
This is a repository copy of Leveraging Intra-Function Parallelism in Serverless Machine 
Learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/208734/

Version: Accepted Version

Proceedings Paper:
Predoaia, Ionut orcid.org/0000-0002-2009-4054 and García-López, Pedro (2023) 
Leveraging Intra-Function Parallelism in Serverless Machine Learning. In: WoSC '23: 
Proceedings of the 9th International Workshop on Serverless Computing. 9th International 
Workshop on Serverless Computing, WoSC '23, 11-15 Dec 2023 WoSC '23 . ACM , ITA , 
36–41. 

https://doi.org/10.1145/3631295.3631399

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Leveraging Intra-Function Parallelism in
Serverless Machine Learning

Ionut Predoaia
University of York

York, United Kingdom
ionut.predoaia@york.ac.uk

Pedro García-López
Universitat Rovira i Virgili

Tarragona, Spain
pedro.garcia@urv.cat

Abstract

Running stateful machine learning algorithms with server-
less architectures inherently induces overheads, as serverless
functions are not directly network-addressable, hence one
must rely on a remote storage service for storing the shared
state. To hide the access latency to the remote storage, one
can employ intra-function parallelism to take advantage of
the multicore computing resources of the serverless func-
tions. In this work, we port to serverless two stateful machine
learning algorithms, k-means clustering and logistic regres-
sion, and then adopt intra-function parallelism to parallelize
the execution of the serverless functions. Several experi-
ments have demonstrated that intra-function parallelism
delivers performance improvements in serverless machine
learning. Improved performances of up to 68% have been
achieved when running k-means on serverless functions that
employ intra-function parallelism. We demonstrate with
k-means and logistic regression that from a performance
perspective it is preferable to execute a smaller number of
multiple-vCPUs workers than a larger number of single-
vCPU workers, due to decreased synchronization overheads.

CCS Concepts: · Computingmethodologies→Machine

learning; Parallel computing methodologies; · Com-

puter systems organization→ Cloud computing.

Keywords: Serverless, Machine Learning, Intra-Function
Parallelism, Multicore Functions, Stateful, Lithops

ACM Reference Format:

Ionut Predoaia and Pedro García-López. 2023. Leveraging Intra-

Function Parallelism in Serverless Machine Learning. In 9th Inter-

national Workshop on Serverless Computing (WoSC ’23), December

11–15, 2023, Bologna, Italy. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3631295.3631399

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

WoSC ’23, December 11–15, 2023, Bologna, Italy

© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0455-0/23/12. . . $15.00

https://doi.org/10.1145/3631295.3631399

1 Introduction

Stateful machine learning algorithms running on serverless
architectures have limitations regarding connectivity and
the management of shared state. As serverless functions are
not directly network-addressable, they cannot communicate
with each other to share the state related to an iterative ma-
chine learning algorithm (e.g., the centroids in k-means clus-
tering, the gradients in logistic regression). Consequently,
one must rely on a remote storage service for storing the
shared state, which can be used by the serverless functions
to access and update the shared state, over the network. This
inherently induces communication overheads, as multiple
concurrent serverless functions must access and update the
shared state at every iteration, and consequently, signifi-
cant overheads can result in the case of running hundreds
of iterations. Moreover, algorithms that rely on the Bulk
Synchronous Parallel (BSP) synchronization protocol incur
synchronization overheads, as the workers must wait for
each other at the end of every iteration. For instance, the
k-means clustering algorithm is highly parallelizable, how-
ever, it requires regular communication at the end of each
iteration to update and retrieve the new centroids.

Cloud providers typically provide one virtual CPU (vCPU)
per serverless function, however, a few cloud providers have
upgraded their offering by providing multiple vCPUs per
serverless function (e.g., AWS Lambda and Google Cloud
Functions). Therefore, engineers can adopt a so-called intra-
function parallelism pattern to leverage the multicore com-
puting resources of a serverless function for parallelizing its
execution via threads or processes. Note that the amount
of memory determines the number of vCPUs available to a
serverless function, thus an increase in memory is correlated
with a proportional increase in the number of vCPUs.

In this work, two stateful machine learning algorithms
will be ported to serverless, k-means clustering and logistic
regression. Furthermore, a technique will be proposed for
adopting intra-function parallelism to parallelize the execu-
tion of serverless functions. We found that leveraging intra-
function parallelism can compensate for the communication
and synchronization overheads by achieving improved per-
formances of up to 68%.



WoSC ’23, December 11ś15, 2023, Bologna, Italy Ionut Predoaia and Pedro García-López

2 Related Work

Many research efforts have been carried out for addressing
machine learning in the context of serverless computing.
To mention a few, [2, 3, 8, 15] are examples of such works.
Nevertheless, in the context of serverless machine learning,
no prior works have adopted intra-function parallelism to
leverage the multicore computing resources of serverless
functions for parallelizing their execution. Moreover, it can
be argued that in serverless computing, intra-function paral-
lelism is poorly addressed as well in previous works that are
outside the area of machine learning [11].

Note that intra-function parallelism is alternatively called
intra-worker parallelism or intra-level parallelism within
workers [5]. Moreover, serverless functions that have mul-
tiple vCPUs are called multicore functions [9], and in the
context of AWS Lambda, they are called big lambdas [4].

Intra-function parallelism has been employed in serverless
machine learning in [14], however, this work is not based
on multicore functions but rather is based on IBM Cloud
Functions, which are limited to 1 vCPU at most. The im-
pact of leveraging intra-function parallelism for parallelizing
serverless functions has been analyzed in [10], and signifi-
cant cost savings have been achieved: 81% cost savings with
AWS Lambda and 49% with Google Cloud Functions. Fur-
thermore, intra-function parallelism has been adopted for
decompression [12] and fog robotics algorithms [7]. More-
over, a technique has been presented in [16] for automating
the resource configuration of functions, by optimizing the
memory size of each function step in a workflow whilst
taking into consideration intra-function parallelism.

3 Portage to Serverless

Lithops has been used for porting k-means and logistic
regression to serverless. Lithops [13] is a multi-cloud dis-
tributed computing framework that enables engineers to
run unmodified single-machine Python code at scale in the
main serverless computing platforms, such as AWS, Google
Cloud and IBM Cloud. With regard to shared state manage-
ment, Lithops provides a Multiprocessing module containing
abstractions [1] that enable sharing state among serverless
functions. Note that the Lithops Multiprocessing API mimics
the Python Multiprocessing API, however, the shared state
abstractions store their state values in a remote memory data
store, i.e., the Redis in-memory key-value database.

In our serverless implementations1 of the stateful machine
learning algorithms, the BSP synchronization protocol has
been used, as it ensures the correctness of the results of the
algorithms. However, the protocol has the limitation that
it induces synchronization overheads, as the workers must
wait for each other at the end of every iteration. A client
machine executes a client program that launches several
concurrent serverless functions, that are alternatively called

1https://github.com/neardata-eu/lithops-ml-big-lambdas

workers, that share mutable state through disaggregated
memory, i.e., Redis. Each worker operates on a partition of
the data set and at each iteration exchanges partial results
with the other workers via the shared state that is stored on
a remote Redis node.
When porting stateful machine learning algorithms to

serverless, one must first identify what data can be com-
puted independently and concurrently by the workers. The
workers perform parallel computations regarding data of
interest (e.g., centroids) and then the partial results obtained
by all workers are aggregated to attain global results. The
partial results computed by the workers must be stored in
the shared state, as they must be accessed at a later point for
obtaining global results. Furthermore, the global results must
be stored in the shared state, for the reason that they must
be accessed by all workers at each iteration. In the case of
the k-means algorithm, the partial results are represented by
the clusters counters and totals, whereas the global results
are the centroids that are computed by dividing the clusters
totals by the counters. Moreover, in the case of the logistic re-
gression algorithm, the partial results are represented by the
partial gradients, whereas the global results are represented
by the weights and the global gradients.

3.1 Serverless K-Means

To compute the centroid of a cluster, one would need the
sum of all data points assigned to the cluster, and the number
of data points belonging to the cluster. As such, the core data
objects in the shared state are the sum of all data points for
each cluster and the number of data points from each cluster.
Figure 1 presents how the data objects from the shared

state are computed, where the table from the left represents
an example data set, and each table from the right repre-
sents a variable from the shared state. In the example, we
will consider that the k-means algorithm is executed with
k = 3 clusters using 2 workers. The data set is bi-dimensional,
and it is split into two partitions, one for each worker. Each
worker iterates the data points, assigns them to clusters and
updates the shared state variables accordingly. To exemplify,
the first worker assigns the first data point to the second
cluster, therefore it increments by 1 the value of the second
index of the clusters_counters array, and addition-
ally, the first data point is summed to the value of the second
index of the clusters_totals array. Three data points
from the data set are assigned to the second cluster, there-
fore the value at index 2 of clusters_counters will
become 3 by the end of the iteration. Furthermore, the value
at index 2 of clusters_totals will be the sum of all
data points assigned to the second cluster by the end of the
iteration. To be specific, the data point [4.9; 7.5] represents
the sum of all data points assigned to the second cluster,
i.e., [1.1; 1.5], [0.2; 2], and [3.6; 4]. After both workers finish
assigning the data points to clusters, they will then update
the clusters counters and totals from the shared state. At



Leveraging Intra-Function Parallelism in Serverless Machine Learning WoSC ’23, December 11ś15, 2023, Bologna, Italy

this point, all workers synchronize their execution via a
synchronization barrier that is stored as a barrier object in
the shared state. Then, one of the workers, by convention
the first worker, will compute the values of the centroids.
The first worker will fetch the final values of the iteration
of clusters_counters and clusters_totals, and
then compute the centroids by dividing the totals by the
counters. Finally, the first worker will update the shared
state variable clusters_centers by the computed cen-
troids. At the beginning of the next iteration, all workers
will retrieve the current centroids by fetching the value of
clusters_centers from the shared state.

The output of k-means is the centroids and the labels. The
centroids are stored in the shared state, i.e., remotely in the
Redis node, therefore the serverless functions do not need
to output the centroids, as they can be accessed by the client
machine directly via the shared state. However, the labels
(i.e., the cluster index to which each data point is assigned)
represent data that is local to the serverless functions, and
must be returned to the client machine that launched the
serverless functions. Each serverless function outputs a set
of partial labels, which will later be concatenated on the
client machine to obtain the complete list of labels for the
entire data set.

Figure 1. Serverless K-Means - Shared State Variables

3.2 Adopting Intra-Function Parallelism

Intra-function parallelism can be employed to improve the
performance of the stateful machine learning algorithms run-
ning on serverless architectures. Figure 2 illustrates the exe-
cution design of the algorithms that employ intra-function
parallelism. With intra-function parallelism, the computa-
tion phase of the algorithms is carried out by inner workers,
rather than workers. Each worker launches at every iteration
a number of inner workers, where the number is dictated
by the number of vCPUs of the serverless function. An in-
ner worker represents a worker that is nested in another
(parent) worker, and it is implemented as a child process.
Each worker splits his data set partition into sub-partitions
that are sent to the inner workers. The inner workers operate
over the sub-partitions and run the computation phase of the
iteration in parallel. When the inner workers have finished
running the computation, they send their partial results to
the (parent) workers, and then each (parent) worker aggre-
gates the received partial results. The advantage of adopting

intra-function parallelism is that a higher level of parallelism
can be achieved with a fewer number of connection points
to the Redis node, as only the workers access and update the
shared state. This can potentially reduce synchronization
overheads, as there are fewer connection points to the Redis
node. Moreover, the additional vCPUs can be leveraged to
read in parallel from object storage the data set partition
associated with a serverless function.
Algorithm 1 contains the pseudocode of a generalized

serverless implementation of logistic regression that em-
ploys intra-function parallelism. The algorithm takes as in-
put 𝑋 which represents the observations of the training set
partition assigned to the worker, 𝑦 which represents the
true class labels of the observations from the training set
partition,𝑤𝑜𝑟𝑘𝑒𝑟_𝑖𝑑 which represents the identifier of the
worker,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 which represents the maximum number of
iterations, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 which specifies the step size, and
𝑐𝑝𝑢_𝑐𝑜𝑢𝑛𝑡 which specifies the level of parallelism adopted
by the worker (i.e., either sequential or parallel via inner
workers). The output of the algorithm is the global weights.
The shared state is represented by all variables prefixed by
łglobalž, whereas the variables prefixed by łlocalž rep-
resent the local version of the variables from the shared state.
The shared state is primarily comprised of the gradients and
the weights, which have the initial values of 0. The iteration
phase begins at line 1, and at line 2, the global weights are
fetched from the shared state and stored in a local variable.
At lines 3-4, the partial gradients are computed sequentially,
whereas at lines 5-9, the partial gradients are computed in
parallel by the inner workers. At line 6, the worker splits his
data set partition into sub-partitions that will be used by the
inner workers which are instantiated at line 7. At line 8, the
inner workers are invoked and compute the partial gradients,
which are retrieved and aggregated at line 9. At line 10, the
global gradients from the shared state are incremented by
the partial gradients computed by each worker. At line 11,
all workers synchronize, and by this point, the final values
for the current iteration of the gradients have been obtained.
At lines 12-13, the first worker computes the new weights
using the final global values of the gradients aggregated
from all workers and the learning rate, and then updates the
global weights with the computed weights. At line 14, the
first worker resets the values of the global gradients to 0 for
the next iteration. Finally, the barrier from line 15 waits for
the first worker to update the global weights and gradients
before continuing the execution of the other workers.

4 Experimental Evaluations

Several experiments have been carried out to evaluate the
achieved performance improvement when leveraging intra-
function parallelism in serverless functions. All experiments
have been conducted in AWS within a Virtual Private Cloud
(VPC) located in the eu-west2 region. The serverless functions



WoSC ’23, December 11ś15, 2023, Bologna, Italy Ionut Predoaia and Pedro García-López

Algorithm 1: Serverless Logistic Regression with Intra-Function Parallelism

Input: 𝑋, 𝑦, 𝑤𝑜𝑟𝑘𝑒𝑟_𝑖𝑑, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒, 𝑐𝑝𝑢_𝑐𝑜𝑢𝑛𝑡
Output: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠

1 for 𝑖𝑡𝑒𝑟 ← 0; 𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 ; 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 do
2 𝑙𝑜𝑐𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑔𝑙𝑜𝑏𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠

3 if 𝑐𝑝𝑢_𝑐𝑜𝑢𝑛𝑡 == 1 then

4 𝑙𝑜𝑐𝑎𝑙_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 ← computeGradients(𝑋 , 𝑦, 𝑙𝑜𝑐𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠)

5 else if 𝑐𝑝𝑢_𝑐𝑜𝑢𝑛𝑡 > 1 then

6 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 ← partitionDataset(𝑋, 𝑦, 𝑐𝑝𝑢_𝑐𝑜𝑢𝑛𝑡 )

7 𝑖𝑛𝑛𝑒𝑟_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 ← createInnerWorkers(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠, 𝑙𝑜𝑐𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠)

8 invoke(𝑖𝑛𝑛𝑒𝑟_𝑤𝑜𝑟𝑘𝑒𝑟𝑠)

9 𝑙𝑜𝑐𝑎𝑙_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 ← 𝑖𝑛𝑛𝑒𝑟_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 .getGradients()

10 𝑔𝑙𝑜𝑏𝑎𝑙_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 ← 𝑔𝑙𝑜𝑏𝑎𝑙_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 + 𝑙𝑜𝑐𝑎𝑙_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠

11 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 .wait()

12 if 𝑤𝑜𝑟𝑘𝑒𝑟_𝑖𝑑 == 0 then

13 𝑔𝑙𝑜𝑏𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑙𝑜𝑐𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 · 𝑔𝑙𝑜𝑏𝑎𝑙_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠

14 𝑔𝑙𝑜𝑏𝑎𝑙_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 ← 0

15 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 .wait()

16 end

Figure 2. Adopting Intra-Function Parallelism

are running via AWS Lambda, and the data sets are stored
in Amazon S3. For the client machine that launches the
serverless implementations, a general-purpose EC2 instance
of type t2.2xlarge is used, whereas a memory-optimized EC2
instance of type r5.large is used for the Redis node.
In the first experiment, the k-means algorithm has been

executed with a data set of 8GB and with a growing num-
ber of concurrent serverless functions, from 50 up to 400,
where each serverless function has 6 vCPUs allocated. In the
first (baseline) instance, the k-means algorithmwas executed
without employing intra-function parallelism, i.e., without
leveraging the multicore computing resources of each server-
less function. In the second instance, the k-means algorithm
was executed by employing intra-function parallelism, by
using 2 vCPUs of each serverless function, i.e., making use

of 2 inner workers for each worker. This procedure was re-
peated with 2 up to 6 inner workers. In the last instance,
the k-means algorithm was executed by employing intra-
function parallelism, by using all 6 vCPUs of each serverless
function, i.e., making use of 6 inner workers for each worker.
The performance of the algorithm when leveraging intra-
function parallelism, i.e., when using 2 up to 6 inner workers,
has been compared against the baseline, i.e., when not em-
ploying intra-function parallelism.
For the described experiment, Figure 3 presents the per-

formance improvement gained by leveraging intra-function
parallelism. The horizontal axis of the chart represents the
number of workers used in the execution of the k-means
algorithm, whereas the vertical axis represents the perfor-
mance improvement obtained by using 2 to 6 inner workers
compared to the case in which intra-function parallelism
is not employed. For instance, the chart shows that when
running the algorithm with 50 workers and 6 inner workers,
a performance improvement of 68% has been obtained com-
pared to when using 50 workers without any inner workers,
i.e., without employing intra-function parallelism. Addition-
ally, the chart shows that when running the algorithm with
400 workers, each containing 2 inner workers, a performance
improvement of 20% has been obtained compared to when
using 400 workers without any inner workers, i.e., without
leveraging intra-function parallelism. The results show that
one can achieve improved performances by up to 68% when
leveraging intra-function parallelism. Note that the perfor-
mance improvement is measured as a relative percentage to
the baseline. It can be noticed that as the number of workers



Leveraging Intra-Function Parallelism in Serverless Machine Learning WoSC ’23, December 11ś15, 2023, Bologna, Italy

Figure 3. Serverless Intra-Function Parallelism Performance using 2 to 6 Inner Workers

increases, the performance gained by employing inner work-
ers slowly decreases. Therefore, employing intra-function
parallelism when the number of workers is very high may
provide minimal performance improvements.
One may argue that the previous experiment does not

carry out a fair evaluation. For example, executing 50 work-
ers with 3 inner workers each does not yield the same level
of parallelism as 50 workers without inner workers. In the
case of executing 50 workers, each with 3 inner workers, 150
vCPUs are used, whereas in the case of using 50 workers
without inner workers, only 50 vCPUs are used. Further-
more, one may argue that instead of using 50 workers with 3
inner workers each, one could instead simply use 150 work-
ers without any inner workers. To this end, experiments
have been carried out the evaluate the performance improve-
ment obtained when leveraging intra-function parallelism,
whilst maintaining the same level of parallelism. The aim
is to determine whether it is better to use multiple work-
ers, each with 1 vCPU, without inner workers, or a lesser
number of workers with multiple vCPUs, each employing
multiple inner workers. For example, it is to be determined
whether a better performance can be obtained when invok-
ing 50 serverless functions, each with 6 vCPUs, that leverage
intra-function parallelism, compared to when invoking 300
serverless functions, each with only 1 vCPU, as in both cases
a level of parallelism of 300 is achieved.

An experiment has been carried out, in which the k-means
algorithm has been executed with a data set of 500MB and
with various numbers of workers and inner workers, whilst
maintaining an equivalent level of parallelism. As a baseline,
the k-means algorithm has been executed with 300 workers,
where each serverless function has 1 vCPU allocated with
1500MB of memory. In the baseline, the workers have been
executed sequentially, without employing intra-function par-
allelism. Thus, a level of parallelism of 300 is achieved, as
300 vCPUs are used in the execution of the algorithm. Next,

the k-means algorithm has been executed with 150 workers,
where each serverless function has 2 vCPUs allocated. Intra-
function parallelism has been employed, as each worker
launched 2 inner workers. Similarly to the baseline, a level of
parallelism of 300 is achieved, as 300 vCPUs are used in the
execution of the algorithm. Moreover, the k-means algorithm
has been executed with 100 workers with 3 inner workers
each, 75 workers with 4 inner workers each, 60 workers with
5 inner workers each, and 50 workers with 6 inner workers
each. Table 1 presents the performance improvement rela-
tive to the baseline. The memory of the serverless functions
has been proportionally increased for each additional vCPU.
The results show that a better performance is achieved with a
lesser number of workers that have more inner workers. The
execution of a smaller number of multiple-vCPUs workers
is faster than a larger number of single-vCPU workers. After
carrying out a breakdown of the execution times, it has been
determined that the reason for the performance improve-
ment is the decrease in synchronization overheads. Having
many workers causes significant synchronization overheads
due to having many connection points to the Redis node.
Therefore, having a fewer number of connection points to
the Redis node, decreases the synchronization overheads,
and thus, the total execution times decrease. Note that the
measured launch durations of big lambdas are longer by a
maximum of 1 second compared to the baseline, therefore
the influence over execution times is negligible.

To validate the previous experiment’s results, the previous
experiment has been repeated, but with the logistic regres-
sion algorithm, running for 90 iterations, with a large data
set of 120GB. Table 1 presents the results of the experiment.
Compared to the previous experiment running k-means, a
similar performance improvement has been obtained. The
reason for the performance improvement is the decrease in
synchronization overheads, that are caused by having many
workers, i.e., connection points to the Redis node.



WoSC ’23, December 11ś15, 2023, Bologna, Italy Ionut Predoaia and Pedro García-López

Workers
Workers

Inner
K-Means

Regression

Logistic

150 2 46% 47%

100 3 62% 57%

75 4 68% 65%

60 5 71% 68%

50 6 74% 67%

Table 1. Serverless Intra-Function Parallelism Performance
with Equivalent Level of Parallelism

5 Limitations

AWS Lambda allows only a maximum of 6 vCPUs per server-
less function. A drawback is that the amount of memory
determines the number of vCPUs available to a serverless
function, as one may want to employ intra-function paral-
lelism to leverage the multiple vCPUs, but may not need the
additional amount of memory. Furthermore, as the cost of
executing AWS Lambda functions depends on the allocated
memory, one may have to spend more only to benefit from
intra-function parallelism.
As the serverless implementations have been realized

with Python, processes have been used to implement the
inner workers, rather than threads, to avoid the limitation
of the Python Global Interpreter Lock (GIL). However, AWS
Lambda does not provide shared memory for processes. As
inter-process shared memory is restricted, one has to rely
on pipes for sending the output of the inner workers to the
(parent) workers. This can be problematic, as large transfer
overheads may be induced when the inner workers have
a large output. For instance, when running k-means over
large data sets significant transfer overheads are incurred,
considering that at each iteration the inner workers send
their resulting partial labels to the workers via pipes. This
limitation can be mitigated with a CPython extension that
performs multithreading without the Python GIL [6].

6 Conclusions and Future Work

In this paper, we demonstrated the performance benefits
of leveraging intra-function parallelism in stateful machine
learning algorithms running on serverless architectures. We
ported two stateful machine learning algorithms to server-
less, k-means clustering and logistic regression, and then
adopted intra-function parallelism to parallelize the execu-
tion of the serverless functions. Several experiments have
demonstrated that intra-function parallelism is beneficial to
the performance of machine learning algorithms running
on serverless architectures. Improved performances of up
to 68% have been achieved by leveraging intra-function par-
allelism. Furthermore, we demonstrated that from a per-
formance perspective, it is preferable to execute a smaller
number of multiple-vCPUs workers than a larger number

of single-vCPU workers, due to decreased synchronization
overheads. In future work, it would be beneficial to validate
the generality of our results with other machine learning al-
gorithms. A different line of work could involve using Google
Cloud Functions, as they support up to 8 vCPUs, or using
threads for the implementation of inner workers.

References
[1] Aitor Arjona, Gerard Finol, and Pedro García López. 2023. Transparent

serverless execution of Python multiprocessing applications. Future

Generation Computer Systems 140 (2023), 436ś449.

[2] Amine Barrak, Fabio Petrillo, and Fehmi Jaafar. 2022. Serverless on

Machine Learning: A Systematic Mapping Study. IEEE Access (2022).

[3] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and

Randy Katz. 2018. A Case for Serverless Machine Learning. InWork-

shop on Systems for ML and Open Source Software at NeurIPS, Vol. 2018.

2ś8.

[4] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and

Randy Katz. 2019. Cirrus: a Serverless Framework for End-to-end ML

Workflows. In Proceedings of the ACM Symposium on Cloud Computing.

13ś24.

[5] Germán T. Eizaguirre and Marc Sánchez-Artigas. 2023. A Seer Knows

Best: Auto-tuned Object Storage Shuffling for Serverless Analytics. J.

Parallel and Distrib. Comput. (2023), 104763.

[6] Python Software Foundation. 2023. Python Multithreading without GIL.

[Online]. Available: https://github.com/colesbury/nogil.

[7] Jeffrey Ichnowski, William Lee, Victor Murta, Samuel Paradis, Ron

Alterovitz, Joseph E. Gonzalez, Ion Stoica, and Ken Goldberg. 2020. Fog

Robotics Algorithms for Distributed Motion Planning Using Lambda

Serverless Computing. In 2020 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 4232ś4238.

[8] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso,

Ana Klimovic, Ankit Singla, WentaoWu, and Ce Zhang. 2021. Towards

Demystifying Serverless Machine Learning Training. In Proceedings of

the 2021 International Conference on Management of Data. 857ś871.

[9] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019.

Centralized Core-granular Scheduling for Serverless Functions. In

Proceedings of the ACM Symposium on Cloud Computing. 158ś164.

[10] Michael Kiener, Mohak Chadha, and Michael Gerndt. 2021. Towards

Demystifying Intra-Function Parallelism in Serverless Computing. In

Proceedings of the Seventh International Workshop on Serverless Com-

puting (WoSC7) 2021. 42ś49.

[11] Yongkang Li, Yanying Lin, Yang Wang, Kejiang Ye, and Chengzhong

Xu. 2022. Serverless Computing: State-of-the-Art, Challenges and

Opportunities. IEEE Transactions on Services Computing 16, 2 (2022),

1522ś1539.

[12] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada:

Interactive Data Analytics on Cold Data Using Serverless Cloud In-

frastructure. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data. 115ś130.

[13] Josep Sampé, Marc Sánchez-Artigas, Gil Vernik, Ido Yehekzel, and

Pedro García-López. 2021. Outsourcing Data Processing Jobs With

Lithops. IEEE Transactions on Cloud Computing (2021).

[14] Pablo Gimeno Sarroca and Marc Sánchez-Artigas. 2023. MLLess:

Achieving Cost Efficiency in Serverless Machine Learning Training. J.

Parallel and Distrib. Comput. (2023), 104764.

[15] Hao Wang, Di Niu, and Baochun Li. 2019. Distributed Machine Learn-

ing with a Serverless Architecture. In IEEE INFOCOM 2019-IEEE Con-

ference on Computer Communications. IEEE, 1288ś1296.

[16] Zhaojie Wen, Yishuo Wang, and Fangming Liu. 2022. StepConf: SLO-

Aware Dynamic Resource Configuration for Serverless FunctionWork-

flows. In IEEE INFOCOM 2022-IEEE Conference on Computer Commu-

nications. IEEE, 1868ś1877.


	Abstract
	1 Introduction
	2 Related Work
	3 Portage to Serverless
	3.1 Serverless K-Means
	3.2 Adopting Intra-Function Parallelism

	4 Experimental Evaluations
	5 Limitations
	6 Conclusions and Future Work
	References

