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(a) White recon (b) Cm (c) βm (d) Chd (e) Che (f) Cbc (g) UVA recon (h) NIR recon

Figure 1. Reconstructions of acquired faces of subject 1 (Mediterranean skin type, top row) and subject 2 (Caucasian skin type, bottom

row) under uniform white illumination (a), estimated skin chromophore maps (b–f), and predicted UVA and NIR responses (g, h) using

our proposed practical spectral measurement and modeling approach.

Abstract

We propose a practical method to measure spectral skin

reflectance as well as a spectral BSSRDF model spanning

a wide spectral range from 300nm to 1000nm. We employ a

practical capture setup consisting of desktop monitors to il-

luminate human faces in the visible domain to estimate five

parameters of spectral chromophore concentrations includ-

ing melanin, hemoglobin, and β carotene concentration,

melanin blend-type fraction, and epidermal hemoglobin

fraction. The estimated parameters make use of a novel

three-stage lookup table search for faster parameter fitting,

and drive our skin model for accurate reconstruction of

facial skin reflectance response in both the visible domain

as well as in the UVA and near-infrared range. We also

propose a novel neural network architecture that given our

measurements, predicts the five chromophore parameters

of our model at the encoder stage and full hyperspectral

reflectance response as the output of the decoder stage.

1. Introduction

Accurate facial appearance modeling has been a topic of

extensive research in computer vision and graphics. Sev-

eral biophysically-based spectral skin reflectance models

have been proposed in recent years [1, 7, 10–12, 17, 18].

Previous works have either proposed complex biophysical

models with a large number of parameters to represent

various chromophores in the human skin [7, 11, 18], or

employed simpler models with fewer parameters that can

be practically measured [12, 17], albeit with reduced model

accuracy. These works have mainly focused on the visible

domain, in which some facial features that are crucial for

skin appearance and protection might be concealed [7].

In this work, we employ a diffusion-based hyperspectral

BSSRDF skin appearance model spanning a wide spectral

range from 300nm to 1000nm, thus encompassing Ultra

Violet (UV), Visible (Vis) and Near InfraRed (NIR). While

the employed model makes use of the spectral chromophore

parameters proposed in [11], we propose a novel extension

of their model to predict skin reflectance response in

the UVA and NIR domain (Section 3). Therefore, the

employed parameters are melanin concentration Cm,



dermal hemoglobin concentration Chd, melanin blend-type

fraction βm, epidermal hemoglobin fraction Che, and β
carotene Cbc concentration. The skin model additionally

includes two fixed parameters: dermal water fraction

Cwd and epidermal water fraction Cwe. The inclusion

of β carotene in the model enables more accurate skin

appearance simulation, particularly for yellowish and olive

skin types. Further, we present a practical measurement

approach for acquiring spectral skin reflectance based on

our model. Our capture setup consists of a set of desktop

LCD monitors for illuminating a face with standard visible

spectrum RGB illumination in order to acquire high-quality

spectral skin chromophore maps.

Previous works estimate spectral skin parameters

to achieve high-quality appearance reconstructions by

searching in a LookUp Table (LUT) of pre-computed skin

tones the closest RGB values of facial albedo images,

on a pixel by pixel basis [12, 17]. Such an approach is

computationally expensive, particularly for models with

higher complexity. To address this issue, we propose a

novel three-stage LUT search to efficiently estimate the

parameters of our model (see Section 4).

An additional issue of the LUT search approach is

related to the quantization of the results it produces, due to

the sampling resolutions of parameters used to generate the

LUT. To overcome this limitation, we design an Encoder-

Decoder network to estimate the five spectral parameters

at the encoder stage (ChromNN ), and a decoder network

(SpectraNN ) for reconstructing the full hyperspectral skin

reflectance accurately. Here, hyperspectral reflectance of

skin is first compressed using Principal component analysis

(PCA), which allows reducing the size of the SpectraNN
network, thus speeding up training and testing (Section 6).

We validate our model parameters estimated from RGB

measurements using comparison of hyperspectral skin

appearance reconstructions to reference photographs under

various spectral illumination conditions.

In summary, our main contributions are as follows:

• We propose a practical hyperspectral skin reflectance

model driven by five chromophore parameters spanning a

wide spectral range from 300 to 1000nm, and a practical

measurement approach for estimating model parameters

employing RGB illumination emitted by desktop LCD

monitors.

• We introduce a novel three-stage lookup table search

for speeding up conventional LUT-based parameter fitting

that takes advantage of our spectral measurements.

• We design a neural network architecture to estimate

the chromophore parameters of our skin model and recon-

struct full hyperspectral reflectance from the input RGB

measurements based on a novel PCA analysis that enables

reduction of network complexity.

2. Related Work

Here, we give a brief overview of bio-physical skin appear-

ance modeling, spectral skin appearance measurement, and

hyperspectral appearance modeling (including UV and IR)

in computer vision, graphics and tissue-optics.

Bio-physical Skin Appearance Modeling: Jensen et

al. [16] proposed a practical BSSRDF model to approxi-

mate the subsurface scattering for translucent materials with

dipole diffusion theory. This work was extended to multi-

pole diffusion theory to account for multi-layered translu-

cent materials, such as human skin [9]. Building on these,

they introduced a two-layer bio-physical skin model with

three chromophore parameters to simulate realistic skin ap-

pearance [10]. This model was then extended and simpli-

fied by Jimenez et al. [17] to make it suitable for practical

measurement and prediction of skin color change during fa-

cial animation using a four parameter model with only two

free parameters used for fitting using a lookup-table (LUT)

search. Recently, Gitlina et al. [12] employed the more

complete spectral model of [17], with four free parameters

to more accurately reconstruct skin appearance using mea-

surements in a multispectral LED sphere. Besides employ-

ing LUT searching, they also proposed a cascaded neural

network for model fitting and RGB albedo reconstruction.

The spectral skin chromophores modeled in this work

are mainly related to melanin and hemoglobin concentra-

tions. However, there are some other blood-borne pigments,

such as beta-carotene and bilirubin, which also play im-

portant roles in skin color [7, 11, 18]. Krishnaswamy et

al. [18] introduced a parametric five-layer skin model called

BioSpec to approximate the light interaction within human

skin. Donner et al. [11] later proposed a layered hetero-

geneous reflectance model with lateral inter-scattering of

light between skin layers using six parameters and an ad-

ditional inter-layer absorption to model veins and tattoos in

skin [11]. Although these models can simulate very real-

istic skin appearance, high model complexity makes mea-

surements less practical.

Our work follows the line of previous diffusion-based

bio-physical skin appearance models. We employ a prac-

tical hyperspectral skin model with five free parameters to

balance model sophistication and complexity for measure-

ments. We also propose a novel Encoder-Decoder network

to predict chromophore maps and reconstruct full spectral

skin reflectance given practical RGB measurements. Simi-

lar to our work, recent methods have employed neural net-

works to predict chromophores [12]. However, their net-

work architectures focus on reconstructing RGB facial ap-

pearance from the estimated chromophores, under a spe-

cific illumination spectrum (e.g., D65). Closer to our

approach, Aliaga et al. [1] presented a network that di-

rectly predicts spectral skin reflectance in the Vis and NIR

range. In comparison, our proposed network architecture



allows predicting hyperspectral reflectance in a wider range

(UV+Vis+NIR), while using only a fraction (∼ 2%) of the

overall number of network parameters.

Spectral Skin Appearance Measurement: Jensen et

al. [16] proposed a simple technique for measuring RGB

optical parameters of materials, including two skin samples,

by illuminating the surface of a sample with a tightly fo-

cused beam of white light and acquiring a photograph with

a color camera to observe the radiant exitance across the

entire surface. Tsumura et al. [23] used independent com-

ponent analysis on photographs to estimate melanin and

hemoglobin maps, assuming such chromophores have in-

dependent effects on skin color and ignoring the influence

of scattering and depth. Donner et al. [11] employed mul-

tispectral images of skin patches illuminated by a broad-

band flash and nine different chosen narrow spectral bands

to measure spectral skin reflectance and drive parameter

estimation for their model. Jimenez et al. [17] used a

non-contact SIAscopeTM system [8] with cross-polarized

flashes to measure the hemoglobin and melanin concentra-

tions of facial skin while Alotaibi and Smith [2] used a sin-

gle LED illumination spectrum from photographs. Gotardo

et al. [13] proposed a multi-view setup with static illumi-

nation for dynamic skin albedo estimation. Park et al. [21]

used multiplexed spectral illumination for skin reflectance

estimation. Closer to our approach, Gitlina et al. [12]

designed a measurement approach using two complemen-

tary broad and narrow-band spectral illumination condi-

tions using a multispectral LED sphere. They also pro-

posed a practical skin patch measurement approach using

an off-the-shelf dermatological imaging device (Miravex

Antera 3D camera). Recently, Aliaga et al. [1] employed

RGB albedo measurements of facial skin to estimate chro-

mophore parameters for their Monte Carlo simulation based

skin model. Our method takes as input photographs under

complementary broad and narrow-band illumination condi-

tions produced by LCD screens to estimate parameters of a

diffusion-based hyperspectral skin reflectance model.

Ultraviolet(UV) and Infrared(IR) Modeling: Some

deep skin damage gradually changes facial appearance and

skin health due to UV light exposure. The prediction of the

pigmentation irregularities such as freckles is beneficial for

detection of skin aging [6, 15] and protect skin from photo-

damage effects and skin cancer risk [25]. In addition to

pigmentation, skin hydration is another significant factor to

describe skin status [7]. Water displays strong absorption in

the IR domain, thus IR photographs can provide informa-

tion about skin hydration [4].

Chen et al. [7] first introduced a hyperspectral skin ap-

pearance model to computer graphics in order to compre-

hensively forward simulate spectral and spatial distributions

of light interacting with human skin from the UV to IR do-

main involving a large set of skin chromophores. While we

borrow from this work, we employ a more practical model

with fewer parameters to model skin reflectance over a wide

spectral range spanning UVA-Vis-NIR domains.

3. Bio-physical Skin Model and Measurement

3.1. Overview

We propose a diffusion-based hyperspectral skin appear-

ance model driven by five biophysical parameters, namely

melanin concentration Cm, melanin type blend βm (blend

between eumelanin and pheomelanin), dermal hemoglobin

concentration Chd, epidermal hemoglobin concentration

Che, and β carotene fraction Cbc. This work adapts and

extends the work of [10, 11] into the hyperspectral domain

using spectral absorption profiles of the constituent chro-

mophores in the UVA and NIR bands borrowed from [7].

Additionally, we add two parameters Cwd and Cwe to rep-

resent water in the epidermis and dermis, respectively. The

inclusion of β carotene, an important skin chromophore, ex-

tends the skin model color gamut, thus improving the sim-

ulation of yellowish and olive human skin tones [3, 11].

Figure 2 shows a small change in the β carotene fraction

significantly contributes to the resulting skin color.

(a) Cbc = 0 (b) Cbc = 0.0013 (c) Cbc = 0.0042 (d) Cbc = 0.01

Figure 2. Spectral skin reflectance variations due to Cbc. Cm

increases along the x-axis, Chd along the y-axis; βm and Che are

kept fixed to 0.5 and 0.25, respectively.

Figure 3 shows the spectral absorption coefficients of the

parameters in our model, spanning from 300nm to 1000nm.

The selected model parameters not only determine skin

color in the visible domain, but they are also significant ab-

sorbers in the UVA range. In the NIR range, while both

hemoglobin and β-carotene absorption drop, parameters re-

lated to melanin and water still significantly affect skin ap-

pearance. Overall, the proposed novel equations of absorp-

tion of the epidermis and dermis in the [300 − 1000]nm
range are as follows:

σepi
a (λ) =(1− Cwe)(Cm(βmσem

a (λ) + (1− βm)σpm
a (λ))

+ Che(γσ
oxy
a (λ) + (1− γ)σdeoxy

a (λ))) + Cbcσ
bc
a (λ)

+ (1− Cm − Che − Cbc)σ
base
a ) + Cweσ

w
a (λ) mm−1

(1)

σderm
a (λ) =(1− Cwd)(Chd(γσ

oxy
a (λ) + (1− γ)σdeoxy

a (λ)))

+ (1− Chd)σ
base
a ) + Cwdσ

w
a (λ) mm−1

(2)

where λ is the light wavelength in nanometers, Cm repre-

sents melanin fraction, βm represents melanin type blend

between eumelanin and pheomelanin, σem
a and σpm

a are the



(a) UVA + Vis (b) Vis + NIR

Figure 3. The spectral absorption coefficients curves for the skin

chromophores included in our model from 300nm to 1000nm.

absorption coefficients for these two types of melanin. Chd

and Che refer to hemoglobin fraction in dermis and epi-

dermis, and their corresponding absorption coefficients are

σoxy
a and σdeoxy

a , with γ being the blood oxygenation ra-

tio between deoxy- and oxy-hemoglobin, fixed as 0.75. Cbc

and σbc
a respectively represent the fraction and absorption

coefficient of β carotene. Cwe and Cwd are water fractions

in the epidermis and dermis fixed as 0.2 and 0.6, respec-

tively; the absorption coefficient of water is σw
a . σbase

a is

the baseline skin tissue absorption. Please refer to the sup-

plemental material for more details of our model and how

the LUT data is built.

3.2. Acquisition

We employ a practical setup for our measurements using

LCD monitors for illuminating a face similar to the recent

work of [19]. Our setup employs four 4K desktop LCD

monitors (Asus ProArt PA279CV) and a set of cameras

(Canon EOS M6 Mark II) placed in between the monitors

for facial measurements. Unlike [19], the cameras in our

setup are cross-polarized with respect to the linearly polar-

ized illumination emitted by the monitors (see Figure 4 (a)).

Figure 4 (b) shows the Spectral Power Distribution

(SPD) of the screens white illumination (6500K CCT), as

measured by a Sekonic SpectroMaster C700 spectrome-

ter. The peak of this blue illumination is at around 450nm.

However, according to Preece and Claridge [22], the op-

timal illumination to measure melanin is narrowband blue

with a peak at around 485nm. Therefore, while directly us-

ing the narrow band blue illumination in our setup might not

be optimal for melanin measurement, it provides cues to es-

(a) Monitor-based setup (b) SPD

Figure 4. Monitor-based setup and the SPD of white illumination.

timate β carotene, as the maximal absorption of the latter

is closely aligned to the peak of blue illumination. In addi-

tion, narrowband green illumination can be used to estimate

hemoglobin [22]. As observed in Gitlina et al. [12], directly

observing skin response under narrowband illumination can

lead to sub-optimal measurements, due to colors outside the

gamut of typical off-the-shelf RGB cameras. Hence, we

make use of multiple illumination conditions, such as white

illumination, a mixture of white and blue illumination, and

a mixture of white and green, and employ a computational

scheme based on chromatic adaptation transform proposed

by [12] to synthesize sharper blue and green narrowband

responses from the mixtures (Figure ??). Therefore, the

dimensionality of the input matches that of the estimated

parameters:

(r, g, b, sb, sg) → (Cm, βm, Chd, Che, Cbc)

4. Parameter Estimation

The most straightforward approach to parameter estimation

is to use pre-computed 5D LookUp Tables (LUTs) of skin

colors, one for each of the 3 lighting spectra described in

Sec 3.2. For each pixel in the RGB photograph acquired

under broadband white light, and in the grayscale synthe-

sized blue and green images, we search the corresponding

LUTs, finding the set of skin parameters that minimizes the

L2 distance in CIELAB color space (i.e. ∆E76 color dif-

ference), thus obtaining the estimated skin parameter maps.

Radiometric calibration is achieved by scaling the LUTs in-

tensities by constant scalars, derived by taking photographs

of the X-Rite color chart under the same illumination con-

ditions. Additionally, we use the optical flow algorithm on

the input images to reduce the impact of subjects’ move-

ment during the acquisitions.

4.1. Threestage LUT Searching Method

As shown in previous work, naı̈ve LUT search can pro-

vide high-quality results, which we show can be further

improved for yellowish and olive skin tones by including

β carotene in the model. However, the increased model

complexity leads to larger LUTs and longer matching time.

In order to address this issue, we propose a novel three-

stage matching method given our proposed spectral mea-

surements to take advantage of the larger parameter space,

while reducing the computational cost without affecting the

quality of the estimated parameter maps. In the following,

we provide an overview of the proposed search strategy.

• Stage 1: we keep the β-carotene value fixed, thus fo-

cusing on 4D slices of the LUTs. We then query the

broadband white and synthetic blue LUTs to estimate the

melanin-related parameters Cm and βm;

• Stage 2: The estimated Cm and βm in stage 1 are kept

constant while usingwhite and synthetic blue LUTs to
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(a) Photo (b) Recon (c) Cm (d) βm (e) Chd (f) Che (g) Cbc (h) UV recon (i) IR recon

Figure 5. Comparison of photos (a) and reconstructions (b) and estimated spectral parameters (c - g) for faces of Subject 1 (Asia skin

type), Subject 2 (Caucassian skin type), and Subject 3 (South Asia skin type). The estimated chromophore parameters also predict skin

appearance in the UVA and NIR bands (h, i).

search the resulting 3D slices for the optimal Cbc. While

this search also provides estimates for the hemoglobin-

related parameters, these are discarded;

• Stage 3: the values of Cm, βm and Cbc estimated in the

previous stages are kept fixed, thus leading to a 2D search

space. We then use white and synthetic green to search

for the two optimal hemoglobin parameters Chd and Che.

The β-carotene value used in the first stage has been derived

as the mode of the distribution of the estimated β-carotene

values on a training set containing photographs of subject

with different skin types. The estimated values are obtained

using the naı̈ve, full search strategy.

Compared to the full search, the above strategy allows

a significant speed up of the maps estimation, and allows

incorporating knowledge of the most suitable lighting con-

dition to estimate a given skin parameter (see Sec. 3.2). In

fact, while blue illumination excite melanin and β carotene

(stages 1 and 2), green illumination provides useful infor-

mation about hemoglobin (stage 3).

4.2. Estimation Results

Figure 5 (a, b) compares the albedo reconstruction using the

three-stage matching method with the ground truth photo-

graph, for subjects with Asia, Caucasian, and South Asia

skin types, respectively; (c-g) report the estimated chro-

mophore maps while (h, i) displays the UVA and NIR re-

constructions. As it can be seen, for all skin types the re-

constructions closely match the photographs. The predicted

UV response of Subject 3 is lower than that of lighter skin

subjects because higher melanin concentration absorbs UV

radiation, which is consistent with [7].

Figure 6 compares the reconstruction of an example us-

ing the naive full search matching method (b), which inputs

the broadband white along with synthetic blue and synthetic

green images, with the reconstruction given by the three-

stage search (c). As shown in the figure, the results of the

two methods are qualitatively similar to the photograph (a).

(a) Photo (b) Full search (c) 3-stage

Figure 6. Comparison of photograph (a), reconstruction using the

naive LUT search method, using white, Synth. blue and Synth.

green (b), and reconstruction using the 3-stage search (c).

4.3. Skin Appearance Editing

Editing the estimated model parameters allows simulating

biophysical changes in skin appearance. By scaling the

two melanin-related parameters we can simulate lighten-

ing or tanning of skin (Cm), as well as increasing or re-

ducing stubble/facial hair (βm) present in the input photo-

graph (Figure 7 (a,b)). Similarly, skin appearance can be

edited by scaling the beta-carotene parameter Cbc (Figure 7

(c)). Editing the two hemoglobin-related parameters Chd

and Che allows for changes in facial redness, thus leading

to a paler or flushed appearance (Figure 7 (d,e)). Instead of

scaling linearly, we apply a simple but effective method to

treat two hemoglobin parameters. The scaling equation is

C × (1 + (s− 1)× i/N), where i is the index of the value

C in the array of Chd or Che with the size of N while s is

the scaling factor. With this scaling, the local variation of



hemoglobin distributions is accentuated in the edits.

(a) Red.

melanin

(b) Inc.

melanin

(c) Inc. β

carotene

(d) Flushed

(inc. blood)

(e) Pale

(red. blood)

Figure 7. Biophysical Skin appearance editing, such as lightening

with reduced stubble (a), tanning with increased stubble (b), skin

with increased β carotene (c), flushed skin (d), and pale skin (e).

5. Ultraviolet (UV) and Near-infrared (NIR)

Validation

As previously noted, the chromophores-related parameters

used in our model absorb light significantly both in the visi-

ble and invisible range. Hence, once the chromophore maps

have been estimated using visible light, we can infer skin

appearance in the UV and IR domain by plugging in our

forward model the corresponding absorption coefficients.

To validate the predicted UVA and NIR appearance, we

employ a UV camera (fxo487MXGE) without an IR-cutoff

filter to acquire facial images. Subjects are illuminated by

five UV LED tubes and an IR LED with emission in the

[300− 400]nm and [700− 1000]nm range, respectively.

Figure 8 (a-c) compares photographs under visible, UVA

and NIR lighting, with corresponding albedo reconstruc-

tions by our model which assumes uniform illumination (d-

e). Consistent with the conclusion that UV photos can dis-

play more facial details, Figure 8 (b,d) show some conspic-

uous spots around the cheek and forehead are much more

evident in the UVA domain than in the visible domain.

On the other hand, Figure 8 (c,e) displays the photo-

graph and reconstruction in the NIR domain, where the

faces look softer and less influenced by pigmentations, and

more visible blood vessels. Note that the UVA and NIR

photographs are not cross-polarized and contain specular

reflection which is not simulated in our reconstructions.

Therefore, in Figure 8 (e) we simulate shading due to small

frontal area light and render specular reflections. To account

for lateral scattering, we apply an image-space scattering

approximation method on the reconstructed albedo. Please

see details in Supplemental material.

6. Neural Network

As shown in the previous Section, the use of LUTs to in-

fer model parameters, by searching for the closest match to

the color of acquired human skin, can lead to good results.

However, even when using the 3-stage approach, parameter

estimation is still relatively slow. More importantly, the val-

ues contained in the maps are quantized due the discretiza-

tion of the LUTs. To address these issues, we propose the

(a) Vis photo (b) UV photo (c) IR photo (d) UV recon (e) IR recon

Figure 8. Comparisons of Vis, UV and IR photos (a-c) and recon-

structions (d, e) using our proposed method.

use of an Encoder-Decoder Neural Network for estimat-

ing model parameters and skin reflectance from 300nm to

1000nm, thus covering the UVA + Vis + NIR range.

6.1. Network Architecture

Our architecture consists of two networks, as shown in

Figure 10. The ChromNN network predicts the five

model parameters (Cm, βm, Chd, Che, and Cbc) from the

5D multispectral skin albedo input, that is RGB data from

acquired photograph under white, synthetic grayscale blue,

and synthetic grayscale green illumination. The estimated

parameters are fed to the SpectraNN network which

provides a neural approximation of our model to output

spectral skin reflectance.

However, directly sampling spectral data densely (e.g.

[300 − 1000]nm in 2nm steps) as output poses issues of

larger network and potentially noisy estimates. Therefore,

we apply Principal Component Analysis (PCA) to spectral

skin reflectance data generated using our model spanning

the entire range of parameters, which leads to a training

set of 572,220 spectra. We retain the first 10 principal

components, shown in the supplemental material, which

overall explains ∼ 100% of the total variance. For more

details, please refer to the supplemental material.

Training and testing process: When training the

ChromNN network, the inputs are values sampled from

our 5D LUTs (r, g, b, sb, sg), and the outputs are five

model parameters (Cm, βm, Chd, Che, Cbc). These

parameters are then fed into the SpectraNN network to

predict the reduced 10d PCA space. Utilizing LUT values

as a training dataset enables coverage of various skin tones

with a lightweight network structure, thereby shortening

the training time. To test the ChromNN network, facial

images under multiple illuminations are used as inputs to

predict five chromophore maps, which are then compared

with results from LUT searches. For the SpectraNN ,

inputs can be chromophore values generated either by the

ChromNN network or through LUT search approaches,

as described in Section 4. The final reconstructions in the

predicted 10d PCA basis are compared with photographs

under corresponding illuminations.

Implemental details: The ChromNN and

SpectraNN are separately optimized using Adam

solver with weight decay = 1e-6 and learning rates 3e-4.

The activation functions for ChromNN and SpectraNN
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(a) Cm (b) Bm (c) Chd (d) Che (e) Cbc (f) White (g) Red (h) Green (i) Blue (j) UVA (k) NIR

Figure 9. Comparison of the network predictions and references of subject 1 (Mediterranean skin type) and subject 2 (Asian skin type).

Figure (a-e) compare the chromophore estimation between the ChromNN outputs and LUT searching methods with the same inputs.

Figure (f-i) compare references and visualizations of facial reflectance produced by SpectraNN in the visible domain under white (f),

red (g), green (h), and blue (i) illuminations, and in the UVA (j) and NIR (k) domains. Here, the references for the visible domain are

photographs, while the references for the UVA and NIR domains are the reconstructions generated by the proposed three-stage LUT

searching method.

are Sigmoid and Relu, respectively. All experiments were

conducted on Titan X GPUs. The loss function for both

networks is given by the Mean Squared Error(MSE).

6.2. Network Results

Figure 9 (a-e) compares the outputs of the ChromNN net-

work and the chromophore maps generated by the proposed

three-stage LUT search method of two subjects (Mediter-

ranean and Asia skin types). It is worth noting that the chro-

mophores maps obtained from LUT search are not ground

truth, but they can be used as a reference. Generally, the

network results have similar quality to the reference maps

from LUT search. Chromophore maps from the neural ar-

chitecture show less noise and less quantization than the

ones from LUT search, particularly noticeable in the βm

maps and Cbc maps. In order to display clearly, we scaled

all chromophore maps, especially Cbc maps which should

have little difference shown in the range from 0 to 0.01.

After feeding the outputs of ChromNN into the

SpectraNN , we can obtain the estimated 10-value PCA-

based skin reflectance, then expanded into full spectral re-

flectance. Figure 9 (f-i) compares photographs and corre-

sponding network-generated reconstructions, under white

(a), red (b), green (c), and blue (d) visible spectrum illu-

mination produced by the LCD screens. Additionally, in

Figure 9 (j,k) we compare network-reconstructed facial ap-

pearance in the UVA and NIR domains with the correspond-

ing values provided by LUT search. As the figure shows,

the network prediction results are qualitatively very similar

Figure 10. The proposed neural architecture consists of two net-

works. The ChromNN maps multispectral albedo data to the five

spectral model parameters. The model parameters are then fed to

the SpectraNN to predict a PCA-based, low-dimensional skin

reflectance representation, finally reconstructed using the stan-

dard PCA reconstruction technique to obtain the full spectral re-

flectance in the UVA+VIS+NIR range (300nm to 1000nm).

to LUT search. Note that the comparison is done to LUT

search for the UVA and NIR cases in the absence of refer-

ence photographs.

7. Quantitative Analysis and Comparison

7.1. Quantitative Analysis

We report a quantitative analysis of our methods and the

conventional LUT search method towards efficiency and ac-

curacy. The results we show below are obtained by testing

all the datasets including different skin types and genders.

- Efficiency analysis: For 2K images, the conventional

LUT search method requires 2.88h while the proposed



three-stage LUT search uses 13.91min and the PCA net-

work only needs 2.27s on average.

- Accuracy analysis: Table 1 compares MSE loss for re-

constructing spectral reflectance over the Vis. domain. This

table validates our conclusion that the quality of the three-

stage method is close to conventional LUT search, while

the network addresses the discrete value problems of LUTs

and achieves much higher accuracy. Our method is not too

biased toward certain skin tones.

Table 1. Accuracy analysis

conventional three-stage our network

Caucassian 1.8345e-04 1.8150e-04 3.11e-08

Mediterranean 1.8916e-04 2.0859e-04 3.02e-08

Asian 2.1900e-04 2.2337e-04 3.33e-08

South Asian 2.4326e-04 2.4697e-04 3.96e-08

7.2. Correspondence Comparison

To validate our model, we compare the generated skin re-

flectance with the accurately measured data in Leeds skin

dataset which only has Vis domain [24] (see Figuree 11).

Please see the full hyperspectral skin reflectance of our

model in Figure 17. The maximum and average RMSE be-

tween our model and all the data in the Leeds dataset is

0.036 and 0.008, respectively, which is lower than that of

Aliaga et al. [1] (mostly lower than 0.05).

Figure 12 shows UV photograph and reconstructions us-

ing multiple inputs (white, synthetic blue, and synthetic

green) and a single input (white) in the UV domain. Al-

though reconstructions in visible domain with two different

inputs are both close to the photograph, it has an obvious

difference in the UVA domain. Figure (b) with multiple in-

puts is more similar to photograph (a) than Figure (c), which

benefits from narrowband illumination measurements.

Compared with Aliaga et al. [1], we apply a diffusion-

based skin model with multiple inputs while they employ a

Monte Carlo simulation based model with single input. As

illustrated above, our model has higher accuracy and better

performance in a wider domain and has been validated by

practical measurement. Moreover, compared to the network

of [1], our PCA-based network has only ∼ 2% parameters.

Please see more details in the supplemental material.

We also compare our method with Gitlina et al. [12], on

their data, acquired using their Light Stage setup. In Fig-

ure 13 we report the photograph of the subject under white

Figure 11. Comparison between the generated skin reflectance of

our model and Leeds skin dataset of dark and light skin.

(a) photo (b) recon (wgb) (c) recon (w)

Figure 12. Comparisons of UV photo (a) and reconstruction (b)

using broadband white and narrowband blue and green as inputs,

and reconstruction using broadband white as input.

illumination (b), its reconstruction using their 4D model (a),

and the reconstruction using our 5D model (c), which addi-

tionally includes the parameter Cbc, as well as fixed Cwe

and Cwd. The comparison of the absolute error maps dis-

played in the right corner shows that our model provides

more faithful reconstructions of the input photograph, as

well as not being limited to data acquired with our setup.

(a) 4D Recon (b) Photo (c) 5D Recon

Figure 13. Comparison of a facial photograph captured by Light

Stage under white illumination (b), reconstruction using 4D model

of [12] (RMSE=0.0311) (a), and reconstruction using our 5D

model (c) (RMSE=0.0164), as well as the absolute error maps.

8. Conclusion

We proposed a practical diffusion-based hyperspectral skin

reflectance model driven by five chromophore parameters

which faithfully represent spectral reflectance from 300 to

1000nm range. To estimate such parameters for faces,

we presented a practical measurement setup that employs

desktop LCD monitors for spectral illumination. For effi-

cient parameter estimation, we introduced a new three-stage

LUT-search method. Moreover, we propose a novel com-

pact neural network to estimate the parameters and recon-

struct full hyperspectral reflectance using PCA-bases. Our

practical measurements and model allow accurate predic-

tion of skin appearance under a very wide range of spectral

illumination conditions, as well as realistic biophysical edit-

ing of facial appearance for various applications.
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Practical Measurement and Neural Encoding of Hyperspectral Skin Reflectance

Supplementary Material

In this document we provide additional information on

several aspect of our work. Part A describes the de-

tailed information of our model and the process of gen-

erating Lookup table (LUT) data in Section 3 while Part

B shows additional experiments for narrowband measure-

ment. Part C introduces the image-space scattering approxi-

mation method used in Section 5. Part D provides additional

information about the proposed neural network (described

in Section 6 of the main paper), and includes a comparison

with [1]. Additionally, we also provide a video including

comparison among photograph in the visible domain, and

reconstructions in the UVA and NIR domains, as well as

more realistic skin appearance editing results.

A. Biophysical Skin Model

In this section, we provide details on our model and how the

LUT data is generated.

- Diffusion BSSRDF: Similar to the work [10, 12], we used

a two-layer skin model, which consists in the epidermal and

dermal layers, based on diffusion theory. For the epidermis,

we employ a multipole diffusion model to simulate subsur-

face scattering, with thickness fixed to 0.32mm. As for the

dermis, simulated as a semi-infinite medium, we employ a

dipole diffusion model. The absorption coefficients for epi-

dermis and dermis are shown in Equation 1 and Equation 2.

The absorption coefficients of two types of melanin (eume-

lanin and pheomelanin) are

σem
a (λ) = 6.6× 1010 × λ−3.33 mm−1, (3)

σpm
a (λ) = 2.9× 1014 × λ−4.75 mm−1 (4)

The absorption of the baseline skin tissue is

σbase
a (λ) = 0.0244 + 8.53× e−(λ−154)./66.2 mm−1 (5)

where λ refers to the light wavelength in nanometers.

The reduced scattering coefficient of the epidermis is

σ′

s
epi(λ) = 14.74× λ−0.22 + 2.2× 1011 × λ−4 mm−1

(6)

The scattering coefficient of the dermis is approximated as

half of epidermal scattering [10] [5].

The index of refraction (IOR) of both layers is 1.4. We

convolved the spectral profiles (reflectance and transmit-

tance) with the Kubelka-Munk theory [14] to obtain the to-

tal diffuse reflectance, then generated a LUT with SPDs of

different illuminations.

- Chromophore sampling: For each point in the LUT, we

sampled five chromophore parameters in different ranges

and methods as shown in Table 2, parameter range and sam-

pling density vary on a per-chromophore basis. Cm, Chd

and Cbc are sampled cubicly in their respective ranges, ac-

cording to the following equation:

ci = Cmax × (
i

N
)3 (7)

where ci is the value of the ith sample for chromophore C,

i ∈ {0, 1, . . . , N}, N + 1 is the number of samples and

Cmax is the maximum value C can assume in our model.

Cm , Chd and Cbc have 51, 51, 5 samples, respectively. βm

and Che are uniformly sampled, respectively with 11 and 4

samples.

Parameters Sampling Spectral Range

Cm 0 - 0.5 (cubicly) UV-Vis-IR

βm 0 - 1 (uniformly) UV-Vis-IR

Chd 0 - 0.5 (cubicly) UV-Vis

Che 0 - 0.3 (uniformly) UV-Vis

Cbc 0 - 0.01 (cubicly) UV-Vis

Cwe, Cwd 0.2, 0.6 Vis-IR

Table 2. Parameters of skin spectral absorption and scattering.

B. Narrowband measurements

As observed in previous work [12], narrowband illumina-

tion allows to reduce the baked-in subsurface scattering in

the estimated chromophore maps and hence in the albedo,

thus leading to sharper details than the corresponding esti-

mates from broadband-only measurements. The increased

sharpness is beneficial when rendering skin appearance, as

the blurring introduced by subsurface scattering simulation

allows a closer match to the ground truth appearance. On

the other hand, estimates obtained under broadband illumi-

nation will appeared over-blurred when rendered. How-

ever, as discussed in the main paper, to address camera

color gamut issues we avoid direct observation of skin re-

sponse under narrowband illumation and use a computa-

tional scheme to recover the response from the mixture nar-

rowband + broadband. Figure 14 compares the reconstruc-

tion of cheek area using broadband white and synthetic blue

and green illuminations (a) with the ground truth photo-

graph (b). In the same figure, we report the reconstruction

using broadband white and direct blue and green illumina-

tions. As the figure shows, the reconstruction with syn-

thetic data shows sharper skin details than that reconstructed

from measurements direct illumination, particularly visible

around skin blemishes (e.g. moles) and pores.



(a) Recon(synth.) (b) Photo (c) Recon(direct)

Figure 14. Comparison of photograph and reconstructions with

different measurements. Figure (a) employs broadband white, syn-

thetic blue, and synthetic green illuminations while Figure (c) em-

ploys broadband white, direct blue, and direct green illuminations.

C. Imagespace Scattering Approximation

In our work, both the proposed LUT search or the neu-

ral network aim at producing sharp reconstructions, thus

reducing the effect of lateral scattering of light. As ob-

served in the previous section, this would affect the real-

ism of skin appearance, if the reconstructed albedoes were

directly compared with ground truth photographs. To ad-

dress this, we apply an image-space scattering approxima-

tion method on the reconstructed albedo which produces

images that better match the validation photographs.

We first select the closest skin reflectance curves in our

lookup table to those of the light and dark skin patches in

a standard colorcheker chart. For each patch, we select the

reflectance values at 450nm, 530nm, 630nm and 835nm,

corresponding to the peaks of blue, green, red, and NIR il-

lumination in our model, respectively. Similar to the work

of [20], we apply a linear combination of seven Gaussians

to fit the curves of each patch. Note that these Gaussians

share the same variances, and each profile weights them

differently shown in Figure 15. We then blur the recon-

structed albedos with each Gaussian and obtain the final re-

sult via a linear combination of multiple blur kernels. We

do not apply any blur to the UVA reconstruction since this

has been predicted from measurements under longer wave-

lengths (i.e. visible light), thus already encoding some blur.

Figure 16 compares the results and photos under white

(a), red (b), green (c), blue (d), and IR (e) illuminations.

As for the broadband white image, we process RGB chan-

nels separately, since the white illumination of the monitor

setup is simply a sum of three separate RGB peaks. Fi-

nally, for the IR LED panel, we simulate shading due to

small frontal area light and also render specular reflection.

We brighten these images to clearly show the details. As the

figure shows, adding the image-space blur makes the results

qualitatively closer to the photographs.

(a) (b)

Figure 15. Approximating profiles (a) with sums of seven Gaus-

sians (b).
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(a) White (b) Red (c) Green (d) Blue (e) NIR

Figure 16. Comparison of image-space scattering approximation

and photos (or channels) under white (a), red(b), green (c), blue

(d), IR (e) illumination.

D. Neural Networks

In this part, we offer detailed information of the PCA-based

network, ablation study of PCA, and comparisons with the

recent work of Aliaga et al. [1]

We apply Principal Component Analysis (PCA) on the

full spectral skin reflectance data spanning the UVA, Vis,

and NIR domains to reduce the complexity of the proposed

neural network (see Section 6). The retained first 10 princi-

pal components, which overall explain ∼ 100% of the total

variance, are shown in Figure 18. Using such components,

any given skin reflectance spectrum can be reconstructed

using a 10d vector containing one weight for each of the

10 principal components, along with the mean spectral re-

flectance of the dataset.

- Ablation study: Figure 17 compares a ground truth skin

reflectance spectra with its PCA reconstruction using this

10d PCA basis. As can be seen, the reconstruction almost

perfectly matches the spectral reflectance, sampled at 2nm

resolution.

Compared with the recent work of Aliaga et al. [1],

which directly estimates reflectance without PCA, our

method offers three advantages:

• Our model and PCA-based neural network covers a wider

spectral domain spanning from UVA, visible and NIR do-

mains, while Aliaga et al. [1] only predicts reflectance in



Figure 17. Comparison be a ground truth skin reflectance spectra

with its PCA reconstruction using the first 10 PCA components.

the visible and NIR domain.

• The predicted skin reflectance using our model is more

accurate. Figure 11 compares the generated spectral skin

reflectance with Leeds skin dataset [24] of two examples

representing light and dark skin. As can be seen, the gen-

erated skin reflectance of our model is close to that mea-

sured accurately in the Leeds dataset. As mentioned in

Sec 7.2, the maximum and average RMSE of our model

is 0.036 and 0.008, respectively while the RMSE between

Aliaga et al. is generally lower than 0.05 [1]. The ac-

curacy of the model will decide the performance of the

network since the training dataset comes from the LUTs

generated by our model.

• Although our method can cover a wider spectral range

and at higher resolution, the size of our network is

smaller, with significantly fewer parameters (9354 param-

eters for our network, thus about 98% fewer parameters

than the 424758 for the network in [1]).

Figure 18. The first ten PCA components derived from our analy-

sis.
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