSCLC patients. Sun et al. investigated eight 
different machine learning models, indicating that the majority of ap-
proaches outperformed conventional CPH; the best performing 
approach, a gradient boosting linear model which used the CPH-based 
partial log-likelihood method, generated a C-index of 0.68 [30]. In 
addition, Jin et al. studied several ML and DL models to predict OS using 
a large dataset; however, the dataset is limited to only stage III NSCLC 
patients [31]. Their proposed approach generated a C-index of 0.83, 
outperforming both CPH and RSF models. Recently, Lee et al. compared 
several ML- and DL-based survival models for OS prediction in NSCLC 
patients undergoing RT, utilising a dataset of 428 patients with 29 
covariables [32]. They demonstrated that several models improved 
performance when compared to CPH, achieving a C-index of 0.65, 
computed over a testing set constituting 49 patients [32]. However, Lee 
et al. utilised some covariables only obtainable after RT (e.g. treatment- 
related grade 3 ≥ adverse events), precluding the model’s utility in 
predicting OS prior to treatment. In comparison, our proposed approach 
achieved a superior C-index of 0.67 and uses only covariables that can be 
obtained before RT has commenced; consequently, our approach is 
deployable earlier in the treatment pathway. 

Moreover, Lee et al. used explainable techniques, such as SHAP, to 
interpret model predictions [32]. We employed LIME values to provide 
insights into the approaches tested, including DeepSurv. LIME values 
provide local importance information for individual testing set cases; 
however, in some instances, the local model approximation is dissimilar 
from a global interpretation of the model in question, reducing the 
generalisability of explanations. Furthermore, LIME values rely on 
appropriate perturbations of the dataset to generate accurate pre-
dictions; perturbing the dataset is obviously challenging for binary 
features and, consequently, the prediction of their importance is less 
accurate than continuous variables. In future work, SHAP values could 
be calculated alongside LIME values to further validate explanations 
both from a local and global perspective. 

Several limitations are present within the study. The specific cova-
riables utilised are relatively limited; this includes the lack of important 
predictors, such as performance status, which has demonstrated corre-
lation with OS in NSCLC patients undergoing RT [33,34]; furthermore, 
other covariables such as smoking status may be important to the pre-
diction of OS. In future work, an expanded number of covariables should 
be used, alongside increasing the size of the dataset and acquiring data 
from several centres. Nevertheless, we believe that this work represents 
a first-step in utilising a more complex, non-linear approach to pre-
dicting OS using only baseline variables. A potential use case for the non- 
linear explainable survival prediction framework we propose could be in 
the domain of randomised clinical trials, whereby our approach could 
replace the ubiquitous CPH method. 

A potential limitation is the inclusion of spinal cord mean dose as 
‘standard’ whereas the impact of other OAR dosimetric variables were 
independently investigated. The spinal cord is a purely serial organ and, 
thus, radiation dose is associated with global organ failure above a 
certain threshold dose. Radiation myelitis is a late-stage effect that has a 
profound impact on patient quality of life [35]. To minimise this risk, the 

use of spinal cord dose constraints are standard practice. Therefore, 
whilst the spinal cord is considered an OAR, the radiation dose is much 
more controlled and cannot lead to known adverse conditions which 
negatively impact survival rates. As shown in Table 1, an increased 
mean dose to the spinal cord was associated with significantly decreased 
survival on univariable analysis; however, mean dose to the spinal cord 
was not significant when mean dose to the heart, lungs and oesophagus 
were included in multivariable analysis. Despite this, due to the non- 
linearity of the proposed ML and DL approaches, we believe that, as 
the forced entry method was used, the mean dose to the spinal cord 
should still be included. 

The selection criteria were kept as broad as possible, encompassing 
all patients from the original data collection for which all covariables 
were collected. However, it could be argued that, due to the small 
number of stage IV patients, differences in plasma osteopontin between 
stage III and IV, and that stage IV patients receiving radical radiotherapy 
will be highly selected, that these patients should be excluded from the 
dataset. We acknowledge these potential limitations; however, we 
believe that by including all participants the potential use cases of the 
survival analysis framework is expanded, providing survival predictions 
which can influence clinical care or palliative treatment. In addition, as 
all participants were included in the dataset, the potential for selection 
bias or statistical manipulations were minimised. 

In conclusion, we show that, using baseline clinical and treatment 
variables, DeepSurv demonstrates superior performance over CPH and 
RSF for OS prediction in NSCLC patients undergoing RT. We demon-
strate that OAR dosimetry can improve survival prediction and use 
explainable techniques to provide feature importance information for all 
approaches, particularly facilitating transparency and interpretability of 
hitherto black-box DL models. 
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[34] Käsmann L, Taugner J, Eze C, Roengvoraphoj O, Dantes M, Gennen K, et al. 
Performance Status and Its Changes Predict Outcome for Patients With Inoperable 
Stage III NSCLC Undergoing Multimodal Treatment. Anticancer Res 2019;39: 
5077–81. 

[35] Khan M, Ambady P, Kimbrough D, Shoemaker T, Terezakis S, Blakeley J, et al. 
Radiation-Induced Myelitis: Initial and Follow-Up MRI and Clinical Features in 
Patients at a Single Tertiary Care Institution during 20 Years. AJNR Am J 
Neuroradiol 2018;39:1576–81. 

J.R. Astley et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0167-8140(24)00005-7/h0005
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0005
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0005
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0005
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0005
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0010
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0010
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0010
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0010
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0015
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0015
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0015
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0020
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0020
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0025
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0025
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0030
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0030
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0040
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0040
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0040
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0045
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0045
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0045
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0050
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0050
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0055
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0055
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0055
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0065
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0065
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0070
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0070
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0070
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0075
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0075
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0080
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0080
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0080
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0080
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0085
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0085
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0085
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0090
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0090
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0090
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0095
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0095
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0095
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0105
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0105
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0110
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0110
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0110
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0115
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0115
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0115
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0120
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0120
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0120
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0125
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0125
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0125
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0125
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0130
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0130
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0135
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0135
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0135
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0135
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0140
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0140
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0140
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0140
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0145
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0145
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0145
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0150
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0150
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0150
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0155
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0155
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0155
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0160
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0160
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0160
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0160
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0165
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0165
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0165
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0165
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0170
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0170
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0170
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0170
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0175
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0175
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0175
http://refhub.elsevier.com/S0167-8140(24)00005-7/h0175

	Explainable deep learning-based survival prediction for non-small cell lung cancer patients undergoing radical radiotherapy
	Introduction
	Materials and methods
	Study participants and dataset generation
	Data split
	Feature selection
	Survival analysis models
	Cox proportional hazards
	Random survival forest
	DeepSurv

	Evaluation metrics
	Statistical analysis

	Results
	Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


