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The state of polarisation of a general form of an optical vortex mode is represented by the vector ϵ̂m

which is associated with a vector light mode of order m > 0. It is formed as a linear combination of two
product terms involving the phase functions e±imϕ times the optical spin unit vectors σ∓. Any such state of
polarisation corresponds to a unique point (ΘP, ΦP) on the surface of the order m unit Poincaré sphere.
However, albeit a key property, the general form of the vector potential in the Lorenz gauge A = ϵ̂mΨm

from which the fields are derived, including the longitudinal fields, has neither been considered, nor has
had its consequences explored. Here we show that the spatial dependence of Ψm can be found rigorously by
demanding that the product ϵ̂mΨm satisfies the vector paraxial equation. For a given order m this leads to a
unique Ψm which has no azimuthal phase of the kind eiℓϕ and it is a solution of a scalar partial differential
equation with ρ and z as the only variables. The theory is employed to evaluate the angular momentum
for a general Poincaré mode of order m yielding the angular momentum for right- and left- circularly
polarised, elliptically-polarised, linearly-polarised and radially- and azimuthally-polarised higher order
modes. We find that in applications involving Laguerre-Gaussian modes, only the modes of order m ≥ 2
have non-zero angular momentum. All modes have zero angular momentum for points on the equatorial
circle for which cos ΘP = 0. © 2024 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

February 2, 2024

1. INTRODUCTION

Higher order twisted vector modes of light have recently been highlighted as important for useful applications, most notably in
quantum communication and optical manipulation of matter [1–10]. They are expected to lead to enhanced optical properties enabling
higher order encoding protocols for increased bandwidth in optical communications [11] and it is also expected that their angular
momentum, spin and chirality are enhanced. In particular, greater optical chirality would be desirable for chiroptical processes [12]
leading to stronger interaction with chiral molecules and to enhanced enantioselectivity [13].

Padgett and Courtial [14] considered the first order case in which they generalised the standard Poincaré sphere representation of
zero order polarised light to include first order. The Poincaré higher order representation has been focused on in a 2011 report by
Milione et al [15]. Only those vector modes for which the polarisation state corresponds to a point on the surface of the unit Poincaré
sphere can be classed as Poincaré modes and it is this type of vector modes that is the subject of this paper. As we shall emphasise, the
radially- and azimuthally-polarised optical vortex modes are true first order Poincaré modes.

In the Poincaré modes of order m the optical polarisation ϵ̂m arises as a linear superposition of tensor product states involving

circular polarisation states σ± = (x̂ ± iŷ)/
√

2 and spatial phase e±imϕ. In every higher order Poincare mode the state of polarisation is
identified uniquely by a point of angular coordinates (ΘP, ΦP) on the surface of the order m unit Poincaré sphere. The superposition of
two terms creates a vector polarisation which is spatially inhomogeneous, as opposed to the scalar case of pure elliptical polarisation,
including circular and linear polarisation [16, 17]. The focus here is on the case of vector polarisations, specifically those associated
with higher order Poincaré modes.

Note that the integer m ≥ 0 includes the lowest order, namely m = 1, to be referred to as the first order light mode. Each order m is
distinguished uniquely by its own Poincaré sphere. The Poincaré sphere for m = 0 incorporates all elliptically-polarised (including
circularly- and linearly- polarised) Gaussian vortex modes. As we shall show, the first order m = 1 has a different Poincaré sphere and
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different modes and includes, in addition, the radially and azimuthally-polarised optical vortex modes [18] as well as quasi- circular
and quasi-elliptical modes, in which the polarisation vector has a phase factor e±iϕ. The only permitted amplitude function for the first
order, for example of the Laguerre-Gaussian (LG) form, is LGm=1

p . Note, however, that the radially-polarised modes of concern here
are those that can be described as pure radially-polarised modes. These have no helical wave fronts which means they do not possess
a phase function of the kind eiℓϕ and so have no angular momentum. As highlighted in a recent article [19], it is now possible to create
radially-polarised modes with helical wave fronts with an arbitrary phase function eiℓϕ. Koksal et al [19] proceeded to evaluate the
optical properties of these new forms of radially-polarised optical modes and pointed out that such modes have the usual advantage
of being easy to focus to small waists and now have, in addition, the vortex property of helical wave fronts. It should, however, be
borne in mind that the kind of radially-polarised modes discussed here are the pure kind which have no helical wave fronts.

Thus although the state of polarisation ϵ̂m is well known, the general form of the vector potential A = ϵ̂mΨm associated with
this polarisation has neither been considered, nor its consequences explored for arbitrary order m. Here we show that the spatial
dependence of Ψm can be arrived at rigorously by demanding that A satisfies the vector paraxial equation. This leads to the unique
realisation that all higher order modes Ψm(ρ, z) have no azimuthal phase and, strictly, all admissible Ψm must be solutions of a specific
scalar equation.

This paper is organised as follows. In section 2 we define the vector potential A for a general paraxial optical vortex endowed
with the higher order polarisation state ϵ̂m which is defined in terms of the higher order Poincaré sphere. In section 3 we outline the
derivation of the vector paraxial equation and emphasise the main requirement that A = ϵ̂Ψm must satisfy this equation. Section 4
considers the polarisation in cylindrical polar coordinates r = (ρ, ϕ, z) and moves on to Section 5 by substituting the form of A into the
vector paraxial equation. Here we outline the steps leading to conditions on the function Ψm for modes of order m, namely (a) a clear
statement on the azimuthal dependence of Ψm and (b) the outlines of the derivation of the second order differential equation to be
satisfied by Ψm involving only ρ and z-dependence. Having derived the equations for Ψm we proceed in section 6 to derive the electric
and magnetic fields for for a Poincaré mode of order m. In section 7 we evaluate the axial component of the angular momentum of the
order m mode and highlight in tabular form its values for various points on the order m unit Poincaré sphere. Section 8 contains our
conclusions further comments.

2. POINCARÉ HIGHER ORDER MODES

The paraxial vector potential associated with a monochromatic optical vortex in a higher order state of polarisation is, as stated above,

A = ϵ̂mΨ(r)eikzz = Ãeikzz (1)

where kz is the axial vector and we do not show the factor eiωt associated with frequency ω. We follow Allen et al [20] and Haus [21],
adopting the Lorenz gauge as the basis for the derivation of the electromagnetic fields, including the longitudinal components [22].
The fields can be derived entirely from the vector potential A. The order m polarisation vector ϵ̂m of any specific higher order mode
coincides with a specific point on the surface of the order m ≥ 0 unit Poincare sphere. It can be written as follows

ϵ̂m = eimϕ (x̂ − iŷ)√
2

sin

(

ΘP

2

)

eiΦP/2 + e−imϕ (x̂ + iŷ)√
2

cos

(

ΘP

2

)

e−iΦP/2 (2)

where ΘP and ΦP are Poincaré sphere angles such that the north and south pole points are (ΘP = 0, ΦP) and (ΘP = π, ΦP) and
the equatorial circle has ΘP = π/2 and in all case we have 0 ≤ ΦP ≤ 2π. The vector ϵ̂m in Eq.(2) is the most general polarisation
state vector, and stated here, using our convention which differs slightly from that adopted by Milione et al [15]. The validity of the
polarisation states, which were first introduced in [14] has already been confirmed experimentally [4, 5, 9].

In view of the degeneracy arising from the variations with the Poincare ΦP, it is convenient to focus on the case where ΦP = 0,
so that we are retaining only the ΘP variations on the Poincaré sphere. This means we will be considering the polarisation states at
all points lying on the Φ = 0 longitude joining the north pole at ΘP = 0 to the equator at ΘP = π/2 and finally to the south pole at
ΘP = π. The polarisation at any given point on this longitude also depends on the order m.

3. VECTOR PARAXIAL EQUATION

The optical modes in question are assumed to be propagating along the z-axis, so we can write A as follows

A = Ãeikzz; Ã = ϵ̂mΨ (3)

where kz ẑ is the axial wavevector. This vector potential must satisfy the Helmholtz equation. We have

∇2
⊥
(

Ãeikzz
)

+
∂2

∂z2

(

Ãeikzz
)

+ k2
z

(

Ãeikzz
)

= 0 (4)

where we have set ∇2 = ∇2
⊥ + ∂2

∂z2 . It is easy to show that on evaluating the derivatives in the middle term gives

∂2

∂z2

(

Ãeikzz
)

=

{(

∂2 Ã

∂z2

)

− k2
z Ã + 2ikz

(

∂Ã

∂z

)}

eikzz (5)

Substituting back in Eq.(4) we have

∇2
⊥
(

Ãeikzz
)

+

{(

∂2 Ã

∂z2

)

− k2
z Ã + 2ikz

(

∂Ã

∂z

)}

eikzz + k2
z

(

Ãeikzz
)

= 0 (6)
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The k2
z terms cancel and we drop the ∂2 Ã

∂z2 term as required in the paraxial regime and it is convenient not to show the common phase

factor eikzz. We have the vector paraxial equation for the vector potntial Ã

∇2
⊥ Ã + 2ikz

∂Ã

∂z
= 0 (7)

Finally, we express ∇2
⊥ Ã in terms of cylindrical polar coordinates and obtain

1

ρ

∂

∂ρ

(

ρ
∂Ã

∂ρ

)

+
1

ρ2

∂2 Ã

∂ϕ2
++2ikz

(

∂Ã

∂z

)

= 0 (8)

This is the vector paraxial equation that must be satisfied by the vector potential Ã. Recalling that Ã is given by the vector ϵ̂mΨ, in
which the polarisation ϵ̂m is well-defined, our main task is to derive the conditions which determine the form of Ψ.

4. POLARISATION IN CYLINDRICAL COORDINATES

The general polarisation vector of the order m Poincaré sphere can be written as follows

ϵ̂m = eimϕ(x̂ − iŷ)UP + e−imϕ(x̂ + iŷ)VP (9)

where UP and VP are Poincaré functions

UP =
1√
2

sin

(

ΘP

2

)

eiΦP/2; VP =
1√
2

cos

(

ΘP

2

)

e−iΦP/2 (10)

It is convenient to express ϵ̂m entirely in terms of plane polar coordinates (ρ, ϕ) and the associated unit vectors ρ̂ and ϕ̂ as follows

x̂ = ρ̂ cos ϕ − ϕ̂ sin ϕ; ŷ = ρ̂ sin ϕ + ϕ̂ cos ϕ (11)

We thus find for ϵ̂m

ϵ̂m = UPei(m−1)ϕ(ρ̂ − iϕ̂) + VPe−i(m−1)ϕ(ρ̂ + iϕ̂) (12)

which can be written as
ϵ̂m = ρ̂F − iϕ̂G (13)

where F and G are as follows
F = UPei(m−1)ϕ + VPe−i(m−1)ϕ; G = UPei(m−1)ϕ − VPe−i(m−1)ϕ (14)

so that
F + G = 2UPei(m−1)ϕ; F − G = 2VPe−i(m−1)ϕ (15)

With ϵ̂m given by Eq.(13), the explicit for of the paraxial equation is now as follows

1

ρ

∂

∂ρ

(

ρ
∂[ϵ̂mΨ]

∂ρ

)

+
1

ρ2

∂2[ϵ̂mΨ]

∂ϕ2
+ 2ikz

∂

∂z
[ϵ̂mΨ] = 0 (16)

and we recall that our task is to determine the conditions to be satified by Ψ.

5. GENERAL CONDITIONS ON Ψ

We consider the three terms in the vector paraxial equation in turn. Since ϵ̂m does not depend on the radial coordinate ρ, the first term
of Eq.(16) follows immediately as

1

ρ

∂

∂ρ

(

ρ
∂[ϵ̂mΨ]

∂ρ

)

= (ρ̂F − iϕ̂G)
1

ρ

∂

∂ρ

(

ρ
∂Ψ

∂ρ

)

(17)

For the second term, we obtain after some algebra

1

ρ2

∂2

∂ϕ2
ϵmΨ =

1

ρ2
(ρ̂S − iϕ̂T ) (18)

where S and T can be written in terms of F and G as follows

S =

[

∂2Ψ

∂ϕ2
− m2

Ψ

]

F + 2im
∂Ψ

∂ϕ
G; T =

[

∂2Ψ

∂ϕ2
− m2

Ψ

]

G + 2im
∂Ψ

∂ϕ
F (19)

Since ϵ̂m does not depend on z, the third term of Eq.(16) can be treated as for the first term. We then have

(ρ̂F − iϕ̂G)
1

ρ

∂

∂ρ

(

ρ
∂[Ψ]

∂ρ

)

+
1

ρ2
(ρ̂S − iϕ̂T ) + 2ikz

(

ρ̂F − iϕ̂G
) ∂

∂z
[Ψ] = 0 (20)
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Separating the ρ̂ and the −iϕ̂ terms and putting them to zero, we have a set of two simultaneous equations with two solutions

ρ̂

[

1

ρ

∂

∂ρ

(

ρ
∂[Ψ]

∂ρ

)

F + 2ikzF
∂

∂z
[Ψ] +

1

ρ2

{(

∂2Ψ

∂ϕ2
− m2

Ψ

)

F + 2im
∂Ψ

∂ϕ
G

}]

= 0 (21)

−iϕ̂

[

1

ρ

∂

∂ρ

(

ρ
∂[Ψ]

∂ρ

)

G + 2ikzG
∂

∂z
[Ψ] +

1

ρ2

{(

∂2Ψ

∂ϕ2
− m2

Ψ

)

G + 2im
∂Ψ

∂ϕ
F

}]

= 0 (22)

These can be written as

aF + bG = 0 (23)

bF + aG = 0 (24)

where

a =
1

ρ

∂

∂ρ

(

ρ
∂[Ψ]

∂ρ

)

+ 2ikz
∂

∂z
[Ψ] +

1

ρ2

(

∂2Ψ

∂ϕ2
− m2

Ψ

)

; b =
2im

ρ2

∂Ψ

∂ϕ
(25)

Setting the determinant of Eqs.(23) and (24) to zero, we have (a2 − b2) = 0. Explicitly this is a = b and a = −b for which the
non-trivial solution is a = b = 0. Setting b = 0 yields

2im

ρ2

∂Ψ

∂ϕ
= 0 (26)

Thus Ψ has no ϕ− dependence and so can only be a function of ρ and z. Equation (26) also means the second derivative also vanishes
∂2Ψ

∂ϕ2 = 0, but only as long as m ̸= 0. We are thus left with the equation that must be satisfied by the function Ψ which is a = 0. It is

1

ρ

∂

∂ρ

(

ρ
∂[Ψ]

∂ρ

)

+ 2ikz
∂

∂z
[F ]− m2

ρ2
[Ψ] = 0; (m ̸= 0) (27)

This scalar equation has been derived here by imposing the vector paraxial equation (8) on Ã = ϵ̂mΨm. The generic solution is Ψm(ρ, z)
and it is important to re-emphasise that it has no ϕ dependence for all Poincaré modes of order m ̸= 0. The solutions are well-known
and include the amplitude functions of Laguerre-Gaussian modes, Bessel modes and Bessel-Gaussian modes.

The vector potential can now be found by substituting for ϵ̂m either in cylindrical coordinates using Eq.(12) or the original hybrid
cylindrical/Cartesian form Eq.(9). We have for the all-cylindrical form

Ã =
[

UPei(m−1)ϕ(ρ̂ − iϕ̂) + VPe−i(m−1)ϕ(ρ̂ + iϕ̂)
]

Ψm(ρ, z)eikzz (28)

or the cylindrical/Cartesian form

A =
{

eimϕ(x̂ − iŷ)UP + e−imϕ(x̂ + iŷ)VP

}

Ψm(ρ, z)eikzz (29)

Once the type of mode is decided by specifying Ψm the vector potential forms the basis for the evaluation of the characteristics of the
Poincaré modes, notably, the energy-momentum , the optical spin as well as the orbital angular momentum. Note that Ψm is very
general and is simply one of the solutions of the above paraxial equation, Eq.(27) without the phase eimϕ factor. Equation (12) or Eq.(29)
supplies the variations of the vector potential at every point on the surface of the unit Poincaré sphere of any order m.

A special case of the general result strictly arises when we set UP = VP and the solution of the differential equation (27) is denoted
as Ψm, identified as the amplitude function of of the Laguerre-Gaussian mode of winding number m and radial number p. The form of
Ψm for a Laguerre-Gaussian mode is written as LGm

p which has the well-known form to be displayed explicitly in section 7. When

multiplied by the phase functions e±imϕ we obtain the complete solutions for combination of LG modes with winding numbers m and
−m and the same radial number p multiplied by σ− and σ+, respectively. We have

A =
{

LG+m
p σ− + LG−m

p σ+
}

(30)

It should be emphasised that this form is only applicable under the conditions UP = VP, which means ΘP = π/2 when ΦP = 0. Thus
for any order m, the form in Eq.(30) (which is often put forward as a prototype vector mode [1, 8, 15, 23] ) corresponds to a specific
point on the order m Poincaré sphere. For m ≥ 1, the modes are higher order radially-polarised modes. As we show below all such
modes have zero angular momentum.

The polarisation in Eq.(29) is the general form for the case of Laguerre-Gaussian higher order modes and covers every point in the
entire Poincaré sphere when the Poincaré sphere angles ΘP, ΦP are specified. We can then write

A = ϵ̂mΨm(ρ, z)

= LGm
p
(x̂ − iŷ)√

2
UP + LG−m

p
(x̂ + iŷ)√

2
VP (31)

Every vector mode of order m as given by Eq.(31) in the case of Laguerre-Gaussian modes corresponds to a point of coordinates
(ΘP, ΦP) on the surface of the unit Poincare sphere of order m.
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6. ELECTROMAGNETIC FIELDS

In order to evaluate the corresponding electric and magnetic fields, we first write the vector potential Eq.(29) as the sum of two parts
as follows

A = A1 + A2 (32)

A1 = (x̂ − iŷ)G(1)(r); A2 = (x̂ + iŷ)G(2)(r) (33)

where
G(1)(r) = UPeimϕ

Ψm(ρ, z)eikzz; G(2)(r) = VPe−imϕ
Ψm(ρ, z)eikzz (34)

The electric and magnetic fields of our generally-polarised mode are similarly written as the sums B = B1 + B2 and E = E1 + E2

where Bi = ∇× Ai; i = 1, 2. The sequence of steps involves dealing first with the two parts of the magnetic field and from those use
Maxwell’s curl B equation to derive the corresponding electric field parts. We have for B1 and E1

B1 =
{

ikz(ŷ + ix̂)− ẑ
(

i∂x + ∂y
)}

G(1)(r); E1 = c
{

ikz(x̂ − iŷ)− ẑ
(

∂x − i∂y
)}

G(1)(r) (35)

The fields B2 and E2 emerge following exactly the same procedure as followed for B1 and E1. We obtain

B2 =
{

ikz(ŷ − ix̂) + ẑ
(

i∂x − ∂y
)}

G(2)(r); E2 =
{

ickz(x̂ + iŷ)− ẑc(∂x + i∂y)
}

G(2)(r) (36)

The forms of electromagnetic fields displayed above which include the longitudinal components apply to any optical vortex. Their
derivation follows standard procedure based on the vector potential with details given in recent reports [17, 19].

7. ANGULAR MOMENTUM

The electric and magnetic fields associated with the general Poincaré mode are given by Eqs.(35) and (36) and it is from these fields
that all optical properties follow. In particular, we now proceed to work out the cycle-averaged angular momentum. The angular
momentum density is the moment of the energy density and is formally defined as follows:

j̄ = r × 1

2µ0c2
ℜ[E∗ × B]; E = E1 + E2; B = B1 + B2 (37)

We shall only consider the evaluation of longitudinal (z-component) of the angular momentum. The cycle-averaged angular
momentum density j̄z is defined as

j̄z =
1

2µ0c2
ℜ
{

x(E∗ × B)y − y(E∗ × B)x)
}

(38)

We obtain on substituting from Eqs.(35) and (36)

j̄z =
kz

2µ0c

{

mΨ
2
m + ρΨmΨ

′
m

}

cos ΘP (39)

The integral of this density over a cross-section in the x − y plane yields the total angular momentum per unit length, J̄z

J̄z =
kz

2µ0c

∫

∞

0
ρdρ

∫ 2π

0
dϕ
{

mΨ
2
m + ρΨmΨ

′
m

}

cos ΘP (40)

where the prime on Ψ means differentiation with respect to the radial coordinate ρ. It can be checked that the right hand side of Eq.(40)
has the dimensions of angular momentum per unit length. Recall that Ψm is a solution of the differential equation

1

ρ

∂

∂ρ

(

ρ
∂Ψm

∂ρ

)

+ 2ikz
∂

∂z
Ψm − m2

ρ2
Ψm = 0 (41)

Strictly speaking, this is not the scalar paraxial equation as such, but it is the equation that follows from the paraxial equation had
there been a term which includes the angular derivatives ∂2/∂ϕ2. Formally the solution of Eq.(41) is the amplitude function for a
vortex mode of order m. In particular, one of the solutions is the amplitude function of winding number m for a Laguerre-Gaussian
mode, so we can write

Ψm(ρ, z) = E0

C|m|,p
√

1 + z2/z2
R





ρ
√

2

w0

√

1 + z2/z2
R





|m|

exp

[

−ρ2

w2
0(1 + z2/z2

R)

]

L
|m|
p

{

2ρ2

w2
0(1 + z2/z2

R)

}

eiχ(ρ,z), (42)

and χ(ρ, z) includes the Gouy and the curvature phases

χ(ρ, z) = −(2p + |m|+ 1) arctan

(

z

zR

)

+
kzρ2

2(z2 + z2
R)

, (43)

Here w0 is the beam waist, zR = w2
0k/2 is the Rayleigh range, C|m|,p =

√

p!/(p + |m|)! and L
|m|
p the associated Laguerre polynomial.
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We focus on the case in which the Rayleigh range zR is large so that the amplitude function reduces to

Ψm(ρ) = E0

√

p!

(p + |m|)! e
− ρ2

w2
0

(√
2ρ

w0

)|m|
L
|m|
p

(

2ρ2

w2
0

)

(44)

where E0 is a normalisation constant. It is straightforward to evaluate the integrals in Eq.(40). The result is

J̄z = (m − 1)J0 cos ΘP; (m ≥ 1) (45)

where J0 is a constant given by

J0 =
kzw2

0πE2
0

4µ0c
(46)

It is also straightforward to check that J0 has the dimensions of angular momentum per unit length. Equation (45) shows the variations
of the angular momentum carried by a general Poincaré mode of order m at a point (ΘP, ΦP) on the unit sphere. The result, as we
explained earlier shows no dependence on ΦP which indicates that all points on the line of latitude at a fixed ΘP, but varying ΦP have
the same value of angular momentum. The function cos ΘP takes continuous values spanning the range +1 → −1 as ΘP changes
from 0 to π. The angular momentum also varies with the order m, but the equation (45) does not apply to the lowest order m = 0 since
it is clear that for m = 0 the function Ψm=0 becomes a Gaussian function and so the m = 0 mode does not carry angular momentum.
Furthermore, as Eq.(45) shows, all first order m = 1 modes have zero angular momentum. In particular the point for which ΘP = π/2
corresponds to pure radially-polarised modes which are known not to carry angular momentum. By contrast all higher order modes
for which m ≥ 2 have angular momentum, which, as Eq.(45) shows, increases with increasing order m. These features of the result are
summarised in Table 1.

8. CONCLUSIONS

In conclusion, the aim of this article was primarily to clarify the general form of the electromagnetic fields of vector Poincaré modes.
Such modes are normally defined in terms of the polarisation vector ϵ̂ with no indication of the amplitude function Ψ which contains
the spatial variation of the mode. We have shown that the form of the amplitude function is only determined by demanding that the
vector potential, from which the electric and magnetic fields are derived, must satisfy the vector paraxial equation. This condition has
led us to two equations to be satisfied by Ψ. The first stipulates that Ψ has no phase dependence on the azimuthal angle ϕ and the
second that Ψ must satisfy a second order differential equation involving the variables ρ and z only. The solutions of this differential
equation turn out to be the amplitude functions Ψm of a scalar equation that has no dependence on ϕ. We have indicated that the
Laguerre-Gaussian amplitude function satisfies this equation and we proceeded to evaluate the angular momentum of a general
Poincaré mode of order m. We have found that only the modes of order m ≥ 2 have non-zero angular momentum. The lower orders
m = 0, 1 both have zero angular momentum for all points on the order m = 0, 1 Poincaré spheres. The prototype of the case m = 0 is
azimuthally-polarised Gaussian modes and m = 1 is exemplified by the radially-polarised modes, but the results indicate that all first
order modes, including quasi-circularly-polarised and in general quasi-elliptical modes have zero angular momentum.The condition
UP = VP means ΘP = π/2 when ΦP = 0. We have also shown that for any order m, the form in Eq.(30) (regarded as the prototype
vector modes [1, 8, 15, 23] ) are higher order radially-polarised modes and we have shown that all such modes have zero angular
momentum.
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