
This is a repository copy of Towards Memory-Efficient Validation of Large XMI Models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/208519/

Version: Accepted Version

Proceedings Paper:
Jahanbin, Sorour, Kolovos, Dimitris orcid.org/0000-0002-1724-6563 and Gerasimou, 
Simos (2023) Towards Memory-Efficient Validation of Large XMI Models. In: Proceedings -
2023 ACM/IEEE International Conference on Model Driven Engineering Languages and 
Systems Companion, MODELS-C 2023. 2023 ACM/IEEE International Conference on 
Model Driven Engineering Languages and Systems, MODELS-C 2023, 01-06 Oct 2023 
Proceedings - 2023 ACM/IEEE International Conference on Model Driven Engineering 
Languages and Systems Companion, MODELS-C 2023 . Institute of Electrical and 
Electronics Engineers Inc. , SWE , pp. 241-250. 

https://doi.org/10.1109/MODELS-C59198.2023.00053

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Towards Memory-Efficient Validation

of Large XMI Models

1st Sorour Jahanbin

Dept. Computer Science

University of York

York, United Kingdom

sorour.jahanbin@york.ac.uk

2nd Dimitris Kolovos

Dept. Computer Science

University of York

York, United Kingdom

dimitris.kolovos@york.ac.uk

3rd Simos Gerasimou

Dept. Computer Science

University of York

York, United Kingdom

simos.gerasimou@york.ac.uk

Abstract—Model validation is a common activity in model-
driven engineering, where a model is checked against a set
of consistency rules (also referred to as constraints) to assess
whether it has desirable properties further to those that can be
expressed by the metamodel that it conforms to (e.g. to check
that all states in a state machine are reachable or that no classes
in an object-oriented model are involved in circular inheritance
relationships). Such constraints can be written in general-purpose
(e.g. Java) or in task-specific validation languages such as the
Object Constraint Language (OCL) or the Epsilon Validation
Language (EVL). To check a model that is serialised in the
OMG-standard XMI format against a set of constraints, the
current state of practice requires loading the entire model into
memory first. This can be problematic in cases where loading the
model into memory requires more memory (heap space) than is
available in the host machine, and is sub-optimal when carrying
out distributed model validation over a number of machines. In
this paper, we present an approach that uses static analysis to
split sets of model validation constraints into sub-groups that
operate on smaller subsets of the model. Combined with existing
XMI partial loading capabilities, the proposed approach makes it
possible to check larger XMI-based models on a single machine
and to potentially improve efficiency when checking models in a
distributed setting.

Index Terms—model validation, partial loading, memory man-
agement, file-based model, XMI model, model-driven engineering

I. INTRODUCTION

Model-driven engineering relies on models as the primary

artefact, which are manipulated by model management pro-

grams performing various tasks, including model validation.

However, when dealing with large file-based models such as

those serialized in XMI format, scalability issues arise in the

validation of such models.

XMI (XML Metadata Interchange)1 is an Object Man-

agement Group standard for model persistence and it is a

native format for model persistence in the Eclipse Modeling

Framework (EMF). EMF’s default XMI parser loads the entire

model into memory and occupies memory with the parts of

model that are not referenced by the program. This inefficient

interaction results in wasted memory and can cause execution

to fail when the model exceeds the available heap memory,

preventing the execution engine from loading the model and

running the program on a single machine.

1https://www.omg.org/spec/XMI/

Similar issues arise when attempting to execute constraints

in parallel. In this scenario, all constraints are distributed

across multiple machines, and the entire model is loaded

on each machine, regardless of which constraints they are

assigned to execute. Consequently, the loading and validation

of models in the execution engine lack efficiency, leading

to increased model loading time and unnecessary memory

consumption in each machine.

In this paper, an approach is presented for improving the

performance of execution engines when dealing with the

validation of large models. By leveraging static analysis and

advance knowledge about the program, the proposed approach

partitions the constraints into groups. The execution engine

employs a partial XMI parser, allowing it to selectively load

the relevant parts of the model that are expected to be accessed

by each group. Additionally, the execution engine can discard

model sections that are no longer referenced by the program,

thereby freeing up memory for the remaining execution.

Applying the proposed approach, execution engines of vali-

dation programs can handle large models more efficiently. The

use of static analysis allows for better resource allocation, thus

reducing unnecessary memory consumption for loading and

validating models.

The main contributions of this work are:

• An algorithm for grouping constraints using static anal-

ysis.

• An efficient execution plan for validating constraints on

XMI models.

• A prototype implementation of the algorithm using the

Eclipse Epsilon family of model management languages

and an existing partial XMI parser.

The remainder of the paper is structured as follows. Sec-

tion II provides an explanation of the challenges of interest

through a motivating example. In Section III, the proposed

approach is presented and discussed in detail. Also, the

limitations of our approach are acknowledged. Related work

is reviewed in Section V, providing an overview of existing

research and approaches that have addressed similar or related

problems. Section VI reports on the results of the evaluation

of our approach, and finally, Section VIII summarises the

contributions of our work and outlines directions for future

work.



II. MOTIVATING EXAMPLE

Figure 1 shows the metamodel of a simplified component-

connector language, which is used as a motivating example in

this paper. The metamodel has a Component class which has a

name and consists of ports, which is shown by a containment

reference from Component to the Port class. Each Port has a

name and a type. Also, it has a reference to its Component.

There are two types of Ports, InPort and OutPort that are

connected to each other by a Connector. The source of a

Connector is always an OutPort of a Component, and the

target of Connector is an InPort.

Component

 name: EString

OutPort InPort

Port

 name: String

 type: String

ports [*]

Connector

source target

component

incoming
[*]

outgoing
[*]

Fig. 1. Component Language Metamodel

Component "X"

Component "Y"

OutPort

InPort

Fig. 2. Sample model that conforms to the metamodel of Figure 1

Consider a model that conforms to the Component language

(a Component diagram is shown in Figure 2), which we would

like to validate with additional constraints. These constraints

could be written in general-purpose (e.g. Java) or in task-

specific validation languages such as the Object Constraint

Language (OCL) or the Epsilon Validation Language (EVL)

[1]. For this work, we have selected Epsilon’s EVL; however,

the proposed approach also applies to other types of valida-

tion languages. Listing 1 contains the additional constraints

expressed in EVL.

Listing 1. EVL constraints to validate Component Language instances
1 context Component {

2 constraint hasValidName {

3 check: self.name = self.name.ftuc()

4 message: self.name + " should start with an

upper-case letter"

5 }

6

7 constraint hasUniqueName {

8 check: Component.all.select

9 (c:Component|c.name = self.name).size() == 1

10 message: "Duplicate component name" + self.name

11 }

12 }

13

14 context Connector {

15 constraint portTypesMatch {

16 check:self.source.type=self.target.type

17 message:"The types of the source and target

ports don’t match"

18 }

19 }

The first constraint (hasValidName) checks that the name of

each Component should start with an upper case letter (using

EVL’s ftuc()2 method), while the second one (hasUnique-

Name) makes sure that Component names are globally unique.

The third constraint (portTypesMatch) checks that the types of

two Ports connected by a Connector are the same.

According to Listing 1, the information that is required for

executing the hasValidName constraint is the name attribute of

all instances of Component in the model. The hasUniqueName

constraint also needs the same information. For running the

PortTypeMatch constraint, the source and target references of

all instances of Connector are of interest and the type attribute

of Port, too. It is worth noting that some parts of the model,

such as the name attribute or the component reference of Port,

are not accessed by any of these constraints.

To run these constraints, if the execution engine uses EMF’s

default XMI parser, the whole model will be loaded into

memory. Hence, some memory will be occupied by model

elements or features not required for executing the program

(such as the name attribute or the component reference of

Ports). Also, all loaded elements will be kept in memory until

the end of execution, which is not optimal. For example, after

running the second constraint (hasUniqueName), instances of

the Component class are no longer needed by the program;

there is no need to keep these model elements and their

features in memory while executing the third constraint.

To improve efficiency, it is possible to identify groups

of constraints that access the same sub-sets of the model.

For instance, the hasValidName and hasUniqueName con-

straints in the example require the same information (the

names of all Components in the model). In our approach,

by recognising this, the execution engine can execute these

constraints together without the need for additional loading

and unloading overhead. The necessary information, such as

the name attribute of Component, can be loaded into memory,

the constraints can be executed, and the information can be

unloaded once it is no longer needed for the PortTypeMatch

constraint. By selectively loading and unloading the relevant

information, the execution engine can reduce the loading time

and overall execution time.

The current execution engine of EVL programs is not aware

of features of required model elements that have to be fetched

from the XMI model and loaded into memory. Also, there

is no hint for the execution engine to dispose of the parts

of models from memory that are no longer required by the

program. Hence, a static analyser becomes essential to analyse

the EVL program in order to obtain advanced knowledge about

the program. This knowledge allows the execution engine to

selectively load relevant information and group the constraints

based on this acquired understanding.

III. APPROACH

The memory management and loading time when work-

ing with large XMI models can be improved through the

2first to upper case



Execution Engine

Large XMI model

Memory

Abstract Syntax 

Graph

Original metamodel

Output
Execute the program

Effective Metamodel

Conforms 

to

EVL program

Static 

Analyser
Effective Metamodel 

Computation

0

Load the necessary information

into memory

1

2

3

XMIN Driver

Partial Parser

Partitioning Handler

Fig. 3. The proposed approach

implementation of two key features in the EVL execution

engine: partial loading and partitioning. In our approach, we

combine these capabilities to enable the execution engine to

load only specific subsets of the model that are required

for executing the program, resulting in a reduced memory

footprint. Additionally, splitting constraints into sub-groups

(which is referred as partitioning the constraints in this paper)

allows for selective loading and unloading subsets of the model

based on the constraints being executed, further improving

the overall efficiency of the program. Together, these features

can facilitate more efficient memory utilization and improved

performance in running the program.

In terms of concrete technologies, we use XMI as a file-

based model format and programs written in the EVL language

of the Epsilon platform, but the approach can be extended

to other languages of Epsilon, and it is also applicable to

other similar technologies (e.g. OCL). A high-level overview

of our approach is presented in Figure 3. The main components

of this approach are represented in grey and labelled with

numbers 1 to 3.

A. Static Analyser

In our work, we use a static analyser for Epsilon programs3

that applies variable and type resolution to derive an abstract

syntax graph from the abstract syntax trees of EVL constraints.

The inputs of the static analyser are an EVL program (set of

constraints) and the metamodels of the models it consumes

(first step of our approach in Figure 3).

In-advance knowledge about the program (i.e., types and

properties accessed by the program) is extracted by the static

analyser using the abstract syntax graph. The extracted in-

formation is in the form of an effective metamodel for every

model the constraints access. The effective metamodel is a

subset of the model’s original metamodel, consisting only of

3https://github.com/epsilonlabs/static-analysis

types and properties likely to be accessed by the program [2]

(see Section III-B).

While the EVL static analyser supports multiple models

(and therefore produces multiple effective metamodels), we

will only consider programs with one model (and, therefore

one effective metamodel) in the remainder of the paper. To

illustrate how every step of the approach works, we use the

motivating example of Section II.

In the first step of our approach, the static analyser sets

the resolved types of expressions to types from the respective

metamodels, to primitive types (e.g., String, Integer) or to

collection types.

For example, in line 3 of Listing 1, the resolved type of self

variable is equal to Component as the context of constraint

is Component (Line 1). In line 3, the property call checks

the name of each Component. The name is an attribute of

Component, and the resolved type is String. The type of the

self.name in line 3 (as a target of ftuc() operation call) and in

line 4 (as a property call) is resolved as String (as same as

property call in line 3).

In the following constraint (hasUniqueName), the target of

the select operation call is a property call which retrieves the

name of all Components. In line 8, variable c is resolved as

model element (Component) as the target of the select oper-

ation is all instances of Component. The type of self.name is

resolved as String, as same as in the hasValidName constraint.

In line 14, the types of self.source.type and self.target.type

are resolved as String. The type of the self variable is resolved

to Connector, and the source and target are the references of

Connectors which are resolved as model elements (source is

resolved to OutPort and the target is InPort type) (see the

metamodel in Figure 1). Table I shows the resolved types of

expressions extracted from Listing 1 by the static analyser.



TABLE I
RESOLVED TYPES CALCULATED BY THE STATIC ANALYSER

Line number in Listing 1 Expression Resolved Type

1 Component Model Element (Component)

3, 4, 9 self.name Property call expression (String)

3, 4, 9 self Model Element (Component)

3 self.name.ftuc() Operation call expression (String)

8 Component.all.select(c | c.name = self.name).size() Operation call expression (Integer)

8 Component.all.select(c | c.name = self.name) Operation call (Collection<Component>)

8 c.name Property call expression (String)

8 c Model Element (Component)

B. Effective Metamodel Computation

The extraction of the effective metamodel of constraints is

the second step of the approach. The concept of the effective

metamodel is introduced by Wei et al. [3], and it is constructed

using the algorithm discussed in [4]. This algorithm uses the

resolved types of expressions from an abstract syntax graph

(that is created by the static analyser). It contains only types

which are necessary for executing the program from which

it is extracted. In our implementation, effective metamodels

are only computed for EMF-based models, but in principle,

this approach can also be applied to other metamodelling

technologies.

As shown in Figure 4, an effective metamodel consists of

an EffectiveMetamodel class with name and namespace URI

(nsuri, the unique ID of the metamodel in terms of EMF termi-

nology) attributes. The EffectiveMetamodel class is connected

to an EClass that has EStructuralFeatures. The EffectiveMeta-

model class is connected to an EClass by allOfKind, allOfType

and types references.

The allOfKind and allOfType references specify the in-

stances of types that the execution engine should load. The

difference between these two references is that allOfKind

is used when all instances of a class (including subclasses)

should be loaded. In contrast, allOfType reference means

the execution engine should consider only the elements that

are direct instances of the class (without considering any of

its subclasses). The types reference is used to specify class

instances that should be loaded only when they appear in the

containment references of model elements.

EffectiveMetamodel

 name: String

 nsuri: String 

EClass

 name: String

EStructuralFeature

 name: String

allOfKind [*]

allOfType [*]

eStructuralFeatures [*]types [*]

features [*]

Fig. 4. The structure of effective metamodel (adapted from [3])

For every class used in the program (such as Component

and Connector), an EClass is added in the respective effective

metamodel. The EClass contains collections of structural

features that reflect the attributes and references of the type

accessed by the program.

Figure 5 illustrates the effective metamodel extracted from

the EVL program in our motivating example (Listing 1).

:EffectiveMetamodel

 name: PSL

 nsuri: psl

:EClass

 name: Component

:EAttribute

 name: name

:EClass

 name: Connector

features

eStructuralFeatures

allOfKind

allOfKind

:EReference

 name: source

:EReference

 name: target

eStructuralFeatures

eStructuralFeatures

:EClass

 name: InPort

types

eStructuralFeatures

:EAttribute

 name: type

:EClass

 name: OutPort

eStructuralFeatures

types

Fig. 5. The effective metamodel extracted from Listing 1

In Figure 5, the attributes of the EffectiveMetamodel class

are filled by the original metamodel, which are the name and

the nsuri of the metamodel. For running the EVL program in

Listing 1, all instances of Component and Connector must be

loaded. The Component and Connector classes are added to

EffectiveMetamodel under the allOfKind references. The name

attribute of Component is added to the EffectiveMetamodel as

well. The source and target references of Connector are also

required (line 15 of Listing 1), hence, they are added to Con-

nector as EReferences using EStructuralfeatures references.

The resolved type of source reference is equal to OutPort

(see Table I), so the OutPort EClass is added to effective

metamodel using the types reference which is the same for

the target reference that is resolved to InPort EClass. The last

attribute is type attribute which is added to InPort and OutPort

EClasses.
C. XMIN Driver

In Epsilon’s architecture, there is the Epsilon Connectivity

Layer (EMC)4) which enables Epsilon programs (including

EVL constraints) to interact with models in different modelling

technologies in a uniform manner by defining drivers (e.g.,

EMF, CDO, NeoEMF).

Our frugal file-based model loading approach has been

implemented in the form of a new Epsilon driver called XMIN,

which is an extension of the existing EMF driver and provides

facilities for Epsilon programs to load XMI-based models

partially.

1) Partial Parser: As EMF’s default XMI parser loads the

entire model into memory, for partial loading, a custom XMI

4https://www.eclipse.org/epsilon/doc/emc/



parser is needed to load models based on the information

provided by an effective metamodel. For this purpose, we use

the parser described in [3] after fixing some bugs and making

further improvements to its performance. Therefore, in step 3

of Figure 3, the partial parser will load the model based on

the effective metamodel.

This parser scans the whole XMI file and checks the tags

of elements with the effective metamodel classes and features.

If the element’s tag is represented in the effective metamodel,

then the element is loaded; otherwise, the parser ignores the

element, pushes a placeholder in the parser stack and moves

on to the next element in the file.

Using a partial parser in the XMIN driver saves time

in the loading process and saves memory [3] because less

information is loaded compared to the default XMI parser.

Considering the example in Listing 1, in step 3 of our

approach, the partial parser loads the XMI models based on

the extracted effective metamodel (Figure 5). All instances

of Components with their name attribute, all instances of

Connector with their source and target references, and InPort

and OutPort instances with their type attribute are loaded.

Other information, like the names of ports, is skipped by the

parser.

However, by only using the partial parser, the necessary

information for executing all constraints is kept in memory

until the end of execution. The execution engine performance

can be improved by keeping this information in memory only

while it is required and then disposing it. This feature can be

supported by partitioning the constraints, loading the part of

the model required for executing the group and disposing of

it after execution is finished.

D. Partitioning Handler

Loading all necessary information from the model upfront

and running the program would be efficient in terms of loading

time as it would avoid the cost of re-parsing a model but it

would keep elements and their property values in memory for

longer than needed, which is not efficient in terms of memory

footprint. Hence, if the machine’s memory is insufficient to

accommodate all the necessary model elements, the execution

engine will be unable to load the model, resulting in a failure to

execute the program. Partitioning the constraints and loading

information for each constraint separately can be a solution

for this issue. Although loading and unloading information for

each constraint is not considered optimal (discussed below), it

serves as an intermediate step to introduce our approach.

In this solution, instead of extracting an effective metamodel

for the whole program and loading information based on

that in one go, an effective metamodel is extracted for each

constraint separately. After executing the constraint, all model

elements will be unloaded, and the memory becomes available

to run the next constraint.

In Listing 1, there are three constraints to validate the model.

Figure 6 shows three effective metamodels that are extracted

for each constraint. An overlap outlines how a specific task or

program will be executed by the system. Figure 7 shows an

:EffectiveMetamodel

 name: CL

 nsuri: cl

:EClass

 name: Component

:EAttribute

 name: name
features

eStructuralFeatures

allOfKind
:EffectiveMetamodel

 name: CL

 nsuri: cl

:EClass

 name: Component

:EAttribute

 name: name
features

eStructuralFeatures

allOfKind

:EffectiveMetamodel

 name: CL

 nsuri: cl

:EClass

 name: Connector

allOfKind

:EReference

 name: source

:EReference

 name: target

eStructuralFeatures eStructuralFeatures

:EClass

 name: InPort

types

eStructuralFeatures:EAttribute

 name: type

:EClass

 name: OutPort

eStructuralFeatures

types

EfMetamodel 1 EfMetamodel 2

EfMetamodel 3

Fig. 6. Effective metamodels of constraints in Listing 1

overview of the overlap for running an EVL program in the

intermediate solution.

To run the EVL constraints in listing 1, using the inter-

mediate solution, the EVL execution engine loads the model

based on hasValidName’s effective metamodel (EfMetamodel

1 in Figure 6) and runs the constraint using loaded model

elements and properties. In the next step, the cache is cleared,

and all information is unloaded from the memory. The same

process happens for the rest of the program until the execution

is finished.

Load model based on
constraint's effective

metamodel

Execute the
constraint Clean the memory End of execution

Extracting all effective
metamodels of

constraints

Fig. 7. Overview of an overlap

1) Constraint Grouping: Partitioning the program based on

constraints is efficient regarding memory footprint as model

elements are not kept in the memory for the entire execution.

However, it is more time-consuming as the model is loaded

multiple times.

Figure 6 shows that the effective metamodels of hasValid-

Name and hasUniqueName are identical (EfMetamodel 1

and EfMetamodel 2, and these two constraints require the

same data. Hence, disposing of the information from memory

after running hasValidName constraint and loading the same

information again to execute hasUniqueName is sub-optimal.

By grouping the hasValidName and hasUniqueName con-

straints and associating their effective metamodel with the

group, the execution engine can identify that these constraints

can be executed using the same data. As a result, the execution

engine optimizes the process by avoiding the unnecessary

unloading of information after loading model elements for

the hasValidName constraint. Instead, it loads the required

information based on the effective metamodel, executes both

constraints and unloads the information.

Therefore, adopting a strategy of grouping constraints based

on their effective metamodel, specifically when they require

the same information or a subset of information for execution,



presents a promising approach to minimize loading time more

than the intermediate solution. By identifying these relation-

ships and grouping the constraints accordingly, the execution

engine can optimize the loading process by reusing the already

loaded information, thereby decreasing the overall loading

time. In our approach, the partitioning handler is a component

in the execution engine which is responsible for grouping the

constraints.

Algorithm 1 describes an algorithm to group the constraints.

The strategy of this algorithm is to make a group of constraints

with the same effective metamodel, or the constraints that their

effective metamodels are a subset of each other.

In line 3 of Algorithm 1, the algorithm goes through all

constraints and computes their effective metamodels. In line

6, the algorithm searches in constraints to evaluate if there are

other constraints, the effective metamodel of which is a subset

or a super-set of this constraint. If it is found, the second

constraint will be added to the same group as the first one,

and the super-set effective metamodel will be mapped to the

group (lines 7 to 9).

For example, if a constraint accesses the target reference

of Connector class, then the effective metamodel is a subset

of EfMetamodel 3 (as EfMetamodel 3 includes the target

reference of Connector class to execute the constraint), and

it would be efficient to put them in the same group.

Another possible case for grouping constraints is when

the constraints’ effective metamodels are not the same or

superset/subset of each other but there is a significant overlap

between them (the elements that are required for running the

constraints). In this situation, grouping constraints becomes

less straightforward.

On the one hand, grouping constraints saves time in the

loading/unloading process, but on the other hand, loading more

information can increase the memory footprint of the loaded

model. For example, in Figure 8, there are two constraints

that both require all instances of InPort class with the name

attribute (they are shown by green colour). Constraint 1 needs

the incoming reference of InPort class, while Constraint 2

requires the type attribute to be executed. In this scenario,

the partitioning handler can take two different strategies:

• Loading model elements for each constraint and execut-

ing the two constraints separately. The execution engine

loads the name attribute and incoming reference of InPort

class, executes the Constraint 1 and unloads the model

elements. Then, it loads the name and type attributes of

InPort class again and executes Constraint 2.

• Grouping the two constraints, merging their effective

metamodels and executing the constraints in sequence (or

in parallel). The execution engine loads the name and type

attributes and the incoming reference of InPort class and

executes both constraints.

Therefore, there is a trade-off between loading more infor-

mation in one go, having less memory available for execution

and saving time, and loading elements separately and spending

more time on loading but making more space available in

memory for running the constraint. For example, in Figure 8,

Constraint 1

Constraint 2

:EAttribute

name: Inport

:EAttribute

name: Inport

:EReference

:EClass

name: Inport

EStructuralFeatures

EStructuralFeatures

name: incoming

Fig. 8. Constraints with overlap

for executing Constraint 1, if the number of InPort instances is

large enough to occupy most of the memory, then it is highly

possible that loading an additional attribute (type attribute)

would not be efficient (execution needs the memory). If the

number of elements occupies less memory, then loading more

data and running more constraints would be recommended.

The partitioning algorithm needs more information about

the model to decide on partitioning and automatically evaluate

which strategy is the optimal option. This information is

not available in our approach, as the static analyser gains

in-advance knowledge about the program. It works on the

metamodel abstraction level and has no information about the

model and its content. Therefore, the lack of this knowledge

is to be compensated by the user.

To address this limitation, we empower users to group the

constraints themselves using annotations in the EVL program.

By leveraging the expertise and insights of the user, the

constraints can be grouped in a way that takes into account

the specific characteristics and dependencies of the model.

This enables users to make informed decisions about constraint

grouping, leveraging their domain knowledge and understand-

ing of the model structure.

As shown in Listing 2, we consider a new annotation

(@group) in EVL language. Using this annotation, users can

group constraints manually. In Listing 2, the @group anno-

tation is followed by an id. Constraints with the same group

id are in the same group. Therefore, constraint hasValidName

and hasUniqueName are grouped as they have the same id,

and portTypeMatch is executed separately.

Listing 2. Groupig EVL constraints to validate Component Language in-
stances

1 context Component {

2

3 @group gp1

4 constraint hasValidName {

5 check: self.name = self.name.ftuc()

6 message: self.name + " should start with

7 an upper-case letter"

8 }

9

10 @group gp1

11 constraint hasUniqueName {

12 check: Component.all.select

13 (c:Component|c.name = self.name).size() == 1

14 message: "Duplicate component name" + self.name

15 }

16 }

17



Algorithm 1 Partitioning Algorithm

1: let Map<Constraint, EffectiveMetamodel> constraintSets

2: let Map<Set<Constraint>, EffectiveMetamodel> constraintgroups

3: for all constraint1 in constraintSets do

4: let gpEfModel = getEffectiveMetamodel(constraint)

5: let group = New Set<Constraint>

6: for all constraint2 in constraintSets do

7: if isSubSet(gpEfModel, getEffectiveMetamodel(constraint2)) then

8: group.add(constraint2)

9: geEfModel = MergeMetamodel(gpEfModel, getEffectiveMetamodel(constraint2))

10: end if

11: constraintgroups.add(group, geEfModel)

12: end for

13: end for

18 context Connector {

19

20 @group gp2

21 constraint PortTypesMatch {

22 check:self.source.type=self.target.type

23 message:"The types of the source and target

ports don’t match"

24 }

25 }

By allowing users to manually group constraints, we provide

a flexible and customisable approach that empowers users to

optimize the performance of the constraint execution process

based on their knowledge and understanding of the model.

IV. LIMITATIONS

Our proposed approach has two notable limitations that

should be highlighted. Firstly, it is designed specifically for

read-only input models in model management programs. This

means that our approach does not support any modifications to

the models such as updates, deletions, or additions of model

elements.

Secondly, from a technological perspective, this approach

has been implemented and evaluated only for EMF-based

models. Extending it to support other model types is part of

our future work.
V. RELATED WORK

In [5], an approach is proposed for parallelization of Eclipse

OCL (Object Constraint Language) [6] constraints utilizing

Communicating Sequential Processes (CSP). In this work,

expressions are executed in parallel and their results are com-

bined through binary operations. The authors demonstrated

the equivalence of behaviour between the parallel and se-

quential representations of OCL CSP to prove the correctness

of their approach. Their implementation utilized CSP as an

intermediate representation, which was then transformed into

C# code. However, users were required to manually specify

the expressions to be parallelized.

In [7] Madani et al. demonstrated how executing an EVL

program concurrently and in a distributed setting can result in

a proportional decrease in execution time with more machines

and larger models. Their methodology involves breaking down

each EVL program into an ordered sequence of rule-element

pairs. The EVL distributed execution engine replicates the

program execution environment across multiple computers

and assigns a subset of this sequence to each computer for

independent execution. The main limitation of this approach

is that it requires all workers to have a full copy of both the

models and the program. Our work can address this limitation

by distributing constraint groups to multiple machines and

loading models based on the group’s effective metamodels.

In this way, each machine can load only the necessary infor-

mation for executing the assigned constraints which is more

efficient in terms of loading time and memory footprint.

Another optimisation technique is incremental execution.

Incremental execution reduces execution time by avoiding

unnecessary re-computation through caching. Cabot and Te-

niente [8] developed an algorithm for incremental model

validation that guarantees the generation of the most effi-

cient expression to validate a specific constraint when the

model undergoes changes (such as Create/Read/Update/Delete

events). They approach the problem of model validation from

a conceptual standpoint and demonstrate that their solution

automatically generates the most optimal expression for incre-

mental validation in response to a CRUD event. This ensures

that the least amount of work is required to execute the

constraint.

While recent research has made progress in this field,

existing solutions still have notable limitations when it comes

to accessing and processing large models. To the best of

our knowledge, none of the model validation optimisation

techniques in the literature incorporates static analysis to

enable constraint grouping.

The primary work on partial loading of XMI models is

SmartSAX, which was introduced by Wei et al. [3]. SmartSAX

enables the partial loading of XMI model files. In our ap-

proach, we leverage SmartSAX to load models partially based

on effective metamodels, which is automatically extracted

through the static analysis of EVL constraints. However, it is

important to note that SmartSAX does not provide support for

garbage collection to unload parts of a model from memory

when they are no longer required.

In a wider context, several approaches have been proposed



TABLE II
EVALUATED MODELS

Model name Number of elements Size

model1 1,000,000 212.9MB

model2 3,000,000 563.6MB

model3 3,700,000 806.6MB

model4 5,000,000 1.05GB

model5 6,000,000 1.29GB

for static analysis of model management programs such as

AnATLyzer [9] for ATL, and [10] for Viatra2, however they

focus on program correctness and completeness rather than on

execution planning and optimisation.

VI. EVALUATION

In this section, we report on the results of experiments that

measure the performance of different approaches discussed in

Section III. By evaluating and comparing partitioning tech-

niques, we aimed to provide insights into the advantages and

time-saving potential associated with the constraint grouping

approach.

We evaluated our approach on a system using Java VM

11.0.10 with Intel(R) Core(TM) i7, 16GB memory and CPU

@ 2.80GB running Mac OS X Catalina.

For our experiments, we generated random large models

using EMF (pseudo) random instantiator5 developed by the

AtlanMod Team6. The models conform to an Ecore-based

metamodel of the Component language (see Figure 1). We

validated five XMI models, from model1 to model5 (from

a 212.9MB XMI file with 1 million model elements to a

1.29GB file with 6 million model element). The models are

listed in Table II.

We have also implemented 10 constraints7 in the Epsilon

Validation Language (EVL) to validate these models.

Figure 9 illustrates the Component Language metamodel

and all constraints that are used to validate the models con-

forms to this metamodel. Every constraint is represented by a

coloured dot with a number, and classes and features of the

metamodel required for its execution, are marked by the same

colour.

For example, ComponentValidName constraint requires all

instances of Component class and their name attribute. In

Figure 9, ComponentValidName constraint is represented by

a dark blue dot (number 2). Hence, there is a dark blue dot in

the Component class compartment and its name attribute.

Within this structure, when multiple dots always appear

together in the metamodel, it means they are using the same

information and can be grouped. In Figure 9, Component-

ValidName belongs to the same group as the ComponentIs-

Connected and ComponentUniqueName constraints, as they

require a subset of the same information to be executed. By

following the colour of these constraints (dark green (1), dark

blue (2) and red (3)), it is shown that they appear in Figure 1

5https://github.com/atlanmod/mondo-atlzoo-
benchmark/tree/master/fr.inria.atlanmod.instantiator

6https://www.imt-atlantique.fr/fr
7https://eclipse.dev/epsilon/playground/?858b6314

next to each other. Therefore, they are allocated to the same

group according to Algorithm 1.

The execution time was measured for three partitioning

modes. The modes are mentioned below:

1. Partitioning the model based on constraints and running

each constraint independently (intermediate solution): In this

mode, the model is partitioned based on individual constraints,

and each constraint is executed separately. By running con-

straints independently, any dependencies or overlaps between

constraints are ignored.

2. Partitioning the model based on groups of constraints

using our proposed algorithm: In this mode, we use our

developed algorithm to group the constraints based on spe-

cific criteria (see Section III-D). The algorithm determines

which constraints should be executed together as a group.

By grouping constraints, we aim to optimise the execution

time by reducing the overhead of repeatedly loading the same

information. This approach considers the overlaps between

constraints.

3. Partitioning the model based on groups of constraints

specified by the user: In this mode, the user defines how

constraints should be grouped based on their understanding

of the model and the relationships between constraints.

To evaluate the execution time in each partitioning mode,

we measured the time taken to execute the constraints for each

mode separately. By comparing the execution times across the

three modes, we can assess the efficiency and effectiveness of

each approach in terms of constraint execution time.

The results are shown in Figure 10, and they were computed

after 3 warm-up iterations and represent the average over 10

executions of the program.

The obtained results are illustrated in Table III, showing

some findings.

TABLE III
LOADING TIME AND EXECUTION TIME FOR MODEL4 (IN MILLISECONDS)

Time in Mode 1 Time in Mode 2

Constraint Loading Execution Loading Execution

CUN 13.012 10,299
17.238 73.786CIC 17.338 58.141

CVN 14.107 7.466

In the experiments, it is observed that the execution engine,

under the first mode of partitioning, requires approximately 13

seconds to load the necessary model elements and properties

for executing the CUN (ComponentUniqueName) constraint.

Similarly, it takes roughly 17 seconds to load the required

information for the CIC (ComponentIsConnected) constraint

and about 14 seconds for the CVN (ComponentValidName)

constraint. In Figure 10, the blue column represents execution

time in mode 1 for model1 to model5.

In the second mode, the constraints are grouped based on

Algorithm 1. The ComponentIsConnected constraint required

all instances of Component class with the name attribute

and ports reference. Furthermore, this constraint belongs to

the same group as the ComponentValidName and Componen-

tUniqueName constraints. These constraints are in the same



C e

 a e: ES i g

O P I P
P

 a e: S i g

 e: S i g

 [*]

C ec

ce
a ge

c e

i c i g [*]g i g [*]

1 ComponentIsConnected

ComponentValidName2

ComponentUniqueName3

DifferentComponents8

PortTypesMatch10

InPortUniqueName4 NamedIfMultiple6

OutPortUniqueName7 PortValidName9InPortIsConnected5

String

1 2 3 6 7 5 84

1 2 3

15 4 6 7

5 4 6 78

810 9

4 96 7

10

8 10

8 10

6 7 9 1

1 1 5

1 594

58 10

Fig. 9. The coverage of evaluated constraints

Fig. 10. Execution time for different models

group as they require a subset of the same information to be

executed (See Figure 9). As shown in Table III, the time for

loading the necessary information for all of these constraints

is about 17 seconds (which is equal to the loading time of

ComponentIsConnected constraint). The loading time for the

two other constraints can be saved by grouping these con-

straints together, as they can now reuse the information loaded

for the ComponentIsConnected constraint. As demonstrated in

Table IV, constraints are divided into seven groups in mode

2.

Reviewing the execution time in both modes in Table III,

it is worth noting that there is no execution time overhead

observed when executing the constraints. This implies that the

constraint execution time remains consistent regardless of the

TABLE IV
PARTITIONS IN TWO MODES

groups in mode 2 groups in mode 3

ComponentUniqueName ComponentUniqueName
ComponentValidName ComponentValidName
ComponentIsConnected ComponentIsConnected

outPortUniqueName outPortUniqueName
NamedMultiple NamedMultiple

InportIsConnected InportIsConnected
InportUniqueName InportUniqueName

DifferentComponents DifferentComponents

PortTypeMatch PortTypeMatch

PortValidName PortValidName

constraint grouping method applied (only the model loading

times differ).

In Figure 10, the orange column represents the execution

time in mode 2 for the XMI models, while the blue column

represents the execution time in mode 1. By comparing

these two columns, it becomes evident that the grouping of

constraints has a noticeable impact on the execution time.

In the third mode of partitioning, two groups remain the

same as in mode 2 (first and second rows in Table IV), based

on Algorithm 1. However, an additional group is added by

the user (third row of mode 3 in Table IV). The informa-

tion needed for executing the InPortUniqueName constraint

is similar to that for the InPortIsConnected constraint, with

just one additional attribute needed for executing the former.

Upon examining our test models, it was realised that, for

example, out of the 5 million elements, there are over 2

million instances of InPort. Considering this insight, unloading

2 million elements and loading them again would likely be

more time-consuming compared to loading one more attribute.

To address this, in this experiment, we grouped the InPor-

tUniqueName and InPortIsConnected constraints together to

save loading time for the InPortUniqueName constraint. By

grouping these constraints, a part of the loading time for load-

ing the InPortUniqueName constraint’s required information

is saved, as the necessary information is already loaded while

considering the additional attribute. This grouping strategy

takes advantage of the machine’s available memory and as-

sumes that accommodating one more attribute is feasible.

In Figure 10, the grey column represents the execution

time in the third mode, and this grouping approach effectively

decreases the overall execution time.

As a general observation in our experiment, considering the

models and constraints that we evaluated, grouping constraints

can result in a time saving of approximately 10% to 12% in

the execution time of EVL constraints.

Comparing the three columns for each model in Figure 10



demonstrates that when constraints are grouped together, there

is a significant improvement in the overall execution time. It

shows how manual grouping of constraints based on insights

about the model and the trade-off between loading elements

versus loading additional attributes can lead to significant fur-

ther time savings in constraint execution. Also, the increasing

differences between the columns as the model gets larger

demonstrate that our approach is capable of handling larger

models more efficiently. It highlights the scalability of our

approach and indicates that larger models benefit even more

from the grouping of constraints.

Regarding the correctness of our approach, we conducted

validation by executing the EVL constraints using both the

default EVL execution engine and our approach. The aim

was to ensure that the output generated by both execution

methods is identical in terms of the number of satisfied and

unsatisfied constraints, regardless of whether partial loading

and partitioning were applied. This validation process ensures

that our approach does not introduce conflict or any incon-

sistencies in the constraint execution process compared to the

default execution engine. By establishing the equivalence of

the outputs, we can conclude that our approach for partial

loading and partitioning maintains the correctness of the

constraint evaluation, producing results consistent with the

default execution engine.

VII. THREATS TO VALIDITY

To address construct validity threats, we specifically con-

sider large models generated by a random generator that

conform to the Component Language metamodel. The results

presented in this paper are based on these test cases.

To mitigate internal validity threats, we ensure reliable and

consistent results by executing three warm-up iterations of the

program before reporting the final results. Additionally, we

take an average of 10 executions to minimize any potential

impact on memory usage and execution time caused by JVM

startup and initialization.

To minimize external validity threats, we build our approach

on top of mature and robust Model-Driven Engineering (MDE)

technologies, such as the Epsilon suite of model management

programs and the XMI format. These technologies provide

a solid foundation for our approach. We acknowledge that

extending our approach to support other technologies is rel-

atively straightforward with reasonable effort, as discussed

in Section III. However, further experiments are needed to

determine the applicability and scalability of our approach

in domains and with metamodels/models and constraints that

have different characteristics from those used in our exper-

imental evaluation. By addressing these threats and taking

measures to ensure reliability and generalizability, we strive

to provide a comprehensive evaluation of our approach in this

paper.
VIII. CONCLUSION

We proposed an approach for grouping the EVL constraints

using static analysis of EVL programs, and we conducted

evaluations using five large randomly generated models. The

results demonstrate that grouping constraints can significantly

reduce the loading and overall execution time of EVL pro-

grams compared to a non-grouping approach without any

impact on program behaviour or output.

In terms of future work, we intend to enhance user support

by providing additional information about the model. This

will enable users to make more informed decisions when

grouping constraints, leading to further reductions in execution

time. Additionally, we are interested in exploring the parallel

execution of constraints and executing them on distributed

setups. By loading information based on the constraints that

will be executed on each machine, we can reduce loading time

and optimise the execution process.

These future directions will contribute to improving the effi-

ciency and scalability of the partitioning approach, ultimately

benefiting users by reducing the time required for executing

EVL constraints on large models.

ACKNOWLEDGMENT

This research is supported by the Lowcomote Training

Network, which has received funding from the European

Union’s Horizon 2020 Research and Innovation Program under

the Marie Skłodowska-Curie grant agreement no 813884.

REFERENCES

[1] D. S. Kolovos, R. F. Paige, and F. A. Polack, “On the evolution of ocl
for capturing structural constraints in modelling languages.” Springer,
2009, pp. 204–218.

[2] R. Wei and D. Kolovos, “Automated analysis, validation and suboptimal
code detection in model management programs,” in CEUR Workshop

Proceedings, vol. 1206, 01 2014, pp. 48–57.
[3] R. Wei, D. S. Kolovos, A. Garcia-Dominguez, K. Barmpis, and R. F.

Paige, “Partial loading of xmi models,” in Proceedings of the ACM/IEEE

19th International Conference on Model Driven Engineering Languages

and Systems, ser. MODELS ’16. Association for Computing Machinery,
2016, p. 329–339.

[4] S. Jahanbin, D. Kolovos, S. Gerasimou, and G. Sunyé, “Partial loading of
repository-based models through static analysis,” in Proceedings of the

15th ACM SIGPLAN International Conference on Software Language

Engineering, 2022, pp. 266–278.
[5] T. Vajk, Z. Dávid, M. Asztalos, G. Mezei, and T. Levendovszky,

“Runtime model validation with parallel object constraint language,”
in Proceedings of the 8th International Workshop on Model-Driven

Engineering, Verification and Validation, 2011, pp. 1–8.
[6] J. Cabot and M. Gogolla, Object Constraint Language (OCL): A

Definitive Guide. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 58–90.

[7] S. Madani, D. Kolovos, and R. F. Paigea, “Towards optimisation
of model queries: A parallel execution approach,” Journal of Object

Technology, 2019.
[8] J. Cabot and E. Teniente, “Incremental evaluation of ocl constraints,” in

Advanced Information Systems Engineering: 18th International Confer-

ence, CAiSE 2006, Luxembourg, Luxembourg, June 5-9, 2006. Proceed-

ings 18. Springer, 2006, pp. 81–95.
[9] J. S. Cuadrado, E. Guerra, and J. de Lara, “Anatlyzer: An

advanced ide for atl model transformations,” in Proceedings of the

40th International Conference on Software Engineering: Companion

Proceeedings, ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 85–88. [Online]. Available:
https://doi.org/10.1145/3183440.3183479

[10] Z. Ujhelyi, “Static analysis of model transformations,” Master’s thesis,
Budapest University of Technology and Economics, May 2009.


