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Abstract. Processes of coalescence and fragmentation are used to understand the time-evolution of the
mass distribution of various systems and may result in a steady state or in stable deterministic or stochas-
tic cycles. Motivated by applications in insurgency warfare we investigate coalescence-fragmentation sys-
tems. We begin with a simple model of size-biased coalescence accompanied by shattering into monomers.
Depending on the parameters this model has an approximately power-law-distributed steady state or
stochastic cycles of alternating gelation and shattering. We conduct stochastic simulations of this model
and its generalizations to include different kernel types, accretion and erosion, and various distributions
of non-shattering fragmentation. Our central aim is to explore the robustness of the steady state and
gel-shatter stochastic cycles to these variations. We show that an approximate power-law steady state
persists with the addition of accretion and erosion, and with partial rather than total shattering. However,
broader distributions of fragment sizes typically vitiate both the power law steady state and gel-shatter
cyclicity. This work clarifies features shown in coalescence/fragmentation model simulations and elucidates
the relationship between the microscopic dynamics and observed phenomena in this widely applicable
interdisciplinary model type.

1 Introduction

One of the most prominent quantitative results in polit-
ical science is due to the physicist Lewis Fry Richardson
[1], who observed that deaths caused by other humans
are well-approximated by power laws across a wide
range of sizes, with an exponent of around 2.5 for mur-
ders (1 death) up to small wars (1000 deaths), and a
smaller exponent around 1.5 for larger wars. A body of
recent work, exemplified by [2] for the FARC insurgency
in Colombia, and summarized in [3], has demonstrated
that similar distributions occur for event-size distribu-
tions for a wide range of modern wars and insurgencies,
and the different exponents have been reconciled in [4].
Although Richardson’s Law has been challenged – there
are cases where the drop-off is faster than expected [5]
– it remains a broadly applicable truth.

Why is this so? The belief is that event sizes approxi-
mately follow the distributions of the sizes of the human
(typically insurgent) groupings which cause them. Dis-
tributions which are approximately power-law across
most of their range are common in a wide range of phe-
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nomena and can result from a range of generative pro-
cesses including, most prominently, preferential attach-
ment [6]. More broadly, processes of coalescence, or (in
finite populations) of coalescence balanced by fragmen-
tation (CF), produce distributions that have approxi-
mately power-law steady states. Most simply, a multi-
plicative kernel, in which the probability of two groups
coalescing is proportional to the product of their sizes,
yields a power-law exponent of 2.5 (see below). Yet it
would seem rather too strong to believe that the com-
plexity of human grouping for deadly conflict is cap-
tured by so simple a model. More reasonable, a priori,
is some form of universality class – that a wide range of
such models, with varied rules for coalescence and frag-
mentation, all produce steady-state distributions with
exponents around the observed values. Furthermore we
may conjecture that the common structure of observed
distributions results from a broad sense in which human
conflict, especially at the small scales below those of
nation-states, is self-organizing. There is a wide lit-
erature exploring this using deterministic mean-field
(DMF) methods, summarized in [7] which presented
analysis of various generalizations of (1) below, and to
which we refer the reader for additional background.

From the perspective of applications to complex sys-
tems, the crucial requirement is to understand what
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features are necessary for genuinely emergent phenom-
ena. Beyond the steady state, the most salient observed
features are gelation, the absorption of most of the pop-
ulation into a single large group, and the shattering of
large groups into individuals. Again this can be studied
mathematically in the DMF approach [8]. However, we
have already reported that in stochastic simulations of
a fixed population a new phenomenon occurs, that of
stochastic gel-shatter cycles [9], in which steady gelation
is followed by stochastic shattering, in certain suitable
parameter regimes of models with multiplicative size-
biased kernels [9]. We term these ‘stochastic cycles’ as
although they do not have determinate cycles they are
on average repeating, and on a characteristic timescale
– unlike the chaotic behaviour of a strange attractor, for
example. Stochastic cyclic phenomena have been previ-
ously reported by McKane and Newman [10].

The purpose of the present paper is to perform
stochastic simulations of a variety of CF processes.
Whilst our primary concern is the phenomena – the
robustness of an approximately power-law steady state
and the occurrence and extent of stochastic cyclicity
– we also need to understand how these are observed
through the statistical methods used to impute power
laws to data. Thus we are concerned not with analytical
results, which typically require some degree of idealiza-
tion, but with what reported data, via its analysis, are
telling us about the nature of the stochastic generating
processes.

We begin with size-biased coalescence accompa-
nied by shattering fragmentation, and then extend to
include: different types of kernel; accretion and ero-
sion (‘Becker–Döring dynamics’); and a range of non-
shattering fragmentation processes. Whilst these pro-
cesses are motivated by microscopic rules with a clear
justification in our primary application area of opera-
tions research, our work is much more generally applica-
ble either in principle or via direct analogy to alternate
microscopic behaviour.

Alongside reporting our own simulations we draw
together a range of contributory results from the lit-
erature. CF models have been used in a wide vari-
ety of systems, ranging from the physical interactions
between asteroids and dust [11,12] to probabilistic [13],
economic [14], biological [15] and social structures such
as the insurgent warfare with which we began [2,16].
Previous expectations have typically been for fragmen-
tation to balance coalescence in such models, yielding
a steady state that follows a truncated power-law dis-
tribution (i.e. a power-law distribution with an expo-
nential cutoff). Recent literature has questioned this
assumption. With coalescence, resupply, and sedimen-
tation without fragmentation, oscillations in the DMF
kinetics have been observed [17]. Hopf bifurcations have
been observed both in [17] and when employing Becker-
Döring mechanics [18]. Deterministic oscillations also
occur in systems with fragmentation and when using
kernels of the form K(i, j) = (i/j)a + (j/i)a [19].

However, and crucially for the present paper, a DMF
treatment is not enough. In fully stochastic simula-
tions we see steady states becoming fragile, with some

time-asymmetric stochasticity (and thus moving away
from detailed balance), and in some regimes the new
phenomenon of stochastic gel-shatter cyclicity, which
must now be included alongside deterministic cycles
and power-law steady states as a known stable out-
come of a CF process. Thus it is only with simulations of
the full stochastic process, with statistical identification
both of the steady-state distribution and of stochastic
cyclicity, that we can describe the full phenomenology
of these models.

The classical approach begins with a DMF treatment
of coalescence-fragmentation systems of the form

dnk

dt
=

1
2

k−1∑

i=1

K(i, (k − i))nink−i − nk

∞∑

i=1

K(i, k)ni

+
1
k

∞∑

i=k+1

F (i, k)ini − nk

k∑

i=1

F (k, i), (1)

where nk is the density of clusters of size k ≥ 1, K(i, j)
is the (symmetric) coalescence rate kernel for clusters
of sizes i and j to form clusters of size i + j, and
F (i, k) is the fragmentation rate kernel from clusters
of size i to clusters of size k. These systems are known
to yield (truncated) power-law distributions when in
steady state, dnk

dt = 0 ∀k [16,20,21]. We adopt as our
basic model the multiplicative coalescence and shatter-
ing fragmentation kernels

Kmult(i, j) = K̂
ij

M2
, (2)

and

Fmult(i, k) = F̂
i

M
δk,1, (3)

where K̂ and F̂ are the constant reaction rates, normal-
ized for system size M , the maximum possible number
of monomers in the closed system. Normalization by M
reflects a probabilistic interpretation: whenever a clus-
ter needs to be chosen, choose a constituent monomer
from all possible monomers in the system. The clus-
ter that monomer is currently a part of (including but
not limited to clusters of size 1) is the cluster chosen.
We will also use N =

∑
i ni to measure the number of

groups (aggregated clusters) in the system. When this
system has a steady state, its power law distribution
(probability density function) can be found analytically,
with an exponent of α = 2.5.

Central to our approach, in the light of the results
on oscillatory behaviour noted above, is empirically to
identify cyclic departures from steady state, so we intro-
duce a cyclicity order parameter K, defined by

K =
∑

t sgn(kmax(t) − kmax(t − 1))
t

, (4)

where sgn is the sign function and kmax is the size of
the largest cluster in the system. This lies between −1
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Fig. 1 Coalescence and fragmentation summary statistics, M = 104, F̂ = 0.20. Four simulations were conducted (black,
blue, red, and purple). From top-left and proceeding counter-clockwise, we present a heatmap of the locations of the
simulations in the ( kmax

M
, N
M

) plane, the time series of kmax, the time series of the MLE α estimate, and the time series
of the KS-MLE α estimate. We have trimmed large (> 5) and small (< 1) estimates of the KS-MLE α, corresponding to
failures to fit the data

and +1, and is the proportion of computational time
steps for which the largest cluster becomes larger, minus
that for which it becomes smaller. In the steady state,
or in regimes of symmetric stochastic variation, K is
approximately zero. In regimes of slow build-up fol-
lowed by sudden fragmentation, by contrast, K becomes
significantly different from zero, and in extreme cases
approaches +1. Negative K are seldom observed and
never persistent. Thus K measures the amount of asym-
metric stochastic cyclicity in the system, and thereby
diagnoses slow-fast cycles, analogous to some relaxation
oscillations such as the ‘Oregonator’ [22]. The empirical
K is naturally accompanied by the theoretical dimen-
sionless number r, the ratio of the characteristic time-
to-gelation to the characteristic time-to-fragmentation
[9].

This paper is structured as follows. We begin with a
discussion of our summary statistics in Sect. 2, needed
in order to frame and analyse the problem. With these
well understood, in Sect. 3 we study variations in the
construction of the model including different kernel
types and a wide range of parameters, enabling us to
establish our base model. In Sect. 4 we study what hap-
pens when we add various secondary processes to a
particular case of the multiplicative-kernel base model
that has a clear steady state with low cyclicity, test-

ing the robustness of the system to changes in the
nature of the underlying dynamics. In Sect. 5 we add
the same secondary processes to a particular case of
the multiplicative-kernel base model that has distinc-
tive gel-shatter cyclicity, again to explore its robust-
ness. We conclude with a discussion of the implications
in Sect. 6, with a particular emphasis on problems in
operations research.

2 Statistical methodology

To study the behaviour of the system as it evolves over
time, we need to first establish a standard method of
how we will statistically analyse data emerging from
our microscopic simulations. The method we adopt is
to fit a power-law distribution at each time step to not
be averaging raw data. We choose power-law distribu-
tions (rather than more complicated distributions) to
study the robustness of existing results in the litera-
ture (but see the appendix) [e.g. 2,23]. We then need
to understand how our power-law distribution summary
statistics behave.

To fit the power-law distribution we use maximum
likelihood estimation for the estimation of the expo-
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Table 1 Summary of robustness results in steady-state coalescence and fragmentation. In all cases, M = 104, Pr (Frag.) =
0.20, and four simulations were used. The ranges given for KS-MLE and MLE estimates of power-law α contain 95% of
empirical results. Perturbations used are explained in the text. We exclude large (> 5) and small (< 1) estimates of the
KS-MLE α from our intervals

Perturbation Cyclicity K KS-MLE (xmin > 1) α MLE α

Steady-state 0.123 [2.568, 2.754] [2.788, 2.932]
Accretion (3, Unique) 0.560 [2.246, 2.685] [1.907, 2.135]
Erosion (3, Unique) 0.009 [2.849, 3.047] [3.122, 3.229]
Accretion and Erosion (3, Unique) 0.266 [2.341, 2.769] [2.105, 2.256]
Accretion (3) 0.564 [2.248, 2.682] [1.906, 2.136]
Erosion (3) −0.011 [2.118, 4.848] [3.528, 3.635]
Accretion and Erosion (3) 0.179 [2.468, 2.806] [2.178, 2.315]
Coalescence Stick-breaking 0.094 [2.534, 2.768] [2.725, 2.829]
Fragmentation Stick-breaking 0.463 [1.890, 2.166] [2.241, 2.402]
Coalescence and Fragmentation Stick-breaking 0.239 [2.208, 2.393] [2.298, 2.369]
CRP θ = 1.20 0.454 [2.075, 2.257] [2.274, 2.376]
CRP θ = 1.50 0.247 [2.299, 2.426] [2.434, 2.511]
CRP θ = 1.80 0.157 [2.459, 2.620] [2.640, 2.734]

nent and the maximum. The maximum likelihood esti-
mator for the exponent (sometimes called the Hill esti-
mator when working with continuous data) is asymp-
totically normal and consistent [24,25], and it has
seen widespread use due to seminal work [24] and
widespread implementation [e.g. 26,27]. For the min-
imum, we either use the smallest possible value xmin =
1, the monomer of the system, (method ‘MLE’) or
Kolmogorov–Smirnov maximum likelihood estimation
(‘KS-MLE’) [24], which selects the minimum that cor-
responds to the power-law distribution with the least
Kolmogorov–Smirnov distance (the maximum differ-
ence between the cumulative distribution functions) to
the empirical data. In effect, KS-MLE fits only the
power-law tail of the data, while MLE fits a power-
law to the entirety of the data. (We also examined the
performance of power-law distributions with exponen-
tial cutoffs and observed very little difference in fitted
summary statistics.)

To characterize the behaviour of the estimators, we
examine how they work in a model system with M =
104 and F̂ = 0.2 = 1 − K̂. (Note that these give
r = 2.5 × 103; steady states are typically observed if
r > 103 [9].) Four simulations of this system can be
seen in Fig. 1, whose four panels show: a heat map
of the locations the system visits (after burn-in) in
(kmax/M,N/M) space; kmax over time; the KS-MLE
α values over time; and the MLE α values over time.
In practice, this system has a small amount of cyclicity
K = 0.123 on average across the simulations, which can
be seen upon close examination of the time series. The
region explored is quite narrow, with kmax/M within
[0.0023, 0.0554] and N/M within [0.6318, 0.7261]. Of
these simulations, 99% of time steps sampled remained
within [0.0035, 0.0276] and [0.6427, 0.7106] respectively,
consistent with steady-state and noise behaviour (in
comparison to cyclic behaviour). The average cyclicity
and 95% intervals for KS-MLE and MLE α are collected
in the first row of Table 1, which collects analogous val-

ues for each model we later consider in Sect. 4. (We take
large (> 5) and small (< 1) estimates of the KS-MLE
α to indicate failures to fit the data.)

Despite the proximity to the steady state, the system
has a distinctive two-layer pattern in the fitted KS-MLE
α which is simply explained. Recall that the MLE xmin

is always set to 1, but the KS-MLE xmin is allowed to
vary to optimize the fit, and the KS-MLE α is highly
sensitive to it. The higher values arise when xmin = 1 is
preferred by the KS-MLE algorithm, while lower values
arise when xmin ≥ 2. Looking at the ‘violin’ distribu-
tion plots in Fig. 2, we first note that where MLE and
KS-MLE both use xmin = 1, the MLE α is equal to
the KS-MLE α; this occurs in around 62% of samples.
Where the MLE and KS-MLE xmin differ, there is no
obvious relationship between the MLE α and KS-MLE
α, although there is a correlation (of 0.454). Hence-
forth, when we refer to KS-MLE α, we mean cases with
xmin > 1.

The bias of the fitted exponents away from the
expected 2.5 is not due to finite size, see Fig. 3. Instead,
it is intrinsic to the system. To check this, we performed
a simple experiment. We took the (truncated, normal-
ized) theoretical steady state of the corresponding CF
system and used it as a probability distribution to cre-
ate 1000 random partitions of M , each constructed
by drawing a sequence of clusters, with the last clus-
ter truncated when the total population reached M .
Results are shown in Fig. 4 and agree well with Fig. 2.

This point is of real importance: there is a substantial
difference between the power-law exponent obtained
in the calculation of the theoretical solution and the
power-law exponent obtained by the simulation, due
to the finite nature of the system that the solution is
expected to describe. The exponents obtained through
the MLE and KS-MLE power-law fits indicate that the
latter has a positive bias away from the theoretical solu-
tion’s exponent, and studies that rely on these methods
of fitting should expect this positive bias to be present.
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Fig. 2 Coalescence and fragmentation exponent summary statistics. We present the distribution of estimated exponents for
the 80, 000 samples plotted in Fig. 1 as violin plots for the fitted exponents according to each method (left) with the quantiles
(horizontal lines on violin plots) and means (right). Violin plots here are mirrored (probability) density plots plotted with
1/8th the usual bandwidth to preserve the detailed edges [28]. MLE α and KS-MLE α agree when the KS-MLE xmin = 1.
The theoretical result indicates α = 2.5

Fig. 3 Coalescence and fragmentation exponent summary
statistics for varying M . In all plots, F̂ = 0.20. Thick black
lines connect the means of each violin plot and the thin
dashed line is the theoretical value, 2.5. Violin plots are
otherwise as in Figure 2

Furthermore, this bias is not eliminated when control-
ling for the exponential cut-off in the theoretical dis-
tribution, nor the finite range of the simulated system
(see appendix).

3 Analysis of the base model

Now that we have described our summary statistics and
their expected behaviours, we turn our attention to how
varying the base model’s underlying rules affects the
overall behaviour of the system. We begin by discussing
aspects of the basic construction of the model, including
different types of kernel, and for the full range of the
controlling parameters.

We then discuss in Sect. 4.1 what happens to a partic-
ular case of the base model with multiplicative kernel,
which has a clear steady state with no gel-shatter cyclic-
ity, when we include various secondary processes. These
processes act so as to redistribute small amounts of
mass through the system; the effects we observe estab-
lish that the system is sensitive to behaviour in the
bulk. In Sects. 4.2 and 4.3 we consider the behaviour of
the fragmentation function. With these two cases, we
describe how the movement of mass from the (right) tail
into the bulk influences the behaviour of the system. We
summarize these findings in Sect. 4.4 in anticipation of
analogous analysis for the cyclic regime.

Size-biased coalescence and shattering fragmentation
are clearly not the only possible kernels for the base
model, but they are the most intuitive to motivate for
most applications. For example, Smoluchowski’s origi-
nal work used a constant coalescence kernel K(i, j) = 1
(without fragmentation) [29], and results for constant,
additive, and multiplicative (size-biased) kernels have
been known since at least the 1960s for both discrete
and continuous mass-distributions. An accessible intro-
duction is [13]. Given the variety of kernels and under-
lying rules they represent, we first establish some of the
sensitivity of the model to the form of the rules, and fol-
low with a brief review of the sensitivity of the model
to variation of the parameters, following our previous
work [9]. Together, these set the stage for us to robustly
interpret further modifications to the system.

First, we consider the significance of the kernels in
the system. It is well-known that systems with multi-
plicative coalescence kernels and, more generally, homo-
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geneous kernels exhibit gelation (defined in infinite sys-
tems as the divergence of the second moment, [13], p10).
Recall that equations (1) track the density nk and size
k of clusters within the system. One could then calcu-
late the mass, M =

∑
k knk, the total number of units,

among which knk units have coalesced into the nk units
of size k. For purely coalescent systems (i.e. F (i, k) = 0)
with kernels that exhibit gelation, it is possible for the
system to coalesce so rapidly that mass escapes to a
cluster of infinite size in finite time, in which case the
infinite-sized cluster is referred to as a gel. Typically
the remainder of the system is referred to as the sol.
In this case, analytically the gel is not tracked by the
size-biased sum of the system cluster sizes, resulting in
the mass M appearing to decrease in the system even if
the equations otherwise appear to conserve mass [13].
In coalescence of random graphs, the gel appears spon-
taneously as a giant connected component of the sys-
tem, prior to which the system is made up of isolated
graphs. Its formation marks a shift in the size of the
largest component; for multiplicative coalescence ker-
nels K(i, j) ∝ ij this shift is from order log M to order
M [30]. In our systems (where time is measured by the
number of events that have occurred thus far, similar
to the number of edges that have appeared thus far
in a random graph [30]), ‘gelation’ appears as the cre-
ation of a large cluster that rapidly increases in size.
This simulated gel (of size kmax) cannot become truly
infinite-sized in our simulation, but still separates from
the sol, in the sense that the gap between the size of
the gel and the next largest cluster is much larger than
the next such gap.

It is possible for fragmentation to prevent gela-
tion, but the effectiveness must depend on the rel-
ative strength of the fragmentation and coalescence
kernels. For example, employing a fragmentation bar-
rier, above which clusters must fragment and restock
the smaller cluster sizes, leads to varying steady-state
power-law distributions for the sizes of clusters depen-
dent on how fragments and coalescence occur [12]. For
certain choices of kernel functions, exact steady-state
solutions are possible and well-known, including when
the reactions are reversible and satisfy detailed balance
[31], such as growth and decay by monomers only (in
the presence of sub-linear rate kernels and finite sys-
tem size) [32]. Alternatively, the steady state can also
be reached if a constant source of small clusters is pro-
vided to the system to counter-balance the removal
by the gel [33]. For coalescence kernels of the form
K(i, j) = K̂(ij)α for α ≥ 0 and fragmentation of clus-
ters to monomers, a steady-state solution is known to be
approximately kαnk ≈ 1√

π
n1(k + 1)−3/2 and is known

exactly for F (i, k) ∝ i with α = 1 [16,20,34,35]. Many
extensions and variants exist, such as non-binary coa-
lescence [21]. Despite the existence of steady-state solu-
tions, however, it is not given that fragmentation actu-
ally prevents gelation, although conditions do exist for
some forms of fragmentation, such as binary fragmen-
tation [36].

So what happens when systems with shattering frag-
mentation evolve through time? In Fig. 5, we plot (nor-
malized by the total mass M) the number of clusters
against the size of the largest cluster, explored over
20,000 steps in four different simulations, each choosing
coalescence or fragmentation to be either multiplica-
tive, as above in equations (2, 3), or constant,

Kconst(i, j) =
K̂

N2
, (5)

and

Fconst(i, k) =
F̂

N
δk,1. (6)

(Note that for this constant kernel, in which groups are
chosen uniformly at random, normalization is by the
total number of groups N rather than the total number
of monomers M used to normalize the multiplicative
kernel in (2, 3). As there, this reflects a probabilistic
interpretation: choose a cluster uniformly at random
from the entire population of clusters).

The top two plots use constant coalescence and
the bottom two plots multiplicative coalescence, while
the left-hand plots use constant fragmentation and
the right-hand plots multiplicative fragmentation. We
begin with the top-left panel, in which both coalescence
and fragmentation are constant, Kconst and Fconst. The
system aggregates around 2% of its total mass into a
single cluster, but the variation is large. Constant ker-
nels act more slowly than, but similarly to, their multi-
plicative equivalents. The bottom-right panel, in which
both coalescence and fragmentation are multiplicative,
yields a mostly disaggregated system with some occa-
sional large clusters. The bottom-left panel has mul-
tiplicative coalescence Kmult but constant fragmenta-
tion Fconst. The largest cluster grows rapidly until the
only possible event is fragmentation, at which point the
entire system is shattered to clusters of unit size. This
behaviour is similar to, but more extreme than, the
behaviour we will explore in Sect. 5. On the other hand,
when the fragmentation kernel is multiplicative but the
coalescence kernel is constant, in the top-right panel,
the system never begins to aggregate beyond very small
values.

Figure 5 establishes that the form and balance of
the kernels are important determinants of the system
dynamics. We now restrict to multiplicative kernels,
determining how the parameters influence the dynam-
ics of the system, and extending the brief treatment in
[9]. We have already noted the existence of stochastic
gel-shatter cycles as well as a steady state for coales-
cence and fragmentation systems. Fixing the scaling of
the coalescence and fragmentation kernels, the transi-
tion between regimes is determined by the interplay
between M , K̂, and F̂ . In particular, the dimensionless
parameter
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Fig. 4 Coalescence and fragmentation exponent simulated summary statistics. We present the distribution of summary
statistics of 1, 000 samples from the theoretical coalescence and fragmentation solution with M = 104 and F̂ = 0.20. As in
Fig. 2, data are presented as violin plots, bandwidth adjustment of 1/8th, for the fitted exponents according to each method
(left) with the quantiles (horizontal lines on violin plots) and means (right). Compare with Fig. 2 for which we observe good
agreement, indicating deviations from the expected exponent α = 2.5 are systematic

Fig. 5 Space explored by coalescence and fragmentation simulations with varying kernels, M = 104, F̂ = 0.30. Top-left:
constant coalescence and fragmentation kernels, Eq. 5 and 6. Top-right: we increase the strength of fragmentation by using a
multiplicative fragmentation kernel, Eq. 3. Bottom-left: multiplicative coalescence, Eq. 2, constant fragmentation. Bottom-
right: multiplicative kernels for both coalescence and fragmentation. When the type of kernel is the same, the system
approaches a non-trivial steady state. When it is instead unbalanced the system either remains mostly disaggregated (top-
right) or is forced into cyclicity by rapid coalescence followed by fragmentation (bottom-left)
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r =
F̂M

K̂
(7)

is the ratio of characteristic times of gelation to shat-
tering, and thus captures the balance between the two
processes.

When r is small, r < 0.1, the system is dominated by
rapid gelation and must wait until fragmentation resets
the system, similar to when the coalescence kernel is
multiplicative and the fragmentation kernel is constant.
We expect the cyclicity order parameter K to be low,
K < 0.1, in this regime, as the system rapidly gels and
then stalls until a fragmentation event finally occurs.
When r is large, r > 103, the system is instead dom-
inated by fragmentation. When a gel does emerge, its
size relative to that of the other clusters and the fre-
quency of fragmentation rapidly removes the gel from
the system, forcing the system to dwell primarily in the
pre-gel phase. As r increases further, the system begins
to resemble the case with Kconst and Fmult. Again, K is
expected to be low in this region, K < 0.1, as the coa-
lescence routinely creates small clusters that are nearly
immediately shattered and, otherwise, shattering frag-
mentation events do nothing to clusters of size 1.

In between the two regimes we find stochastic gel-
shatter cycles, the subject of Sect. 5 and previous work
[9]. Here, the system visits a broad region of the
(kmax, N) plot due to the presence of gelation and
infrequent but not rare fragmentation. Fragmentation
occurs often enough to prevent the system from stalling
with all of the mass in a single cluster, but not so
often as to prevent the formation of the gel itself. This
means that there are many small step increases in the
size of the largest cluster alongside a few large step
decreases, resulting in a comparatively large K. These
three regimes are contrasted in Fig. 6.

As we have shown in this section, coalescence and
fragmentation systems have many built-in modelling
assumptions that determine their behaviour. The under-
lying rules and parameter values naturally have broad
impacts, and determine whether and where the system’s
steady-state behaviour occurs. Of prime importance is
the type of kernels used and whether they admit the for-
mation of large clusters or not. If they do, then the bal-
ance of the competition between coalescence and frag-
mentation needs to be correct; too much of either, due
to parameters or kernels, and the system stalls.

4 Effects of rule variations on base model
with steady state

Having established the influence of kernel type on the
system, and as a means to gauge the importance of
unmodelled small systematic perturbations in a system
of interest, we next consider the effects of process vari-
ation by inclusion of a simpler set of additional rules
in the particular multiplicative-kernel base model case

of Sect. 2, which has M = 104 and F̂ = 0.2. This
case has an approximate power-law steady state with α
confidence intervals KS-MLE [2.568, 2.754] and MLE
[2.788, 2.932]. The model is near the edge of cyclic-

ity without fully engaging with stochastic gel-shatter
cycles, r = 2.5 × 103 and K = 0.123. (See Fig. 1 for the
behaviour of this system.)

First in Sect. 4.1 we redistribute small amounts of
mass through the system, establishing that it is sensi-
tive to behaviour in the bulk. Then in Sects. 4.2 and 4.3
we consider the behaviour of the fragmentation func-
tion, describing how the movement of mass from the
(right) tail into the bulk influences the behaviour of the
system. We summarize in Sect. 4.4 to prepare ourselves
for the cyclic regime.

4.1 Becker–Döring dynamics

The first variation we consider, which we refer to as
Becker-Döring dynamics [18,32,37], involves only the
movement of monomers between clusters in the pop-
ulation. We refer to the addition of monomers to
randomly-chosen clusters as ‘accretion’ and the removal
of monomers from randomly-chosen clusters as ‘ero-
sion’. These dynamics are motivated by the impor-
tance of individuals in social applications such as war-
fare modelling, although the terminology is that of the
physical sciences – accretion might be simply termed
‘recruitment’, while erosion is an individual leaving,
through death or disillusionment for example. Our
implementation performs fixed numbers nac of accre-
tion and ner of erosion events each time step (either 0,
1, 3 or 9), and we choose which clusters to accrete or
erode at random with probability proportional to their
size. Mass remains conserved in our implementation:
accretion does not occur if there are no uncoalesced
monomers in the system, and erosion does not occur
if there are no non-monomers in the system. We note,
however, that MLE methods are expected to be more
susceptible to perturbations that affect n1 while KS-
MLE should be more robust. We write α(nac,ner) and
K(nac,ner).

Accretion results in an increase in K and a decrease
in α: K(9,0) = 0.831, mean KS-MLE α(9,0) = 2.33,
and mean MLE α(9,0) = 1.72. More comparable to
our earlier statistics, we have K(3,0) = 0.564, KS-MLE
α(3,0) ∈ [2.248, 2.682], and MLE α(3,0) ∈ [1.906, 2.136]
in 95% of samples. These reflect the increase in num-
ber of larger clusters and the tendency to increase the
largest cluster’s size even when the coalescence events
do not target this cluster. The increase in K is some-
what deceptive, as can be seen in Fig. 7 (top-left), espe-
cially in comparison to Fig. 1 and the system studied
in Sect. 5, Fig. 10. The system is certainly more cycle-
like, given the shape of the state space visited has elon-
gated, but it has not fully escaped steady state. Accre-
tion shows that the system’s supposed power-law can be
heavily weighted towards larger clusters by increasing
the recruitment amongst monomers only.
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Fig. 6 Shapes of spaces explored in various regimes, kernels Kmult and Fmult. We vary simulation parameters M and F̂
to showcase the different regimes, obtaining different r and K, shown in parentheses at bottom left of each panel. In the
first plot with M = 300 and F̂ = 0.0002, we obtain forced fragmentation cycles, in which the system quickly coalesces into
a single cluster (bottom right of plot) and then must wait for a rare fragmentation event to reset it. In the second plot with

M = 10000 and F̂ = 0.001, the system continuously grows and fragmentation is stochastic and common, preventing stalling
and creating unforced stochastic gel-shatter cycles. In the third plot, M = 10000 and F̂ = 0.3, fragmentation dominates,
preventing the emergence of a gel. See [9] for further details

Fig. 7 Clockwise from top-left: accretion, erosion amongst any clusters, erosion amongst unique clusters, and combined
accretion and erosion. In each case, we set nac = 9 and ner = 9 to best show the effects

Erosion generally shows the opposite behaviour to
accretion, but its effectiveness relies on an implementa-
tion detail: do we remove from distinct clusters within
a time step, or can the same cluster have multiple
removals? To do the former greatly restricts the effects
of erosion, as can be seen in Fig. 7 (top-right and
bottom-right) where ner = 9, and still results in a
steady-state-like system. The summary statistics are
K(0,3) = 0.007, KS-MLE α(0,3) ∈ [2.849, 3.047], and
MLE α(0,3) ∈ [3.122, 3.229] in 95% of samples. To do the

latter prevents the system from growing beyond kmax =
8, and a power-law is a poor description of this case
with ner = 9. When ner = 3, the summary statistics
are K(0,3) = −0.011, KS-MLE α(0,3) ∈ [2.118, 4.848],
and MLE α(0,3) ∈ [3.528, 3.635] in 95% of samples.

Overall, the system is less robust to erosion, the fre-
quent loss of monomers from clusters, than to accretion,
frequent gain of monomers by clusters. The exact imple-
mentation can have a drastic effect, with more frequent
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erosion reducing cyclicity and making the system more
steady-state-like.

For completion, combining accretion and erosion with
nac = ner results in a hybrid system that is similar to
but more aggregated than the original system, Fig. 7
(bottom-left). There is a modest increase in K: K(1,1) =
0.148, K(3,3) = 0.179, and K(9,9) = 0.215 when using
erosion without the uniqueness restriction. This reflects
a slightly more cyclic system that is still not far from
steady state. The system also suffers from a depletion
of monomers, so while KS-MLE α(3,3) ∈ [2.468, 2.806],
MLE α(3,3) ∈ [2.178, 2.315].

Finally we note that a novel phenomenon, of super-
clustering states, has recently been observed in size-
biased generalizations of the above Becker-Döring model.
Such states are characterized by intensive fluctuations
which violate the standard van Kampen expansion
[38,39].

4.2 Weakening fragmentation

We have learned that accretion and erosion can be quite
influential, but can also balance each other (result-
ing in a generally more aggregated system without
greatly affecting the gelation-related properties) and
generally make coalescence and fragmentation work
more efficiently. Against this, the models’ assumptions
on coalescence and fragmentation already take forms
that are probably more efficient than in real systems.
(For example, collisions might join two clusters imper-
fectly, producing some fragments; or shattering may
fail to produce only monomers.) Overall this prompts
the question, how efficient must the system be to be
well-approximated by shattering fragmentation? (Coa-
lescence has been treated elsewhere in the literature,
e.g. [11].) For example, in an insurgency war situation
complete shattering could be interpreted as a perfect
response of a cell to being compromised – idealized but
implausible.

To attempt to answer this question, we consider a
suite of variations of fragmentation. We begin with
halving a cluster (i.e. a size-n cluster fragments into
one of size �n

2 � and one of size 	n
2 
 where �·� and 	·
 are

the floor and ceiling functions). We then consider the
case where one of these two clusters is shattered, before
altering the proportion of the original cluster shattered
from one-half to one-tenth or nine-tenths. We will see
that even a small amount of shattering can significantly
reset a system while keeping it near steady state. Next
we create the fragments using a single partition drawn
uniformly at random from the set of possible partitions
of the original cluster. This motivates us finally to con-
sider a specific intermediate possibility, repeated frag-
mentation of a cluster or stick-breaking, in Sect. 4.3.

Halving a cluster instead of shattering it is perhaps
the furthest removed from shattering fragmentation:
not only is it reversible in a single (binary coalescence)
step, but it leaves both newly formed clusters as aggre-
gated entities. It is perhaps no surprise then that coales-
cence and such a weak form of fragmentation leave the

system in a very small number of clearly discrete states,
as seen in Fig. 8 (top-left). We find K = −0.005; the sys-
tem spends slightly more time halving the largest group
then it does growing it. To apply power-law distribu-
tion estimators would be clearly incorrect here, even
as proxies for other processes. If we attempt to do so,
approximately 79% of KS-MLE fits (xmin > 1) report
α = 0.

Instead, consider the case where we shatter some
portion of the original cluster to be fragmented. This
still leaves the remainder as an aggregated cluster, but
requires more – potentially many more – coalescent
steps to reverse the damage caused by the fragmen-
tation. In Fig. 8 we consider shattering 0.5 of the clus-
ter (top-right), 0.1 of the cluster (weakening fragmen-
tation, bottom-left), and 0.9 of the cluster (strength-
ening fragmentation, bottom-right). Each result looks
consistently steady-state-like (compare Fig. 1, top-left),
but we are also seeing a smooth but modest deforma-
tion in the shapes of the plots (note that the scales
on the horizontal axes differ), with the largest clus-
ters tending to be smaller as the extent of shatter-
ing increases. This is reflected in the summary statis-
tics. Shattering 10% of a cluster results in 95% of KS-
MLE α estimates in [2.491, 2.721] and MLE α esti-
mates in [2.759, 2.953]. Shattering 50% yields estimates
of [2.431, 2.659] and [2.727, 2.875] respectively, while
shattering 90% yields [2.548, 2.744] and [2.783, 2.918].
Compared to the original coalescence and fragmenta-
tion estimates of [2.568, 2.754] and [2.788, 2.932], the
differences are quite small. While the occupied region of
the (kmax

M , N
M ) plane is somewhat different, it seems that

even relatively small amounts of shattering can fairly
well approximate full shattering for some purposes.
That said, increasing shattering has a pronounced effect
on the tendency of the system to produce stochastic
cyclic or cycle-like behaviour. Shattering 10%, 50% and
90% of the cluster yield K = 0.431, 0.186, and 0.126
respectively. The summary statistic K of cyclicity is
thus more affected by the proportion shattered than
is the α of the steady state, with highly inefficient shat-
tering affecting the power law very little but creating
much greater stochastic cyclicity hidden behind it.

So far, coalescence and fragmentation appear to be
satisfactorily robust to perturbations to the exact form
of the fragmentation process, as long as some shattering
is present. But once again this may be an idealization
motivated by the physical sciences – in the social sci-
ences it could be that fragmenting is more typically into
a range of group sizes, and complete return to indi-
vidual autonomy is implausible. So, does the system
remain robust when we move away from shattering?
And how do the sizes of the clusters formed complicate
the situation?

There are many ways to fragment a cluster, a problem
which is equivalent to partitioning a natural number.
We begin first with ‘probabilistic divide and conquer’,
which selects a partition uniformly at random from the
set of partitions [40]. Our implementation results on
average in 25 monomers (95%: [0, 88]) and 94.6 clusters
(95%: [53, 165]) when partitioning 1,000 in 1,000 trials,
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Fig. 8 Clockwise from top-left: halving fragmentation, shattering half fragmentation, shattering nine-tenths fragmentation,
and shattering one-tenth fragmentation

so only slightly fewer clusters, but the clusters are larger
in the median than for shattering one-tenth. (Note that
shattering one-tenth would result in 101 clusters, with
100 monomers, shattering one-half 501 or 500, and shat-
tering nine-tenths 901 or 900.) Despite the similar num-
ber of clusters, the exact size of clusters is important.
Partitioning fragmentation results in 95% of KS-MLE
α estimates in [2.22, 2.62] and 95% of MLE α estimates
of [2.09, 2.19]. Furthermore, the space itself is far more
aggregated on average than that of one-tenth shattering
fragmentation. While one-tenth shattering fragmenta-
tion had around 6254 clusters on average, partition-
ing fragmentation has around 4032, although this is
counterbalanced by a higher average xmax for one-tenth
shattering fragmentation (532 vs 204).

So we now know that the exact form of the fragmen-
tation does matter, and that even shattering just one-
tenth of a cluster makes the system fairly close to that
in which the entire cluster is shattered. On the other
hand, this seems to be serving as a proxy for the ease
of re-assembly of a fragmented cluster. Due to the size-
biased nature of the kernels, obtaining monomers makes
it harder to re-assemble than if one obtains clusters of
varying sizes. Unfortunately, partitioning uniformly at
random does not give us a clear control parameter to
explore how the results are changing. In the next sec-
tion, we explore a method of partitioning that does have
such a parameter, allowing us to explore its effect on our
summary statistics.

4.3 Stick-breaking and Chinese restaurants

One simple form of fragmentation, analogous to stick-
breaking processes [41], is to repeatedly fragment a por-
tion of a cluster. We take a stick (respectively, cluster),
snap it in two at a random point (resp. divide it into
two parts), discard one, and then repeat the process
on the remainder. The question then becomes how to
pick our random point. We begin here with a uniform
distribution, before considering the natural extension
to the beta-binomial distribution. We then consider a
more general parametrized form of fragmentation, the
Chinese Restaurant Process (CRP).

We can also use stick-breaking to create some coa-
lescence, although a little more specification is needed.
When two clusters meet, our implementation transfers
to the larger cluster the first fragment removed from
the smaller cluster, which must be of size at least 1,
after which the remainder of the smaller cluster experi-
ences stick-breaking fragmentation as described above.
See appendix.

Figure 9 contains the results of stick-breaking coa-
lescence (with base model fragmentation; top-left) and
stick-breaking fragmentation (with base-model coales-
cence; top-right). Initial inspection of the former might
lead one to believe that stick-breaking coalescence
achieved no change from the base case other than a
slightly damped cyclicity, K = 0.094 from 0.123 and
a slightly lowered maximum group size, with 95% of
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Fig. 9 Clockwise from top-left: stick-breaking coalescence, stick-breaking fragmentation, CRP fragmentation with θ = 1.2,
and CRP fragmentation with θ = 1.8

KS-MLE and MLE estimates of α ∈ [2.534, 2.768]
and [2.725, 2.829] respectively. We will return to this
case in a moment. On the other hand, stick-breaking
fragmentation causes a larger perturbation to the sys-
tem than does partitioning fragmentation, with K =
0.412 and 95% of KS-MLE and MLE estimates of
α ∈ [1.890, 2.166] and [2.241, 2.402] respectively. Notice
that whereas partitioning fragmentation reduced the
MLE more, stick-breaking fragmentation reduces the
KS-MLE more. This suggests that the tail induced by
stick-breaking is far heavier than that produced by par-
titioning. In contrast, partitioning has a larger effect on
the number of monomers in the system.

Finally, the combination of stick-breaking coales-
cence and fragmentation helps reveal some of the
unseen effects of stick-breaking coalescence. While not
entirely capable of reining in the effects of stick-
breaking fragmentation, stick-breaking coalescence has
a large impact, bringing K to 0.236 and 95% of
KS-MLE and MLE estimates to α ∈ [2.208, 2.393]
and [2.298, 2.369]. Stick-breaking coalescence permits
a modest decrease in the speed of gelation while mak-
ing the system less aggregated in general. This in turn
makes it harder to reverse the effects of a single stick-
breaking fragmentation because there is a smaller reser-
voir of medium-large clusters (in exchange for a larger
reservoir of small-medium clusters). It also appears
that this stick-breaking coalescence does not have a
large effect on the α estimates by itself because the

exchange of small-medium clusters for medium-large
clusters does not greatly influence either the tail (KS-
MLE) or the number of monomers (MLE).

Moving to a beta-binomial distribution, thus allowing
the individual breaks to be more biased towards larger
or smaller clusters, does not change the results greatly.
Moving the distribution’s parameters from (1, 1) (which
is the specialization to the uniform distribution) to (2,
4), (3, 3), and (4, 2) results in 95% KS-MLE α esti-
mates of [2.044, 2.221], [1.941, 2.151] and [1.853, 2.147]
respectively.

Another interpretation of discrete stick-breaking gives
us smooth control of fragmentation: the Chinese Restau-
rant Process (CRP). The CRP is named for its metaph-
orical construction of a partition. For a partition of size
n, we consider a queue of n people who are permit-
ted to seat themselves one at a time at circular tables.
After the first individual is seated, the second then has a
choice to sit with the first, or to initiate a new table, and
so on for each customer. Further, it is presumed that
the probability that a new customer picks an occupied
table is proportional to the number of people sitting
there. This mechanistic process has natural analogues
to the manner in which a sub-group in insurgency war-
fare might fragment under external pressure. The CRP
has two parameters, which when positive can be inter-
preted as controlling how intrinsically attractive it is to
start a new table (the ‘strength’) and slightly penaliz-
ing tables already occupied (the ‘discount’). Of these
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Fig. 10 Coalescence and fragmentation summary statistics, M = 104, Pr (Frag.) = 0.01. Plot types are the same as in
Fig. 1. The time series shown for estimates of the exponent are shorter than those for kmax or those in Fig. 1 to better show
details

two, the latter, say φ ∈ [0, 1], is more important for
our purposes, as it controls the power-law distribution
over the number of customers seated at each table with
exponent θ = 1 + φ [41,42]. (In principle, power laws
above θ = 2 could be accessed via e.g. Price’s network
model [43], but such power laws did not appear to sub-
stantially alter our results.)

Replacing our stick-breaking fragmentation with CRP
fragmentation for various θ proves particularly tractable
for navigating various summary statistics. Cyclicity K
now appears to vary smoothly: compare stick-breaking
fragmentation’s K = 0.412 with θ = 1.2 yielding
K = 0.436, θ = 1.5 K = 0.246, and θ = 1.8 K =
0.156. Similarly α estimates by both KS-MLE and MLE
methods proceed smoothly: our 95% intervals for KS-
MLE α go from [1.890, 2.166], through [2.075, 2.257]
and [2.299, 2.426], to [2.459, 2.620], while MLE α pro-
ceeds as [2.241, 2.402], [2.274, 2.376], [2.434, 2.511], and
[2.640, 2.734]. This is reflected in the bottom panels of
Fig. 9, which show results for θ = 1.2 and θ = 1.8.
Just as in Fig. 8, the system appears to be returning to
the original steady state as we go from stick-breaking
fragmentation (top-right; largest kmax/M and small-
est N/M) through CRP with θ = 1.2 (bottom-right;
intermediate values) to CRP with θ = 1.8 (bottom-left;
smallest kmax/M and largest N/M).

It is notable that one power-law distribution pro-
ducing process has such a strong and well controlled

effect when used as a part of a wider power-law distri-
bution producing process. Presumably, the reason why
this works so well is, building on the above, a power-law
distribution with exponent θ in [1, 2] is not so clustered
as to have no effect (mostly shattered, θ > 2) while pro-
viding a consistent control on shape. This is in contrast
to beta-binomial which clumps too much, while a sig-
nificant amount of shattering takes too long to reverse
(since monomers are slow and difficult to coalesce back
together). These results are supported by previous work
by Brilliantov et al. [34], which established that if the
power-law distribution of fragments is steep enough,
i.e. θ > 2, the system is close to complete shattering
of clusters. Notably, these results were for fragmenta-
tion caused by (binary) collisions, suggesting that our
robustness results might hold for a broad class of CF
models.

4.4 Summary

Is it safe to model a CF system as being in steady
state? In this section, we have considered how impor-
tant unmodelled systematic perturbations can be to the
steady state of a CF system that is believed to be in or
close to its steady state.

Often, the CF system proved quite robust. Small
amounts of accretion and erosion do not have dispro-
portionate effects and dominate the system. Greater
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accretion and erosion can, however, shift the system
away from its original power-law steady state. For large
amounts of accretion and erosion to cancel out each
other’s effects would require fine-tuning. Further, shat-
tering does not need to be total to replenish the re-
supply of monomers: a small amount of shattering effec-
tively replicates the effects of total shattering.

At the extreme of simplicity, replacing shattering
with halving altered the system beyond recognition,
placing it firmly in a regime of simple forced cycles from
which it cannot escape. More subtly, there are distribu-
tions of fragments which leave enough medium-sized
clusters that the system is delayed from reassembling
without forcing it to reset (nearly) completely or not
at all. While this can be achieved with random par-
titioning or varieties of stick-breaking, this regime is
most accessible by a power-law distribution generat-
ing process such as the Chinese Restaurant Process, a
mechanistic process originally motivated by an anal-
ogy to people’s behaviour. In such circumstances the
cyclicity parameter K can easily reach values signifi-
cantly greater than zero, indicating some form of time-
asymmetric cyclicity and, minimally, that the state is
rather unsteady, so that a simple assumption of a steady
state described by a power law is certainly not telling
the full story.

5 Effects of rule variations on base model
with stochastic gel-shatter cycles

As we saw in the last section, it is not guaranteed
that a steady state will emerge from a coalescence
and fragmentation process. A prominent alternative is
the formation of stochastic gel-shatter cycles, in which
the system is dominated by gelling coalescence and
then stochastically resets due to shattering fragmen-
tation. We use a model gel-shatter system to show that
this regime is more susceptible to perturbations of the
sort described in Sect. 4. For the model system seen
in Fig. 10, we set M = 104 and F̂ = 0.01 = 1 − K̂
for r ≈ 101, yielding K = 0.490. This system starts
in a very disaggregated state, grows, and then reaches
a critical gelation point beyond which it rapidly aggre-
gates before stochastically shattering and repeating. As
it does so, the fitted exponent α decreases smoothly
before jumping upwards. Its exponent summary statis-
tics are the confidence intervals for KS-MLE α and
MLE α from 95% of samples. For this case, they are
respectively [2.474, 2.829] and [2.656, 3.163]. We pro-
ceed in parallel to Sect. 4: we first show that additional
processes can significantly alter the α statistics before
again observing that power-law distributed fragmen-
tation greatly affects the stochastic gel-shatter cycles.
Summary statistics will be presented in Table 2 at the
end of this section.

We begin by adding Becker-Döring mechanics to our
base model. The effects of extreme accretion, nac = 9,
can be seen in Fig. 11 (top-left). Accretion exagger-

ates the stochastic gel-shatter cycles, greatly increas-
ing K with Knac=1 = 0.623, Knac=3 = 0.721, and
Knac=9 = 0.797 and widening the sampled KS-MLE
αnac=3 to [2.261, 3.043]. Naturally, accretion decreases
n1, more substantially influencing the MLE α, which
predicts a flatter distribution than KS-MLE α does.
The gel-shatter system is fairly robust to accretion,
in the sense that α does not change dramatically and
behaviour is similar to, albeit an exaggeration of, the
typical behaviour for this regime. Identifying that a sys-
tem was undergoing accretion as well as coalescence and
shattering would be a difficult task as a result, although
there are substantial differences in the behaviour of N
and kmax that might be relevant for specific applica-
tions.

Erosion has similar effects on gel-shatter and steady-
state systems. When erosion occurs amongst any clus-
ters, it rapidly forces the system to a steady state of
only small clusters for ner = 9, while requiring ero-
sion amongst separate unique clusters forces the system
nearer to but not fully into a steady state, as shown in
Fig. 11 (top-right and bottom-right). This is reflected
in the differences in summary statistics in Table 2:
K = −0.079 and KS-MLE α ∈ [2.904, 3.191] versus
K = 0.178 and KS-MLE α ∈ [2.615, 2.991] respectively.
When erosion is amongst any clusters, this predicts that
it is more likely for the system’s largest cluster to shrink
on any given time-step. In effect, K suggests that fre-
quent erosion can act as a suitable alternative to frag-
mentation. In either case, we must conclude that ero-
sion can perturb the expected power-law exponent and
even cause a gel-shatter system to behave as a (mod-
ified) steady-state system. We conclude our discussion
of accretion and erosion with the note that, as before,
combining accretion and erosion mostly moderates the
two constituents, resulting in somewhat higher K and
depleting monomers but generally similar behaviour as
seen in Fig. 11 (bottom-left).

Clearly, simple Becker-Döring dynamics can signifi-
cantly affect gel-shatter dynamics. It is then not surpris-
ing that using power-law variations should also signifi-
cantly alter the dynamics observed. We focus on power-
law distributed CRP fragmentation. At the extreme
is stick-breaking fragmentation, seen in Fig. 12 (top-
left). In this case, the system remains almost com-
pletely aggregated despite experiencing fragmentation.
Indeed, K = −0.026 indicates that fragmentation is
the dominant process in the system, reflected in the
extremely low fitted exponents. It is hard to argue that
the system is power-law distributed, however, render-
ing the exponent summary statistics superfluous. Stick-
breaking fragmentation effectively results in a system
that is almost always aggregated into a single clus-
ter, which rarely fragments slightly before quickly re-
aggregating the fragments. In this sense, stick-breaking
fragmentation removes any gel-shatter cyclicity.

Low fragmentation power-law exponents θ reproduce
results akin to that of stick-breaking fragmentation. As
θ increases, the system becomes more disaggregated
after fragmentation and requires longer periods of time
to re-aggregate fully. Large clusters are still common
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Fig. 11 Clockwise from top-left: accretion, erosion amongst any clusters, erosion amongst unique clusters, and combined
accretion and erosion. In each case, we set nac = 9 and ner = 9 to best show the effects

Fig. 12 Clockwise from top-left: stick-breaking fragmentation, CRP fragmentation with θ = 1.2, CRP fragmentation with
θ = 1.5, and CRP fragmentation with θ = 1.8
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Fig. 13 Coalescence and fragmentation MLE exponent summary statistics combining stochastic gel-shatter cycles with
power-law distributed fragmentation, M = 104, Pr (Frag.) = 0.01, and θ = 1.80, left, and θ = 1.90, right. Four simulations
were conducted (black, blue, red, and purple). Compare with Fig. 10

Table 2 Summary of robustness results in stochastic gel-shatter cycle coalescence and fragmentation. In all cases, M = 104,
Pr (Frag.) = 0.01, and four simulations were used. The ranges given for KS-MLE and MLE estimates of power-law α contain
95% of empirical results. Perturbations used are explained in the text. K > 0.2 is characteristic of gel-shatter cycling. We
exclude large (> 5) and small (< 1) estimates of the KS-MLE α from our intervals

Perturbation Cyclicity K KS-MLE (xmin > 1) MLE

Stochastic gel-shatter cycles 0.490 [2.474, 2.829] [2.656, 3.163]
Accretion (3, Unique) 0.729 [2.248, 2.957] [1.559, 2.800]
Erosion (3, Unique) 0.178 [2.615, 2.991] [2.970, 3.316]
Accretion and Erosion (3, Unique) 0.590 [2.370, 2.884] [1.960, 2.710]
Accretion (3) 0.721 [2.261, 3.043] [1.603, 2.849]
Erosion (3) −0.079 [2.904, 3.191] [3.276, 3.435]
Accretion and Erosion (3) 0.524 [2.420, 2.883] [2.062, 2.673]
Fragmentation Stick-breaking −0.026 [0.686, 1.563] [0.902, 1.440]
CRP θ = 1.20 0.151 [0.979, 1.838] [1.027, 1.956]
CRP θ = 1.50 0.910 [1.875, 2.519] [2.357, 2.964]
CRP θ = 1.80 0.811 [2.362, 2.609] [2.588, 2.799]

after fragmentation, aiding the reaggregation of the sys-
tem by decreasing the number of steps that do not con-
tribute directly to kmax and thus increasing K beyond
that of the standard system: Kθ=1.2 = 0.151, Kθ=1.5 =
0.910, and Kθ=1.8 = 0.811. The system also experiences
a smooth change in the fitted power-law exponents as
the system transitions back to the original gel-shatter
system: stick-breaking has KS-MLE α ∈ [0.686, 1.563],
θ = 1.2 has KS-MLE α ∈ [0.979, 1.838], θ = 1.5 has
KS-MLE α ∈ [1.875, 2.519], and θ = 1.8 has KS-MLE
α ∈ [2.362, 2.609]. Discussions of summary statistics
and state spaces do not show the full range of effects of
power-law fragmentation, however. Comparing Fig. 13
with the distinctive cycles observed in the base gel-
shatter model of Fig. 10, one still sees some cyclicity,
but over a smaller range of α, less distinctive, and with
greater stochasticity both overall and in the rougher
variation in α observed within each cycle. There is also
a subtle transition between falling α, Figs. 10 and 13
right, and rising α, Fig. 13 left.

6 Conclusion

Descriptions of coalescence and fragmentation (CF) are
ubiquitous across many scientific and social-scientific
applications, yet there is limited understanding of the
connections between the microscopic processes, theo-
rized or actual, and the observed fragment distribu-
tions. There are various specific models, often analyt-
ically tractable at the level of deterministic treatment
of means, that result in (approximate) power-law dis-
tributions of group sizes. Empirical distributions, too,
are often observed to be approximately power-law, so
that power laws [24] have become the standard, go-to
method for describing the outcomes of CF processes
[e.g. 12].

But this is not enough on its own to justify a claim
that the models are correctly capturing the microscopic
processes, or that the power-law-described steady state
is the best approximation to the macroscopic statistics
implied by these processes. The danger is of a ‘street-
light effect’, in which the model is used because it is
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Fig. 14 Visual summary of robustness results for both steady-state and stochastic gel-shatter cycles. Select results from
Tables 1 (left column) and 2 (right column) are displayed as MLE fitted exponent against the cyclicity K. Fitted exponents
are displayed as vertical 95% ranges with points placed at the median estimates. The base case is highlighted in red, a
horizontal dashed line at the expected 2.5 exponent is plotted (but see Figs. 2 and 4), and the points are repeated between
the two base states (i.e. within a row) to highlight shifts. Results for KS-MLE are similar, but show less curvature for
accretion and erosion. The shorthand labels are: ACnac, accretion of nac; ERner, erosion of ner; U, with the uniqueness
constraint; 9/10, 1/2, 1/10, shattering of proportion of cluster; PLθ, fragmentation according to a CRP with parameter θ
(units of hundredths here)

available, tractable and sufficient to match the empir-
ical statistics, rather than because it is correctly mod-
elling the underlying process.

The purpose of this article was to take a standard
model with an approximately power-law steady-state
distribution and fully explore the finite-population
stochastic simulations of the model with variations of
its microscopic rules, observing the effect on the steady
state and summary statistics. We examined the maxi-
mum likelihood estimators for the power-law exponent
α for the whole distribution and (by minimizing the
Kolmogorov–Smirnov distance between the actual and
fitted cumulative distributions) for the most power-law-
like part of the distribution, typically the tail.

Such a task is complicated by the possibility of cyclic-
ity: is a steady state being imputed to a system which,
on timescales important in the applied context, is not
steady but rather cyclic? – is there no detailed balance?
As we saw in a precursor article [9], the phenomenon
of gelation (aggregation into a single large cluster), if
accompanied by stochastic shattering of clusters, can
create stochastic gel-shatter cycles. Not all stochastic
cyclicity is necessarily of this form, but any cyclicity will

still be a significant departure from a steady state. The
best summary statistic to capture this was a measure
K of time-asymmetric cyclicity, the asymmetry between
coalescing and fragmenting time steps.

A full analysis of how any variation in the micro-
scopic details gives rise to power law steady states
and/or cyclicity would be a major research programme
in itself. Our numerical results, presenting unified data
from Tables 1 and 2 in Fig. 14, enable us to infer some
general trends. We see that erosion tends to increase
stochastic cyclicity K and reduce alpha (giving a bigger
tail), and accretion does the opposite, both quite sig-
nificantly. Thus simply fitting a power law to a simula-
tion or to empirical data requires some confidence that
accretion and erosion processes are not significant in the
modelled process. Furthermore, partial shattering tends
to leave the exponent little changed but enhances K.
Power-law fragmentation can shift the exponent a little
more but still enhances K. Our results for such power-
law fragmentation, where we have a continuous inde-
pendent variable available to be adjusted, suggest that
output should be a continuous function of the model
variation, but it is beyond the scope of the present study
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to quantify this mapping precisely. Overall, even if the
power law seems to fit well, all sorts of non-shattering
fragmentation can enhance the K that we already know
exists in the base model: simply put, a well-fitted power
law does not indicate that this is necessarily all that is
going on.

Gel-shatter cyclicity only occurs in certain narrow
regimes in which coalescence can create a gel but size-
biased shattering inevitably leads to its dissolution
into monomers. Such regimes are, unsurprisingly, less
robust. Again, small amounts of accretion and ero-
sion do not have disproportionate effects, but larger
amounts can reduce or remove gel-shatter cyclicity, and
move the system close to a steady state. The various
alternative fragmentation processes (random partition,
stick-breaking and CRP) can easily prevent gel-shatter
cyclicity: even when a single large cluster forms, it may
merely fragment somewhat and re-form in a stochastic
but time-symmetric, constant manner. It seems that
some degree of shattering into monomers, rather than
a more varied distribution of fragments, is necessary
to observe true stochastic gel-shatter cycles. A natural
path for future analytical work would be to explore and
delineate the boundary between a truly steady state
and oscillations, perhaps beginning with a linear sta-
bility analysis of the evolution equations [44].

Finally, let us return to our opening context, of war
and political violence. On the basis of our results, we
can say that Richardson’s law for the distribution of
wars [1] and modern results on deadly events in insur-
gencies [2] are both consistent with a broad class of
CF models, broader than the base model and its gener-
alizations treated deterministically in [7]. Furthermore
our findings suggest that the core dynamics are some-
what robust to the behaviour of individuals – cap-
tured through the processes of accretion and erosion
in Becker-Döring dynamics – providing some expla-
nation of the consistency of the power-law findings
in the operations research literature. Nevertheless one
should also reasonably expect that an imputed steady
state is not the full story, since endogenous (in addi-
tion to exogenous) factors can naturally produce not
merely stochastic variation but some measure of time-
asymmetric cyclicity, even if there is no clear gelation-
like phenomenon.
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Appendix A: Mathematical details

A.1 Statistical definitions

In Sect. 2, we employ statistical methodologies adapted
from Clauset et al. [24]. Here, we briefly summarize
details of the method. We begin by noting maximum
likelihood estimation (MLE), in which a given distribu-
tional form is fitted by identifying the parameters that
yield the distribution that maximizes the probability of
generating a given sample conditional on the parame-
ters (termed the likelihood). For a discrete power-law
distribution with finite range and random sample of
cluster sizes X1,X2, . . . , Xn, the estimators for each
parameter are

x̂min = min(X1,X2, . . . , Xn) (A1)

for the minimum of the range of support,
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x̂max = max(X1,X2, . . . , Xn) = kmax (A2)

for the maximum of the range of support, and

∑xmax
x=xmin

x−α̂ log(x)
∑xmax

x=xmin
x−α̂

=
1
n

n∑

i=1

log(Xi) (A3)

(numerically solved) for the exponent of the power-law
distribution [25].

To construct the Kolmogorov–Smirnov version of
MLE (KS-MLE), we do not employ (A1). Instead, we
use the Kolmogorov–Smirnov distance between a cumu-
lative distribution function G and the data, defined as

KS(G,X) = max
x

|G(x) − 1
n

n∑

i=1

1(Xi ≤ x)| (A4)

where |·| is the absolute value and 1(l) is 1 if condition l
is true and false otherwise. Equation (A4) measures the
distance as the largest difference between the cumula-
tive distribution function and the empirical distribution
function. The difference between MLE and KS-MLE is
that KS-MLE picks xmin to be the x which minimizes
(A4). This requires a brute force search over the data
[24]. While KS-MLE has the disadvantage of discarding
data, it has the advantage that it only fits the power-
law tail of a distribution, which can provide less biased
estimates if the data is not solely power-law distributed
(e.g. ones-inflated).

A.2 Characteristic times

Throughout the paper, we have used the cyclicity order
parameter K and the dimensionless number r to relate
our modified coalescence and fragmentation systems to
the original unmodified system. The parameter K and
number r were used previously by us to describe the
observed stochastic gel-shatter cycles when simulating
coalescence and fragmentation systems [9].

On the computational timescale, the number r is the
ratio of the characteristic time to gelation to the char-
acteristic time to shattering; it captures the balance of
whether the system is dominated by the coalescence or
the fragmentation process. We measure these two times
as

Tg = M/K̂ (A5)

for the characteristic time to gelation and

Tf = 1/F̂ (A6)

for the characteristic time to shattering. (Note that in
our simulations mass is conserved, so that analytic defi-
nitions of gelation based on the failure of mass conserva-
tion [8] are inappropriate.) The time to gelation scales
as the typical number of computational steps required
to reach the full coalescence of the simulation in the

absence of fragmentation. In contrast, the characteris-
tic time to shattering scales as the typical number of
computational steps required to reset the system to its
pre-gel state.

If Tg is small and Tf large, then the system achieves
gelation quickly and remains in the state for a long
period of time, with the mean computational recur-
rence time scaling (i.e. the number of computational
steps between successive shatterings of the largest clus-
ter) as Tf . If Tg is large and Tf small, then the system
never successfully stays in the gel state for an apprecia-
ble length of time. If they are balanced, then with some
assumptions the mean recurrence time can be shown
to be proportional to

√
TgTf [9]. In this regime, the

system experiences a transitory, stochastic, but highly
repetitive behaviour in which the largest cluster in the
system tends towards gelation only to be quickly frag-
mented before the sol is too much reduced. This leaves
the next largest cluster to repeat the process, which
we term stochastic cyclicity following the discussions
of stochasticity and cyclicity by McKane and Newman
[10].

Finally, it has been shown that the cyclicity order
parameter K, equation (4), responds strongly and non-
linearly to r [9]. Hence, K provides a diagnostic of the
behaviour by indicating large changes in the behaviour
of the largest cluster. We focus on K, which more
directly tracks the change in the largest cluster, instead
of the mean recurrence time because it is not clear if
recurrence has been achieved in cases of partial frag-
mentation where a largest cluster always exists.

A.3 Simulation details

Our simulation details are broken into two halves, due
to the nature of the processes we have considered in
the main text. In the first half, we consider accretion
and erosion which are supplementary processes to the
main system dynamics. In the second half, we consider
direct modifications to the fragmentation function, such
as halving, partitioning, or using the Chinese Restau-
rant Process.

A.3.1 Becker–Döring dynamics

Our first modification to the processes of coalescence
and fragmentation was to implement additional Becker-
Döring dynamics in the form of accretion and attrition.
Ours differs from standard implementations due to the
nature of our time scale (discrete/computational time).
We write accretion and erosion rates as a+ and a−.
Then for accretion, we implement for k ≥ 1

nk
ka+→ nk+1 − n1

where we abuse notation to indicate mass conservation
without a rate-dependence on monomers. For erosion,
we have for k ≥ 2
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nk
ka−→ nk−1 + n1.

Expanding (1) with size-biased Becker-Döring dynam-
ics results in

dnk

dt
=

1
2

k−1∑

i=1

K(i, (k − i))nink−i − nk

∞∑

i=1

K(i, k)ni

+
1
k

∞∑

i=k+1

F (i, k)ini − nk

k∑

i=1

F (k, i)

+ a+((k − 1)nk−1 − knk)
+ a−((k + 1)nk+1 − knk) (A7)

for k ≥ 2. For k = 1,

dn1

dt
= − n1

∞∑

i=1

K(i, 1)ni +
∞∑

i=2

F (i, 1)ini

+ (a− − a+)
∞∑

i=1

ini − a+n1 + 2a−n2

(A8)

(taking F (1, 1) = 0).
However, Eqs. (A7, A8) are specifically written for

the case where accretion and erosion can repeatedly
target the same cluster in a time step. We noted in
the main text that enforcing a uniqueness condition,
equivalent to having a cluster become unable to accrete
or erode for a short period after having done so, can
greatly affect the resulting distribution (Figs. 7 and
11, top-right and bottom-right). While conceptually
straightforward, this greatly increases the number of
equations, as we implement the unreactive types for
accretion and erosion separately (e.g. something that
has accreted can still be eroded, coalesced, or frag-
mented). We avoid this problem in our implementa-
tion by fixing the rate of accretion and erosion for each
computational time step and processing them simulta-
neously.

A.3.2 Fragmentation functions

Turning our attention now to modifications of the frag-
mentation function, our modifications all take the form

F (i, k) = F̂
i

M

∑

p∈P (i)

p

i
δk,p, (A9)

where F̂ is the constant reaction rate of fragmentation
with the standard size-bias i and normalized for system
size M . The new term, in comparison to (3), is the sum
over parts p of the partition of i, P (i), with weighting p

i .
Whereas the prefactor (outside the sum) in (A9) con-
trols the rate at which clusters are fragmented, the sum-
mand describes how each cluster is broken up. Hence∑

k

∑
p∈P (i)

p
i δk,p = 1.

For example, when performing the halving fragmen-
tation (Fig. 8, top-left),

F (i, k) = F̂
i

M

1
i
(	i/2
δk,�i/2� + �i/2�δk,�i/2�).(A10)

Here, the equivalent number of monomers (“mass”) is
split between the number of clusters of size 	i/2
 and
of size �i/2�. Then the factor of i/k in (1) converts the
split cluster from its original unit (number of clusters
of size i) to its new unit (number of clusters of size k).
The i/k and k/i naturally cancel to give one cluster of
size 	i/2
 and one of size �i/2�.

Similarly, when shattering the smaller cluster and
permitting other fractions as in the remainder of Fig. 8,
we use

F (i, k) = F̂
i

M

1
i
(	qi
δk,�qi� + �(1 − q)i�δk,1),

(A11)

where q ∈ (0, 1) is the fraction of the cluster that
remains unshattered.

A.3.3 Stochastic fragmentation

Returning to (A9), we now detail the stochastic pro-
cesses we use to partition a cluster of size i. First, we
consider constructing a partition uniformly at random
from the space of partitions. We implement algorithm
5 of Arratia and DeSalvo [40].
1: procedure Partition(i) � i ∈ N\{0}
2: if i == 1 then
3: return 1.
4: end if
5: while True do
6: Sample X2, . . . , Xh, . . . , Xi ∼ Geometric(1−

exp(−hπ/
√

6i)).
7: Set X1 = i − ∑i

j=2 jXj .
8: Sample U ∼ UniformC(0, 1).
9: if X1 ≥ 0, U < exp(X1π/

√
6i) then

10: return X1, . . . , Xi.
11: end if
12: end while
13: end procedure
(UniformC refers to a continuous uniform distribution
with the provided bounds.) This algorithm is referred
to as a probabilistic divide-and-conquer algorithm, and
we direct the reader to Arratia and DeSalvo [40], which
relies on work by Fristedt [45], for further details. Note
that the Partition procedure returns the number of clus-
ters of a given size (e.g. two monomers and a dimer
would be returned as (2, 1, 0, 0)), rather than the sizes
of clusters (e.g. (1, 1, 2)), but converting between the
two is straightforward.

Our implementation of discrete stick-breaking (Fig. 9,
top-right) is straightforward:
1: procedure Break(i) � i ∈ N\{0}
2: Initialise Parts as an empty list.
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3: Initialise sum = 0.
4: while sum < i do
5: Set p′ ∼ UniformD(1, i − sum).
6: Append p′ to Parts.
7: Update sum ← sum + p′.
8: end while
9: return Parts.

10: end procedure
(UniformD refers to a discrete uniform distribution

with the provided inclusive bounds.) Note that, in con-
trast to Partition, Break returns the cluster sizes them-
selves. While it is not covered in the text, we did briefly
explore replacing UniformD with a Beta − Binomial
distribution with Beta parameters (2, 4), (3, 3), and
(4, 2).

We now prove that for all i, j with i ≥ j ≥ 1

E [nj |Break(i)] =
1
j
. (A12)

Consider first i = 1, for which

Pr (Break(1) = {1}) = 1.

For i = 2, instead we have

Pr (Break(2) = {2}) =
1
2

due to the draw from the UniformD(1, 2) distribution.
In the complementary case, a cluster of length 1 is bro-
ken off and then the problem reduces to the i = 1 case.
Hence, Pr (Break(2) = {1, 1}) = 1/2 as well. For i = 1
the expectation of the number of clusters of size 1 is

E [n1|Break(1)] = 1,

and the expectations for n1 and n2 for i = 2 are

E [n1|Break(2)] = 1,

and

E [n2|Break(2)] =
1
2
.

Writing p′
k for the size of the kth cluster broken,

after p′
1 is determined, we saw above that the prob-

lem reduces to Break(i − p′
1) for i = 1, 2 weighted by

the probability of entering that state. Assume now that
the claim holds for all j ≥ 1 with j ≤ i, i.e.

E [nj |Break(i)] =
1
j
.

For i + 1, we now have trivially that

E [ni+1|Break(i + 1)] =
1

i + 1
.

For arbitrary j now

E [nj |Break(i + 1)]

=
1

i + 1

i+1∑

p′
1=1

δj=p′
1
+ E [nj |Break(i + 1 − p′

1)]

=
1

i + 1

i+1∑

p′
1=1

δj=p′
1
+

1
j
δj≤i+1−p′

1

=
1

i + 1

(
1 +

1
j
(i + 1 − j)

)

=
1
j
.

Moving on to the Chinese Restaurant Process, the
process can be described as a series of monomers m
coalescing one-by-one with existing clusters of sizes c
or forming a new (unit size) cluster. With the first
monomer assigned its own cluster and n clusters cur-
rently, for the jth monomer we write

Pr (mj = k|m, φ, θ) =

{
ck−φ

j−1+θ 1 ≤ k ≤ n
nφ+θ
j−1+θ k = n + 1

(A13)

where φ denotes the penalty to existing tables and θ
denotes the attraction to creating a new table [42].
Throughout this paper, we take θ = 1. It is known that
the Chinese Restaurant Process produces a power-law
distribution on the sizes of the clusters with exponent
1 + φ [41,42,46].

For completeness, our implementation can be written
as follows.
1: procedure CRP(i, φ, θ) �

i ∈ N\{0}, 0 ≥ φ < 1, θ ≥ −φ
2: Initialise Clusters as an indexed list {1}.
3: Sample p2 . . . pi ∼ UniformC(0, 1).
4: Initialise NewCluster ← θ + φ.
5: for j ← 2, . . . , i do
6: Set θ ← θ + 1.
7: Set p ← pj × θ − NewCluster.
8: if p < 0 then � Add Cluster.
9: Append 1 to Clusters.

10: Update NewCluster ← NewCluster + φ
11: else � Find Cluster.
12: Initialise k ← 0.
13: while p > 0 do
14: Update k ← k + 1.
15: Update p ← p − (Clusters[k] − φ).
16: end while
17: Update Clusters[k] ← Clusters[k] + 1.
18: end if
19: end for
20: return Clusters.
21: end procedure
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Fig. 15 Distribution of power-law exponents for various fitting methods. Power-laws are fitted to a coalescence and
fragmentation process simulated with size-biased kernels as in (2, 3), M = 104, F̂ = 0.3, and 20,000 samples. We write MLE
and KS-MLE as in the main text, “PL” for power law, “Range” for finite range, “Exp” for an exponential cut-off, “R” for
the poweRlaw package, “Python” for the powerlaw package, and “Num” for the numerical maximum likelihood estimation
in the bbmle package. The theoretical value is 2.5, which all methods deviated from with varying amounts of bias

A.4 Intrinsic estimation bias

In the main text and to match our expectations of
fitting power laws in operations research [e.g. 2], we
restrict ourselves to fitting discrete power-law distribu-
tions with finite ranges via MLE or KS-MLE methods,
adapting existing methods in the literature [24]. We
show in Sect. 2 that these methods exhibit bias in their
estimation of the power-law exponent. This raises the
question of whether more distribution-specific methods
would better fit the data and, if so, how much better.

As a robust proof-of-concept, we fitted one simulation
that should be in steady state (size-biased kernels as in
(2, 3), M = 104, F̂ = 0.3, and 20,000 samples) with
a variety of methods. Using the additional short-hand
of “Exp” for exponential cut-off and “Range” for finite
range (or finite support), we show in Fig. 15 the fitted
power-law exponents using (1) our existing methods,
(2) power-law fitting routines in R’s poweRlaw package
[27] and Python’s powerlaw package [26], and (3) direct
maximum likelihood estimation [47] of a Range-Exp-
power-law distribution using MLE and KS-MLE meth-
ods. Despite the additional controls and fitting param-
eters, there is still a large (albeit reduced) bias in the
distribution of the power-law exponent numerically fit-
ted via KS-MLE with Range and Exp controls. In this
case, when the KS-MLE selects xmin = 1 fits are essen-
tially equivalent to the base MLE case and this occurs
79.5% of the time. When xmin = 2, 16.1% of the time,

94.4% of fitted power-law exponents are larger than 2.5
(mean 2.66, median 2.67). Visually assessing the other
results, we can determine that the KS component is
the most capable of reducing bias, followed by the Exp
component, and finally the Range component.
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