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ABSTRACT

Scheduling tasks close to their associated data is crucial in dis-

tributed systems to minimize network traffic and latency. Some Big

Data frameworks like Apache Spark employ locality functions and

job allocation algorithms to minimize network traffic and execution

times. However, these frameworks rely on centralized mechanisms,

where the master node determines data locality by allocating tasks

to available workers with minimal data transfer time, ignoring vari-

ances in worker configurations and availability. To address these

limitations, we propose a decentralized approach to locality-driven

scheduling that grants workers autonomy in the job allocation

process while factoring in workers’ configurations, such as net-

work and CPU speed differences. Our approach is developed and

evaluated on Crossflow, a distributed stream processing platform

with data-aware independent worker nodes. Preliminary evalua-

tion experiments indicate that our approach can yield up to 3.57x

faster execution times when compared to the baseline centralized

approach where the master controls data locality.

CCS CONCEPTS

· Computing methodologies → Distributed algorithms; · Soft-

ware and its engineering→ Development frameworks and envi-

ronments.

KEYWORDS

Big Data processing, Data-aware job scheduling, Distributed pro-

cessing, Locality scheduler.

1 INTRODUCTION

Data locality, also termed spatial locality, refers to the data process-

ing occurring at the location of the data storage [6]. Increasing data

locality when scheduling tasks in a distributed environment can

lead to lower execution times, mainly because network bandwidth

is a scarce resource compared to CPU speed, and transferring data

to the nodes that need it can often last longer than waiting for a

node which has the data in close proximity to become available.

This means that in distributed and data-intensive environments,

such as MapReduce [7], we could witness a speed improvement

by avoiding the equal distribution of the work among all nodes

and introducing schedulers that will allocate tasks based on the

placement of data.

The objective of this paper is to propose a novel approach to

data-aware scheduling that will allow distributed worker nodes a

degree of independence and responsibility in the task allocation

process. Our approach is implemented on top of Crossflow [12],

which is a distributed stream-processing engine. The next section

explains the motivation behind locality-aware scheduling, whereas

in Section 3 we analyze different techniques proposed in the litera-

ture for placing the work close to the data. Section 4 explains how

the framework we chose as the baseline works with regard to job

allocation, which is followed by a detailed description of our algo-

rithm in Section 5. The set of key metrics we use for assessment is

outlined in Section 6, together with the discussion about the results

obtained from multiple workflow runs. Lastly, we provide a sum-

mary of the achievements and limitations of our implementation

and we present a plan for future work in Section 7.

2 MOTIVATING EXAMPLE

In this section we outline an application scenario that motivates the

need for processing data with a high degree of locality. Our moti-

vating use case revolves around software repository mining (MSR),

which is the analysis of source code repositories and other develop-

ment artefacts to extract insights of interest. More specifically, we

consider a pipeline which queries GitHub for Git repositories that

have source code dependent on particular libraries and we inves-

tigate how often these libraries are used together. More precisely,

we consider how often popular NPM libraries [1] for JavaScript

co-occur in favoured large-scale projects on GitHub (e.g. reposi-

tories with over 500MB in size with at least 5000 stars and forks),

by looking for 𝑝𝑎𝑐𝑘𝑎𝑔𝑒. 𝑗𝑠𝑜𝑛 files present in the repository and in-

specting their dependencies, in case there are any. To achieve this,

we need to define a simple protocol to measure the co-occurrences

of various libraries:

(1) Capture the libraries to look for in a structured format (e.g.

JSON, CSV)

(2) Search GitHub for favoured large-scale repositories (e.g.

repositories larger than 500MB with at least 5000 stars and

forks)

(3) Clone repositories found in the previous step, query them

for 𝑝𝑎𝑐𝑘𝑎𝑔𝑒. 𝑗𝑠𝑜𝑛 files and look into their dependencies

(4) Calculate the number of times libraries appear together and

store the results in a CSV file

Figure 1 showcases the described pipeline. The rounded boxes

(e.g. Repository and RepositorySearchResult) present different types

of jobs in the pipeline, where each job is defined as a piece of data

required to process a task. A task example would be Repository-

Searcher, which is shown in a rectangular shape. The cylinders are

used as communication channels, allowing for different types of

jobs to be input or output for connecting tasks.

From an implementation perspective, to deal with the size of

repositories to be cloned (which could be in the order of GBs) and

minimise the number of expensive repository cloning operations, it

would be helpful to ensure that cloned repositories could be saved

for later use without the need to re-download their contents. To

reuse the downloaded resources, repeated computations involving

the same files would be required to be allocated to the same worker
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Figure 1: MSR pipeline specified in Crossflow [12]

nodes, namely the ones that already possess them. By reducing

the download costs, especially for large resources such as GitHub

repositories, we could see a significant increase in the speed of

workflow execution.

To illustrate the rationale behind leveraging data locality in

this specific scenario, consider an incoming stream of libraries

𝑙𝑖 to be searched and a workflow consisting of two workers 𝑤1

and 𝑤2. The large-scale projects dataset obtained from GitHub’s

API includes repositories 𝑟1 and 𝑟2. Let us assume the presence

of a library denoted as 𝑙1, resulting in two related jobs for the

RepositorySearcher task: specifically (𝑙1, 𝑟1) and (𝑙1, 𝑟2).

Examining the job (𝑙1, 𝑟1) reveals that one of theworkers needs to

clone the repository 𝑟1 and examine it for the presence of the library

𝑙1, such as worker𝑤1. Subsequently, after an arbitrary amount of

time, a library 𝑙2 may emerge, giving rise to a job such as (𝑙2, 𝑟1).

In order to minimize the download costs by eliminating the time

required for repository cloning, it would be advantageous to pair

this job with the worker node that has the repository contents

already saved locally. In this instance, that worker node would be

𝑤1, which possesses resources saved from processing a previous

job.

The following section aims to outline different approaches for

locality-aware scheduling that were published over time, and to

identify a comparative baseline for the work we propose in this

paper.

3 RELATED WORK

In the current stage of distributed Big Data processing, several re-

search attempts use data resources to improve task allocation. Some

approaches attempt to delay job assignment until an appropriate

node is available [13, 14]. If that node is unavailable, the alloca-

tion will be postponed, which can occur a fixed number of times.

A downside to delayed scheduling is that workers do not always

become free as quickly as expected. Therefore, if the system is over-

loaded, maintaining a high data locality could lead to wasting time

by waiting. The Matchmaking [9] technique for MapReduce [8]

presents a similar mechanism but avoids wasting time by allowing

nodes to request jobs rather than receive them. Only when a node

becomes available will it try to pull a task for which it has data

locally. The node will remain idle for a single heartbeat if no such

task is present. On the second attempt, it is bound to accept a task

even if it does not have data locally.

More complex algorithms have also been proposed to improve

systems’ performance by increasing data awareness. For example,

in BAR [11], the authors introduce a function that calculates comple-

tion time with respect to data locality. Their algorithm comprises

two phases: at first, they attempt to assign all the tasks so they

are entirely local, only to iteratively produce alternative execution

scenarios which reduce completion time on account of the local-

ity. A more recent research effort proposed a novel scheduler for

cloud-based systems that utilises machine learning to decide when

scheduling tasks away from their data is less expensive than mov-

ing data to achieve the maximum locality (e.g. when the network

bandwidth is unstable) [10].

When it comes to Apache Spark [5], it introduces five levels of

locality, and it attempts to schedule tasks so that the maximum

degree of locality is obtained. If that is not possible, it will wait a

threshold period of time before reducing the level of locality for

that particular task [2]. Each data piece can be viewed as local based

on an IP or the set of IP addresses presenting servers containing it,

and this information can be retrieved from Spark’s partition [3].

To summarise, data awareness aims to reduce the end-to-end ex-

ecution time by avoiding unnecessary data transfers and is achieved

through compromising the fairness of task allocation. This section

described some of the techniques in the literature, whereas the next

one will introduce Crossflow [12], another framework that tackles

data locality, which will be used for implementing and evaluating

the new data-aware scheduler.

4 CROSSFLOW

Crossflow [12] is a data processing engine which, like Apache Spark

[5] and Flink [4], relies on the master/worker paradigm. However, it

is designed specifically to cope with resource-intensive workflows,

such as the one discussed in Section 2. It is aimed at processing

streams of data and tailored to deal with potentially expensive but

not as numerous jobs compared to streams of events suitable for

Spark and Flink (e.g. tweets or web server log events). For instance,

in the example of GitHub mining, searching a repository for files

of specific types can be viewed as a single job and considered

expensive due to the need to download contents of the repository

in order to identify co-occurrences of technologies of interest.

While adhering to the master/worker architecture, Crossflow

distinguishes itself from other technologies in terms of its compo-

nent functions. Notably, Crossflow employs "opinionated" nodes,

a unique feature that enables workers to decide on whether to ac-

cept or decline a job based on their preferences, without direction

from the master node. This means that applications built on top of

this framework can be implemented so they schedule work based

on data locality, since workers could be instructed to store used

resources locally and decide to work on tasks they already possess

the data for. In our example of repository mining, this could be

one way of mitigating the issue of redundant downloads, i.e. the

allocation of jobs could be dependent on the contents of workers’

local filesystems, that is, whether they have already processed the

same GitHub repository and saved it.

In more detail, instead of the master pushing jobs to the workers

it finds appropriate, Crossflow currently deals with scheduling by

enabling worker nodes to pull jobs from the master. Before being

executed, each pulled job is internally evaluated by the worker

to check if it conforms to that worker’s acceptance criteria. If it

does, the job is processed, otherwise, it is returned to the master so

another worker can consider it. The intelligence of workers lies in

this evaluation process, where they proceed to accept an assignment
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or decline it based on their internal state, i.e. their opinions. In order

to ensure the completion of all incoming jobs, workers are required

to keep track of any jobs they have previously declined. This enables

them to accept such jobs upon a second attempt, provided that no

other worker possesses the necessary capabilities to carry out the

task.

The concrete acceptance criteria are application-specific and left

to the developer to define. For example, it could be related to data

locality if the workers are instructed to scan the contents of local

cache memory. However, it could also be any other logical expres-

sion, such as available CPU/RAM capacity or an attribute-based

preference. Hence, for the mining software repositories example,

exploiting data locality is limited to the functioning of worker nodes

that trigger and control necessary data transfer through a method

the programmer implemented to suit this specific use case.

Crossflow demonstrates promising performance in executing

pipelines in which transferring data to workers is expensive, com-

pared to state-of-the-art frameworks such as Apache Spark. For in-

stance, in theMSR example, Crossflow achieves up to 8.2x faster pro-

cessing due to differences in scheduling techniques. Unlike Spark,

where all task allocation occurs in advance and without consider-

ing the resources that become local during execution, Crossflow

performs impromptu task allocation as jobs arrive. Additionally,

Crossflow’s "opinionated" nodes enable worker preferences to be

considered when allocating tasks, which is not the case with Spark,

where the master produces all assignments and considers all work-

ers equal. This can potentially result in slower workers having to

download and process larger repositories or complete assignments

later than other workers, leading to longer execution times. Figure 2

presents the end-to-end execution time comparison of the MSR ex-

ample between Crossflow and Apache Spark. The chart is organized

into different column groups, which showcase various worker and

job configurations used to execute the workflow. In the first group,

where one worker’s internet and read/write speeds are significantly

faster, and one worker is slower than the others, while repositories

to analyze are large (e.g., larger than 500MB), Spark takes 7.94x

longer to complete the workflow than Crossflow. Similarly, in the

second column group, where all workers have equivalent charac-

teristics, and small repositories are processed (e.g., smaller than

50MB), Crossflow is 2.3x faster than Spark. The third and fourth col-

umn groups demonstrate the workflow’s runtime when all workers

have the same characteristics computing on non-repetitive dataset,

and computing on varying network and read/write speeds while

processing a repetitive dataset (80% of jobs in column group four

required the same repository). The test case scenarios used to com-

pare the two frameworks are explained in more detail in Section

6.3.1.

Although Crossflow’s scheduler is highly local, it is likely there

will be redundant clones of the same repository if a node is offered

a job it has previously seen, even though some other node has

that resource locally but is currently occupied. If this happens,

even though the distributed allocation happening in Crossflow can

incorporate workers’ configurations, it is not guaranteed that the

redundant clone will be assigned to a fast worker who can facilitate

efficient execution. Even so, the preliminary evaluation indicates

that Crossflow’s scheduling technique can aid the performance of

Figure 2: Execution times ofMSR in Spark compared to Cross-

flow Baseline

long-running resource-intensive workflows which establishes a

starting point for investigating distributed job allocation further.

That being said, we can identify a couple of constraints of the

described decentralized scheduling mechanism to be considered in

our research:

• when executing the pipeline for the first time, all worker

nodes will end up rejecting repository-related jobs as they

do not possess any clones locally,

• there is no assurance that performant workers will end

up with compute-intensive jobs and vice versa, potentially

increasing execution times.

Altogether, this creates a baseline for developing a new approach

to job allocation in Big Data frameworks that will exploit opin-

ionated nodes and attempt to overcome existing disadvantages

depicted above.

5 BIDDING SCHEDULER: THE DISTRIBUTED
LOCALITY-AWARE JOB SCHEDULER

The goal of this section is to present a new scheduling mechanism

that both takes data locality into account and relies on opinionated

nodes. It is proposed as an improvement to the Crossflow frame-

work discussed in Chapter 4, however, it presents a general solution

that could be integrated with other data processing engines.

In this approach, which we will refer to as the Bidding Scheduler

in the remainder of the paper, worker nodes are not responsible

for accepting/rejecting jobs, but they enhance the traditional mas-

ter/worker architecture by participating in the job allocation pro-

cess and making scheduling a distributed decision-making activity.

The master node still broadcasts incoming jobs, however, in this

algorithm, the workers create offers and bid for work. Their bids

include estimates on when they estimate they can get that job done,

i.e. how much time they think they need to complete a particular

task. Since worker nodes schedule tasks in FIFO order, this esti-

mate must include the time to obtain any necessary resources and

execute the new job, as well as the time to download resources

and execute all unfinished jobs that have been previously allocated

(i.e. bids won previously). The master waits for workers to make
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submissions within one second and looks into all the received bids

before allocating the job to the worker who made a submission

with the lowest estimate. The same applies to the situation when

not all the workers sent their bids on time: the master chooses

the bid with the lowest estimate of all received bids or assigns the

job to an arbitrary node in case none of the workers submitted

their estimates before the threshold period exceeded. Therefore,

although the communication process is asynchronous, we rely on

time frames to group the messages and ensure that the execution

does not break in case workers follow different timings from the

master. However, in the initial concept of the Bidding Scheduler,

we did not address the issue of fault tolerance. As a result, there are

currently no specific policies in place to handle situations such as a

worker dying after winning a bid or redistributing the remaining

jobs if a worker becomes unavailable. Moreover, as we envision

the bidding process to be handled by a separate thread, we do not

anticipate workers being late to make a submission. The main fo-

cus of the approach is that the bids the master receives provide it

with insight regarding both data locality and previously committed

workload and allow it to distribute work in a manner that will

reduce the total execution time and data transfer costs.

Listings 1 and 2 contain pseudo-codes for the Bidding technique

from the master’s and the worker’s perspective. Lines 2-4 in Listing

1 encompass the initial steps responsible for initiating a bidding

contest when a new job arrives: the master publishes it for bidding

in line 3 and sets its status to𝑜𝑝𝑒𝑛 in line 4, meaning that the bidding

contest for that job is ongoing. The receiveBid function, defined

in lines 7-15, is invoked upon receiving a bid. Specifically, line 7

verifies which job the bid corresponds to, while lines 8 and 9 store

the bid information in the master record. Line 10 evaluates whether

the bidding contest should be concluded, and if this condition is

met, it triggers a sequence of operations: changing the bidding

status for the job (line 11), identifying the winner (line 12), and

eventually assigning the job to the winning worker (line 13). The

getPrefferedWorker function determines the worker with the lowest

estimate by sorting the received bids (line 19) and returning the

winner (line 20). Concerning the job allocation process, lines 24

and 25 update the job status and record the start time, subsequently

instructing the worker to queue the job for processing (line 26).

Finally, lines 29-31 outline the existing decision-making logic for

closing contests, verifying whether all workers have submitted

their bids or the bidding contest has been open for over a threshold

period of time (in this case, 1 second).

The worker functionalities in this algorithm are delineated into

two main functions. The first function, as depicted in lines 1 to 8, is

responsible for estimating the workload and submitting a bid. In line

2, the worker estimates the time required to complete the current

workload by aggregating the costs of previously won queued jobs.

This estimation serves as the baseline for creating a new bid, as

stated in line 3. The algorithm exhibits data awareness in line 4,

wherein each worker is mandated to calculate the cost of acquiring

the required data. The data transfer time could be determined by

dividing the size of the repository by the current network speed,

however the concrete formula is application specific and should

be left to the developer to define. Minimum expenses are incurred

when the worker possesses the data stored locally, which leads to

lower time estimates and subsequently increases the chances of

winning the bid. The bid amount is increased in line 5, according

to the current read/write speed’s job processing time estimation.

Similarly to the data transfer time, the processing time in the MSR

example could be computed by dividing the repository size by the

current read/write speed, yet this is specific to different types of

jobs and should be defined at the application level. Finally, the bid

is transmitted to the master, as specified in line 6.

The algorithm’s second function, described in lines 9 to 15, comes

into play when the worker wins the bidding and is required to

process the job. In line 10, the worker initiates the job processing

by updating its status to started. The actual work is executed in line

11. The worker updates the current job status in lines 12 and 13

and submits the result as the new job to be processed downstream

in line 14 (or to be recorded as a result in case the performing task

is the final one in the pipeline).

Upon closer examination of the bidding algorithm, it becomes

clear that no job needs to be rejected by all workers before being

processed. This is because, unlike the original acceptance criteria,

the łopinionatedž nodes offer job completion estimates that fac-

tor in details, such as workers’ network and read/write speeds in

this example, when allocating work. Moreover, this approach to

scheduling where the tasks are allocated as they arrive also allows

for volatile environments, as workers’ performance metrics can

fluctuate over time and still be leveraged to reduce execution time

and data load. Additionally, because the estimates are based on

worker configurations, the Bidding Scheduler ensures that redun-

dant resources (i.e. copies of the same repository cloned in different

workers in this example) occur only to accelerate overall execution.

This is the case if, for example, the worker that has resources locally

has too many queued jobs, therefore the cost of waiting for it to

become available might be greater than the cost of assigning the

job to another worker that needs to download the resources for

itself. The next section will compare the two distributed scheduling

approaches previously portrayed and discuss the results obtained

from experiments.

6 EVALUATION SETUP, METRICS AND
RESULTS

To examine the differences between the schedulers, we configured

the Crossflow framework to support both versions of job allocation,

the Bidding Scheduler and its Baseline scheduler where workers

can reject incoming jobs once in case they do not possess the nec-

essary data locally. The remainder of this section aims to present

metrics we used to evaluate our approach and discuss the results

we obtained from conducting the experiments.

6.1 Metrics

Listed below is a set of metrics we defined for comparing various

job allocation techniques with respect to data locality. To help

assess the aspects the new scheduler and data locality function are

expected to improve, this set could comprise the following list of

attributes to be quantitatively measured:

(1) End-to-end execution time. The amount of time required

to execute a workflow, from starting the master and worker

nodes to terminating their processes.
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Listing 1 Running on master

1: function sendJob(job)
2: publishForBidding(job);
3: Bids[job.id].status = open;
4: end function
5:
6: function receiveBid(bid)
7: job_id = bid.job_id;
8: bids_for_job = bidsMap[job_id];
9: bids_for_job.add(bid);
10: if 𝑏𝑖𝑑𝑑𝑖𝑛𝑔𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ( 𝑗𝑜𝑏_𝑖𝑑 ) then
11: Bids[job_id].status = closed;
12: w = getPreferredWorker(job);
13: sendToWorker(w, job);
14: end if
15: end function
16:
17: function getPreferredWorker(job)
18: receivedBids = bidsMap[job_id];
19: receivedBids.sort(bid as bid.cost_in_sec, ASC);
20: return receivedBids[0].workerID;
21: end function
22:
23: function sendToWorker(job, worker)
24: JobStatus[workerID, jobID].status = queued;
25: JobStatus[workerID, jobID].timestamp_started = now;
26: worker.consumeJob(job);
27: end function
28:
29: function biddingFinished(job_id)
30: return bids[job_id].length = activeWorkers.length OR bidding_lasted_for > 1s;
31: end function

Listing 2 Running on worker

1: function sendBid(job)
2: currentWorkloadCost = totalCostOfUnfinishedJobs();
3: bid = currentWorkloadCost;
4: bid += estimateDataTransferTime(job);
5: bid += estimateProcessingTime(job);
6: bidForJob(job, bid);
7: end function
8:
9: function consumeJob(job)
10: JobStatus[this.workerID, job.jobID].status = started;
11: newJob = process(job);
12: JobStatus[this.workerID, job.jobID].status = finished;
13: JobStatus[this.workerID, job.jobID].timestamp_finished = now;
14: master.sendJob(newJob);
15: end function

(2) Data load. The volume (in megabytes) of data that is not

local and must be transferred to the worker nodes during

execution.

(3) Cachemiss. The number of times workers did not have the

necessary data locally andwere required to either download

it or relocate it in order to perform computations.

The novel scheduling with locality-driven workers’ decisions

should decrease the end-to-end execution and data load for pipelines

using this scheduling mechanism for allocating work. Therefore,

these metrics will be considered the most important when assessing

various job allocation techniques.

6.2 Experimental Setup

To evaluate the performance of the two scheduling mechanisms,

we conducted experiments on a distributed AWS infrastructure

using t3.micro instances. We ran the MSR workflow with a total

of five workers and the master node. The infrastructure consisted

of a total of 7 instances, with one assigned to each worker, one for

the master, and one for the messaging infrastructure. The instances

were geographically distributed, and their locations were randomly

determined during configuration startup.

6.3 Simulation results

6.3.1 Configuration. Initially, we defined a set of different workers

and jobs configuration to be used for testing our approach in a

controlled environment. The evaluation encompassed multiple con-

figurations for both the workers and the incoming jobs, allowing us

to observe the behaviour of the algorithms across different setups.

Namely, for workers we prepared four different configurations, all

comprising five workers in total:

• All-equal. A configuration where all workers have the

same, or nearly the same, network and read/write speeds

as well as storage resources.

• One-fast. A configuration where one worker is signifi-

cantly faster than the others, in terms of network and com-

putation speed.

• One-slow. A configuration where one worker is signif-

icantly slower than the others, in terms of network and

computation speed.

• Fast-slow.A configurationwhich has one slow and one fast

worker, while the remaining three have average download

and processing speeds.

Similarly, we created five different job configurations with 120

jobs each, to emulate the real-world assignment patterns. In these

configurations, repositories can vary in sizes (be small, medium

or large, ranging between 1MB and 1GB), and the jobs can be all

different or repetitive (depending on whether the jobs requiring

the same repository occur again in the same pipeline run). Details

of the configurations are listed below:

• All_diff_equal. Equal distribution of repository sizes, with

all jobs in the test case scenario using different repositories.

• All_diff_large.Mostly large repositories, with all jobs in

the test case scenario using different repositories.

• All_diff_small. Mostly small repositories, with all jobs in

the test case scenario using different repositories.

• 80%_large. Repetitive pattern with mostly large reposito-

ries. Within the set of large-scale jobs, 80% require the same

large repository.

• 80%_small. Repetitive pattern with mostly small reposi-

tories. Within the set of small-scale jobs, 80% require the

same repository.

For testing purposes, we ran all combinations of worker and

job configurations, in three iterations each. Multiple iterations are

required to examine the data locality features, since, in the case

of all jobs being different, we cannot see job allocation occurring

with respect to data storage unless workers have files saved from

previous executions. To control network and read/write speeds,

workers were equipped with preconfigured speeds upon initiating

the workflow. These speeds were used to determine bid values.

However, to better replicate real-world network throttling scenarios

and ensure bidding costs differed from actual execution times, the

speeds were subjected to a noise scheme during job execution to

simulate realistic variations in network conditions. The next section

outlines core findings stemming from evaluating the behaviour of

the two approaches in a simulated environment.
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6.3.2 Experiment results. Performing tests with the configurations

depicted above led to three crucial conclusions we aim to elaborate

further in the remainder of this section:

(1) Bidding Scheduler achieves a speedup of approximately

24.5% compared to the Baseline.

(2) Bidding Scheduler demonstrates improvements in local data

utilisation, with approximately 49% fewer cache misses and

approximately 45.3% reduction in data load per workflow

run.

(3) The Bidding Scheduler exhibits an overhead that makes it

more effective for large resources and long-running work-

flows. However, for small resources or short workflows,

competing for jobs unnecessarily prolongs the execution,

making it less advantageous compared to the Baseline.

Figure 3 displays three charts that provide additional insights

into the performance differences between the Bidding Scheduler

and the Baseline. The charts illustrate the average time required

for execution, the average number of cache misses, and the average

number of megabytes downloaded per algorithm per workload,

respectively. These three factors are interrelated, as demonstrated

by the results. For example, when 80% of repositories are large and

repeating, the Bidding Scheduler records approximately 22.65 cache

misses per workflow run, compared to the Baseline’s 45.5. With

reduced cache misses for the same test configuration, the Bidding

Scheduler minimizes data load from 10786.88MB to 5270.87 MB on

average, ultimately leading to a 51% reduction in data downloaded

and a 41% increase in speed. Similarly, observing aggregated data

for the test scenario of 𝑎𝑙𝑙_𝑑𝑖 𝑓 𝑓 _𝑒𝑞𝑢𝑎𝑙 we can conclude that, for

the case of all repositories being different with their sizes equally

distributed, the Bidding Scheduler downloads 9591.45MB compared

to Baseline’s 17908.08 MB, resulting from 26.83 less cache misses

on average, which altogether leads to approximately 57% speedup.

Figure 4 features a breakdown of the total workflow execution

time, analyzing the measured number of seconds taken to complete

the workflow with diverse job configurations and worker character-

istics. Observing the cases for 𝑜𝑛𝑒_𝑠𝑙𝑜𝑤 and 𝑜𝑛𝑒_𝑓 𝑎𝑠𝑡 for both the

Bidding Scheduler and the Baseline, it can be argued that the figure

offers evidence that the Bidding Scheduler is tailored to address

only a specific subset of use cases, rather than being suitable for all.

In our setup, the performance of the scheduler is impacted by two

key factors: internet connectivity and resource size. In situations

where high-performing machine instances exist and should com-

pute over relatively small pieces of data, the cost of transferring

data remains lower than the overhead involved in contesting an

incoming job. As such, the Bidding Scheduler performs comparably

to, or somewhat slower than, the Baseline when one worker is

significantly more efficient than the others. Conversely, Bidding

outperforms the Baseline when workers have restricted internet

access or need to work with large resources. The advantages of

Bidding can be attributed to the increased autonomy of workers

and the utilisation of various worker characteristics in the estima-

tion calculations facilitated by the Bidding Scheduler, which allows

workers to inform the master about their current state with each

submission. In turn, this enables the master to prioritize workers

based on their capabilities, avoiding the prolongation of execution

due to slower nodes carrying excessive workloads. Additionally,

(a) Average total execution time per workload

(b) Average cache miss count per workload

(c) Average data load per workload

Figure 3: Accumulated results per workload per algoritm
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Figure 4: Average execution times per workload per algo-

rithm

MSR Bidding Baseline

run 1 3204.5s 3575.55s

run 2 2918.5s 3544.45s

run 3 3116.52s 4183.5s

Table 1: MSR execution times

MSR Bidding Baseline

run 1 332935.90 MB 891165.59 MB

run 2 325461.08 MB 847802.57 MB

run 3 330048.70 MB 889594.77 MB

Table 2: Data load in MB

MSR Bidding Baseline

run 1 205 405

run 2 191 394

run 3 186 386

Table 3: Cache miss count

since scheduling occurs for every job as it arrives, the master can

adapt its allocation decisions to fluctuations in workers’ speeds

over time.

6.4 Non-simulated experiment results

To evaluate the authenticity of our emulation, we conducted a series

of experiments that executed the MSR example on the identical

AWS infrastructure. These experiments relied on the bandwidth

and read/write speeds available to the AWS instances, as well as

the responsiveness of the GitHub API. We performed the pipeline

with both schedulers three times each, to collect results and observe

nuances between the executions.

In this particular evaluation scenario, workers were assigned

pre-defined network and read/write speeds. These speeds were

obtained by examining a repository of 100MB in advance. Upon

completion of each job, workers were tasked with calculating their

latest network and read/write speeds. The network speed was de-

termined by dividing the size of the repository by the time taken to

complete the download, while the read/write speed was computed

by dividing the repository size by the time taken to examine its

contents. These newly obtained speeds were then utilized to set

the network and read/write speeds for the subsequent bid, by cal-

culating the historic average for all speeds determined for previous

jobs.

The results obtained from this set of experiments, organized

according to the metrics described in Section 6.1, are presented

in Tables 1, 2, and 3. In Table 1, we observe that, when none of

the workers have any locally downloaded repositories, the Bidding

Scheduler completes the execution with a 10.3%-25.5% reduction in

time compared to the Baseline. For example, for 𝑟𝑢𝑛3 this difference

is at its highest, given that the setup with the Bidding Scheduler fin-

ishes in 3116.52s whereas the one relying on the Baseline completes

in 4183.5s. In contrast, the lowest acceleration was recorded for
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𝑟𝑢𝑛1 where the Bidding Scheduler completed in 3204.5s compared

to the Baseline’s 3575.55s.

To further analyze these findings, we should examine the data

presented in Tables 2 and 3. In 𝑟𝑢𝑛1, the pipeline utilizing the Bid-

ding Scheduler downloaded 332935.90MB, while the sameworkflow

employing the Baseline Scheduler transferred 891165.59 MB. This

corresponds to 205 and 405 cache misses in Table 3, respectively,

indicating a significant reduction of 62.6% in data load attribut-

able to a reduction of 49.4% in cache misses. In 𝑟𝑢𝑛3, as shown

in Table 3, the Bidding Scheduler resulted in 200 fewer repository

clones, leading to a decrease in downloads of 559546.07 MB, as in-

dicated in Table 2. Consequently, the Baseline Scheduler exhibited

a 25.5% longer execution time due to higher data transfer rates by

approximately 62.9% compared to the Bidding Scheduler. These

findings collectively demonstrate the successful enhancement of

data locality achieved by the Bidding Scheduler.

7 CONCLUSIONS AND FUTUREWORK

This paper presented a novel technique for scheduling work in Big

Data frameworks, that relies on distributed decision-making, unlike

the traditional master/worker architectures. This mechanism dele-

gates more responsibility to the worker nodes through participating

in the bidding contest to acquire jobs. Moreover, to increase their

chances of getting an assignment, they are responsible for main-

taining their cache memories and local resources and seeking work

corresponding to the data they have locally. Preliminary evaluation

shows promising results with regard to the bidding mechanism,

that in most cases performs better than the baseline due to the fact

that its scheduling is not strictly controlled by the data locality and

takes into account workers’ characteristics. Beyond larger-scale

evaluation and comparing the approach to other locality scheduling

techniques such as Matchmaking, future work includes minimizing

the bidding overhead for highly local jobs as well as providing more

intelligence for the worker nodes by enabling them to keep the

historic data of their bids and completed work and use this data to

learn from it and adjust their future bids.
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