
2637Sensors and Materials, Vol. 34, No. 7 (2022) 2637–2661
MYU Tokyo

S & M 2996

*Corresponding author: e-mail: jskim6687@skku.edu 
https://doi.org/10.18494/SAM3939

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Positioning Errors of Objects Measured by Convolution 
Neural Network in Unmanned Aerial Vehicle Images

Woosuk Kang,1 Jisung Kim,2* Hongsic Yun,2 Pooreum Lee,1 and Heecheol Kim1

1Computer Communication and Engineering, Kangwon National University,
1 Gangwondaehakgil, Chuncheon-si, Gangwon-do 24341, Republic of Korea

2Department of Civil and Environmental Engineering, Sungkyunkwan University,
2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea

(Received April 9, 2022; accepted June 21, 2022; online published June 30, 2022)

Keywords: aerial photogrammetry, convolution neural network (CNN), object detection, positioning 
error, unmanned aerial vehicle

 The conversion of unmanned aerial vehicles (UAVs, also called drones) and convolution 
neural network (CNN) facilitates the location of objects in real time using their sensors. In 
photogrammetry, the positional accuracy of objects is directly affected by the use of technology. 
It is necessary to improve the accuracy of object positioning to increase the utilization of drones 
and CNNs. In this study, the error factors that impede accuracy, such as the global navigation 
satellite system (GNSS) error of the UAV, camera distortion error, and camera posture error, 
were analyzed to improve the accuracy of object positioning. The effect of each error was also 
analyzed. The study was conducted in stages, such as establishing a method for the positioning 
of objects, specifying errors, and analyzing the amount and effect of error elements. The 
magnitude of the positioning errors was found by comparing it with accurate values measured 
by GNSS. Furthermore, the correlation of the errors with the factors that impeded accuracy was 
analyzed. Consequently, the effect of each error factor on the overall error was identified. These 
results can play an important role in improving positioning accuracy and developing UAV and 
CNN technologies employing sensors in the future.

1. Introduction

 High-altitude aerial photogrammetry has been used to locate objects in wide areas. With the 
advent of unmanned aerial vehicles (UAVs) and the development of digital cameras, low-altitude 
drone photogrammetry, which can quickly and economically locate objects compared with 
conventional high-altitude manned aerial photogrammetry, has emerged. In contrast, artificial 
intelligence has facilitated the automatic identification of characteristics of objects more quickly 
than human eyes. In particular, convolutional neural networks (CNNs) can quickly detect and 
classify objects within images. When combined, UAVs and CNNs can quickly detect, classify, 
and locate objects in images.(1–3) Owing to these advantages, various studies have been 
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conducted in areas such as flood mapping,(4) agriculture,(5–9) the environment,(10) traffic,(11–15) 
structure management,(16–20) archaeology,(21) and disaster management(22,23) using drones and 
CNNs.
 Zhang et al. located weeds using UAVs and deep learning. They constructed a weeding 
prescription map with errors of less than 20 cm. The relative altitude of the drone from the 
surface was 2 m.(5)  Geraldes et al. studied a UAV-based situational awareness system via deep 
learning. They detected situations through deep learning and converted them into geodetic 
coordinates, longitude, and latitude.(23) Biswas et al. estimated the speed of moving objects 
using a moving UAV.(12) Deng et al. measured the locations of dead trees using drones and deep 
learning. They detected trees in the images and estimated their longitude and latitude.(6) Zhi et 
al. studied distance measurements using a drone(24) and clarified the measurement errors that 
occurred during the positioning. Similarly, Liu and Zhang,(25) and Haamied et al.(26) focused on 
positioning. In addition, many studies have been conducted on positioning using drones and 
deep learning, demonstrating the importance and impact of positioning using UAVs and CNNs. 
 Positioning accuracy should be improved to increase the utility of drones and CNNs, as 
attempted in previous studies. Nassar et al. used machine learning to detect shapes and match 
figures for geolocalization. The objectives of some studies have been to improve the location of 
UAVs.(27) Toma et al. used radio frequency to improve the positioning accuracy of a drone,(28) 
whereas Zhang et al. used the time difference of arrival (TDOA)(29) and Bhoite et al. used 
CCTV.(30) However, these studies focused on the positioning accuracy of drones.
 Consequently, to improve positioning accuracy, the errors of object positioning measured 
through UAVs and neural networks should be analyzed. However, few studies have identified the 
positioning accuracy of currently measured objects and analyzed the error factors. Some studies 
only located the objects without accuracy estimation,(6,23,25) whereas Zhang et al. and Biswas et 
al. demonstrated results including errors.(5,12) In contrast, Zhi et al. and Haamied et al. clarified 
the error factors and effects of each element.(24,26) However, further study is required to improve 
the accuracy due to camera distortion, the GNSS positioning of the drone, and camera posture. 
Therefore, in this study, the positioning accuracies of objects measured by UAVs and CNNs are 
analyzed, and the errors and effects of each cause are identified.

2. Objectives and Scope

2.1 Objectives

 In this study, we aim to analyze the positioning accuracy of objects located through UAV 
aerial images and a CNN. Toward identifying the error factors, the detailed objectives are as 
follows:

• the analysis of the positioning accuracy of objects measured using a direct orientation method 
that does not use ground control points (GCPs) and

• the analysis of the effect of each cause of error.
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2.2 Scope

 The scope of this study includes the following: 
•  the accuracy of object positioning in single-camera photogrammetry using a CNN and a 

UAV, and
•  the analysis of error and its effect.

 The following are outside the scope of this study:
•  the object detection accuracy of CNNs,
•  the correction of error,
•  indirect orientation using GCPs, and
•  multi-camera photogrammetry.

 We make the following assumptions:
•  The locations of each object in the real world are points without length and area.
•  The positions of the real objects expressed in the image are the center points of the boundary 

detected by the CNN or have negligible differences.
•  The position of the global navigation satellite system (GNSS) receiver mounted on the UAV is 

the same as the principal point of the camera or has a negligible difference. 
 In this study, we analyze the following as factors affecting the error: 

•  the GNSS error of the UAV,
•  the distortion error of the camera, and
•  the posture error of the camera.

3. Materials and Methods

 Figure 1 illustrates the detailed procedure used herein to achieve our objectives. We first 
established a direct orientation-based object positioning process using a UAV and a CNN. In this 
process, the following errors were defined for quantitative analysis: position error, camera 

Fig. 1. Overall procedure of this study.
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Fig. 2. Object positioning process and errors measured using UAV image and CNN in this study.

distortion error, and camera posture error. The UAV position error was evaluated at a control 
point where the location was known. The camera distortion error was analyzed in a laboratory. 
In the analysis of the camera posture error, the UAV position and camera distortion errors were 
calibrated from the field images and then compared with the actual position of the object 
measured by GNSS.

3.1 Object positioning

 Object positioning was performed in the following order: aerial image shooting, target object 
boundary extraction, boundary coordinate acquisition, image coordinate transformation, and 
ground coordinate transformation. The camera distortion error was introduced while extracting 
the boundary of an object and converting it into image coordinates. The position error of the 
UAV and the posture error of the camera were reflected while converting the image coordinates 
into ground coordinates (Fig. 2). 
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3.1.1 UAV and camera for image acquisition

 In this study, a DJI Phantom 4 Pro UAV was used. Its position (xu, yu, zu) and the posture of 
the camera (ωc, φc, κc) were obtained through the Exchangeable image file format information of 
the image taken from the relevant model. Table 1 lists the specifications of the camera and UAV.

3.1.2 Object detection using CNN

 The CNN model constructed in this study is shown in Fig. 3. EfficientNet-b0 was used 
partially as the model backbone. On the basis of MobileNet research,(32) EfficientNet consists of 
MBConv operation blocks (Fig. 4),(33) such as depthwise separable convolution and squeeze and 
excitation (SE), to reduce the number of model parameters and improve performance, 
respectively. 
 Subsequently, a region proposal network (RPN) was constructed using two convolution 
operations, and the results of the RPN were learned using heatmap focal loss and generalized 
intersection over union loss. To detect relatively small objects on the basis of the characteristics 
of the UAV images, the network model was configured to have a relatively high resolution in 
both the initial input image size and the RPN input size.
 In addition, to address the problem of overfitting that occurs with limited training data, 
various augmentation techniques were applied during training. The accuracy was improved 
using test time augmentation.

Table 1
Camera and UAV specifications.(31)

Item Value
Sensor 1” CMOS
Lens FOV 84°, 8.8 mm/24 mm
Image size 5472 × 3648 pixels
Gimbal vibration range ±0.02°
Hovering accuracy
(GNSS positioning)

±0.5 m in vertical direction
±1.5 m in horizontal direction

Fig. 3. (Color online) Overall network structure of CNN used in this study.
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3.1.3 Object location in image coordinates

 The coordinates of the detected object in the image were obtained. Since the boundary of the 
object detected through the CNN is a rectangle, the intersection of its two diagonals ( 1 3 2 4,  P P P P ) 
was used as the object position Pc(xc, yc) (Fig. 5).

3.1.4 Exterior orientation

 The position of the object in the ground coordinate system was obtained using external 
orientation elements and the position of the object in the image coordinates. The external 
orientation elements xu, yu, zu, ωc, φc, and κc were directly obtained using GNSS and the inertial 

Fig. 5. (Color online) Object position in image coordinate system obtained from detected object boundary.

Fig. 4. (Color online) Detailed module structures of CNN used in this study.



Sensors and Materials, Vol. 34, No. 7 (2022) 2643

measurement unit, which were mounted on the UAV and camera. xu, yu, and zu are the positions 
in the x, y, and z directions based on the ground coordinate system of the UAV, and x0, y0, and z0 
are the positions in the x, y, and z directions based on the ground coordinate system of the object, 
respectively. ωc, φc, and κc are the positions of the camera in the roll, pitch, and yaw directions, 
respectively (Fig. 6). 
 The positions of the UAV and the posture of the camera are stored in the extensible metadata 
platform (XMP) of the photographed image. When the focal length is f, the position of the object 
is a vector factor S. The real positions can be calculated as follows:
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 Objects whose elevations are equal are assumed to be on the same plane. Their 2D coordinates 
are obtained on a planar coordinate system, such as Korea Geodetic Datum 2000 (European 
Petroleum Survey Group: 5186). The scale factor S can be determined using Eq. (2). The altitude 
difference H between the object and the UAV is acquired from the XMP of the captured images. 
After determining the scalar quantity S, the positions of the objects can be estimated using the 
known variables.
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Fig. 6. (Color online) Geometric relationship among UAV, camera, and object.
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3.2 True value of object position

 The error is the difference between the observed and true values.(34) The observed value is 
the position of the object calculated from the image, and the true value is the actual position of 
the object. In this study, the center of an object in a parking area was assumed to be its correct 
position, which was measured using GNSS. The equipment used for the measurement was a 
Trimble R8s system using Virtual Reference System-Real Time Kinematic (VRS-RTK) (with a 
2–3 cm positioning error) provided by the National Geographic Information Institute (NGII), 
Republic of Korea. Figure 7 indicates the true position of the object.

3.3 Error analysis

3.3.1	 Error	clarification

 The diverse error factors in object positioning were investigated in this study. These errors 
were the position error of the UAV, camera distortion error, and camera posture error.
 Since direct orientation using GNSS/INS determines the external orientation elements in the 
images, each error factor is independent of the other factors. Therefore, positioning accuracy is 
improved by eliminating the error at each stage. The procedure for error identification and 
elimination is depicted in Fig. 8.
 The position error vector Vo of the measured object can be decomposed into the x and y 
directions of the 2D terrestrial coordinate system. As shown in Eq. (3), Vo can be expressed as a 
vector Vi owing to the internal expression element of the camera, a vector Vu owing to the 
position error of the UAV, an error vector Vr owing to the camera posture, and a negligible error 
vector Vetc. In this case, cx and cy are the positions of the main point in the image; fx and fy are the 

Fig. 7. (Color online) Object location measured by VRS-RTK GNSS.
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focal lengths; kx and ky are the radial distortion coefficients; and px and py are the tangential 
distortion coefficients in the x and y directions, respectively. 

 ( ) ( ) ( ) ( )1 2 1 2, , , ,  , , , , , , , , ,  
o o o u u u c c cx y x y

etco x y z u x y z ri c c f f k k p pV V V V V= + + +ω φ κ  (3)

3.3.2 GNSS error of UAV

 The GNSS error of the UAV was measured by mounting and flying the UAV at the unified 
control point (UCP), which was the base point. The position error was estimated by comparing 
the notified coordinates of the UCP and the coordinates obtained through the GNSS mounted on 
the UAV (Fig. 9). The UCPs are used as reference points, such as the satellite, level, and gravity 
reference points, to measure the geographic longitude and latitude, Cartesian coordinates, Earth-
centered Cartesian coordinates, height, and gravity. They were installed and managed by NGII 
of the Republic of Korea, and their planar positioning error was approximately 30 mm. The 
attributes of the UCPs used in this study are listed in Table 2. 

Fig. 8. Process of error analysis for each factor.
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3.3.3 Camera distortion error

 Since only one UAV and camera was used in the study, the error due to the distortion was 
equal in all experiments. To identify factors such as camera lens distortion and centerline 
mismatch, the internal orientation elements (cx, cy, fx, fy, k1, k2, p1, p2) were calculated using the 
chessboard method of Zhang.(35) Figure 10 shows some of the images used for the calibration, 
and Table 3 lists the specifications of the chessboards. 

3.3.4 Camera posture error

 The error due to the camera posture was estimated after removing the position and camera 
distortion errors. The camera posture error was analyzed using the data acquired from a testbed.

3.4 Testbed and scenario

3.4.1 Testbed

 The testbed for the estimation of camera posture error, which is one of the goals of this study, 
must satisfy the following conditions:

•  It must be outdoors where aerial photography is possible.
• It must be where GNSS measurement is possible, i.e., not in a shaded area.
• A parking space must be divided into sections such that the position of an object can be 

measured using surveying equipment.

Table 2
Attributes of UCP used in study.
Item Value
Name U-Chuncheon-07
Last updated data 4th February 2020
Latitude 37° 54’ 57.31632”

Longitude 127° 44’ 10.50723”

Fig. 9. (Color online) UAV positioning at the UCP.
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• At least 20 of the same vehicles must be present in all the sequential images.
 The parking lot in front of the 60th Anniversary Memorial Hall of Kangwon National 
University (1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do) was set up as a testbed (Fig. 11). 
Images were acquired on November 17, 2021 from 15:00 to 16:00. The temperature at that time 
was 12.5 °C, the wind direction was southwest, the wind speed was less than 2.0 m/s, and the 
pressure at sea level was approximately 1022.0 hPa. 

Table 3
Chessboards used for camera calibration.
Item Chessboard 1 Chessboard 2
Rows 11 6
Columns 8 5
Cell size 21 mm × 21 mm 30 mm × 30 mm
Number of images 36

Fig. 10. (Color online) Two chessboard images for camera calibration.

Fig. 11. (Color online) Testbed in Kangwon National University: (a) map and (b) aerial image [Kakao Map,(36) 
2022].

(b)(a)
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Fig. 12. (Color online) Places where the images were taken.

Table 4
Places where images were taken by scene number and location.
Scene 
number

UAV location 
number

Relative 
altitude (m)

Camera pitch
 φc (°)

Camera yaw*

 κu (°)
1 1 50 −90 0
2 1 100 −90 0
3 1 150 −90 0
4 2 150 −90 0
5 2 100 −90 0
6 2 50 −90 0
7 3 50 −90 0
8 3 100 −90 0
9 3 150 −90 0

10 4 150 −90 0
11 4 100 −90 0
12 4 50 −90 0
13 5 50 −90 0
14 5 100 −90 0
15 5 150 −90 0
16 6 100 −75 90
17 7 100 −60 90
18 8 100 −45 90
19 9 100 −45 180
20 10 100 −60 180
21 11 100 −75 180
22 12 100 −75 −90
23 13 100 −60 −90
24 14 100 −45 −90
25 15 100 −75 0
26 16 100 −60 0

3.4.2 Scenario

 The control variables identified in this study were the altitude, yaw, and pitch of the camera. 
The same area was acquired by the UAV from different locations. Figure 12 illustrates the 
locations where the images were captured. Table 4 lists the location of each point, the height 
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Fig. 13. (Color online) Positioning error of UAV by image frame.

from the ground, and the pitch and yaw of the camera. Images were acquired by programming 
the waypoint mission in JavaScript object notation (JSON) format in the DJI software 
development kit. Ten images were supposed to have been taken for each scene; however, the 
actual number of images taken was between five and ten.

4. Results

4.1 GNSS error of UAV

 Figure 13 illustrates the positioning error of the GNSS mounted on the UAV. Since the GNSS 
receiver mounted on the UAV is a one-frequency receiver, it cannot solve the integer ambiguity 
problem. Thus, a fixed solution cannot be obtained. As a result, the position error was initially 
several meters; however, as time passed, the error decreased and stabilized. The localization 
error was observed to be a decreasing exponential function. Table 5 lists each parameter of the 
fitted exponential function.
 The analysis of the log of the captured images revealed that the interval between images was 
approximately 4 s, and image stabilization was observed after 35 frames since the UAV moved 

Table 5
Coefficients of fitting curves in X- and Y-directions.

Direction Coefficient* Value 95% confident interval
Minimum Minimum

X-direction a 4.158 3.778 4.539
b −0.06028 −0.06803 −0.05252

Y-direction a 4.779 4.175 5.382
b −0.07123 −0.08364 −0.05881

* ( ) b xf x a e ⋅= ⋅
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to another point. Therefore, by setting a GNSS stabilization time of approximately 2 min after 
the UAV moved, a position can be obtained within a 1.5 m error, as specified in the DJI 
document.

4.2 Camera distortion error

 The inner orientation elements of the camera are presented in Table 6. Since the difference 
between the position of the principal point and the center of the image is just 0.5 pixels in both 
the X- and Y-directions, the image distortion error near the center is negligible. The ratio of the 
focal length in the X-direction to that in the Y-direction is approximately 0.9952. Thus, the scale 
distortion in each direction is insignificant. According to the radial and tangential distortion 
coefficients, the distortion is within approximately 100 pixels, even far from the center of the 
image.
 The inner orientation elements of the camera are independent of the UAV position and 
camera posture. Therefore, the positioning error of the object in the image coordinate system is 
the same, regardless of the posture. However, when the ground coordinate system was used as a 
reference, the position error of the object was affected by the camera posture.

4.3 Camera posture error

 Other error factors were eliminated to estimate the error factors caused by the camera 
posture. The GNSS position error of the UAV was minimized by allowing sufficient time for the 
GNSS to stabilize. The camera distortion was calibrated using inner orientation elements. 

4.3.1 Variation of posture error with relative altitude

 As shown in Fig. 14, the position of the object was calculated from the images. The pitch (φc) 
of the camera was fixed at −90°, the yaw (κc) was fixed at 0, and only the relative altitude was 
changed. The images obtained from Scenarios 1–3 in Table 4 were used. The positions of the 
objects measured by GNSS and those calculated from the images were analyzed on the basis of 
the relative altitude. 

Table 6
Camera and UAV specifications.(31)

Item Value
fx 1026.06271
fy 1031.52276
cx 2735.50000
cy 1823.50000
kx −0.00531
ky 0.00093
px 0.00203
py −0.00541
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 Both the size of the errors and the deviation tended to increase with the relative altitude in 
both axis directions. However, the x-axis error was larger than the y-axis error (Table 7, Fig. 15). 

Fig. 14. (Color online) Positions of objects by relative altitude (a) in reference image and (b) in relative coordinate 
frame.

(b)(a)

Table 7
Errors by relative altitude in both directions.

Relative 
altitude (m) Scenario number Number of 

samples Direction
Error

Mean (m) Standard 
deviation (m)

50 1 174 X 0.157 2.148
Y −0.429 1.389

100 2 264 X −0.598 2.940
Y −0.961 1.874

150 3 115 X −2.479 3.558
Y −1.126 2.550

Fig. 15. Box plots of errors in (a) X- and (b) Y-directions by relative altitude.

(b)(a)
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The axial pixel size of the camera and the focal length in each direction were corrected through 
calibration. The pixel ratio in each axial direction was 0.9952, which is almost identical to the 
camera posture error. The direction of the error is related to the yaw (κc) of the camera, and the 
error nonuniformity in each direction is due to the pitch (φc) of the camera.
 Figure 16 shows the direction and magnitude of the errors. At a relative altitude of 50 m, the 
direction of the error appears relatively uniform; however, as the altitude increases, the direction 
of the error tends to be biased toward a specific direction: 270° counterclockwise from the east 
and southwest directions. It has been observed that the camera posture can be one of the causes 
of the error through the bias in a specific direction. The results [at 150 m altitude, pitch (φc) of 
the camera of −90°, and yaw (κc) of 0 (north)] show an error of approximately 10 m in each 
direction.
 Figure 17 illustrates the estimation error according to the imaging area obtained by 
interpolation performed by the inverse distance weight (IDW) method using the distance error 

Fig. 17. (Color online) Error maps estimated by object position using IDW at relative altitudes of (a) 50, (b) 100, and 
(c) 150 m. The error unit is meter.

Fig. 16. Direction and size of errors at relative altitudes of (a) 50, (b) 100, and (c) 150 m. The circular unit is the 
number of degrees counterclockwise from east and the radial unit is meter.

(b)(a) (c)

(b)(a) (c)
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Fig. 18. (Color online) Positions of objects by camera pitch (a) in reference image and (b) in relative coordinate 
frame.

(b)(a)

Table 8
Errors by camera pitch in both directions.

Camera pitch
φc (°) Scenario number Number of 

samples Direction
Error

Mean (m) Standard 
deviation (m)

−45 19 63 X −18.056 4.395
Y −4.647 3.927

−60 20 292 X −9.004 5.317
Y −6.653 3.931

−75 21 355 X 1.493 4.581
Y −4.268 3.702

for each position of the object. At all three altitudes, the error is small at the center of the area but 
large outside the area. When the altitude increases, the external error increases, and in this case, 
the error is approximately 8 m at 150 m above.
 Although the distortion of the camera was corrected, the trend of the distance error in the 
outer region of the images must be investigated.

4.3.2 Variation of posture error with camera pitch

 The error caused by the camera pitch (φc) was investigated by setting the relative altitude at 
100 m and the yaw (κc) at 180°. The locations of the objects were estimated using the image in 
Fig. 18. This corresponds to Scenarios 19–21 in Table 4. Positions 9–11 (Fig. 12) were the image 
locations.
 Table 8 and Fig. 19 show the error distributions. The X-direction error is correlated with the 
camera pitch, unlike the Y-direction error. At the same altitude (100 m), the error in the 
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Fig. 19. Box plots of errors in (a) X- and (b) Y-directions by camera pitch.

(a) (b)

(b)(a) (c)

Fig. 20. (Color online) Direction and size of errors for camera pitches of (a) −45, (b) −60, and (c) −75°. The circular 
unit is the number of degrees counterclockwise from east and the radial unit is meter.

X-direction is approximately 60 cm when the pitch is −90°, indicating a significant effect of the 
pitch on the error. This trend is illustrated in Fig. 19.
 Figure 20 clearly shows the trend in this error. As the pitch of the camera approached 0, the 
size of the error increased, and the direction of the error was from southeast to east. The closer 
the camera pitch was to 0, the larger the error was in the yaw direction. This result shows that the 
pitch of the camera should be kept close to −90° and the yaw should be corrected for accurate 
object position measurement.
 Figure 21 illustrates the variance of the errors according to the object position by the camera 
pitch. Fig. 21 shows a similar pattern to Fig. 17. The same error modality implies that the same 
error components occur with the same tendency.

4.3.3 Posture error varying camera yaw

 To investigate the error factors caused by camera yaw (κc), the relative altitude was fixed at 
100 m and the camera pitch (φc) was fixed at -75°. Since the same area had to be acquired, the 
locations from where the images were captured were changed. The locations of the objects were 
estimated using the images taken from Scenarios 16, 21, 22, and 25 in Table 9, which correspond 
to locations 6, 11, 12, and 15 in Fig. 12. Figure 22 illustrates the positions of the objects measured 
by the UAV and CNN using the camera yaw.
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(b)(a) (c)

Fig. 21. (Color online) Error maps estimated by object position using IDW at camera pitches of (a) −45, (b) −60, and 
(c) −75°. The error unit is meter.

(b)(a)

Fig. 22. (Color online) Positions of objects by camera yaw (a) in reference image and (b) in relative coordinate 
frame.

Table 9
Errors by camera yaw in both directions.

Camera yaw
κc (°) Scenario number Number of 

samples Direction
Error

Mean (m) Standard 
deviation (m)

−180 6 122 X 1.586 4.773
Y −3.453 7.380

−90 11 355 X −1.552 4.581
Y −4.262 3.702

0 12 139 X −1.604 2.685
Y 0.620 4.702

90 15 262 X −0.019 3.399
Y 5.716 3.094
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Fig. 24. (Color online) Direction and size of errors for camera yaws of (a) −180, (b) −90, (c) 0, and (d) 90°. The 
circular unit is the number of degrees counterclockwise from east and the radial unit is meter.

(a) (b)

Fig. 23. Box plots of errors in (a) X- and (b) Y-directions by camera yaw.

(b)(a)

(d)(c)

 Table 9 lists the number of samples in each scenario and the mean and standard deviation of 
the errors by direction. Figure 23 shows a box plot of the errors by camera yaw for each scenario. 
There is no significant correlation between the camera yaw and the error in Table 9 and Fig. 23.
 Figure 24 shows the direction and length of the error according to the yaw and verifies the 
correlation between the error and the camera yaw. The magnitude of the error was approximately 
10 m, regardless of the direction of yaw. However, the error was biased in one or two directions. 
This indicates that the error direction is closely related to the camera yaw.
 At a yaw of −180°, errors were primarily in the south direction, although some errors 
occurred in the east direction. In contrast, at a yaw of −90°, errors were mostly in the southeast 
direction and partly in the southwest direction. At a yaw of 0°, errors primarily occurred in the 



Sensors and Materials, Vol. 34, No. 7 (2022) 2657

northeast and southeast directions with some errors occurring in the northwest direction. In 
contrast, most errors occurred in the north direction at a yaw of 90°. Therefore, the yaw of the 
camera and the error vector are correlated.
 Figure 25 shows that the change in the direction of the error vector affects the distribution of 
the error magnitude. At yaws of −180 and −90°, the error at the upper left corner of the image is 
small, and the error at the lower right corner tends to be large. In contrast, for a yaw of 90°, the 
error is small in the lower part of the image but large in the upper part of the image. Therefore, 
for the positioning of an object using a UAV and a CNN, an error of 10 m or more may occur 
depending on the shooting position, yaw, and pitch.

4.4 Correlation between camera distortion error and posture error

 The contributions of the position error of the UAV, the distortion error of the camera, and the 
posture error of the camera to the overall positioning error have a complex relationship. The 
position error of the UAV is independent of the other errors. However, although the distortion 
and posture errors of the camera are independent of each other, they affect each other when 
calculating the position. Therefore, it is necessary to understand not only the correlation between 
the camera distortion error and the posture error but also the proportion of the camera distortion 
error relative to the actual error.
 The proportion of the camera distortion error relative to the total error can be determined by 
comparing the position error vectors of the objects measured from one calibrated image and one 
uncalibrated image. Since the error vector due to camera distortion is the difference between the 
calibrated and uncalibrated vectors, it was determined that the larger the difference between the 
two vectors, the larger the camera distortion error.
 Therefore, the similarity between vectors and the effect of camera distortion errors are 
determined through the correlation coefficients, such as the length similarity of the x-axis, the 
length similarity of the y-axis, length similarity, and direction similarity. The results of the 
similarity analysis using 3562 vectors from Scenarios 1 to 26 are shown in Figs. 26 and 27 and 
Table 10. 

(b)(a) (d)(c)

Fig. 25. (Color online) Error maps estimated by object position using IDW for camera yaws of (a) −180, (b) −90, (c) 
0, and (d) 90°. The error unit is meter.
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Fig. 26. Histogram of cosine of angle difference between calibrated and uncalibrated error vectors.

(b)(a)

(c)
Fig. 27. (Color online) Correlation between calibrated and uncalibrated error vectors according to (a) length of 
X-direction, (b) length of Y-direction, and (c) length.
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 According to Figs. 26 and 27 and Table 10, there was no significant difference between the 
error vectors with and without calibration. Therefore, the distortion does not significantly affect 
the position error of the object, and the proportion of the distortion error relative to the total error 
is negligible.

5. Conclusions

 This study focused on locating objects using UAVs and CNNs. The accuracy and error 
factors were analyzed, and the following conclusions were drawn:
 First, the error factors originating from sensors such as MEMS, GNSS, and CMOS that can 
affect the direct orientation method using UAVs and CNNs were identified. The location 
accuracy was also calculated. Second, a method was proposed and verified for quantitatively 
analyzing the location error of a UAV and minimizing the error due to the UAV and its sensors. 
Third, error factors due to camera distortion were excluded and errors due to the camera posture 
were analyzed. The correlation between each element of the camera posture and the error was 
analyzed and identified. Finally, the effect of camera lens distortion on the overall position error 
was analyzed, and it was found that the position error due to the actual camera lens distortion 
was insignificant.
 This study has several limitations. First, although the objects were located using a CNN, the 
effect of the error due to the CNN itself was not analyzed. Second, a detailed analysis of each 
element constituting the camera posture was not performed. Considering the objectives and 
scope of this study, the above limitations should be dealt with in a subsequent study.
 Despite these limitations, we have presented a verification methodology that can qualitatively 
analyze errors occurring in the positioning of an object using UAVs and CNNs and proposed a 
method of improving the positioning accuracy. The results of this study can be utilized in 
various fields involving the utilization of UAVs and CNNs, as well as for the development and 
convergence of the two technologies.
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Table 10
Correlation between calibrated and uncalibrated error vectors.
Item Value
*R2of length in X-direction 0.9351
R2of length in Y-direction 0.9615
R2of length 0.9128
Covariance 0.9736
*R: correlation coefficient
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