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Background: Segmentation of cardiac structures is an important step in evaluation

of theheart on imaging. Therehas beengrowing interest in howartificial intelligence

(AI) methods—particularly deep learning (DL)—can be used to automate this

process. Existing AI approaches to cardiac segmentation have mostly focused on

cardiac MRI. This systematic review aimed to appraise the performance and

quality of supervised DL tools for the segmentation of cardiac structures on CT.

Methods: Embase and Medline databases were searched to identify related studies

from January 1, 2013 to December 4, 2023. Original research studies published in

peer-reviewed journals after January 1, 2013 were eligible for inclusion if they

presented supervised DL-based tools for the segmentation of cardiac structures

and non-coronary great vessels on CT. The data extracted from eligible studies

included information about cardiac structure(s) being segmented, study location,

DL architectures and reported performance metrics such as the Dice similarity

coefficient (DSC). The quality of the included studies was assessed using the

Checklist for Artificial Intelligence in Medical Imaging (CLAIM).

Results: 18 studies published after 2020 were included. The DSC scores median

achieved for the most commonly segmented structures were left atrium (0.88,

IQR 0.83–0.91), left ventricle (0.91, IQR 0.89–0.94), left ventricle myocardium

(0.83, IQR 0.82–0.92), right atrium (0.88, IQR 0.83–0.90), right ventricle (0.91,

IQR 0.85–0.92), and pulmonary artery (0.92, IQR 0.87–0.93). Compliance of

studies with CLAIM was variable. In particular, only 58% of studies showed

compliance with dataset description criteria and most of the studies did not test

or validate their models on external data (81%).

Conclusion: SupervisedDLhas been applied to the segmentation of various cardiac

structures on CT. Most showed similar performance as measured by DSC values.

Existing studies have been limited by the size and nature of the training datasets,

inconsistent descriptions of ground truth annotations and lack of testing in

external data or clinical settings.

Systematic Review Registration: [www.crd.york.ac.uk/prospero/], PROSPERO

[CRD42023431113].

KEYWORDS

artificial intelligence, machine learning, deep learning, cardiac CT, segmentation, quality,
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Introduction

Cardiac imaging is playing an increasing role in the

investigation and monitoring of cardiovascular disease (CVD),

which remains the leading cause of mortality and morbidity

worldwide with more than 17 million deaths per year.

Computed tomography (CT) is the mainstay cross-sectional

imaging modality of radiology departments and can provide

useful information about the heart. Dedicated cardiac CT is

performed for a range of indications, including assessment of

coronary artery disease, valvulopathy, and congenital heart

disease, as well as preoperative planning and postoperative

follow-up. The heart can also be assessed on CT undertaken for

non-cardiac indications—such as CT pulmonary angiography

for pulmonary embolism or CT angiography for acute aortic

syndrome—allowing the identification of incidental but

potentially significant findings and cardiac complications of

non-cardiac disease (1–5).

Segmentation refers to the process of delineating (or

“contouring”) the edges of features on images. The features in

question can be anatomical structures (such as the cardiac

chambers) or pathological lesions (such as an area of myocardial

infarction). Cardiac structures segmentation helps in the

assessment of cardiac structures (Figure 1) and can assist with

earlier detection of cardiac abnormalities (1, 5, 7–9).

Traditionally, segmentation has been performed manually by

radiologists. This process is time-consuming, subjective and

prone to high levels of intra- and inter-observer variability. The

application of artificial Intelligence (AI) to cardiac segmentation

is of growing interest and offers potential improvements to

efficiency and reliability compared to manual segmentation alone

(10, 11). Furthermore, it was shown that the variability between

observers and between an observer and an AI segmentation is

similar (6). Recent years have seen a shift towards machine

learning (ML) as the approach of choice for segmentation tasks.

ML describes the process by which algorithms automatically

FIGURE 1

Example of cardiac structures’ segmentation on CTPA images (6). Ascending aorta (yellow), pulmonary artery (light blue), descending aorta (pink), right

atrium (red), RV epicardium (light green), RV endocardium (orange), LV epicardium (purple), LV endocardium (green), left atrium (blue).
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identify patterns in data in order to make decisions or predictions

when faced with new data. Deep learning (DL) is a subtype of ML

in which multiple layers of algorithms—typically neural networks

—are utilised, enabling the identification of more complex

patterns and the generation of more accurate decisions (12, 13).

Supervised DL depends on providing algorithms with accurate

data for training, such as CT images labelled with manual

segmentations by radiologists (6). Segmentation quality can be

evaluated by comparing the degree of similarity between the DL

and manual contours using either region-based indicators [such

as the Dice similarity coefficient (DSC) or Jaccard index] or

surface distance indicators (such as the Hausdorrf distance) (14).

This systematic review aimed to identify and appraise existing

DL approaches to segmentation of cardiac structures on CT.

Methods

The systematic review protocol was registered with The

International Prospective Register of Systematic Reviews

(PROSPERO; CRD42023431113). The systematic review was

undertaken and is reported in line with the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidance (15).

Search strategy and inclusion criteria

Embase and Medline databases were searched from January 1,

2013 to December 4, 2023. The search strategy was developed

around the key themes of the review: “AI”, “CT” and “cardiac”.

The full search strategy is provided in Supplementary Table S1.

Original research studies published after 1 January 2013 were

eligible for inclusion if they (1) presented supervised DL-based

tools (2) for segmentation of cardiac structures and non-

coronary great vessels (3) on CT. Studies were excluded if they

used non-English language, non-deep learning algorithms or

other algorithms [e.g., graph-cut algorithm, principal component

analysis (PCA), and Active shape model (ASM)].

Screening and data extraction

Database results screening and full text assessment was

undertaken by TA and confirmed by SA and AJS. Data

extraction was performed by two investigators independently (TA

and LA) using the same approach. The data extracted from each

study included information about the study design and purpose

(such as the type of cardiac structure being segmented), DL

approach (such as method and architecture) and segmentation

performance (such as reported DSC values). The classification

models, which were employed to assign labels to CT images or

specific areas of interest within those images to determine

whether particular anatomical structures are present, and the

segmentation models, which focus on precisely delineating the

boundaries of these structures by labelling individual pixels that

allows for the precise partitioning of CT images into distinct

regions to represent anatomical structures, were extracted for

each study (3, 8, 10). The country of each study was classified

based on the location of the first author’s primary institution.

The performance of each DL tool was summarised based on the

reported DSC; in cases where the DSC was not reported, it was

calculated based on previously published formulas (4).

Quality assessment

Each included study was assessed for compliance with the

criteria of the Checklist for Artificial Intelligence in Medical

Imaging (CLAIM) (16). The 42 individual criteria were divided

into four domains: study description, dataset description, model

description and model performance (17, 18).

Results

Study characteristics

18 studies were eligible for inclusion (Figure 2). These were

published between 2020 and 2023, with China having been the

most common study location (39%) (Figures 3A,B). Half of

the studies (9/18) segmented multiple structures (Table 1).

The most frequently segmented cardiac structures were the left

atrium (10/18) and left ventricle (8/18) (Figure 3C). Most

studies (68%) used ECG-gated contrast-enhanced CT images

to develop their models (Figure 3D).

DL architectures and models

The included studies used different DL architectures and models

to segment the anatomical structures. Most of the studies used the

Convolutional neural network (CNN) or U-shaped Neural

Network (U-Net). Based on the classification and segmentation

models’ definitions mentioned previously, a majority of the

studies preferred to manually determine whether particular

anatomical structures are present in the images or not (13/18)

and the others used classification models to do instead (5/18).

The algorithms of the included studies are summarised in Table 1.

Segmentation performance

The highest median DSC scores were achieved by PA (0.92,

IQR 0.87–0.93) and ascending aorta segmentation studies (0.92,

IQR 0.91–0.93), followed by LV and RV segmentation studies,

(0.91, IQR 0.89–0.94) and (0.91, IQR 0.85–0.92), respectively.

The lowest median DSC scores were found in RVM (0.58, IQR

0.57–0.59). A summary of the DSC scores for the most common

segmented cardiac structure is shown in Figure 4. DSC scores of

each cardiac structure shown in Supplementary Table S3 and

Supplementary Figure S1.

Alnasser et al. 10.3389/fcvm.2024.1323461
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Quality reporting

Compliance with the criteria of CLAIM is summarised in

Figure 5. The included studies achieved a mean of 72% in study

description criteria, 58% in dataset description, 85% in model

description, and 74% in model performance (Figures 5A,B). A

minority of studies tested or validated their models on external

data (19%) or provided a clear description of the ground truth

(44%). Furthermore, 37.5% of the studies have not stated the

used annotation tools and the study design was clearly reported

in only 69% of the studies. The quality assessments’ results for

the whole studies are shown in Supplementary Table S2.

Discussion

Segmentation is an important process in the evaluation of the

heart on imaging. However, manual segmentation is time-

consuming and may suffer from poor reproducibility, even when

performed by experienced cardiac radiologists (1, 2, 14). In recent

years, different DL applications have been developed to automate

the segmentation of cardiac structures on imaging and may help

to improve efficiency and reliability (1). In a previous systematic

review in 2022, 209 studies were included for AI-based cardiac

MRI segmentation (17, 18). However, our systematic review of

DL-based cardiac CT segmentations identified only 18 studies.

Due to the availability and speed of CT compared to other

modalities, and its increased mention in cardiac disease

management guidelines, automatic and accurate CT segmentation

models for cardiac structures are likely to increasingly play a role

in routine clinical use (2, 19). This systematic review identified 18

original research studies published since 2013 that presented DL

tools for automated segmentation of cardiac structures on CT.

The design, datasets, CT acquisitions, publication years, locations,

algorithms and DSC scores of each study was appraised and the

quality of reporting assessed according to compliance against

CLAIM. DL showed high quality in segmenting various

anatomical structures across different CT acquisitions. Even in

non-gated contrast-enhanced CT acquisitions, such as CTPA, it

continues to yield high DSC scores. Moreover, the included

studies employed a variety of DL architectures and models,

consistently achieving high DSC scores regardless of the specific

network types employed. Nevertheless, a high DSC score is not

the sole metric for assessing segmentation quality; other surface

distance indicators, such as Hausdorff distance, should be

measured to provide a more comprehensive assessment.

FIGURE 2

PRISMA graph shows the included studies.
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Despite the high repeatability of DL segmentation in conditions

similar to the training data, its accuracy in different populations

and image quality can vary. Two different studies using a similar

framework of a ResNet50 classification model and an U-Net

segmentation model showed different DSC scores (3, 10). The

DSC score reached 0.96 when applied on PVCT images with a

study population mean age of 54 ± 11 years (10) while achieving

0.89 on CCT images in an older population of 63 ± 10 years (3).

Both datasets were atrial fibrillation patients, which may have

affected imaging quality and despite this DSC scores remained

high. Segmenting the LA in the absence of contrast was assessed

in different segmentation and classification models however DSC

score of 0.83 was the highest achieved and segmentation of low-

dose and non-contrast acquisitions remains a challenge (11, 24).

Another challenge is segmenting 3D volumetric images due to

their size requiring large memory capacity. An octree-based

representation for 3D CT images has been developed to

overcome the limitations of sacrificing the information and

resolution of 3D volumes. The developed model achieved a DSC

score of 0.97 in LV segmentation by using a user-defined

intensity tolerance to compress the 3D volumes before the

segmentation step. As the tolerance increases, the compression

will increase, but the DSC score will be negatively affected (22).

In addition, the utilisation of a spatial sequential network (SS-

Net) for unsupervised learning of the deformation and

movement characteristics exhibited by the LV combined with

sequential contextual data obtained from bidirectional learning

showed a DSC score of 0.96 in LV segmentation (21). In this

method, the image sequence is explored in two directions (i.e.,

chronological and reverse-chronological).

Defining the inner and outer borders of the LV myocardium

has been achieved using five different segmentation models. A

combination of image-to-image (I2I) segmentation network with

conditional variational autoencoder (cVAE) had the highest DSC

score (19), followed by a 3D segmentation U-Net model using

deep attention network (Attention Gates) to selectively emphasise

the myocardium boundary structures (1). In contrast, only one

study focused on segmenting the more complex and thinner RV

myocardium. Sharkey 2022 (6) developed two nn-UNet models

on CTPA images by first implementing a low-resolution model

to localise the cardiac structures followed by a high-resolution

model extracting different features from the localised image. The

DSC score achieved remained low (i.e., 0.59), however there was

substantial discrepancy in RV myocardium measurements

FIGURE 3

Descriptive information of the included studies. (A) Publications by year. (B) Location of the study. (C) Cardiac structures segmented. (D) CT acquisition

used.
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between the manual observers themselves. Therefore, interpreting a

low DSC score is challenging when the ground truth contains

inherent noise. In addition, the models were applied on non-

gated CTPA images, and therefore not comparable to the quality

of gated acquisitions (6).

Two studies focused on ascending aorta segmentation on

CTPA (6) and non-contrast CT (20). Employing a 2D Gaussian

smoothing filter to reduce noise prior to segmentation on

resampled higher-resolution images can preserve the images’

resolution and quality and achieved higher DSC score in the

ascending aorta segmentation compared to models without

Gaussian filters (20).

PA segmentation was performed in two CTPA and two non-

CTPA studies. Higher DSC scores were achieved in the CTPA

studies (5, 6). Consequently, the CT acquisition might play an

important role on the DSC scores. In contrast, only two studies

were conducted to segment the PV. Sharobeem achieved a DSC

of 0.66 in their 2021 study (8) and Li achieved DSCs of 0.80 and

TABLE 1 A summary of the included studies shows segmented cardiac structures, CT acquisition, models’ description, and used datasets for each study.

Study Segmented
structures

CT
acquisition

Description Dataset

Classification
model

Segmentation
model

Dimension

Abdulkareem

et al. (3)

LA CCT ResNet50 U-Net 2D axial Trained, validated, and tested

with 150 patients

Aquino et al. (19) LA, LV, LVM, RA, and RV CTA Not reported I2I combined with cVAE 3D Trained with 443 images,

validated with 57 and tested

with 55

Astdillo et al. (2) Coronary cusps and Left and

right coronary ostium

CCT Not reported CNNs 3D Trained with 344 and validated

with 100 patients

Bruns et al. (20) LA, LV, LVM, RA, RV,

Ascending aorta, and PA.

CT—& CCT Not reported CNNs 3D Sixfold cross-validation (15

images for training and 3 for

validation and testing)

Bruns et al. (7) Heart chambers and LVM CCT Not reported CNNs 3D Development set = 14 patients

Test set = 1,497 patients

Chen et al. (10) LA PVCT ResNet50 U-Net 2D axial Trained with 62, validated with

15, and tested with 20 images

Chen et al. (14) Aorta CCT & CTA Not reported nnU-Net 3D Trained with 704 images and

tested with 410 images

Guo et al. (1) LVM CCTA Not reported Deep attention U-Net

combined with AGs

3D Fivefold cross validation of 100

images

Guo et al. (21) LV CCT Not reported U-Net based on SS-BL-Net 3D 18 patients: each has 10 scans

used for either training or

testing with sixfold cross-

validation

Gupta et al. (22) LV CTA Not reported Octree representation and

octree-based CNN

3D Fivefold cross-validation (160

images for training and 40 for

validation)

Kazi et al. (23) LA CTA Not reported U-Net: unified-image-

volume and regional patch-

volumes

3D Trained with 28 images and

validated with 12 images

Li et al. (24) LA and PV LDCT Not reported CNNs—modified V-Net:

GAB and SCAB

3D 68 CT images with fivefold

cross-validation

Lyu et al. (4) Dissected aorta CTA CNNs based on

ResNet

CNNs based on PSPnet 2D and 3D 42 volumes sixfold cross-

validation (5 groups for

training and 1 for testing)

Oever et al. (11) Whole heart, LA, LV, RA,

and RV

LDCT InceptionResNetV2 U-Net 2D three

planes

Trained with 41, tuned with 3,

and validated with 6 volumes

Sharkey et al. (6) LA, LV, LVM, RA, RV,

RVM, ascending aorta,

descending aorta, and PA

CTPA Not reported nn-UNet 3D Trained with 80, validated with

20, and tested with 100

internal and 20 external

patients

Sharobeem et al. (8) Aorta, coronary sinus, LA,

LV, LVM, RA, RV, PA, PV,

and SVC

CCT CNNs based on

SqueezeNet

CNNs based on DenseVnet 3D Trained with 55, validated with

8 and tested with 8 patients

Yao et al. (25) LA, LV, RA, RV, aorta, PA,

and myocardium

CTA Not reported U-Net 2D and 3D Fourfold cross-validation (51

images for training and 17 for

testing)

Yuan et al. (5) PA CTPA Not reported PA-Net 2D axial Trained with 30, validated with

10, and tested with 10 patients

CCT, cardiac CT; CTA, CT angiography; CCTA, coronary CT angiography; PVCT, pulmonary vein CT; LDCT, low dose CT; PSPnet, pyramid scene parsing network; AGs,

attention gates; I2I, image to image; cVAE, conditional variational autoencoder; SS-BL-Net, spatial-sequential bi-directional learning network; GAB, grouped attention

block; SCAB, spatial and channel attention block.
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0.77 by modifying two models in their 2020 study (24). Different

reasons can explain the low scores. First, using pre-procedural

CT data of patients undergoing transcatheter aortic valve

implantation (TAVI), where the parameters employed aimed to

enhance the differentiation in the aorta and peripheral vascular

anatomical features could negatively affect the anatomical

structures located on the right side. This could elucidate the

unsatisfactory outcomes observed for PV segmentation. Second,

both studies were trained and implemented on elevated heart

rate, TAVI, or Total Anomalous Pulmonary Venous Connection

(TAPVC) patients. Hence, the CT images were expected to have

low resolution. Third, inhomogeneous contrast enhancement and

beam hardening artefacts were reported to decrease the images’

resolution and affect the segmentation quality (8).

Different limitations have been mentioned in the previous

studies including that DL models can mitigate small mistakes in

segmentation but cannot avoid observers’ mistakes in the model

training step (1, 2). Most of the studies developed their models

and tested them in single-centre or single-vendor (3, 6, 8, 19). In

addition, it was reported that without using contrast media,

contouring the borders between the structures can be difficult

(11). Furthermore, using only CT axial slices to train the model

can produce lower segmentation quality (5). Image resolution

can affect the segmentation quality. Hence, the cardiac phase

plays an important role. For example, LV and LVM

segmentation can be difficult in the end-systolic phase (7, 21).

Some limitations were reported in dealing with patients’ data.

For instance, acquiring CT data pre-procedural in TAVI patients

can affect the images’ resolution of right-side cardiac anatomical

structures (8). Another example in aortic dissection patients

where a large tear in the aorta can be difficult to be segmented

with DL models (14). Elevated heart rate or atrial fibrillation

patients were reported to negatively affect the images’ resolution,

producing lower DSC scores (10). DL models using hinge points

to find the structures’ borders may negatively affect the

estimation, resulting in overestimation in segmentation (19).

Based on the previous limitations, the included studies’ authors

recommended future work that can overcome the mentioned

drawbacks and increase the quality of DL models in

segmentation. Multi-centres involving a high number of patients

are recommended to include more anatomical structures’ features

and more ethnicities (3, 6, 8, 19). Using a classifier combined

with the DL model can reduce the overestimation in

segmentation (11). Training the model with different CT

acquisitions for instance CT images with and without contrast

media can enhance the DSC scores (11). Moreover, training the

model with three CT planes (axial, sagittal, and coronal) might

improve the segmentation’s quality (5).

Based on the previous studies’ limitations and solutions, we

reported that there was no study that developed a supervised DL

FIGURE 4

Column scatter plot showing DSC scores of different cardiac

structures segmentation studies. Median DSC (solid line) is indicated.

FIGURE 5

Studies’ compliance with CLAIM. (A) Floating bars present the

compliance of the 18 included studies with the CLAIM, classified

into four domains. The mean (solid line) is indicated. (B)

Compliance of the studies with selected CLAIM criteria grouped by

domains.
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model that can be used on different CT acquisitions and segment

different anatomical structures at the same time. In addition, in

Figure 5B, only 19% of the studies validated or tested their

results on external data and most of the studies used single-

centre dataset to develop their models. Furthermore, 56% of the

studies have not reported the definition of ground truth reference

standard and 37.5% have not stated the used annotation tools.

The study design was clearly reported in only 69% of the studies.

Hence, we recommend developing a supervised DL model that

overcomes the previous limitations by training, testing, and

validating the model on different cohorts or among multi-centre,

multi-ethnicities, and multi-vendors. By implementing this, the

lack of data, external validation and clinical testing can be

avoided, resulting in a more accurate model that can be

applicable to different cohorts worldwide. It is highly

recommended to follow the CLAIM guidelines to cover most of

the details to encourage other researchers to build new models in

the field and avoid any previous mistakes. In addition, we

recommend making DL models and codes available for other

researchers to test, adapt and improve. Furthermore, developing

an accurate and fast model that can be applied on different CT

acquisitions and used to segment different cardiac structures at

the same time can make an improvement on DL CT

applications, which can be reflected in patients’ diagnosis and

treatment in clinical practice.

Study limitations

Our work had several limitations. First, this systematic review

focused solely on AI segmentation tools on CT imaging, where

the inclusion criteria were rather narrow (DL tools with

supervised training only). Second, the formal meta-analysis of

the DSC results was not performed due to heterogeneity

between the studies and applied models. Third, despite our

efforts to comprehensively identify published DL cardiac CT

segmentation studies, it’s important to acknowledge that there

is an amount of relevant research in the form of unpublished

work, preprints, and materials presented at technical

conferences that we may have overlooked. Finally, even with

the use of structured quality assessment tools (i.e., CLAIM),

there is still a degree of subjectivity involved in assessing the

quality of reports.

Conclusion

This systematic review identified few studies presenting

supervised DL tools for the segmentation of cardiac structures on

CT. The studies demonstrated considerable variability regarding

the types of structures being segmented. The different models

yielded good DSC scores for most of the major cardiac

structures, however, none could be applied on different CT

acquisitions and segment different anatomical structures at the

same time. The studies were limited by the nature of their

training data, inconsistent ground truth definitions and lack of

testing on external data. This systematic review highlights the

potential for DL tools in evaluation of the heart on CT and

identifies shortcomings in study design and reporting that should

be addressed to aid advancement of the field.
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