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Abstract

Heterogeneous architectures are increasingly common in modern High-Performance

Computing (HPC) systems. Achieving high-performance on such heterogeneous sys-

tems requires new approaches to application development that are able to achieve the

three Ps: Performance, Portability, and Productivity.

In this paper, we provide an overview of the state-of-the-art for developing high-

performance, portable and productive multi-physics applications with particular focus

on the simulation of a plasma fusion reactor. Simulating such a complex system relies

on both fluid- and particle-based simulations, and coupling interfaces between these

two domains. We also review the current state-of-the-art in reasoning about the perfor-

mance, portability and productivity of HPC applications.

Keywords: High-Performance, Parallel Programming, Portability, Coupling, Plasma

Simulation, Reactor Design

1. Introduction

Numerical simulation allows scientists and engineers to rapidly develop physical

understanding and prototype new designs in domains where physical experimentation

may be costly, impractical, or dangerous. As a result, computational methods have

joined theory and experiment as central pillars of scientific investigation. Maximising

the performance of these numerical simulations means that more calculations can be

carried out, allowing scientists to increase the size, complexity, or resolution of their

experiments. The field of High Performance Computing (HPC) exists to develop and

improve the performance of scientific applications and the supercomputers running
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Figure 1: A schematic of a generic tokamak “poloidal cross section”, highlighting the targeted regions of

plasma and machine, namely the main chamber between core plasma scrape off layer and wall (upper circle)

and the so called “plasma exhaust” or “divertor” region (lower circle) where heat and particles come into

direct contact with material surfaces [7]

them. In turn, increasingly powerful supercomputers allow us to tackle new scientific

grand challenges [1, 2]. One such grand challenge is the economic delivery of nuclear

fusion energy in the coming decades.

Project NEPTUNE (NEutrals and Plasma TUrbulence Numerics for the Exascale)

aims to develop new modelling software to treat the complex dynamics of high temper-

ature fusion plasma for the design of a nuclear fusion reactor, and is funded as part of

the UK’s ExCALIBUR programme [3]. It is one of a number of efforts in developing

new numerical simulation software focused on nuclear fusion. Other notable examples

include the Whole Device Model Application (WDMApp) project [4], funded by the

Department of Energy’s Exascale Computing Project (ECP), and the Plasma-PEPSC

project [5], funded by EuroHPC.

The aim of Project NEPTUNE is to deliver expertise in, and tools for, “in-silico”

reactor interpretation and design, initially with a focus upon the “edge” region of the

tokamak plasma where hot plasma comes into contact with the material walls of the

machine (see Figure 1). This challenging, multi-physics, multi-scale intersection be-

tween plasma physics and engineering has long been heralded as at least an “exascale”

modelling and simulation problem, and its solution is widely regarded as critical to

the success of commercial fusion energy (e.g., see Mission 2 of the EUROfusion Road

Map [6]).

One of the biggest challenges in developing such a complex simulation applica-
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tion is in ensuring that it is able to achieve high performance on current- and future-

generation supercomputers, adapting to new advancements in hardware and software.

This is especially important currently as we transition towards heterogeneous systems

comprising of CPU hosts with specialised accelerator architectures, where achieving

high performance often requires the adoption of vendor-specific programming models

and tools, and appropriate algorithms for the accelerator architecture.

For most large scientific simulation applications, maintaining multiple versions of

a code-base is simply not a reasonable option given the significant time and effort

required, not to mention the expertise needed in the many different associated tech-

nologies. Even holding multiple versions does not guarantee a future-proof application

where the next innovation in hardware may well require yet another parallel program-

ming model or a different parallelisation strategy to obtain best performance for the

new device. These challenges are now general and applicable equally to any scien-

tific domain that relies on numerical simulation software using HPC systems. As a

recent review for applications in the computational fluid dynamics (CFD) domain [8]

elucidates, three key factors can be identified when considering the development and

maintenance of large-scale simulation software, particularly aimed at production:

1. Performance: running at a reasonable/good fraction of peak performance on

given hardware.

2. Portability: being able to run the code on different hardware platforms/architec-

tures with minimum manual modifications.

3. Productivity: the ability to quickly implement new applications and features,

and maintain existing ones.

The last of these is particularly challenging for nuclear fusion, where new exper-

imental results have on several occasions suggested radical revision of models and

designs.

As more and more parallelisation features have been added to general purpose pro-

gramming languages, achieving performance, portability and productivity in produc-

tion code bases has become increasingly difficult – with significant application rewrites

required to achieve high performance and portability. Fully automated parallelisation

by a compiler for general purpose languages has consistently failed, requiring manual

intervention to achieve a satisfactory result [9–12]. Compilers for imperative languages

such as C/C++ or Fortran, the dominant languages in HPC, have struggled to extract

sufficient semantic information, enabling them to safely parallelise a program from all,

but the simplest structures. Consequently, the programmer has been forced to carry the

burden of “instructing” the compiler to exploit available parallelism in applications,

targeting the latest, and purportedly greatest, hardware.

In many cases, the use of very low-level techniques, some only exposed by a par-

ticular programming model/language extension, are required with careful orchestra-

tion of computation and communications to obtain the best performance. Such a deep

understanding of hardware is difficult to gain and, even more so, unreasonable for do-

main scientist/engineers to be proficient in – especially given that the expertise required

rapidly changes with the technology of the moment following hardware trends. A good
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example is the many-core path originally touted by Intel with accelerators such as the

Xeon Phi, which has been discontinued – the first US Exascale systems are all GPU

based, with two systems containing AMD GPUs, and one containing Intel GPUs.

As such, it is near impossible to keep re-implementing large science codes for vari-

ous architectures. This has led to a separation of concerns approach where the descrip-

tion of what to compute is separated from how the computation is implemented. This

is in direct contrast to languages such as C/C++ or Fortran, which explicitly describe

the computation.

In this paper, we provide a review of the state-of-the-art in achieving the goal of

developing software that is performant, portable and productive. Specifically we out-

line the key approaches and tools currently used to develop numerical simulation ap-

plications targeting modern HPC architectures and systems, including methods of re-

engineering existing codes appropriately. A number of these approaches and tools have

been covered in previous surveys [8, 13–15], however this paper provides a broader pic-

ture of this landscape, considering low-level architecture-specific techniques, through

to high-level domain-specific languages that allow scientists to represent their problems

in a mathematical form. This paper additionally includes consideration of coupling

frameworks, that allow developers to couple many different solvers together.

Our review focuses on applications and algorithms from the plasma fusion do-

main and related supporting applications from engineering. Our aim is to survey and

present the state-of-the-art in achieving “performance portability” for fusion, where an

application can achieve efficient execution across a wide range of HPC architectures

without significant manual modifications. For completeness, we focus on both fluid-

and particle-based computational models of plasma, and on frameworks for coupling

these approaches.

The remainder of this paper is structured as follows: Section 2 highlights the chal-

lenges in developing future-proofed scientific applications; Section 3 provides a re-

view of the predominant general purpose programming languages used in scientific

application development; Section 4 outlines some of the main programming models

that provide parallelism to developers; Section 5 describes of a range of important

software libraries that provide common functionality to parallel scientific applications;

Section 6 gives an overview of domain specific languages specifically targeted at fluid-

and particle-based simulations; Section 7 outlines a number of coupling interfaces that

allow multiple applications to be coupled together; Section 8 gives an overview of

how performance, portability and productivity may be evaluated for a project such as

NEPTUNE; finally, Section 9 concludes the paper.

2. Challenges in Developing Modern Parallel Applications

The end of CPU clock frequency scaling in 2004 gave rise to multi-core designs

for mainstream processor architectures. The turning point came about as the cur-

rent CMOS-based microprocessor technology reached its physical limits, reaching the

threshold postulated by Dennard in 1974 [16]. The end of Dennard scaling has meant

that further increases in clock frequency would result in unsustainably large power con-

sumption, effectively halting a CPUs ability to operate within the same power envelope

at higher frequencies.
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More than a decade and a half has passed since the switch to multi-core, where

we now see a golden age of processor architecture design with increasingly complex

and innovative designs used to continue delivering performance improvements [17].

The primary trend continues to be the development of designs that use more and more

discrete processor “cores” with the assumption that more units can do more work in

parallel to deliver higher performance by way of increased throughput. This has aligned

well with the hardware industries’ ambition to see the continuation of Moore’s Law –

exponentially increasing the number of transistors on a silicon processor.

As a result, on the one hand, we see traditional CPU architectures gaining more

cores, currently over 40 cores for high-end processors, and increasing vector widths

(e.g., Intel’s 512-bit vector units) per core, widening their ability to do more work

in parallel. On the other hand, we see the widespread adoption of separate devices,

called accelerators, such as GPUs that contain much larger numbers (over 1024) of

low-frequency (power) cores, targeted at speeding up specific workloads.

More cores on a processor has effectively resulted in making calculations on a

processor, usually measured by floating-point operations per second (FLOP/s), cheap.

However, feeding the many processors with data to carry out the calculations, mea-

sured by bandwidth (bits/sec), has become a bottleneck. As the growth in the speed

of memory units has lagged that of computational units, multiple levels of memory

hierarchy have been designed, with significant chunks of silicon dedicated to caches to

bridge the bandwidth/core-count gap.

Memory technologies, such as High Bandwidth Memory (HBM), has produced

“stacked memory” designs where embedded DRAM is integrated on to CPU chips.

The memory hierarchy has been further extended off-node, with burst buffers and I/O

nodes serving as staging areas for scientific data en route to a parallel file system.

Larger and more heterogeneous machines have also necessitated more complex inter-

connection strategies. Technologies such as NVLink, Infinity Fabric or Compute eX-

press Link allow GPUs to communicate point-to-point without requiring data to travel

through the CPU. New high-speed interconnects have been developed that seek to min-

imise the number of hops required to move data between nodes and devices, potentially

benefiting both inter-node communications and file system operations.

A decade ago, the vast majority of the fastest HPC systems in the world were homo-

geneous clusters based around the x86-64 architecture, with a few notable exceptions

such as the IBM BlueGene architectures. Now, there is a diverse range of multi-core

CPUs on offer, supported by an array of manycore co-processor architectures, complex

high-speed interconnects, and multi-level parallel file systems.

The underpinning expectation of the switch to multi-core and the subsequent pro-

liferation of complex, massively parallel hardware was that performance improvements

could be maintained at historical rates. As a recent review by Leiserson et al. elicits,

improvements in performance are now likely to come from the top of the computing

stack in the form of algorithms, architecture and “big components” (e.g., software with

millions of lines of code, GPUs, CPUs, compilers) [18].

However, this has led to the need for highly skilled parallel programming know-

how to fully exploit the full potential of these devices and systems. The switch to

parallelism and its consequences was aptly described by David Patterson in 2010 as a

“Hail-Mary pass”, an act done in desperation by the hardware vendors “without any
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Figure 2: Overview of the potential layers in a software stack for a multi-physics simulation application.

clear notion of how such devices would in general be programmed” [19].

More than a decade later, industry, academia and stakeholders of HPC have still

not been able to provide an acceptable and agile software solution to this issue. The

problem has become even more significant with the current deployment of heteroge-

neous Exascale-capable HPC systems, limiting their use for real-world applications for

continued scientific delivery. On the one hand, open standards have been slow to catch

up with supporting new hardware and, for many real applications, have not provided

the best performance achievable from these devices. On the other hand, proprietary

solutions have only targeted narrow vendor-specific devices resulting in a proliferation

of parallel programming models and technologies.

On heterogeneous platforms, a significant proportion of the available performance

comes from the accelerators, with the host CPU primarily providing problem setup,

synchronisation, and I/O operations. Each of the major GPU manufacturers provide

a different programming model to interact with their accelerators and, so, application

developers must consider their approach when targeting a heterogeneous system. Fur-

ther consideration must also be given to vendor-supported approaches that may lead to

vendor lock-in.

Figure 2 gives a broad outline of the various components that may be involved

when developing multi-physics simulation applications for execution on heterogeneous

systems. Higher-level representations of physics problems (such as DSLs) allows an

application to better synthesise machine-code representations for various hardware,

and potentially enables more developer productivity (in many DSLs partial differential

equations can be represented directly in code). Lower-level representations are more

likely to be able to exploit available parallelism on various platforms, but may limit

portability between systems.

Over the next five sections of this paper, we will focus on each of the boxes in
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Figure 2 in turn, looking at the current state-of-the-art in (i) general purpose program-

ming languages, (ii) parallel programming models, (iii) software libraries, (iv) domain

specific languages, and (v) coupling frameworks. Our survey follows Reguly and Mu-

dalige [8] together with specific considerations for algorithms of interest to the fusion

domain (in particular both fluid- and particle-representations of plasma fusion).

3. General Purpose Programming Languages

In this class we consider traditional programming languages with long history of usage

and support in scientific computing. These languages typically allow fine control over

every aspect of an algorithms implementation.

Scientific computing is dominated by the Fortran, C and C++ programming lan-

guages. In the UK, Fortran-based applications currently dwarf C/C++ applications.

On ARCHER, the UK’s Tier-1 resource between 2014 and 2020, Fortran applications

accounted for almost 70% of the machine’s core hours, while C/C++ applications ac-

counted for around 15% [20]. This trend has somewhat continued on ARCHER2, with

usage data for April 2023 showing that Fortran applications still account for over half

of the identifiable core hours, while C/C++ accounts for around a third1. This skew

towards Fortran is in part due to a number of mature applications with large user bases,

such as VASP (24% of identified usage on ARCHER2), and its longevity in HPC,

meaning that it benefits from mature compiler support more than most other languages.

Within the US Department of Energy’s Exascale Computing Project (ECP), the

opposite trend can be seen, where C/C++ is being actively pursued for around 70%

of their applications, compared to just 10% in Fortran [21]. This is motivated by a

perceived risk of relying on Fortran for mission critical codes in the future [22]. A

number of other studies have similarly concluded that Fortran may harm portability and

productivity due to limitations in the language [23] and the development of tooling [24].

However, there are also ongoing efforts to bridge some of the gaps between C/C++

and Fortran, with the introduction of the Fortran Lang community, a Fortran standard

library and a Fortran package manager [25].

Another language growing in popularity in HPC is Python. While not tradition-

ally a “high performance” language, it provides interfaces to many external libraries,

often written using languages such as C/C++ and Fortran. This has meant that Python

can provide an easy interface for developers to write their applications at a high-level,

leaving the implementation and execution to optimised libraries (see Section 6). Due to

Python’s use in a wide range of fields, by large corporations such as Alphabet, the com-

munity has invested significant effort into improving the performance of pure Python.

The flexibility of the language and dynamic type system limits opportunities for static

analysis and optimisation; instead Just-In-Time (JIT) compilers have been developed,

both as libraries to target particular code hotspots (e.g., Numba [26]), and whole pro-

grams (e.g., PyPy [27]). However, threading within Python, and thus its parallel perfor-

mance, has historically been poor, limited by the Global Interpreter Lock (GIL) present

1https://github.com/ARCHER2-HPC/usage-data/tree/main/allusers/2023/04
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in the reference CPython implementation, PyPy and Stackless Python [28]. Proposals

to remove this lock, or make it optional, are on-going (see PEP 703), and until this

happens, Python’s use in HPC will continue to be limited to being primarily a “glue”

language, coordinating work done in components implemented in higher-performance

languages.

There is a long history of research and development of languages for scientific

and high performance computing, including those such as Chapel [29], Fortress [30]

and X10 [31] which target parallel computation. These have tended to remain niche

languages and have not been widely adopted. A promising language, which is general

purpose but designed in particular for scientific computing, is the Julia language [32].

This has a syntax which is familiar to Matlab or Fortran programmers, but is built

on a sophisticated type system and language design, and uses LLVM to perform JIT

compilation for CPU and GPU hardware. It is a relatively new language (version 1.0

was released in August 2018), but is seeing rapid adoption in scientific and machine-

learning communities, and already has some libraries which are recognised as best in

class [33]. It aims to combine the flexibility and high productivity of Python, with high

performance.

Developing applications in these general purpose programming languages presents

a number of challenges:

1. The languages are very prescriptive, and optimising an application for one sys-

tem may harm performance on another system. In fact, optimising for one archi-

tecture can obfuscate the science source so much so that future maintenance and

addition of new features becomes difficult.

2. Applications developed with multiple code paths may provide portable perfor-

mance, but requires duplicated effort keeping each code path up to date.

3. Parallelism must be explicitly written into the application, almost always using

parallel programming extensions to the languages (as discussed in the next sec-

tion), significantly increasing the complexity of development.

4. Parallel Programming Models

In this class we consider the programming models that extend from traditional general

purpose programming languages to provide parallelisation both on-node (e.g., vectori-

sation, threading) and off-node (e.g., message passing). We also consider programming

models that are designed specifically for heterogeneous computation with accelerator

devices.

The parallelism available on modern supercomputers is hierarchical in nature. Vec-

tor operations (e.g., SSE, AVX, APX, SVE) provide instruction-level parallelism within

a core (using a single instruction, multiple data (SIMD) model), while threading pro-

vides a form of shared memory parallelism within a node. Symmetric Multithreading

(SMT) allows two or more threads to co-exist (with an architecture dependent degree

of concurrency) on a single compute core, potentially increasing compute unit utilisa-

tion. Parallelism across a system is usually achieved using message passing or shared

global memory techniques.
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Vectorised code can be achieved during the compilation phase, if there are no data

dependencies present in the code. All modern compilers attempt to generate vectorised

code through auto-vectorisation, usually when higher optimisation levels are specified

(e.g., with compiler flags such as -O2 and above). However, the compiler will only

produce vectorised code when it is absolutely certain that no dependencies exist. In

almost all non-trivial (especially real-world) codes a conclusive determination cannot

be made and auto-vectorisation fails [34].

A developer can aid the compiler with the use of compiler directives or vector

intrinsics. Compiler directives (or pragmas) allow a developer to indicate that an as-

sumed dependency can be ignored, potentially resulting in the compiler being able to

generate vectorisable code that is portable across architectures. However, the compiler

may still believe there is a dependency present and, in this case, the developer must use

a lower-level interface (e.g., Intel Intrinsics) to directly manipulate the vector regis-

ters [35]. This is likely to result in higher performance, but the instruction set specific

code is likely to significantly harm both portability and productivity [36].

Distributing execution across all cores in a node can be achieved through threading

and shared memory, or through message passing.

In HPC applications threading is often achieved through OpenMP [37–40], while

message passing is usually implemented using the Message Passing Interface (MPI)

[41]. Both threading and message passing can be achieved through the POSIX Threads

(pthreads) library; however, like OpenMP, this approach does not extend to distributed

memory systems. Consequently, many implementations of the OpenMP standard rely

on a lightweight threading library, such as pthreads [42].

In OpenMP, parallelism is achieved at the loop-level by annotating loop structures

with compiler directives (e.g., #pragma omp parallel for), such that the compiler

can thread each iteration for execution in parallel. In MPI, parallelisation must be

implemented explicitly, with each process initiating inter-process communications di-

rectly through the application programming interface (API).

Parallelisation beyond a single node requires inter-node communications. The de

facto standard in HPC is MPI. MPI provides a number of functions for distributed com-

putation, including point-to-point communications, one-sided communications, collec-

tive operations and reduction operations. In an MPI-parallelised program, each pro-

cess operates on its own data, and communicates edge values to surrounding processes

where a dependency exists.

There are also a number of programming models that treat the distributed memory

space as a single homogeneous block. This partitioned global address space (PGAS)

approach is taken by Coarray Fortran [43] and Unified Parallel C [44], among oth-

ers. In this model, communications are hidden to the application developer, but are

typically implemented using MPI in the backend library.

An alternative to the data parallelism approaches described above, is task paral-

lelism. In a task parallel approach, the work of the application is divided into tasks and

then scheduled for execution across a distributed architecture. Tasking was introduced

in version 3.0 of the OpenMP standard, and the standard now includes functionality for

standard tasks, single tasks, task dependencies and task groups [40]. Tasking has been

developed further by a number of asynchronous many-tasking (AMT) frameworks. No-

table examples include Charm++ [45], Legion [46], HPX [47], and DARMA/vt [48].
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4.1. Accelerator Extensions

For heterogeneous systems, host code is usually written using the programming

languages and models mentioned previously to coordinate between compute nodes;

however, the accelerators themselves often require a different approach. This is a con-

sequence of the significant differences in accelerator architectures compared to tradi-

tional CPUs; indeed their simplified architecture often restricts developers to a subset

of language features.

Each vendor typically offers their own platform-specific programming model, such

as CUDA from NVIDIA and HIP/ROCm from AMD. Moving between hardware ven-

dors therefore requires moving between programming models. In some cases, this may

be as simple as finding matching API calls, and in some cases this may require signifi-

cant re-engineering [49, 50].

Although proprietary, CUDA has been the most dominant accelerator programming

extension and has maintained a high level of adoption in HPC given the widespread

use of NVIDIA GPU hardware and the maturity and support that NVIDIA put into

the numerical solver libraries based on CUDA (e.g., cuBLAS, cuFFT) [51]. The HIP

programming model provides a near like-for-like API, and a similar number of numer-

ical solver packages [52]. Both follow a single instruction, multiple thread (SIMT)

programming model where large numbers of threads are launched simultaneously (in

contrast to SIMD, this allows for thread divergence and additional complexity).

OpenCL [53] largely mirrors the SIMT model of CUDA, having a similar API, but

is developed as an open standard. Much like with CUDA and ROCm/HIP, in OpenCL

the programmer is given the opportunity to write explicit computational kernels for

devices, with significant control over the orchestration of parallelism. OpenCL is sup-

ported by all major vendors (Intel, AMD, NVIDIA) to some extent, and has been pro-

moted as a vendor agnostic model. However, the same OpenCL application will not

necessarily give the best performance on all architectures, where some level of device

specific optimisations are required to obtain best performance.

While offering much less control, OpenACC [54] directives can be used to indi-

cate/instruct a compiler where code can be parallelised for execution on an accelerator.

OpenACC also provides directives to indicate whether memory should be allocated on

the host or the device, and when to move data between the two. Memory management,

such as when data is moved to/from the device, and how often, are key considerations

to achieving good performance. If not handled correctly, directives can lead to fre-

quent data movement to/from a device and lead to significant slowdowns. Currently

OpenACC is provided in commercial compilers from NVIDIA (previously PGI) and

Cray, with the latter only supporting Cray-supplied hardware. GCC also offers nearly

complete support for OpenACC 2.5, targeting both NVIDIA and AMD devices.

OpenMP added support similar to OpenACC for offloading computation to accel-

erators in version 4.0 of the standard [38]. Similar to its counterpart, data locality is

controlled through compiler directives, with parallelisable loops being specified using

the #pragma omp target directive. OpenMP 4.0 is a good example of standards at-

tempting to catch up with evolving hardware, where support for accelerator directives

(which were introduced as a proprietary solution first in 2011 with OpenACC with the

adoption of NVIDIA GPUs in HPC) were only added to the OpenMP standard in 2013.
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Even then OpenMP supporting compilers took several years more to fully implement

the standard for working code [55].

Subsequent OpenMP standards (e.g., OpenMP 4.5 [39] and OpenMP 5.0 [40]) have

further improved support for accelerator devices, making target offload a viable path

to producing performant GPU applications. Support for target offload can be found

in commercial compilers from Intel, IBM, AMD and Cray, with a variety of target

architectures. Support also exists in the Clang/LLVM [56] and GCC open-source com-

pilers2.

While the explicit device control provided by the CUDA, ROCm/HIP, and OpenCL

programming models may be more powerful than directive-based approaches, it may

also significantly increase developer effort. More recently, the Khronos Group released

SYCL [57], a new high-level cross-platform abstraction layer, which can be viewed as

a data-parallel version of C++ inspired by OpenCL. Many of the concepts remain the

same, but the significant amount of “boiler-plate” code required to setup parallelism

in OpenCL applications is now not required where SYCL uses a heavily-templated

C++ API. In this way, SYCL is also able to offer a single-source solution, similar

to OpenMP and OpenACC, where kernel code and host code can co-exist within an

application (unlike in OpenCL, where application code is typically split between host

and device code).

In SYCL, there is typically a queue that work items can be submitted to. Loop-level

parallelisation is achieved using constructs such as the parallel for function, while

task-parallelism can be achieved using the single task function.

Building on SYCL, Intel announced their new programming model, OneAPI, in

2018. OneAPI is a unified programming model, that combines several libraries (e.g.,

the Math Kernel Library), with Thread Building Blocks (TBB) and Data Parallel

C++ (DPC++). DPC++ is a cross-architecture language built upon the C++ and

SYCL standards, providing some extensions to SYCL. Support for SYCL and DPC++

is provided in a number of compilers from vendors such as AMD, Intel, and Codeplay,

and can target a number of device types directly, or via existing OpenCL runtimes3.

In the case of the Intel and AMD compilers, it is even possible to use SYCL to target

FPGA devices. However, the question of whether one code written in SYCL is able to

obtain the best performance on all supported hardware remains to be answered [58–61].

In addition to the aforementioned programming models, there are a number of soft-

ware ecosystems that target both host and accelerator platforms, that present them-

selves as parallel programming models to developers. Notable examples are OCCA [62],

Kokkos [63], RAJA [64] and Alpaka [65]. These are discussed in more detail in Sec-

tion 5.

Parallelisation based on OpenMP and MPI have a long history in HPC application

development. CUDA also now has over a decade of development, with OpenACC, and

OpenCL following close behind. SYCL/DPC++ is the latest addition to the parallel

programming extensions available. While CUDA, OpenMP, and OpenACC all support

C/C++ and Fortran, OpenCL and SYCL only support C/C++. If, indeed, C/C++-based

2https://www.openmp.org/resources/openmp-compilers-tools/
3https://www.khronos.org/sycl/
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extensions and frameworks dominate the parallel programming landscape for emerging

hardware, there could well be a need for porting existing Fortran-based applications to

C/C++.

The key considerations and challenges when using the above programming models

and extensions to general purpose languages include:

1. Open standards lagging hardware development – especially when the standard is

developed by a large number of organisations.

2. The complete implementation of these standards into many compilers can be

slow [55].

3. Some of these programming models offer low-level fine control over parallelism

and therefore may lead to overly complex code. In some cases, different code-

paths are required to get the best performance on different architectures [59], for

example, to handle the different memory layouts required to optimise for CPUs

vs. GPUs.

5. Software Libraries

In this class we consider libraries that facilitate scheduling and execution of data par-

allel or task-parallel algorithms, and classical software libraries that target scientific

application development, implementing a diverse set of common algorithms (often nu-

merical).

5.1. Parallel Programming Abstraction Libraries

There are a number of software libraries that present themselves similarly to the

parallel programming models mentioned previously. They typically offer parallel func-

tionality through various methods such as macro preprocessing, JIT compilation or

template metaprogramming.

OCCA [62] is one such vendor neutral, open source parallel programming frame-

work focused on portability. OCCA supports both C/C++ and Fortran, and can target

platforms through a range of backends (e.g., CUDA, HIP, DPC++, OpenMP, OpenCL).

An approach, exclusive to C++, is the use of template libraries, that enable de-

velopers to write a generic “template” to express an operation such as a parallel-loop

iteration, but at compile-time select a specific implementation of a method or function

(known as static dispatch). This allows users to express algorithms as a sequence of

parallel primitives executing user-defined code at each iteration, e.g., providing a loop-

level abstraction. These libraries follow the design philosophy of the C++ Standard

Template Library [66] – indeed, their specification and implementation is often con-

sidered as a precursor towards inclusion in the C++ STL. The largest such projects are

Boost [67], Eigen [68], Thrust [69] and HPX [47]. While there are countless such

libraries, here we focus on ones that also target performance portability in HPC.

Three notable examples of this approach are Kokkos [63] and RAJA [64], de-

veloped as part of the US Department of Energy’s Exascale Computing Project, and

Alpaka [65], developed as part of the PIConGPU Particle-in-Cell application [70].

12



Each library supports execution on shared-memory parallel platforms, such as CPUs

and GPUs, through a variety of approaches. They do not provide parallelism on dis-

tributed memory systems, rather they are designed to be used in conjunction with MPI

(or another off-node communication library).

Kokkos is a C++ performance portability layer, developed by Sandia National

Laboratories, that provides data containers, data accessors, and a number of parallel

execution patterns [63]. Its data structures can describe where data should be stored

(CPU memory, GPU memory, non-volatile, etc.), how memory should be laid out

(row/column-major, etc.), and how it should be accessed. Similarly, one can spec-

ify where algorithms should be executed (CPU/GPU), what algorithmic pattern should

be used (parallel for, reduction, tasks), and how parallelism is to be organised. It is

a highly versatile and general tool capable of addressing a wide set of needs, but as

a result is more restricted in what types of optimisations it can apply compared to a

tool that focuses on a narrower application domain. Kokkos is able to target CUDA,

OpenMP, pthreads, HIP or SYCL, meaning it can target all of the post-Exascale plat-

forms currently deployed or in development.

RAJA is a similar abstraction developed by Lawrence Livermore National Labo-

ratory [64]. It is similar to Kokkos in many respects, but offers more flexibility for

manipulating loop scheduling, particularly for complex nested loops. It supports CPUs

(with OpenMP and TBB), as well as NVIDIA GPUs with CUDA.

Alpaka is a header-only C++17 abstraction library developed initially at TU Dres-

den [65]. It provides similar semantics to both Kokkos and RAJA, and can achieve

parallelism through OpenMP, std::thread, TBB, CUDA, HIP and SYCL.

Both Kokkos and RAJA were designed by Department of Energy laboratories to

help move existing software to new heterogeneous hardware, and this is very much

apparent in their design and capabilities – they can be used in an iterative process to

port an application, loop-by-loop, to support shared-memory parallelism. Of course,

for practical applications, one needs to convert a substantial chunk of an application;

on the CPU that is because non-multithreaded parts of the application can become a

bottleneck, and on the GPU because of the cost of moving data to/from the device.

Kokkos and RAJA are used heavily within the Exascale Computing Project (ECP) [21,

71], and due to their reliance on template meta programming, can be used alongside

almost any modern C++ compiler.

Using parallel programming libraries comes with the following considerations:

1. Future support for, and maintenance of, these libraries is not guaranteed.

2. Some libraries may restrict application development to modern C++.

3. Development time may be high due to the compilation times associated with

heavily templated code.

4. Debugging heavily templated code can be difficult, with errors obfuscated by

numerous templates. This can be particularly problematic for inexperienced pro-

grammers.

5. Platform specific code can be easily integrated into templated code to achieve

higher performance on some platforms, provided that the abstraction used is

carefully designed and at a sufficiently high level.
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5.2. Numerical Algorithm Libraries

Beyond the programming models mentioned previously, portability can also be

achieved using libraries provided by various vendors. These software libraries typi-

cally provide common functionality, and are often highly optimised for particular ar-

chitectures.

The basis of many mathematical libraries is the Basic Linear Algebra Subpro-

grams (BLAS) [72], first developed in 1979. BLAS provides vector operations, matrix-

vector operations and matrix-matrix operations. The Linear Algebra Package (LA-

PACK) [73] builds on BLAS, providing routines for solving systems of linear equa-

tions. The FFTW [74] library provides functions for computing discrete Fourier trans-

forms, and is known to be the fastest free software implementation of the FFT.

Architecture-tuned implementations of BLAS, LAPACK and FFTW are often avail-

able, with notable examples being AMD Optimized CPU Libraries, ARM Performance

Libraries, Intel Math Kernel Library, cuBLAS, clBLAS, OpenBLAS, and Boost.uBLAS.

Similarly, MAGMA [75] provides dense linear algebra kernels for multicore and ac-

celerator architectures.

The Portable, Extensible Toolkit for Scientific Computation (PETSc) [76] pro-

vides a number of data structures and routines for solving PDEs. It was developed

by Argonne National Laboratory and employs MPI for distributing algorithms across

an HPC system. Recently, PETSc has implemented an abstraction layer for scalable

communications over MPI and between host and GPU devices, PetscSF [77].

Similarly, HYPRE [78] is a library of data structures, preconditioners and solvers

developed at Lawrence Livermore National Laboratory. It can be built with support for

GPU devices through CUDA, OpenMP target offload, or using RAJA or Kokkos.

Trilinos [79] is an extensive collection of open-source libraries that can be used

to build scientific software, developed by Sandia National Laboratories. It provides

over 50 self-contained, independent packages for solving linear and non-linear systems,

preconditioning, and using sparse graphs and matrices. It supports distributed memory

computation through MPI and also provides shared memory computation through the

Kokkos package.

Achieving high performance with many solvers requires that a problem is well

partitioned and load balanced. Notable examples are METIS [80] (and its paral-

lel incarnation ParMETIS [81]), Scotch [82] (and the parallel PT-Scotch [83]), and

KaHIP [84]. Trilinos provides the Zoltan2 [85] package that can perform partitioning

through ParMETIS, PT-Scotch, or its own GPU partitioner, Sphynx.

Using these libraries introduces a number of key considerations and challenges:

1. While the standard interfaces to these libraries may restrict their usefulness to

some applications, it does encourage vendors to produce optimised and portable

versions of performance critical functions.

2. Library functions often operate in lock-step, meaning operations cannot typically

be fused. This may necessitate a number of unnecessary CPU-GPU transfers.
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6. Domain Specific Languages

In this class we consider a wide range of languages and libraries – the key commonality

is that their scope is limited to a particular application or algorithmic domain.

Domain Specific Languages (DSLs) and approaches by definition restrict their

scope to a narrower problem domain, set of algorithms, or computation/communica-

tion patterns. By sacrificing generality, it becomes feasible to attempt and address

challenges in gaining all three of performance, portability and productivity. A wide

range of approaches exist, at different levels of abstractions starting from libraries fo-

cusing on specific numerical methods (e.g., Finite Element method) to low-level paral-

lel computation patterns and loop abstractions. Some are embedded in general purpose

languages (eDSLs) such as C/C++/Fortran or Python allowing them to make use of the

compiler and development infrastructure (debuggers and profilers) of these languages.

Others develop an entirely new language of their own.

Restricting to a specific domain allows DSLs to apply more powerful optimisations

to help deliver performance as well as portability. The key reason being that a lot of as-

sumptions are already built into the programming interface (the domain specific API).

As such, explicit description of the problem need not occur when programming with

DSLs, significantly improving productivity. Conversely, the key deficiency of DSLs

then is their limited applicability – if they cannot develop a considerable userbase, they

will lack the support required to maintain them. As such two of the key challenges to

building a successful DSL or framework are: designing an abstraction wide enough to

cover a range of applications, but narrow enough such that powerful optimisations can

be applied; and, ensuring there is a feasible approach to long-term support.

DSLs can be categorised based on their level of abstraction. In some respects,

many of the solutions discussed previously in this paper could be thought of as low-

level DSLs, providing abstractions for parallel computation (e.g., parallel for loops,

parallel reductions, etc.); SYCL, Kokkos, and RAJA could be thought of as such low-

level DSLs.

However, in this review, we consider low-level DSLs to be those that are designed

for a particular class of computational pattern (e.g., mesh-based computations, particle-

based interactions), and high-level DSLs to be those that allow mathematical descrip-

tions of problems to be directly expressed in code, leaving the problem discretisation

and computational method to the solver/framework.

6.1. Low-level Domain Specific Languages

6.1.1. Mesh-based Computations

This class of DSLs are, for the most part, oblivious to the numerical methods being

implemented, which in turn allows them to be used for a wider range of algorithms,

e.g., finite differences, finite volumes, or finite elements. The key goal here is to create

an abstraction that allows the description of parallel computations over either structured

or unstructured meshes (or hybrid meshes), with neighbourhood-based access patterns.

There are a number of notable and currently active DSLs at this level of abstrac-

tions. Halide [86] is a DSL intended for image processing pipelines, but generic

enough to target structured-mesh computations [87]; it has its own language, but is
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also embedded into C++, and it can target both CPUs and GPUs, as well as distributed

memory systems. YASK [88] is a C++ library for automating advanced optimisations

in stencil computations, such as cache blocking and vector folding. It targets CPU vec-

tor units, multiple cores with OpenMP, as well as distributed-memory parallelism with

MPI. OPS [89] is a multi-block structured-mesh DSL embedded in both Fortran and

C/C++, targeting CPUs, GPUs and clusters of CPUs/GPUs – it uses a source-to-source

translation strategy to generate code for a variety of parallelisations. ExaSlang [90] is

part of a larger European project, ExaStencils [91], which allows the description of

PDE computations at many levels – including at the level of structured-mesh stencil

algorithms. It is embedded in Scala and targets MPI and CPUs, with limited GPU sup-

port. Another DSL for stencil computations, Bricks [92], gives transparent access to

advanced data layouts using C++, which are particularly optimised for wide stencils,

and is available on both CPUs and GPUs.

OP2 [93] and its Python derivative, PyOP2 [94], give an abstraction to describe

neighbourhood computations for unstructured meshes. They are embedded in C/For-

tran and Python respectively, and can target CPUs, GPUs, and distributed memory

systems. Unlike the structured-mesh motif (which uses a regular stencil), unstructured-

mesh computations are based on explicit connectivity information between mesh ele-

ments, leading to indirect increments. Indirect increments need to be carefully handled

when parallelising, given the existence of data dependencies, and as such need different

code-paths to obtain the best performance on different architectures [59]. OP2 gener-

ates parallel code targeting CPU and GPU clusters making use of a range of parallel

programming models (e.g., SIMD, OpenMP, CUDA, SYCL, and their combinations

with MPI).

A number of DSLs have emerged from the weather prediction domain, such as

STELLA [95] and PSyclone [96]. STELLA is a C++ template library for stencil

computations that is used in the COSMO dynamical core [97], and supports structured-

mesh stencil computations on CPUs and GPUs. PSyclone is part of the effort in mod-

ernising the UK Met Office’s weather code; it works with LFRic, which is the Met

Office’ replacement for its Unified Model. PSyclone has code-transformation and au-

tomatic code generation functionalities, and as well as LFRic, it has been used with

the NEMO and CROCO ocean models [98]. PSyclone is capable of generating Ope-

nACC, OpenMP and (in limited cases) OpenCL [99]. Its transformation functionality

allows for CPU optimisations, as well as targetting GPUs. CLAW-DSL [100], used

for the ICON model [101], targets Fortran applications and generates CPU and GPU

parallelisations – mainly for structured-mesh codes, but it is a generic tool based on

source-to-source translation using preprocessor directives. It is worth noting that these

DSLs are closely tied to larger software projects (weather models in this case), devel-

oped by state-funded entities, greatly helping their long-term survival. At the same

time, it is unclear if there are any other applications using these DSLs.

6.1.2. Particle Interactions

Within the plasma domain, particle simulations are typically performed using the

particle-in-cell method [102], where individual particles (or macro particles) are tracked

across a mesh representing the electromagnetic (or electrostatic) fields. Particles may

interact only with the mesh (known as particle-mesh methods, or PM), with other par-
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ticles (known as particle-particle, or PP), or with both (known as PP-PM, or P3M).

There are a number of DSLs that exist at this level of abstraction, proving support for

one or more of these methods.

PPML [103] is a DSL for numerical simulations based on particle methods and

hybrid particle-mesh methods. PPML provides a concise set of high-level abstrac-

tions through its own language, targeting reduced implementation times, and uses a

source-to-source compiler to generate plain Fortran code, which is then linked with

the PPML back-end. However, the use of new language constructs limits the stan-

dard optimisation/debugging routines and is hard to extend and maintain. The Parallel

Particle-Mesh Environment (PPME) [104] overcomes some of these issues by lever-

aging a meta programming system to enhance the programmer’s experience, which is

developed as an Integrated Development Environment (IDE) for particle-mesh meth-

ods. OpenFPM [105] is a framework that provides an abstraction layer for mixed

mesh-particle, and particle methods, embedded in C++. It provides a comprehensive

library that targets CPUs, GPUs, and supercomputers. The HartreeParticleDSL4 is

a DSL for particle methods implemented using the Regent programming language. It

currently only supports a limited feature set, catering for short-range pairwise interac-

tions and per-particle operations.

While many of the particle DSLs listed here are general to PM, PP or P3M methods,

some are designed with a specific scientific domain in mind, in particular N-body and

molecular dynamics applications. HOOMD-blue [106] is a general-purpose molecular

dynamics and hard particle Monte Carlo simulation toolkit. It provides a Python-based

domain specific API and runs over a high-performance C++/CUDA back-end with

MPI, enabling the creation of simulation and analysis workflows. MDL [107] is a

molecular-dynamics DSL designed to allow rapid prototyping, testing and debugging

of efficient propagation algorithms. PPMD [108] is a portable framework for molecular

dynamics applications, providing a Python interface and parallelised computation using

OpenMP, MPI and CUDA.

At a level lower, the Cabana [109] library provides a number of data structures,

algorithms and utilities specifically for particle-based simulations. Parallel execution

of particle kernels is achieved through Kokkos for on-node parallelism and MPI for

off-node communication. Each of these libraries can be used to abstract away some of

the mathematical operations and data storage requirements needed by scientific appli-

cations.

6.2. High-Level DSLs

Domain specificity can be at a higher level, where the DSL focuses on the decla-

ration and solution of particular numerical problems. The most widely implemented

DSLs at such a high level are frameworks for the solution of PDEs. The problem is

specified starting at the symbolic expression of the problem (e.g., in Einstein notation).

An interpreter or a compiler then (semi-) automatically discretises the problem and

generates a solution. Most are focused on a particular set of equations and discretisa-

4https://github.com/stfc/RegentParticleDSL
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tion methods, and they can offer excellent productivity – assuming the problem to be

solved matches the focus of the library.

Many of these libraries, particularly ones where portability is important, are built

with a layered abstractions approach; the high-level symbolic expressions are trans-

formed, and then passed to a layer that maps them to a discretisation, then this is given

to a layer that arranges parallel execution – the exact layering of course depends on

the library. This approach allows the developers to work on well-defined and well-

separated layers, without having to gain a deeper understanding of the whole system.

These libraries are most commonly embedded in the Python language, which has the

most commonly used tools for symbolic manipulation in this field – although func-

tional languages are arguably better suited for this, they still have little use in HPC.

Due to the poor performance of interpreted Python, these libraries ultimately generate

low-level C/C++/Fortran code to deliver high performance.

One of the most established such libraries is FEniCS [110], which targets the fi-

nite element method. However it only supports CPUs and distributed memory cluster

execution with MPI, with some support for GPUs with the integration of PETSc. Fire-

drake [111] is a similar project with a different feature set, that uses the aforementioned

PyOP2 library for parallelising and executing generated code. A feature of Firedrake

is that it generates code at runtime to exploit further optimisation opportunities, for

example based on the mesh being available/input at runtime.

The ExaStencils project [91] uses four layers of abstraction to create code running

on CPUs or GPUs from the continuous description of the problem – its particular focus

is structured meshes and multigrid. OpenSBLI [112] is a DSL embedded in Python,

focused on resolving shock-boundary layer interactions and uses finite differences and

structured meshes – it generates C code using the OPS library which provides the sten-

cil abstraction. As noted before, OPS then generates parallel code targeting distributed

memory machines with both CPUs and GPUs. Devito [113] is a DSL embedded in

Python which allows the symbolic description of PDEs, and focuses on high-order

finite difference methods, with the key target being seismic inversion applications. De-

vito also supports CPU and GPU parallelisation, where GPU acceleration is obtained

by generating OpenACC directives.

In fusion research, the BOUT++ [114, 115] framework has been developed as a

flexible toolbox for solving a wide range of PDEs. Its design was in large part driven

by the need for physicist users to modify and customise the model equations being

solved. BOUT++ therefore uses C++ features to implement models in a way which

closely mimics their mathematical form. The BOUT++ framework then solves these

equations, and allows the user runtime control over the finite difference methods and

stencils used, as well as time integration solver, Laplacian inversions, and so on.

BOUT++’s physics model implementation language is an example of an eDSL, in

this case C++ is the host language. eDSLs have the advantage of the user/developer

being able to easily “break out” of the DSL and write generic code for situations not

handled by the DSL, for example to handle complicated boundary conditions. The

cost of this approach is that certain transformations of the code are harder to achieve.

For example, each physics and arithmetic operator in BOUT++ contains a loop over

the whole domain for its own kernel. To achieve the full performance with OpenMP

or accelerators requires merging these loops into a single loop. This in turn necessi-
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tates rewriting the top-level set of equations to include this loop explicitly, or to use

something akin to expression templates (as is done in libraries such as Eigen [68] or

Blitz++ [116]), which have their own downsides.

BOUT++ currently only supports execution on CPUs with OpenMP for multi-

threading and MPI for distributed memory execution. Experimental branches exist with

ongoing development to support GPU execution. These include (1) using Hypre [78]

with GPU support for the Laplacian inversion parts of the problem (which in practice

can take about half the total time) and (2) with RAJA for putting the user physics model

on GPUs, with Umpire [117] to handle memory. This requires modifying the physics

DSL to enable operations to be fused together, reducing the number of separate kernels

which need to be launched.

Similar to BOUT++, the Unified Form Language (UFL), used in FEniCS and

Firedrake provides a high-level language to describe variational forms. The problem

to be solved is specified at a high level, which corresponds closely to the mathematical

form.

Firedrake uses the FEniCS Form Compiler (FFC) to convert UFL to an intermediate

representation, and then uses PyOP2 to generate code for target architectures, aiming

to be performance portable on both CPUs and GPUs.

The most common challenges when using DSLs include:

1. Difficulties in debugging due to the extra hidden layers of software between user

code and code executing on the hardware. However, DSLs generating low-level

C/C++/Fortran codes can use standard debuggers or profilers.

2. Extensibility – implementing algorithms that fall slightly outside of the abstrac-

tion defined by the DSL can be an issue.

3. Customisability – it is often difficult to modify the implementation of high-level

constructs generated automatically.

To mitigate some of these issues, systems can be provided with “escape hatches”,

which provide ways for users to implement components of the problem which cannot

be expressed in the high-level DSL. An example is custom flux-limiters, which cannot

currently be expressed in UFL; instead a user needs to be able to implement their

own kernels, and integrate these into the remainder of the system in an elegant way.

Firedrake provides such escape hatches for direct access to linear algebra operators

(PETSc), and allows implementation of custom PyOP2 kernels. However it should be

noted that such modifications may not deliver the best performance on all hardware and

should be used only sparingly, or for prototyping. As is the case with many complex

performance issues there is no silver-bullet to solve all cases.

7. Coupling Frameworks

In this class, we consider libraries acting as interfaces to enable communication be-

tween several applications to perform multiscale simulations.
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The multiscale problem of fusion modelling tackled by NEPTUNE requires the

coupling of physics at various length- and time-scales to predict and control instabili-

ties in the edge-region that influence the plasma core (see Figure 1). This requires effi-

cient coupling between various solvers that represent physics at different scales/regimes

(continuum-kinetic coupling), such as the SOLPS-ITER [118] code for simulating

tokamak edge physics. Coupling libraries must be flexible and lightweight to pro-

vide developers the ability to optimise the performance and portability of each separate

code. Classically, developers have needed to hard-code various solvers together to per-

form coupled simulations [119], or use file-based coupling (which may introduce an

increased I/O overhead that usually hinders performance but may be useful for debug-

ging) [120]. However, several third-party libraries are now available to couple a poten-

tially arbitrary number of solvers used to model various physical systems. Common

problems driving these developments include fluid-structure interaction [121], conju-

gate heat-transfer [119], and aeroacoustics [122]. The suite of modules developed

as part of the Multiphysics Object-Orientated Simulation Environment (MOOSE)

framework [123] have been used for coupled problems in nuclear fusion such as the

breeder blanket [124]. With the provision that data provided to the coupling middle-

ware remains consistent, each solver can be developed in isolation of the other; this

could be thought of as implementing a horizontal separation of concerns approach,

akin to the vertical separation of concerns achieved by aforementioned DSLs [125].

One strongly developed coupling library is preCICE [121, 126]. PreCICE aims to

couple existing solvers together, creating what is known as ‘partitioned’ simulations.

Users couple simulation codes through adapters which interface to libprecice. These

adapters are standalone software packages that may either be provided by preCICE,

the preCICE community, or may be user-defined for in-house solver methods. These

community contributions are important to enable developer productivity. Recently,

preCICE was used to couple a GPU lattice-Boltzmann method solver coupled to Open-

FOAM (CPU-based CFD code), showing it can be used to couple heterogeneous sim-

ulation codes [127]. The communication between simulations coupled by preCICE is

recommended to be done based on TCP/IP sockets by the developers. Although MPI is

an available option for communication, Rubin [128] attempted to configure their sim-

ulations to communicate with MPI but were unsuccessful. Uekermann [129] showed

that MPI-based communication is between 5 and 10 times faster than TCP/IP sockets.

The Coupling With Interpolation Parallel Interface (CWIPI) [130] and the

Multiscale Universal Interface (MUI) [119] libraries perform coupling using the

multiple-programme multiple-data (MPMD) MPI model. A primary benefit of MUI

is the availability of examples and documentation provided by the developers, com-

pared to a lack of documentation or examples for CWIPI (aside from open-source

contributions such as Moratilla-Vega et al. [122] and, within the NEPTUNE project,

the successful demonstration of using CWIPI for the coupling of fluid and particle re-

gions for examples of interest to the fusion community [131, 132]). Additionally, MUI

represents data as a cloud of points whereas CWIPI represents data as a mesh. The

additional information on mesh connectivity may not be necessary in particle-based

solvers that are necessary for fusion reactor modelling, making the cloud-based rep-

resentation preferred for its generality [133]. The MUI software is written in C++11

with wrappers for C, Fortran and Python. A header-based approach is used for the en-
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tire library and the only external library is MPI. As such, it can be used in the same way

any other C++ standard library would be used, without the need for pre-compilation.

Another potential option for code coupling is the Adaptive I/O System (ADIOS)

[134, 135], developed as part of ECP, which is primarily concerned with high-performance

I/O. ADIOS yields minimal computational overhead, and also allows seemless switch-

ing between file-based coupling and in-memory coupling for debugging and full-scale

runs, respectively [120]. ADIOS has been used for coupling the edge physics code

XGC (X-point Included Gyrokinetic Code) [136] with several core plasma and sta-

bility analysis codes [137, 138] as part of the ECP-funded Whole Device Model Ap-

plication (WDMApp) [4, 139]. WDMApp aims to develop easy coupling for core and

edge plasma codes, improve the performance of the XGC edge physics code, and allow

for integration of in-situ processing. ADIOS has also been used in the CFD community

for in-situ post-processing and analysis [140], suggesting it would be a suitable tool for

developers looking to integrate their software with machine learning approaches such

as reduced-order models, without writing to disk.

Through the use of third-party coupling frameworks, developers can optimise their

code for maximal performance on HPC with minimal intrusion to the codebase of

each application. Specific advantages include advanced coupling approaches such as

implicit coupling, high-order data mapping (e.g., interpolation via splines) and non-

matching time-stepping without implementing these approaches in their own software.

This also results in increased potential for scalability optimisations using varying do-

main decomposition strategies. For example, load-balancing algorithms can be applied

separately to each application domain, individual computational grids can be redefined,

coarsened or refined, and the different applications can even be run on separate plat-

forms such as GPUs if desirable.

Using coupling libraries for multiscale simulation introduces the following consid-

erations:

1. Performance and scalability of the communication and coupling numerics when

coupling various applications.

2. The ability of the coupling framework to easily be incorporated with existing

codes with minimal intrusion is crucial to maximise developer productivity.

3. Coupling features available with the chosen library (various time-stepping or in-

terpolation/mapping schemes may be desirable). Offloading the implementation

of these features to coupling library developers is key for productivity.

8. Evaluating Performance, Portability and Productivity

When considering the development of a new simulation application, we are typi-

cally interested in maximising performance, portability and productivity [8]. In terms

of performance we are usually concerned with metrics that directly measure or affect

the “time-to-science”, while for portability we are usually concerned with an applica-

tion’s ability to run correctly on different HPC systems and architectures. Productivity,

on the other hand, is usually a measure of the time and expertise required to develop

and maintain the application.
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Figure 3: A Roofline plot for an AMD Opteron X2 processor [142].

There are a wide variety of metrics for assessing the performance of an application,

common examples include application runtime, floating-point operations per second,

or memory bandwidth. Portability could be thought of as a binary decision – an appli-

cation either does or does not run correctly. Productivity is perhaps the most difficult

to assess objectively, but common proxies include lines-of-code written, development

time (in person-hours), and code complexity metrics [141].

These metrics (and combinations of them) allow us to analyse and reason about

an application, in order to evaluate development and optimisation strategies. One of

the most notable methods of performance analysis is the Roofline model [142]. In

a roofline model, numerous rooflines are drawn that correspond to the various peaks

of floating point performance (horizontal lines) and the maximum memory bandwidth

(diagonal lines).

Figure 3 (reproduced from Williams et al. [142]) shows the data for an AMD

Opteron X2. The performance of an application, or an individual computational kernel,

can be placed on the plot, showing if an application is compute-bound (blue region),

memory-bound (yellow region), or both (green region), and can therefore suggest pos-

sible routes for performance optimisation (e.g., focus on improving use of ILP, improv-

ing memory cache behaviour). Rooflines can be calculated using published data (from

processor specifications), or benchmarked empirically using tools such as Intel Advi-

sor, or the Empirical Roofline Toolkit [143]. An application’s performance can then be

placed on the plot using data gathered from performance counters.

Although portability itself is a binary measure, we are usually concerned with

how performant a portable application is – arguably an application that runs correctly

but with significantly degraded performance on an alternative architecture is not truly

portable. This has led to an effort to develop a multi-objective optimisation figure of

merit to assess performance portability.

22



One example is the metric introduced by Pennycook et al. [144].

PP(a, p,H) =































|H|
∑

i∈H

1

ei(a, p)

if i is supported ∀i ∈ H

0 otherwise

(1)

In Equation (1), the performance portability ( PP) of an application a, solving problem p,

on a given set of platforms H, is calculated by finding the harmonic mean of an applica-

tion’s performance efficiency (ei(a, p)). The performance efficiency for each platform

can be calculated by comparing achieved performance against the best recorded (possi-

bly non-portable) performance on each individual target platform (i.e. the application

efficiency), or by comparing the achieved performance against the theoretical maximum

performance achievable on each individual platform (i.e. the architectural efficiency).

Should the application fail to run on one of the target platforms, a performance porta-

bility score of 0 is awarded.

Harrell et al. propose a code divergence metric as a measure of developer produc-

tivity [145], and this measure has been adopted by Code Base Investigator [146] and

the P3 Analysis Library [147].

CD(a, p,H) =

(

|H|

2

)−1
∑

{i, j}∈H×H

di, j(a, p) (2)

In Equation (2), code divergence is a measure of the average “distance” between the

source code required to compile an application a, and execute problem p for each pair

of platforms in H, where di, j(a, p) is any distance metric between two source codes.

Pennycook et al. [148] suggest using the Jaccard distance (shown in Equation (3)),

where ci(a, p) represents the set of source lines required to compile application a and

execute problem p on a given platform i.

di, j(a, p) = 1 −
|ci(a, p) ∩ c j(a, p)|

|ci(a, p) ∪ c j(a, p)|
(3)

Similarly to PP, this metric provides a single value in the range [0, 1], where 0 means a

single source code is used for every platform, and 1 means an entirely separate source

code is required with no shared code.

While Equations (1) and (2) provide formal definitions for performance portability

and productivity, these single value metrics may not answer all questions a developer

might have about their application. In recognising this a series of visualisations of

performance portability and productivity have been proposed by Sewall et al. [149]

and Pennycook et al. [148]. These visualisations are best explained with examples.

Figure 4(a) shows a cascade plot of 6 hypothetical application implementations,

across 10 platforms. The implementations are: unportable with high performance on

a single platform, but not portable to any other platform; single target with high perfor-

mance on a single platform, and low performance on all others; multi target achieving

high performance on some platforms, and low performance on others; inconsistent
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Figure 4: Example plots showing how the performance, portability and productivity of an implementation

may be visualised [147, 148]

showing a range of performance across all platforms; and consistent showing consis-

tent low (30%) or high (70%) performance across all platforms.

While we could simply apply the PP metric in Equation (1) to this synthetic data,

doing so would mean that we lose some information about how the performance porta-

bility is spread across platforms, and how the application efficiency changes as we add

and remove platforms from the evaluation set.

Figure 4(b) shows a performance-portability code-convergence ( PP-CC) navigation

chart with 5 hypothetical application implementations. The implementations corre-

spond to: an unportable implementation entirely tailored for a single hardware target;

an ideal implementation that achieves PP = 1.0, from a single codebase; a per platform

source implementation that achieves PP = 1.0, but does so with specialised code for

each hardware target; a portability framework implementation using a parallel pro-

gramming model aimed at portability, but only achieving PP = 0.5; and a specialized

implementation that strikes a balance between portability and specialisation, achieving

0.7 in each.

Metrics and visualisations such as these provide vital information when planning

for the development of a new code, and for evaluating progress in developing a code

that maximises performance, portability and productivity.

8.1. Previous Studies of Performance, Portability and Productivity

There are currently a large number of projects focused on preparing scientific ap-

plications for the complexities of post-Exascale computation. With many of the largest

Supercomputers edging towards heterogeneity and hierarchical parallelism, many of

these efforts are in ensuring that applications are performant and portable between dif-
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ferent architectures. The previous five sections of this paper have outlined a wide num-

ber of options available for developing performance portable applications, and each

approach comes with various advantages and disadvantages.

In this paper we are primarily concerned with applications and algorithms that can

be used to simulate the behaviour of plasma, using either a fluid- or a particle-based

scheme. Table 1 lists a number of applications implementing common algorithms used

for the simulation of plasma that have been the subject of performance and portability

studies.

8.2. General Purpose Programming Languages

In many cases, the applications listed in Table 1 have a “reference” implementation

written only using a general purpose programming language. These reference versions

serve as a baseline for performance and portability studies, often only exhibiting good

single core performance on CPUs, with no portability to heterogeneous architectures.

This is certainly typical in the mini-application space, where developers are encour-

aged to demonstrate portable performance with miniaturised representative applica-

tions, prior to larger porting efforts. Notable examples of this are BookLeaf, Clover-

Leaf, and TeaLeaf from the UK Mini-App Consortium (UK-MAC) [151, 152, 180],

and miniFE, Nekbone, and Laghos from the ECP Proxy Apps [168, 171, 175].

In the case of large applications such as EPOCH and nek5000, the applications

only exist written in these general purpose programming languages, parallelised using

the MPI programming model. These typically have no portability to heterogeneous

systems, and instead are subject to significant porting efforts5.

8.3. Parallel Programming Models

At perhaps the lowest level of parallel programming, the legacy VPIC (Vector

Particle-in-Cell) code uses hand-coded SIMD intrinsics to achieve the highest possi-

ble performance on modern CPU architectures [188]. Specialised code is required

for each new instruction set, and a particular codepath is chosen using pre-processing

directives at compile time. The maintainability and portability of such an approach

has subsequently led to the development of VPIC 2.0, which instead uses Kokkos for

portable performance [186], at the expense of performance on some platforms.

The two pragma-based approaches of OpenMP and OpenACC are perhaps the eas-

iest to implement into an existing application and require only minimal code changes.

There are various studies that show that across CPUs, OpenMP can provide good per-

formance [61, 182], and that across GPUs, OpenACC can be competitive with native

solutions such as CUDA [154]. However, applications using OpenMP with target of-

fload may require different directives for host and accelerator architectures, in order

to achieve the best performance on each [59, 183], potentially leading to code diver-

gence and target-specific compilation. The descriptive loop construct (introduced in the

OpenMP 5.0 standard [40]) aims to address this concern, instead allowing the compiler

to generate different code paths based on architecture within a single binary [196].

5See: EPOC++ [194], NekRS [195]
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Table 1: A selection of performance studies performed using applications of interest to the Plasma fusion

community.

Application Computational Methods Programming Models Performance metrics References

BookLeaf
Unstructured Arbitrary

Lagrangian-Eulerian

Fortran, C++, OpenMP,

CUDA, MPI, Kokkos,

RAJA

Time, PP [150, 151]

CloverLeaf Finite Volume

Fortran, C++, OpenMP,

OpenACC, OpenCL,

CUDA, SYCL,

Coarray Fortran, MPI,

OPS

Time, Energy, PP
[58, 60,

152–156]

EMPIRE-PIC
Finite-Element,

Particle-in-Cell
C++, Kokkos, Trilinos Time, FLOP/s, GB/s [157–159]

EPOCH
Structured

Particle-in-Cell
Fortran, MPI Time [160–162]

GENE Finite Difference
Fortran, C++, OpenMP,

MPI
Time, FLOP/s, GB/s [163, 164]

Heat Finite Difference
C, OpenMP, OpenCL,

CUDA, HIP, SYCL
Time, GB/s, PP [58, 61]

HERMES-3 Finite Volume
C++, Bout++, PETSc,

Hypre
Time [165]

hipBone
High-order Finite

Element

C++, OpenMP, OpenCL,

CUDA, HIP, SYCL,

OCCA

FLOP/s, GB/s [166]

Laghos
High-order Finite

Element

C++, OpenMP, CUDA,

OCCA, RAJA, MFEM,

METIS, hypre

Time [167, 168]

MG-CFD Multi-grid Finite Volume

C/C++, OpenMP,

OpenACC, MPI, CUDA,

OP2

Time, FLOP/s, GB/s [59, 169]

miniFE Finite Element

C++, OpenMP, CUDA,

HIP, SYCL, MPI,

Kokkos, MKL

Time, Energy, PP
[61, 156,

170, 171]

nek5000 Spectral Element Fortran, C, MPI Time, FLOP/s [172, 173]

Nekbone Spectral Element
Fortran, C, OpenMP,

OpenACC, MPI
Time, FLOP/s, GB/s, [174–176]

Nektar++ Spectral Element
C++, MPI, BLAS,

LAPACK
Time, Energy [177]

PIConGPU
Structured

Particle-in-Cell

C++, MPI, OpenMP,

CUDA, HIP, SYCL,

Alpaka

Time, FLOP/s [70, 178]

PUMIPic
Unstructured

Particle-in-Cell
C++, Kokkos Time [179]

TeaLeaf Finite Difference

Fortran, C, OpenMP,

OpenACC, CUDA, MPI,

Kokkos, RAJA, OPS

Time, Energy, GB/s, PP
[156, 180–

183]

vlp4d
Semi-Lagrangian

Scheme

C++, OpenMP,

OpenACC, OpenMP4.5,

CUDA, HIP, stdpar,

Kokkos, Thrust

Time, FLOP/s, PP [184, 185]

VPIC
Structured

Particle-in-Cell

C++, SIMD Intrinsics,

Kokkos
Time, FLOP/s [186–188]

WarpX

Structured

Particle-in-Cell,

Adaptive Mesh

Refinement

C++, OpenMP, CUDA,

HIP, SYCL, MPI,

AMReX

Time, FLOP/s [189–191]

XGC/XGCm
Unstructured

Particle-in-Cell

Fortran, C++, OpenMP,

CUDA, MPI, Kokkos
Time

[136, 192,

193]
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Many mini-apps are also implemented using native GPU parallel programming

models such as CUDA and HIP/ROCm. These typically achieve the highest perfor-

mance on their respective target platforms, but they are subject to significant vendor

lock-in [152, 181, 182].

Although significantly more portable, many studies with OpenCL highlight de-

graded performance on CPUs [58, 197] and productivity challenges (with application

kernels potentially requiring twice as much code as the equivalent CUDA kernel [154]).

SYCL addresses these productivity issues, being a single-source solution embedded

in C++. The focus of many SYCL performance studies has been on the maturity of

the programming model and its implementing compilers [58, 60, 61]. In the general

case it is able to offer portability and productivity at the expense of some performance.

However, the performance gap has been reducing as the compilers improve.

8.4. Software Libraries

Both EMPIRE-PIC and Laghos make use of numerical algorithm libraries for a

significant proportion of their compute; Laghos through MFEM, and EMPIRE-PIC

through Trilinos (see Section 5). These libraries in turn use other numerical algorithm

libraries through portable interfaces such as BLAS and LAPACK. MFEM targets het-

erogeneous architectures through RAJA, while Trilinos targets heterogeneous architec-

tures through Kokkos. Since these applications have been designed with portability in

mind using a single portable programming model, it is difficult to evaluate their perfor-

mance portability, since there are no alternative implementations for comparison.

However, their parallel programming models, Kokkos and RAJA, have been eval-

uated more widely as part of many mini-application portability studies. Studies have

shown that both are typically able to deliver good and portable performance from a

single-source code base [150, 180, 182, 183]. The Kokkos programming model has

also been adopted by a new implementation of VPIC, enabling portability to heteroge-

neous architectures at the expense of performance on CPU systems [186].

8.5. Domain Specific Languages

In the case of many high-level DSLs, it is again difficult to objectively measure the

performance portability without alternative implementations available. Rathgeber et al.

evaluate the Firedrake and FEniCS solvers, both of which use UFL. Their study shows

that Firedrake, which uses the low-level PyOP2 DSL for performance portability, typi-

cally outperforms FEniCS [198].

The lower-level OP DSLs, OPS and OP2, have been more widely examined as part

of a number of mini-application studies [155, 169, 182]. Typically they show good

performance on a range of heterogeneous hardware, but they are arguably not as pro-

ductive as higher-level DSLs, where mathematics can be represented more directly.

Higher-level DSL thus can provide a productivity advantage if an application is to be

developed from scratch. However, when converting an existing application or legacy

code to a DSL, the lower-level OPS/OP2 style DSLs are better suited and compatible

for a step-by-step (e.g., loop-by-loop) conversion co-existing with the original applica-

tion [199]. Such a conversion might not be possible with a high-level DSL, where the

full application might need to be expressed in the higher-level DSL notation before any

validation can begin.
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Applications implemented in high-level DSLs, such as Firedrake, often contain

multiple levels of DSL with a high-level DSL for scientists and a lower-level DSL

providing the portability. These applications fully embody the separation of concerns

paradigm, improving productivity for domain experts who can represent their problems

directly. If the code generated at each layer is transparent to the user, this helps with

debugging and end-to-end validation. Users more often than not, do not like to have

black-box or hard to understand intermediate representations. However, changing user

requirements that demand components that break the abstraction most likely will be

difficult to support with these DSLs. Users asking for “escape hatches” to support

future numerics could lead to a considerable impact on performance.

9. Conclusion

Newly developed simulation applications may employ DSLs and software at dif-

ferent levels of the software development stack (see Figure 2). High-level DSLs may

allow scientists to express equations directly, while low-level DSLs and parallel pro-

gramming models will allow applications to target different parallel architectures.

In this paper we have provided an overview of many of the approaches that are

available at each level of this software development stack, highlighting many of the

advantages and disadvantages in each case. Furthermore, we have outlined some of the

key metrics and methods used to evaluate the performance, portability, and productivity

of scientific simulation applications.

The focus of this paper has been on approaches and applications from the plasma

physics domain, motivated by Project NEPTUNE – a UK effort to develop a new

tokamak edge code to treat the complex dynamics of fusion plasma. However, the

discussion in this paper is more generally applicable to the development of any new

simulation application focused on portability with high parallel performance.

Any modern HPC application is likely to use approaches from at least the three

lowest levels of the software stack, typically being implemented in a general purpose

programming language, using a parallel programming model, and a distributed mem-

ory model.

Targeting portability from a single code base, and productivity for domain spe-

cialists often requires further abstractions, at the top levels of our development stack,

allowing greater scope for code synthesis. For multi-science/multi-scale applications, a

further level of abstraction may be required to couple multiple simulations/applications

together.
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M. Thévenet, J.-L. Vay, H. Vincenti, E. Yang, N. Zaı̈m, W. Zhang, Y. Zhao,

E. Zoni, Porting WarpX to GPU-accelerated platforms, Parallel Computing 108

(2021) 102833.

[192] C. Zhang, G. Diamond, C. W. Smith, M. S. Shephard, Development of an un-

structured mesh gyrokinetic particle-in-cell code for exascale fusion plasma sim-

ulations on GPUs, Computer Physics Communications 291 (2023) 108824.

[193] S. M. Mniszewski, J. Belak, J.-L. Fattebert, C. F. A. Negre, S. R. Slattery,

A. A. Adedoyin, R. F. Bird, C. Chang, G. Chen, S. Ethier, S. Fogerty, S. Habib,
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