
1. Introduction
Arctic sea ice is one of the most important components of the Earth's climate system. Its importance stems 
primarily from the role it plays in influencing Earth's radiation budget through its albedo and in driving the 
thermohaline circulation (Kwok & Untersteiner, 2011). Any climatological study of Arctic sea ice necessarily 
involves the evolution of the sea-ice volume and its interactions with the other components of the climate system. 
Although routine measurement of the areal extent of sea ice using satellites is now possible, a routine measure-
ment of its thickness still remains challenging (Kwok et al., 2021). This motivates the development of an obser-
vationally consistent mathematical theory to study the evolution of the thickness field.

The sea-ice cover consists of a complex discontinuous mosaic of floes of varying size and thickness (Rothrock 
& Thorndike, 1980, 1984), which makes any deterministic description of the system on a geophysical scale 
extremely difficult. The first General Circulation Models (GCM) computed the full three-dimensional 
fluid dynamical and radiative-thermodynamical transport equations around an idealized globe (Manabe & 
Wetherald, 1975). However, their treatment of sea ice was simply as a thermal boundary condition on the ocean 
(Manabe & Wetherald, 1975), and hence did not capture the fact that pack ice consists of a multi-scale aggregate 
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distribution, g(h), treats the dynamic and thermodynamic aggregate properties of the ice pack in a novel 
and physically self-consistent manner. Therefore, it has provided the conceptual basis of the treatment of 
sea-ice thickness categories in climate models. The approach, however, is not mathematically closed due to 
the treatment of mechanical deformation using the redistribution function ψ, the authors noting “The present 
theory suffers from a burdensome and arbitrary redistribution function ψ.” Toppaladoddi and Wettlaufer (2015, 
https://doi.org/10.1103/physrevlett.115.148501) showed how ψ can be written in terms of g(h), thereby solving 
the mathematical closure problem and writing the theory in terms of a Fokker-Planck equation, which they 
solved analytically to quantitatively reproduce the observed winter g(h). Here, we extend this approach to 
include open water by formulating a new boundary condition for their Fokker-Planck equation, which is then 
coupled to the observationally consistent sea-ice growth model of Semtner (1976, https://doi.org/10.1175/1520-
0485(1976)006<0379:amfttg>2.0.co;2) to study the seasonal evolution of g(h). We find that as the ice thins, 
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Langevin equation formulation and solve the resulting stochastic ordinary differential equation numerically. 
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evolution of the open-water fraction.
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redistribution term—which represents the mechanical deformation of ice by rafting and ridging—is referred to 
as “arbitrary” and “burdensome.” Using an analogy with Brownian motion, we have recast the redistribution 
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of individual ice floes that evolve dynamically and thermodynamically. Contemporaneously, this reality was the 
focus of the multi-year Arctic Ice Dynamics Joint Experiment (AIDJEX), which began in 1970 and culminated 
with the main field experiment from March 1975 to May 1976 (Untersteiner et al., 2007). In the same spirit as 
the GCMs the AIDJEX model treated sea ice in the spirit of weather forecasting; solving the appropriate conser-
vation laws on a ∼100 km scale. The momentum equation for the ice pack includes the  tangential wind and 
ocean stresses, the Coriolis effect, and the dynamic tilt of the sea surface. Counteracting these external forces 
is the internal stress with which the ice pack resists deformation, parameterized by a “constitutive law” relating 
the internal stress to the deformation rate. Whilst the floe-scale processes responsible for the deformation of the 
ice pack, and the resulting floe-size and thickness distribution, may be the foundation for the constitutive behav-
ior, we still lack a constitutive law. Indeed, the state of affairs during AIDJEX, as expressed by Rothrock (1975):

“If we knew what the constitutive equation for pack ice should be, we would not need to pay attention to 
the mechanisms of floe interaction. But the simple fact is that we are not at all sure about the constitutive 
equation…we have turned to the study of these mechanisms–rafting, ridging, shearing, and opening–to 
deduce what we can about the large-scale mechanical behavior of pack ice.”

has not changed. Moreover, despite having since derived a quantitative treatment of rafting and ridging (Vella & 
Wettlaufer, 2008), translating these into any constitutive law for the ice pack still poses an outstanding challenge 
for any continuum momentum equation that is not scale-dependent and/or highly parameterized for inclusion in 
climate models (Coon et al., 2007; Feltham, 2008; Roberts et al., 2019; Untersteiner et al., 2007).

Within the AIDJEX modeling group an approach that abandons the explicit use of a momentum equation was 
developed by Thorndike et al. (1975). They considered the corpus of mechanical, dynamical and thermodynam-
ical effects in a region of the ice pack with area 𝐴𝐴  , which give rise to the sea-ice thickness distribution, g(h), 
defined as

∫

ℎ2

ℎ1

𝑔𝑔(ℎ) 𝑑𝑑ℎ =
𝑅𝑅


, (1)

where h is the ice thickness and 𝐴𝐴 𝐴𝐴(≤ ) is the area within 𝐴𝐴  that contains ice between thicknesses h1 and 
h2. Defined this way, g(h) is the probability density function (PDF) for h. Their evolution equation for g(h) is 
(Thorndike et al., 1975)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −∇ ⋅ (𝒖𝒖 𝜕𝜕) −

𝜕𝜕

𝜕𝜕𝜕
(𝑓𝑓 𝜕𝜕) + 𝜓𝜓𝜓 (2)

Here, u is the horizontal velocity of the ice pack, f is thermodynamic growth-rate of ice, and ψ represents the 
mechanical interactions between ice floes. Note that in general the ice grows and decays and the distribution 
evolves under deformation and hence g = g(h(t), t). However, unless making an explicit point about this time 
dependence, for compactness we write g = g(h), or simply g.

Although the concept of the ice thickness distribution has been used as an organizing principle for the categories 
of ice produced in momentum equation based climate models, it has not been an explicit prognostic variable, 
which was the original intent (Thorndike et al., 1975). The principal difficulty in solving Equation 2 is associated 
with ψ, which translates the intransigence of the constitutive law problem in the momentum equation approach to 
the mechanical deformation in the theory for g(h). Studies have been devoted to constructing simplified descrip-
tions of ψ (Godlovitch et al., 2011; Thorndike, 1992, 2000; Thorndike et al., 1975), but the results are either valid 
for only steady state or capture only the thick end of the distribution. Other approaches recast the redistribution 
function of Thorndike et al. (1975) in different notation (Horvat & Tziperman, 2015). A more detailed discussion 
of these studies can be found in Toppaladoddi and Wettlaufer (2017).

In order to close Equation 2 in a mathematically consistent manner, one must write ψ in terms of g(h). This is 
done by recognizing that there is a vast separation of time and length scales between the individual mechanical 
interactions that change the ice thickness and the confluence of processes that change the large-scale evolution of 
g(h) (Toppaladoddi & Wettlaufer, 2015, 2017). This naturally leads to an analogy with Brownian motion, wherein 
there is a vast gulf between the time scales of individual collisions of solvent molecules with a pollen grain and the 
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overall displacement of the latter. To wit, Toppaladoddi and Wettlaufer (Toppaladoddi & Wettlaufer, 2015, 2017) 
interpreted ψ as a collision integral:

𝜓𝜓(ℎ, 𝑡𝑡) =
∫

∞

0

[

𝑔𝑔
(

ℎ
′
, 𝑡𝑡
)

𝑤𝑤
(

ℎ, ℎ
′
)

− 𝑔𝑔(ℎ, 𝑡𝑡)𝑤𝑤
(

ℎ
′
, ℎ
)]

𝑑𝑑ℎ
′
, (3)

in which, w(h, h′) and w(h′, h) are the transition probabilities per unit time that represent deformation processes 
changing ice thickness from h′ to h and from h to h′, respectively. Assuming w(h, h′) = w(h′, h), which implies 
that the transition density depends only on the difference of the thicknesses of the participating ice floes, then the 
Kramers-Moyal-Taylor expansion of Equation 3 transforms Equation 2 into

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −∇ ⋅ (𝒖𝒖 𝜕𝜕) −

𝜕𝜕

𝜕𝜕𝜕
(𝑓𝑓 𝜕𝜕) +

𝜕𝜕

𝜕𝜕𝜕
(𝑘𝑘1 𝜕𝜕) +

𝜕𝜕
2

𝜕𝜕𝜕2
(𝑘𝑘2 𝜕𝜕), (4)

where

�1 = ∫

∞

0

|

|

ℎ′ − ℎ|
|

�
(

ℎ, ℎ′) dh′ (5)

and

�2 = ∫

∞

0

1
2
|

|

ℎ′ − ℎ|
|

2 �
(

ℎ, ℎ′) dh′ (6)

are the first and second moments over the transition density (Toppaladoddi & Wettlaufer,  2015,  2017). The 
Pawula theorem (Pawula, 1967) guarantees that Equation 4 is well-posed in the sense of Hadamard, and hence 
obeys a maximum principle (Courant & Hilbert,  1953), insuring that g(h) is a well defined PDF. Moreover, 
assuming that the first and second moments over the transition probabilities are constant in the region 𝐴𝐴  is 
equivalent to the assumption that the physics of ice deformation is the same anywhere within it. For example, 
ice ridging is governed by the same basic physical processes anywhere in the ice pack (Rothrock, 1975; Vella & 
Wettlaufer, 2008).

Equation 4 can be non-dimensionalized using Heq, the seasonal mean ice thickness, as the vertical length scale; 
L as the horizontal length scale; U0 as the velocity scale for the horizontal ice velocity; tm = L/U0 as the time 
scale for advection of ice floes; 𝐴𝐴 𝐴𝐴𝐷𝐷 = 𝐻𝐻

2
𝑒𝑒𝑒𝑒∕𝜅𝜅 , where κ is the thermal diffusivity of ice, as the diffusion time scale; 

and 𝐴𝐴 𝐴𝐴𝑅𝑅 ∼ 1∕�̇�𝛾 , where 𝐴𝐴 𝐴𝐴𝐴  is the collisional strain rate, as the relaxation time scale. Because the deformation in the 
ice pack is driven by the wind, we have tm ≈ tR. The remaining terms have the following scalings: f0 = Heq/tD, 
�̃1 = ���∕�� , and �̃2 = �2

��∕�� . Finally, observations in the central Arctic spanning 1978–2015 show that the 
mean divergence field is solenoidal to a part in 10 11 (Agarwal & Wettlaufer, 2017). Thus, we follow 𝐴𝐴  in the 
Lagrangian frame, and retaining the pre-scaled notation, Equation 4 becomes

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
=

𝜕𝜕

𝜕𝜕𝜕
[(𝑘𝑘1 − 𝜏𝜏𝜏𝜏 )𝐷𝐷] +

𝜕𝜕
2

𝜕𝜕𝜕2
(𝑘𝑘2𝐷𝐷) = −

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕
, (7)

where τ ≡ tm/tD ≪ 1 where

𝐽𝐽 = −

[

(𝑘𝑘1 − 𝜏𝜏 𝜏𝜏 ) 𝑔𝑔 + 𝑘𝑘2

𝜕𝜕𝑔𝑔

𝜕𝜕𝜕

]

 (8)

is the total flux of probability. This closes the theory of Thorndike et al. (1975), which we have transformed into 
a Fokker-Planck Equation.

During winter, open water rapidly freezes. Hence, Toppaladoddi and Wettlaufer (2015) used the boundary condi-
tions g(h = 0) = g(h = ∞) = 0 to study the winter ice pack. They found that the winter season is governed by the 
following invariant measure of Equation 7,

𝑔𝑔(ℎ) =  (𝑞𝑞)ℎ𝑞𝑞
𝑒𝑒
−ℎ∕𝐻𝐻

, (9)

with prefactor 𝐴𝐴  (𝑞𝑞) =
[

𝐻𝐻
1+𝑞𝑞Γ(1 + 𝑞𝑞)

]−1 , wherein Γ(x) is the Euler gamma function, as determined by the 
normalization condition 𝐴𝐴 ∫

∞

0
𝑔𝑔(ℎ)𝑑𝑑ℎ = 1 . Hence, 𝐴𝐴  (𝑞𝑞) is unique and single valued for 𝐴𝐴 ℝ(𝑞𝑞) > −1 and 𝐴𝐴 ℝ(𝐻𝐻) > 0 . 
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Here, q = τcpΔT/k2Li and H = k2/k1, where Li, cp and ΔT are the latent heat of 
fusion of ice, the specific heat of ice at constant pressure and the temperature 
difference across the ice layer, respectively. The dimensionless thermody-
namic ice growth rate is f = cpΔT/Lih ≡ 1/Sh, where S = Li/cpΔT is the Stefan 
number and k2 represents mechanical deformation, so that q characterizes 
the combined effects of both processes, whereas H is solely associated with 
mechanical deformation. Importantly, q and H are the sole parameters asso-
ciated with the bivariate satellite observations for the winter months (Kwok 
& Cunningham, 2015; Kwok et al., 2009) as reproduced here in Figure 1. 
Thus, for h ≪ 1, g(h) is controlled by both thermodynamics and mechan-
ics, whereas for h ≫ 1, g(h) is controlled solely by mechanical interactions, 
showing that the thick end of the distribution can only be achieved by ice 
deformation. The dimensionless constants k1 and k2 are obtained using:

𝑞𝑞 =
𝜖𝜖

𝑘𝑘2

and 𝐻𝐻 =
𝑘𝑘2

𝑘𝑘1

, 

where ϵ = τ/S. The parameters q and H are obtained from the fit of the func-
tional form of the solution (Equation 9) to satellite observations from ICESat 
(see Figure 1). We estimate τ ≈ 0.46 and S ≈ 10, giving ϵ ≈ 0.046, and using 
Heq = 1.5 m, we get k1 = 0.048 and k2 = 0.025. These are the values used in 
this study.

We note that the condition g(h = 0) = 0 implies that there is no open water in the study region 𝐴𝐴  . As shown in 
Figure 1, this is a reasonable approximation in winter, when the open water rapidly freezes and on average only 
a small fraction of the distribution neglected. However, this is not the case for the full seasonal cycle. Indeed, a 
particular challenge in formulating a boundary condition for g(h) at h = 0 is that open water forms through both 
thermodynamic and mechanical processes. Thus, g(h = 0) must be obtained as a part of the solution to Equa-
tion 7. Therefore, we formulate a complete seasonal boundary condition for g(h) at h = 0 and study the evolution 
of g(h) with the aide of the one-dimensional sea-ice growth model of Semtner (1976) in Equation 7.

2. The Open Water Fraction
Let A be the fraction of open water present in the region 𝐴𝐴  . The normalization condition for g(h) is then

� + ∫

∞

0+
�(ℎ, �) dh = 1. (10)

Differentiating this with respect to t gives

dA
dt

= −∫

∞

0+

��(ℎ, �)
��

dh, (11)

and using Equation 7 in Equation 11 yields

dA
dt

= [� |ℎ=∞ − � |ℎ=0+ ] = −� |ℎ=0+ . (12)

Therefore, as is observed, A increases (decreases) as the Arctic enters spring and summer (fall and winter) during 
which 𝐴𝐴 𝐴𝐴 |ℎ=0+ ≤ 0 𝐴𝐴 (𝐽𝐽 |ℎ=0+ ≥ 0) .

In order to relate the open water fraction, A(t), to the thickness distribution at the origin, g(h = 0, t), we let:

𝐴𝐴(𝑡𝑡) ≡ 𝑔𝑔(0, 𝑡𝑡)𝐻𝐻𝑐𝑐. (13)

In dimensional terms 𝐴𝐴 �̃�𝐻𝑐𝑐 ≡ 𝜁𝜁Λ , where ζ is the fraction of the spectrally and angularly averaged Beer's extinction 
length, Λ, below which thin ice and open water become indistinguishable. Taking ζ to be 15% of the extinction 
length appropriate for Heq, which is Λ = 67 cm (Maykut & Untersteiner, 1971), gives 𝐴𝐴 �̃�𝐻𝑐𝑐  = 10 cm. Using this in 
Equation 12 gives

Figure 1. Comparison of the steady solution to Equations 7 and 8 (lines), with 
satellite measurements from ICESat (Kwok et al., 2009), for February through 
March of 2008 (circles) from Toppaladoddi and Wettlaufer (2015). The two 
parameters from Equation 9 are q = 1.849 and H = 0.783 m. The constants k1 
and k2 are obtained using these values of q and H.

 21699291, 2023, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JC

019540 by U
niversity O

f L
eeds T

he B
rotherton L

ibrary, W
iley O

nline L
ibrary on [01/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Oceans

TOPPALADODDI ET AL.

10.1029/2022JC019540

5 of 12

dg(0, �)
��

= − 1
��

� |ℎ=0+ , (14)

which is the required evolution equation for g(0, t). Equation 7, along with the boundary conditions (Equation 14) 
and g(∞) = 0, can now be used to solve for g(h, t). Once g(h, t) is known, A(t) can be calculated from Equation 10.

We follow Toppaladoddi and Wettlaufer (2015) and impose g(0, t) = 0 during winter, and Equation 14 for the 
remaining part of the year. The transition between these boundary conditions is determined by the sign of the 
thermal growth rate of open water, f(0, t), which is positive in winter.

3. Thermal Growth of Sea Ice
To calculate the thermal growth rate of sea ice, f(h, t), we use the observationally consistent one-dimensional 
model by Semtner (1976). The thickness of the snow layer is assumed to be uniform across all the thicknesses 
and is prescribed following Maykut and Untersteiner (1971): 30 cm from August 20 to October 30, 5 cm from 
November 1 to April 30, and 5 cm during the month of May. Snow is taken to accumulate only when the mean 
surface temperature of the ice layer or the snow layer is below the freezing point, and the increase in the snow 
thickness is taken to be linear (Maykut & Untersteiner, 1971). The values of snow albedo for the different months 
are taken from Maykut and Untersteiner (1971), and the thickness-dependent albedo of sea ice is obtained using 
the expression from Eisenman and Wettlaufer (2009):

𝛼𝛼(ℎ) =

(

𝛼𝛼𝑤𝑤 + 𝛼𝛼𝑖𝑖

2

)

+

(

𝛼𝛼𝑤𝑤 − 𝛼𝛼𝑖𝑖

2

)

tanh

(

−
ℎ

Λ

)

, (15)

where αw and αi are the albedos of open water and the thickest ice, respectively, and as discussed above Λ is the 
Beer's extinction length for ice. Furthermore, in the absence of snow, the fraction of the net shortwave radiation 
that penetrates ice is taken to be 17% (Maykut & Untersteiner, 1971). In addition to the shortwave radiation, 
incoming longwave radiation, and specific and latent heat fluxes from the atmosphere, we also include a perturba-
tion to the incoming longwave radiation, ΔF0, which represents the effects of additional greenhouse gas forcing.

Semtner's numerical formulation does not permit the inclusion of an internal heat source that represents the pene-
tration of shortwave radiation (Semtner, 1976). Rather, this energy is stored in a “reservoir” and released during 
the fall freeze-up. The latent heat of fusion at the top surface is adjusted when the energy in the reservoir exceeds 
30% of what is required to melt the entire ice layer (Semtner, 1976). When the thickness distribution is consid-
ered, this formulation makes the latent heat of fusion a function of the ice thickness, which is unphysical. Hence, 
we ignore this storage effect and note that it only impacts the time at which temperature of the upper ice surface 
drops below the freezing point in fall. We note here that neglecting brine pockets and this heat source in the ice 
has implications for energy conservation, especially for long-time simulations (Bitz & Lipscomb, 1999). The 
three-layer Semtner model employed here is adequate to represent the effects of the snow cover and the specific 
heat of sea ice for our purposes. However, we emphasize that it is simple to use other thermodynamic models in 
this framework as we have shown previously (Toppaladoddi & Wettlaufer, 2017).

4. Results
We solve Equation 7 numerically using a flux-conserving, fully implicit, finite-difference scheme, subject to 
boundary conditions (Equation 14) and g(∞) = 0, or g(0) = 0 and g(∞) = 0. The growth and decay of open 
water fraction is accompanied by the evolution of a boundary layer at h = 0, the resolution of which requires a 
finer numerical grid than in our previous work (Toppaladoddi & Wettlaufer, 2017). The radiative fluxes used to 
compute the growth rate are taken from observations (Maykut & Untersteiner, 1971). Finally, unless otherwise 
stated, ΔF0 is set to 0 Wm −2 and FB, the oceanic heat flux, is set to 2 Wm −2.

The results presented in the following sections were obtained after the system reached a statistically steady state.

4.1. Seasonality of the Ice Thickness Distribution

We first focus on the evolution of g(h) during a typical year. Figures 2a–2d show that during winter (summer), 
g(h) expands (contracts), in agreement with observations (Kwok & Cunningham,  2015). The key features 
are as follows: (a) The distribution for June 15 in Figure 2C is double-peaked; (b) The value of the vertical 
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intercept, g(0), increases from June to August, as seen in Figure 2d; and (c) as fall begins, this double-peaked 
distribution evolves to a single-peaked distribution in September, as shown in Figure 2d. These distributions 
should be contrasted with the those obtained by Toppaladoddi and Wettlaufer (2017) using g(0) = 0 for the 
entire season.

Of particular interest is the double-peaked g(h) obtained here, which is a much sought after observational feature of 
the seasonal ice-pack. For example, similar profiles for the PDF of draft (the thickness of the submerged portion of sea 
ice) have been obtained using upward looking sonar measurements from submarines (Yu et al., 2004). These profiles 
have been converted to the sea-ice thickness and have been normalized. Figure 3 shows a qualitative comparison 
between g(h) for July 15 obtained from theory and the g(h) from submarine measurements from SCICEX cruises, 
which were made during September 1993 with the data averaged over the entire cruise track (Yu et  al., 2004). 
The agreement between theory and observations is evident, with the timing of the onset of the second peak being 
controlled by the heat capacity of ice and the snow layer. The observations in Figure 3 can also be compared with the 
distribution on August 15 in Figure 2d, which shows a distinct second peak. Note that, relative to winter, the summer 
satellite sea-ice thickness record from CryoSat-2 has many sources of variability (Landy et al., 2022).

Figure 3. Qualitative comparison of doubled-peaked g(h) with observations. The solid line represents g(h) for July 15 
obtained from theory, and the dashed line represents the g(h) from SCICEX measurements in September 1993 averaged over 
the entire cruise track in the Arctic (Yu et al., 2004). The g(h) from the theory has been made dimensional by scaling with 
Heq, and the original distribution for draft from Yu et al. (2004) has been converted to that for thickness and normalized.

Figure 2. Thickness distributions during different months for FB = 2 Wm −2 and ΔF0 = 0. The second peak in g(h) emerges 
around June 15, which is seen in figure (c).
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4.2. Evolution of the Open-Water Fraction

The seasonal evolution of the open water fraction, A(t), shown in Figure 4, constitutes a key aspect of the evolu-
tion of g(h) shown in Figure 2. From the fall freeze-up through May the open water fraction is nearly zero, after 
which it starts to increase appreciably. The maximum value of A (≈6.7%) is attained in mid-August. This quali-
tative behavior of A(t) is clearly in accord with both intuition and, most importantly, large-scale observations in 
the Arctic (Kwok & Cunningham, 2015; Kwok et al., 2009).

4.3. Mean Thickness and Albedo

The mean of any thickness-dependent quantity, Φ(h), is given by

⟨Φ(�)⟩ = ∫

∞

0
Φ(ℎ) �(ℎ, �) dh. (16)

Using this relation we calculate 𝐴𝐴 ⟨ℎ⟩ and 𝐴𝐴 ⟨𝛼𝛼⟩ , whose seasonal cycles are shown in Figure 5 for FB = 2 Wm −2 and 
ΔF0 = 0. Clearly 𝐴𝐴 ⟨ℎ⟩ reaches a maximum (≈1.74 m) in the last week of May and a minimum (≈1.25 m) in the 
last week of August. These values are lower than for the case when g(0) = 0 is imposed as a boundary condition 
throughout the year (Toppaladoddi & Wettlaufer, 2017). A similar change can also be seen in 𝐴𝐴 ⟨𝛼𝛼⟩ which here 
varies between 0.668 in early April to 0.593 in mid-August. Note that 𝐴𝐴 ⟨𝛼𝛼⟩ leads 𝐴𝐴 ⟨ℎ⟩ , underlying the ice-albedo 
feedback.

Figure 4. Evolution of A(t) during a typical year for FB = 2 Wm −2 and ΔF0 = 0.

Figure 5. Evolution of (a) mean thickness, 𝐴𝐴 ⟨ℎ⟩ ; and (b) mean albedo, 𝐴𝐴 ⟨𝛼𝛼⟩ for FB = 2 Wm −2 and ΔF0 = 0.
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4.4. Effects of Ocean Heat Flux and Greenhouse-Gas Forcing on the Open-Water Fraction and the Mean 
Thickness

Figure 6 shows the changes in the maximum value of open-water fraction, Amax, for the different values of FB and 
ΔF0. Two main features are apparent: First, an increase in the value of FB and/or ΔF0 leads to an increase in the 
value of Amax. Second, the increase in Amax due to FB is more rapid than that for ΔF0. Thus the ice cover is more 
sensitive to the ice-ocean heat flux than it is to the greenhouse-gas forcing at the upper surface. This is due to 
the fact that in a thermodynamic model when the Stefan number is large the temperature gradient in the ice is 
quasi-steady and linear (Eisenman & Wettlaufer, 2009). Thus both ΔF0 and FB have the same impact on the ice 
thickness, whereas in a model with curvature in the temperature field these forcings are local. This sensitivity of 
the ice cover to the ocean heat flux is also in qualitative agreement with the results from the thermodynamic-only 
model of Maykut and Untersteiner (1971).

Not only do FB and ΔF0 impact the maximum values of A(t), but also its minimum values and the time at which 
open water starts forming, as shown in Figure 7. When ΔF0 = 25 Wm −2 and FB = 0, which corresponds to a 
six-fold increase in the CO2 concentration in the atmosphere, open water begins to form near the middle of May 
and persists until early September. This is due to the fact that the increase in ΔF0 leads to an earlier disappearance 
of the snow layer, and hence earlier melting of the ice layer. These changes can be clearly contrasted with the case 
when both ΔF0 and FB are set to zero. Importantly, we note that the choice of ΔF0 = 25 Wm −2 and FB = 0 has 
been made to highlight the effects of these fluxes on the ice cover. Clearly, when there is a substantial increase in 
the atmospheric CO2 concentration the oceanic heat flux will increase.

Figure 6. Changes in the maximum value of the open-water fraction, Amax, with FB and ΔF0.

Figure 7. Changes in A(t) for different values of FB and ΔF0.
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The changes in A(t) due to FB are more striking. When FB = 25 Wm −2 (and ΔF0 = 0), Amax is about 32%, and open 
water is present throughout nearly the entire year. Moreover, the change in the energy balance is such that thin 
ice only grows from open water during only 3 weeks in February. To further highlight the sensitivity of the ice 
cover to FB, we show in Figure 8 the evolution of A(t) for FB = 25 and 26 Wm −2. An increase in FB of just 1 Wm −2 
results in open water throughout the year. These effects are due to the thickest ice being ostensibly isothermal 
at the base and hence any non-zero value of FB drives ablation (Maykut & Untersteiner, 1971). This leads to a 
greater thinning of the ice cover as shown in Figure 9.

Similar effects of FB and ΔF0 are also seen in the changes to the time-averaged mean thickness, 𝐴𝐴 ⟨ℎ⟩ , which are 
shown in Figure 9. Here, the time average is taken over a typical year in the statistically steady state. The decay 
in 𝐴𝐴 ⟨ℎ⟩ with FB is exponential, whereas it is algebraic with ΔF0. When FB = 60 Wm −2, 𝐴𝐴 ⟨ℎ⟩ = 0.1 m = Hc, which 
implies that it is difficult to distinguish between thin ice and open water. The value of the basal heat flux for 
which nearly ice-free conditions are observed with g(h) is an order of magnitude larger than seen in the calcu-
lations of Maykut and Untersteiner (1971), but is consistent with more recent measurements made in the Arctic 
(McPhee, 1992; Stanton et al., 2012; Wettlaufer, 1991). This persistence of the ice cover has two principal causes 
both captured by our theory: The thickest ice survives the melt season and thinner ice rafts and ridges to become 
thicker and hence has a higher albedo through Equation 15.

Figure 8. Changes in A(t) for FB = 25 and 26 Wm −2.

Figure 9. Changes in the time-averaged mean thickness, 𝐴𝐴 ⟨ℎ⟩ , with FB and ΔF0.
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4.5. Transition From a Single- to a Double-Peaked Distribution

To examine the transition of g(h) from being single- to double-peaked, we use the equivalent Langevin formula-
tion corresponding to Equation 7, which is

dh
dt

= (� � − �1) +
√

2 �2 �(�), (17)

where 𝐴𝐴 (𝜏𝜏 𝜏𝜏 − 𝑘𝑘1) and 𝐴𝐴

√

2 𝑘𝑘2 𝜉𝜉(𝑡𝑡) are the drift and diffusion terms, respectively, and ξ(t) is Gaussian white noise 
(Toppaladoddi & Wettlaufer, 2015). The growth rate here is taken to be

𝑓𝑓 =
1

𝜌𝜌𝑖𝑖 𝐿𝐿𝑖𝑖 𝑓𝑓0

(

𝑘𝑘𝑖𝑖

Δ𝑇𝑇

ℎ
− 𝐹𝐹𝐵𝐵

)

, (18)

where ki is the thermal conductivity of ice, ΔT is the temperature difference across the ice layer, and, as we have 
done throughout, we assume FB to be a constant.

An ensemble of Nen ≈ 10 5 thicknesses constitute the initial conditions for Equation 17, such that their distribution 
corresponds to the winter solution of Equation 9. For each realization Equation 17 is then integrated for 𝐴𝐴  = 1.25 
in non-dimensional units. The behavior at the origin is treated by requiring that if h < 0 at the end of integration 
in any realization, then h is set to 0.

The transition in g(h) to a double-peaked distribution is shown in Figure 10. Clearly, as the energy balance on 
the right hand side of Equation 18 changes, so too does the sign of the drift term in Equation 17. Therefore, the 
principal factor responsible for the emergence of the double-peaked distribution is the change in energy balance.

5. Conclusions
We have closed the original theory of the sea ice thickness distribution of Thorndike et al. (1975) by recasting 
the mechanical redistribution function in terms of the probability density of ice thickness itself; g(h). In conse-
quence of this closure the original theory becomes a Fokker-Planck equation. We then generalized the theory 
to include the seasonal variation in the open water fraction. This is achieved by formulating a new boundary 
condition for g(h) at h = 0. The numerical solutions show a transition from a single-peaked to a doubled-peaked 
g(h) in summer, in general agreement with submarine measurements from SCICEX cruises made in 1993 (Yu 
et al., 2004).

Our formulation makes the explicit calculation of the open-water fraction, A(t), possible. In the absence of excess 
greenhouse-gas forcing, ΔF0 = 0, the solutions reveal that A(t) ≈ 0 during the winter months, increases near the 
end of May and persists until the end of August. However, an increase in ΔF0 to 25 Wm −2 shifts the onset of 
open-water formation to the middle of May and it persists until early September.

Particularly dramatic are the effects of the basal heat flux, FB, on the ice cover. The time-averaged mean 
thickness decreases exponentially with increasing FB, and when FB  =  26  Wm −2, open water persists for the 

Figure 10. Distributions obtained from solving Equation 17 for FB = 5 Wm −2 and ΔT = 5°C. Here, Nen ≈ 10 5, 𝐴𝐴  = 1.25 , and 
Δt = 5 × 10 −5. Figure (a) shows the initial g(h) and figure (b) shows the g(h) at the end of integration.
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entire year. However, the value of FB for which nearly ice-free conditions are observed with g(h) is an order of 
magnitude larger than seen in the thermodynamic-only calculations (Eisenman & Wettlaufer, 2009; Maykut & 
Untersteiner, 1971; Semtner, 1976). This is because in our theory for g(h) the thickest ice survives the melt season 
and thinner ice rafts and ridges to become thicker and hence has a higher albedo. The basal heat flux is thus far 
more impactful than is greenhouse-gas forcing, ΔF0.

These results also highlight the different roles played by thermodynamics and mechanics in the evolution of the 
ice cover as the Arctic ocean warms (Timmermans, 2015; Timmermans et al., 2018). An increase in the ocean 
heat flux tends to make the ice cover thinner, but the mechanical redistribution of ice prolongs its survival.

The necessity of including the thickness distribution into global and regional climate models to accurately 
capture the atmosphere-ice-ocean interactions has long been recognized in the sea-ice modeling community 
(Bitz et al., 2001; Hibler, 1979; Smith et al., 2022). The thickness distribution is generally resolved using five 
thickness categories (excluding open water) and the treatment of the mechanical redistribution is based on the 
original formulation of Thorndike et al.  (1975), which—according to Thorndike et al.  (1975)—is “arbitrary.” 
The principal source of this arbitrariness comes from the need to specify the range of ice thicknesses on the thin 
end of the thickness distribution that ridge to form thicker ice. However, in principle, ice of all thicknesses can 
participate in ridging (Vella & Wettlaufer, 2008).

The inclusion of the thickness distribution is crucial for improving the energy balance in climate models. However, 
the arbitrariness associated with the mechanical redistribution of sea ice is a possible reason why some climate 
models include a thickness distribution that does not evolve in time (Castro-Morales et al., 2014). Indeed, despite 
advances in sea-ice modeling, the Coupled Model Intercomparison Project models do not realistically capture the 
observed spatial distribution of sea ice thickness or ice extent (Agarwal & Wettlaufer, 2018; Stroeve et al., 2014; 
Wei et al., 2020). Hence, we believe that progress can be made by addressing the issue of the arbitrariness asso-
ciated with the mechanical redistribution of sea ice.

Our theory does not suffer from this arbitrariness and allows for mechanical interactions in ice of any thickness. 
We show that the theory provides a physically robust and observationally consistent framework to study the 
seasonal evolution of the thickness distribution. Moreover, our prediction of the emergence of a second peak in 
the distribution, which is a key aspect of observations, highlights the necessity of the higher resolution required 
to capture the behavior near h = 0 in summer (Figure 3a). Finally, it is hoped that our work will lead to a more 
realistic representation of the thickness distribution in climate models, and hence to more accurate predictions of 
the fate of the Arctic ice cover.

Data Availability Statement
All the data are available within the manuscript. The numerical code used to solve the Fokker-Planck equation is 
available at https://github.com/skleeds23/Thickness-distribution-of-sea-ice.git. The satellite data used in Figure 1 
were extracted from the plot for g(h) in Figure 6e in Kwok et al. (2009).
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