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Work Statistics and Entanglement Across the Fermionic
Superfluid-Insulator Transition

Krissia Zawadzki, Guilherme A. Canella, Vivian V. França, and Irene D’Amico*

Entanglement in many-body systems may display quantum phase transition

signatures, and analogous insights are emerging in the study of work

fluctuations. Here, the fermionic superfluid-to-insulator transition (SIT) is

considered and related to its entanglement properties and its work

distribution statistics. Using the attractive fermionic Hubbard model with

randomly distributed impurities, the work distribution is analyzed under two

quench protocols triggering the SIT. In the first, the concentration of

impurities is increased; in the second, the impurities’ disorder strength is

varied. The results indicate that, at criticality, the entanglement is minimized

while the average work is maximized. This study demonstrates that, for this

state, density fluctuations vanish at all orders, resulting in all central moments

of the work probability distribution being precisely zero. For systems

undergoing a precursor to the transition (short chains with finite impurity

potential) numerical results confirm these predictions, with higher moments

further from the ideal results. For both protocols, at criticality, the system

absorbs the most energy with almost no penalty in terms of fluctuations:

ultimately this feature can be used to implement a quantum critical battery.

The impact of temperature on this critical behaviour is also investigated and

shown to favor work extraction for high enough temperatures.

1. Introduction

The behavior of the work that can be extracted or absorbed by a
many-body quantum system is an important question in quan-
tum thermodynamics. In interacting many-body quantum sys-
tems, correlations that are inherently quantum may manifest in
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the form of entanglement, and may show
interesting properties at criticality, includ-
ing universal scaling.[1] This has inspired a
series of investigations on the work statis-
tics across a quantum phase transition
(QPT).[2–6] Many previous studies have fo-
cused on characterizing the scaling proper-
ties of the work statistics following a sud-
den quench across the QPT.[4,6–9] Recently,
the effects of the finite-time dynamics have
started to be addressed, with special at-
tention to the statistics beyond the second
moment.[10–13] These studies opened the
way for novel applications, such as heat
engines implemented using many-body
systems as working medium,[14–19] which
can be regarded as an example of quan-
tum advantage when exploiting quantum
correlations.[20] It has been demonstrated
that interactions between particles may al-
low for a boost in their efficiency, which is
much larger than that of a non-interacting
system of the same size.[20–22] In the particu-
lar case of a working medium undergoing a
QPT, criticality may lead to supralinear scal-
ing of power,[17,23] however, even at the level

of simple models, the practical implementation of these engines
requires special control techniques to operate thermal cycles at
finite-time, in addition to minimizing fluctuations of work and
output power.[24–26]

Entanglement has emerged as a powerful tool to detect and
characterize QPTs.[1,27,28] Pioneer works exploring bi-partite
entanglement in critical models showed that QPTs may be
associated to an entanglement extremum or to the entanglement
non-analytical behavior.[1,29–31] Following these ideas, various
measures of entanglement have been employed as witnesses
of changes in phases of matter. In the context of localization
in the presence of disorder, metals,[32–35] bosonic systems,[36–39]

spinless,[40,41] and spinfull[42–44] fermions were explored. The
fermionic superfluid to insulator transition (SIT)[45–47] is one of
theQPTs displaying interesting entanglement properties that has
been least explored in applications to quantum thermodynamics.
The SIT in disordered systems is a paradigmatic problem in
quantum physics, as it spurs from the competition between free
and coherent mobility, and localization of particles. Advances
in experiments with optical lattices and ultracold atoms have
made it possible to quantum-simulate the SIT with ultracold
bosons[48] and fermions.[49] For strongly correlated bosons in a
Tonks-Girardeau gas, modeled by the Bose-Hubbard model,
it has been shown that the superfluid-insulating transition
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is accompanied by a pinning QPT,[50] which can be achieved
at infinitesimally weak lattice potentials.[51] In fermionic
systems, superfluidity can emerge from attractive Coulomb
interactions,[52,53] while an insulating behavior is due to
repulsion.[54] In the presence of impurities, the interplay
between attractive interactions and disorder leads to a richer
phase diagram, in which an insulating, superfluid, and localized
behavior can be present. In fermionic systems the conditions
under which the SIT occurs are still under investigation. refs.
[55, 56] investigated the average single-site entanglement in
disordered chains with attractive Coulomb electron–electron
interactions. These results indicated the absence of a critical
potential V for the emergence of the SIT triggered by disorder,
whilst the existence of a critical concentration CC and a critical
particle density for which the entanglement is minimum. These
recent results could help fine tuning the parameters controlling
the disorder landscape and attractive couplings to induce the
fermionic SIT in, e.g., optical lattices.
Motivated by the prospects of exploiting the SIT in thermody-

namic cycles[17] and by its interesting entanglement structure in
fermionic systems,[56] we compare the average work statistics of
two types of sudden quenches of interest to the SIT. In the first
protocol, the concentration of impurities is changed by adding
an extra impurity to the initial state. In the second protocol, we
consider the situation in which the impurity potential strength is
instantaneously increased. For a system initially prepared at tem-
perature T = 0, we show that if the initial ground-state has min-
imum entanglement, the average work will be maximum at the
critical concentration CC, whilst its variance will be minimized
at the same rate in which fluctuations in density–density corre-
lations decay. We also inspect the skewness of the work distri-
bution, which provides a measure of non-Gaussianity and has
been shown to be very sensitive to phase transitions for systems
driven in finite time.[11,57] We observe a similar sensitivity for the
SIT, with the skewness providingmore information than the vari-
ance about the subtle interplay between impurity strength and
Coulomb interaction in the second protocol. The critical concen-
tration CC corresponds to a special localized state: to the best of
our knowledge, our paper is the first to make a connection be-
tween the entanglement structure of a localized phase and the
work statistics.
Finally, the effects of temperature are also discussed. As the

temperature increases, features of the quantum phase transition
are suppressed, and we observe that thermal fluctuations favor
work extraction (instead of absorption) whenever thermal excita-
tions become larger than the typical energy scales of the system.

2. Modeling the Superfluid-Insulator Transition in
Fermionic Systems

The superfluid-insulator transition in fermionic systems can be
described by theHubbardmodel with attractive electron–electron
interactions in the presence of disorder.[56] In a 1D chain of L
sites, the Hamiltonian reads

Ĥ = −J

L∑

i,𝜎

(
ĉ†
i,𝜎
ĉi+1,𝜎 + ĉ†

i+1,𝜎
ĉi,𝜎

)
+U

L∑

i

n̂i,↑n̂i,↓ +

L∑

i

Vin̂i (1)

where J > 0 is the hopping parameter, U < 0 is the attractive on-
site Coulomb interaction and Vi is the strength of the impurity
potential at site i, the local disorder. The number operator is n̂i,𝜎 =

ĉ†
i,𝜎
ĉi,𝜎 where ĉ

†

i,𝜎
is the creation operator for a fermion with z-spin

component 𝜎 =↑, ↓ in the i-th site, such that n = n↑ + n↓ andm =

n↑ − n↓ are particle density and magnetization, respectively, with
n𝜎 =

∑
i Tr[n̂i,𝜎 �̂�] with �̂� the state of the system.

For L → ∞ and in the absence of disorder (Vi = 0), increasing
attractive interaction drives the system from a superfluid state
of weakly-coupled pairs (BCS-like) to a phase of tightly coupled
dimers (Bose-Einstein limit). In contrast, by triggering the local
disorder Vi at a fixed interaction U, the pairs tend to localize and
the system undergoes a superfluid to insulator transition. Local-
ization can be reached in a superfluid by either increasing the
disorder intensity or lowering the particle density.[56]

It has been recently shown[56] that, by consideringNi point-like
impurities of same strength Vi = V , randomly distributed along
the L-size chain, the level of localization in the SIT depends on
the concentration C = (Ni∕L) × 100%. For sufficiently strong dis-
order strength |V| ≫ |U|, it is possible to achieve full localiza-
tion at the critical concentrationCC = 100 n∕2. For |V| → ∞, this
full localization is characterized by real-space pairs localization,
marked by zero entanglement.[56]

Here, we consider the same disorder landscape− a certain con-
centration C of pointlike impurities randomly placed along the
chain with disorder strength V −. Both long (L = 100) and short
(L = 8) superfluid chains withm = 0 are considered. To avoid fea-
tures related to specific configurations, for all quantities we per-
form an average over 100 samples for the long chain case, and
over all possible impurity configurations for L = 8 chains. Calcu-
lations for L = 8 are performed via exact diagonalization, calcula-
tions for L = 100 are performed using density functional theory
methods within the BALDA approximation.[58] These methods
have proven already very valuable in the study of other quantum
phase transitions of the Hubbard model.[59]

2.1. Single-Site Entanglement, Localization, and Local Purity

To estimate the ground-state entanglement, we consider the
average single-site entanglement, which has been successfully
applied to explore quantum phase transitions in the Hubbard
model.[31,42–44,56,60] We follow the same approach of refs. [42–44,
56] obtaining the ground-state single-site entanglement via the
linear entropy. This is averaged first over the L sites,

 = (1∕L)
∑

i

(1 − Tr[𝜌2
i
]) (2)

where 𝜌i is the reduced density matrix of site i. For chains with
L = 8, calculations are performed via exact diagonalization and
then averaged over all possible impurity configurations to obtain
̄ = (1∕M)

∑
m m.

For L = 100 the linear entropy  is calculated in the local den-
sity approximation.[61] In this framework,  ≈ LDA(1∕L)

∑
i(1 −

w2
↑
− w2

↓
− w2

2
− w2

0
)i, where w2,i = Tr[n̂i,↑n̂i,↓�̂�] is the double-

occupation probability of site i, w𝜎,i = Tr[n̂i,𝜎 �̂�] − w2,i is the cor-
responding 𝜎-spin occupation probability, and w0,i = 1 − w↑,i −

w↓,i − w2,i is the zero-occupation probability of site i. For these
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long chains, results are then averaged over 100 samples of
different impurity configurations compatible with each of the
protocols, to obtain ̄ = (1∕M)

∑
m m.

The dependence of LDA on Tr[n̂i,↑n̂i,↓�̂�] emphasises the role
of density-density fluctuations in the local entanglement. Intu-
itively, for localization to occur, these fluctuations should vanish.
This, and its relation to QPTs, will be discussed more in details
in the sections below.
Equation (2) displays the connection between the linear en-

tropy and the average single-site purity  = (1∕L)
∑

i Tr[𝜌
2
i
]: in-

deed the local purity must be maximized for the local entangle-
ment to vanish.

2.2. Statistics of Work in a Sudden Quench

One can perform (or extract) work on an isolate quantum sys-
tem by changing the parameters g⃗ in the time-dependent Hamil-
tonian Ĥ(g⃗t) taking the system out-of-equilibrium. In this pro-
cess, all possible transitions between the eigenestates of the ini-
tial Ĥ(g⃗0) and final Ĥ(g⃗f ) Hamiltonians may be involved, deter-
mining the change in energy, as well as its fluctuations. Exper-
imentally, the quantum work is accessible by means of spectro-
scopic methods,[62–64] and the work distribution has been recon-
structed in a liquid-state nuclear magnetic resonance platform
using small molecules as working fluid.[64,65]

In a sudden quench, the transitions are instantaneous and the
system does not have time to adapt. If the system is prepared in
a superposition of the eigenstates |n0⟩ of Ĥ(g⃗0) with weights pn,
the work probability distribution P(W) is calculated as follows[66]

P(W) =
∑

n,m

𝛿
[
W −

(
𝜖0

+

m
− 𝜖0

n

)]
pnpm|n (3)

where {𝜖0
n
} and {𝜖0

+

m
} are the eigenvalues of Ĥ(g⃗0) and Ĥ(g⃗f ), re-

spectively, and pm|n = |⟨m0+ |n0⟩|2 is the probability to find the sys-
tem in the m-th eigenstate |m0+⟩ of Ĥ(g⃗f ) at t > 0+ given the dy-

namics started in state |n0⟩ at t = 0.
Associated with the work distribution, we have the k-th order

centralmoments ⟨(W − ⟨W⟩)k⟩which, for k > 1 can be calculated
recursively, starting from the average work

⟨W⟩ =
∑

n,m

(
𝜖0

+

m
− 𝜖0

n

)
pnpm|n (4)

Average work performed on the system correspond to ⟨W⟩ > 0;
while extracted work is signalled by ⟨W⟩ < 0. The second mo-
ment, k = 2, is the variance, associated with the energy fluctua-
tions. The third moment quantifies the skewness (k = 3) of the
work distribution, which is related to the deviation from Gaus-
sianity.

2.3. Sudden Quench Protocols Across the SIT

We will study two sudden-quench protocols across the SIT and
the associated average work. In the first protocol we vary the im-
purity concentration C for fixed values of V . For each initial con-

centration, we consider in turn each of the possible correspond-
ing impurity configurations. For each initial impurity configura-
tion, we consider in turn all possible configurations (L = 8) or
100 samples of different impurity configurations (L = 100) that
can be achieved by adding one extra impurity, see Figure 1a. For
each initial and final configuration, we calculate the average work
and the moments of its distribution. For each initial concentra-
tion, we then average these quantities over all possible couples of
initial and final configurations.
In the second protocol initial and final Hamiltonians will have

the same number of impurities but their position may vary and
the final impurity potential Vf will be in modulus larger than the
initial potential Vi, see Figure 1b. The results will be averaged
over all possible initial and final configuration with same impu-
rity concentration C.
For both protocols, in the sudden quench limit, all central mo-

ments can be expressed in terms of correlation functions of the
density, as the terms of the Hamiltonian associated with the ki-
netic energy and the Coulomb repulsion remains the same.Here,
we discuss in details the first three central moments. The average
work is a functional of the local densities of the initial state:

⟨W⟩ = Tr[(Ĥf − Ĥ0)�̂�0] (5)

=

L∑

j=1

ΔvjTr[n̂j�̂�0] (6)

where Δvj = (V
f

j
− V0

j
)

The fluctuations of work, corresponding to the second central
moment, depend on density-density fluctuations, as

𝜎2
W

= (⟨W2⟩ − ⟨W⟩2) (7)

=
∑

j

∑

𝓁

ΔvjΔv𝓁(Tr[n̂jn̂𝓁 �̂�0] − Tr[n̂j�̂�0]Tr[n̂𝓁 �̂�0]) (8)

where we have used

⟨W2⟩ = Tr[(Hf −H0)
2�̂�0] (9)

=
∑

j

∑

𝓁

ΔvjΔv𝓁Tr[n̂jn̂𝓁 �̂�0] (10)

Finally, the third centralmoment, the skewness, can be expressed
as the sum of densities’ correlations

𝜇3 = (⟨W3⟩ − 3⟨W⟩⟨W2⟩ + 2⟨W⟩3) (11)

=
∑

j

∑

𝓁

∑

m

ΔvjΔv𝓁Δvm(Tr[n̂jn̂𝓁 n̂m�̂�0] − 3Tr[n̂jn̂𝓁 �̂�0]Tr[n̂m�̂�0]

+ 2Tr[n̂j�̂�0]Tr[n̂𝓁 �̂�0]Tr[n̂m�̂�0]) (12)

where we have used

⟨W3⟩ = Tr[(Hf −H0)
3�̂�0] (13)

=
∑

j

∑

𝓁

∑

m

ΔvjΔv𝓁ΔvmTr[n̂jn̂𝓁 n̂m�̂�0] (14)
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Figure 1. Illustration of sudden quench protocols across the superfluid-insulator transition in a chain of L = 8 sites. Panel (a) shows a quench in the
concentration of impurities and a few possible configurations starting from one of the 28 possible configurations with Ni = 2 impurities. For three
impurities (final state), there are a total of 56 configurations and we show only eight of them. Panel (b) shows a possible initial state for a quench in the
disorder strength at fixed concentration with all possible final configurations with Ni = 1 impurity.

In particular, for the ground-state |Ψ0⟩ Equations (6), (10),
and (14) are easily computed from the density correlations
⟨Ψ0|n̂j|Ψ0⟩, ⟨Ψ0|n̂jn̂𝓁|Ψ0⟩, and ⟨Ψ0|n̂jn̂𝓁 n̂i|Ψ0⟩.
The value of ⟨W⟩, 𝜎2

W
, and 𝜇3 will vary depending on the initial

(and final) impurity configurations of H0 (of Hf ). We will then
consider their average over all possible configurations Nc com-
patible with the relevant initial and final impurity concentrations
(L = 8). For L = 100, Nc will comprise 100 configurations. These
averages are defined as

⟨W⟩ = 1

Nc

Nc∑

i

⟨W⟩i (15)

𝜎2
W

=
1

Nc

Nc∑

i

⟨𝜎2
W
⟩
i

(16)

𝜇3 =
1

Nc

Nc∑

i

⟨𝜇3⟩i (17)

While ⟨W⟩ is the average of the average work, for the sake of
simplicity, in the rest of the paper, we will refer to it simply as the
‘average work’.

3. Results

3.1. The Critical State: Connection Between Entanglement and
Work Probability Distribution

Vanishing entanglement at criticality reveals that, for each config-
uration, the ground-state is localized at the impurity sites, each

Adv. Quantum Technol. 2024, 2300237 2300237 (4 of 11) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 2. Panel a): Single-site entanglement averaged over 100 of the possible impurity configurations versus concentration. Panel b): ⟨W⟩∕(JL), averaged
over 100 of the possible impurity configurations, versus initial concentration Panel c): Average work from panel (b) scaled by the disorder strength |V0|.

of which is exactly doubly occupied in the limit |V| ≫ |U| and
T = 0. In the occupation basis, this state is factorized and can be
written as

|ΨC⟩ = ⊗i|j⟩i (18)

with j =↑↓ if site i contains an impurity and j = 0 otherwise.
For this type of localized state, density fluctuations vanish at

all orders that is

⟨ΨC|⊗i n̂i|ΨC⟩ = Πi⟨ΨC|n̂i|ΨC⟩ (19)

where i extends to any subset of sites. By inspection of Equa-
tions (8), and (12) it is then clear that the average work’s variance
and skewness vanish exactly at criticality. As all higher central
moments can be similarly written in term of density fluctua-
tions, it follows from Equation (19) that all central moments of
the work probability distribution exactly vanish at the critical
state. In the following section, we will explore further the rela-
tion between entanglement and average work with the help of
numerical results.

3.2. Quench in C: Adding an Extra Impurity

We start our analysis with the average work - Equations (5) and
(15)- at T = 0 and the first protocol.
Previous results[56] for the average ground-state entanglement

revealed that the emergence of the full localization in the SIT
occurs at the critical concentration CC = 100 n∕2 (for attractive
disorder). As the disorder strength becomes comparable to the
Coulomb attraction, the system starts to exhibit localization and,
for |V| → ∞, it becomes fully localized as the entanglement
vanishes. Figure 2a shows the average single-site entanglement
̄ of the initial state[67] as a function of concentration for a chain
of L = 100 sites, average density n = 0.8, U = −5J and various

values of disorder strength. Figure 2b depicts ⟨W⟩, for the same
system undergoing a sudden quench that changes the concen-

tration from Ci to Ci+1. Our results show that ⟨W⟩ for the initial
critical concentrations is maximum, corresponding to minimum
entanglement. This implies that the ground-state is localized at
the impurity sites, and of a form very close to Equation (18). For
this state, the only non-zero elements contributing to the sum in
Equation (6), correspond to impurities, which appear in both ini-

tial and final impurity configurations, hence providing up toNi∕2
contributions of value |2V|. This implies that, in finite chains, the
average work is amplified by increasing the disorder strength V ,
both because the value of each contribution is increased and be-
cause a stronger impurity increases localization for finite-chains
(and finite temperature). With this in mind, by rescaling the av-
erage work by the disorder strength |V0|, we can check when full
localization is achieved for this protocol and finite chains. This is
explored in Figure 2c, which demonstrates that the rescaled work
does not change (full localization for this protocol) for |V0| > |U|.
We now focus our attention on the statistics of the distribu-

tion and its changes with the temperature. Here, we will con-
sider short chains (L = 8) at half-filling n = 1 initially prepared in
a thermal state. An example of P(W) at different concentrations
and for the three chosen temperaturesT = 0J∕kB,T = 2J∕kB, and
T = 30J∕kB is displayed in the Appendix. The intermediate tem-
perature has been chosen to be low enough so that the most pop-
ulated state is the ground-state, while a few low-lying states con-
tribute to the dynamics. Results for the moments of the work dis-
tribution are shown in Figure 3, for T = 0J∕kB, T = 2J∕kB and
T = 30J∕kB, as indicated. Here, the moments are averaged over
all configurations.
For T = 0J∕kB and T = 2J∕kB and all impurity potentials, work

can be extracted from the system when starting from zero im-
purity as initial concentrations. This is a consequence of Equa-

tion (6) as it implies that V0
i
= 0 always, while V

f

i
< 0 at the im-

purity site, that will result in negative work. However, this type of
contribution competes with positive contributions when starting
from nonzero initial impurities concentrations, and work is to be
performed on the system in this case - see Figure 3a,d.
We note that Equation (6) is a consequence of considering a

sudden quench dynamics, while finite-time dynamics would al-
low for redistribution of particle density in response to the new
impurity distribution, as observed – albeit for repulsive impuri-
ties and repulsive particle interaction – in refs. [68, 69]. This im-
plies that it cannot be excluded that work could be extracted from
the system at hand when considering finite-time dynamics.
At T = 0J∕kB, both variance and skewness show a clear sig-

nature of criticality at concentration of 50 % see Figure 3b,c.
The variance almost vanishes, demonstrating, even in a short
chain, (almost) no fluctuations for the system at criticality. This
is consistent with Equation (10) for a system in the critical
state Equation (18), for which density fluctuations vanish at
all orders.
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Figure 3. Average quantum work (first column), variance (second column), and skewness (third column) versus impurities’ concentration of the initial
state for systems with L = 8 sites, particle interaction U = −5J and for different disorder intensities. The impurities’ concentration of the final state is
always the next concentration. Temperature varies as follows: first row: T = 0J∕kB; second row: T = 2J∕kB; third row: T = 30J∕kB. We note that, from our

numerical results, ⟨W⟩∕J < 0 at C0 = 12.5% and T = 0.

Indeed, our numerical results show that also the skewness
vanishes at CC = 50%. In addition, it changes its sign from pos-
itive, at low concentration, to negative, after CC. A similar result
was observed in Hubbard chains driven by a ramp field tuned
at finite time.[11] Results in ref. [11] show this signature in the
skewness to be stronger away from sudden quench and toward
adiabaticity. In the present work, which used a sudden-quench
dynamics, the change-in-sign signature in the skewness appears
only for relatively high impurity potentials (T = 0J∕kB), and it

disappears for T = 2J∕kB (compare panels c and f of Figure 3).
At this intermediate temperature, the skewness preserves only
a kink close to the critical concentration value and only at high
impurity potentials, while the signature of criticality in the first
and second moments is still well marked (Figure 3d,e), albeit
only at relatively high impurity potentials for the variance. It
would be interesting to check if a finite-time dynamics would
restore a stronger signature in the third moment, as observed in
ref. [11].
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Figure 4. First row: Average quantum work (left), variance (middle) and skewness (right) versus V0 (the impurities’ strength of the initial state) for
different disorder concentrations, as labeled. The impurities’ strength of the final state is always Vf = −10J. Other parameters are: L = 8, U = −5J, and
T = 0J∕kB. Second row: Same data as for first row but plotted versus the impurities’ concentration of the systems considered.

Panels g–i of Figure 3 confirms that any signature of critical be-
havior is lost at high temperatures. In particular: work can now
be extracted from the system at all concentration values and po-
tentials, fluctuations becomemaximal aroundCC = 50%, and the
skeweness has a smooth behavior at all concentrations and im-
purity potentials.

3.3. Quench in V: Amplifying the Disorder Strength

Here, we consider quenching a different parameter, the im-
purities disorder strength. For each (fixed) impurity con-
centration and attractive Coulomb interaction of U = −5J,
the impurities disorder strength will be quenched between
an initial value V0 and the final value Vf = 2U. We con-
sider initial disorder strengths from |V0| = |U|∕10 ≪ |U| to
|V0| = 7 ≳ |U|.
Let us first consider the results for T = 0 when plotted with re-

spect to the varying parameter V0 (Figure 4, upper row). Compar-
ing mean, variance, and skewness, it is difficult to identify con-
sistent signatures of a critical impurity strength. However, the
mean (panel a) suggests a special role for V0 = −5J, at which all
curves with impurity concentrations C ≤ 50% cross. Indeed, the
value −5J is the strength chosen for the Coulomb interaction,
so it represents the watershed between either impurity strength
or Coulomb attraction being the dominant interaction. Interest-

ingly, a sudden quench in V allows for work extraction (⟨W⟩ < 0)
for all concentrations when |V0| < |U| and a decreasing range of
concentrations as V0 becomes dominant over the Coulomb inter-
action.
A trace of this critical role is present in the skewness (panel

b), where curves close to the critical concentration cross at V0 ≈

−5. However, the main feature of the skewness is a clear kink
at V0 = −1 for intermediate concentrations. In addition, for all
concentration and small enough impurity potential the skewness
changes sign. The variance presents some crossovers at small V0

between curves corresponding to different concentrations, but no
features at V0 = U.
All moments confirm a special role for the data sets collected

at the critical concentration CC = 50% (first row, green lines with
diamond markers): the impurity concentration C is identified as
a critical parameter even through this protocol. Hence, in the sec-
ond row of Figure 4, we plot the same data, but as a function of
the impurity concentration C of each calculation. Now all three
moments show a clear signature at the critical concentration, all
developing a kink at C = 50% as V0 increases. For large enough
impurity strength, the variance almost vanishes confirming the
quasi-absence of density–density correlations in the correspond-
ing ground state.
The variance and skewness are symmetric with respect to

the critical concentration, and present additional features at
C = 25% and its symmetric C = 75%. The skewness kinks of
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Figure 5. Same as Figure 4, but for T = 2J∕kB.

panel c reflects in panel f with an initial potential V0 < 1J being
too small for the survival of any sign of criticality (panel f, darkest
blue curve), at least for this chain size. This is confirmed by
the variance data (panel e). Sensitivity of the skewness to the
special value V0 = −5J = U translates into the extreme at critical
concentration C = 50% changing from a minimum |V0| < |U|
into a maximum |V0| > |U| in panel f. For increasing |V0|,
this maximum tends toward zero skewness, as predicted in
Section 3.1 (not shown). In the mean, V0 = U reflects into a
constant ⟨W⟩ ≈ 0 for C ≤ CC.
Increasing the temperature to T = 2J∕kB has little effect in

the average work extracted, compare Figure 4a,b to Figure 5a,b.
However, the second and third moments are more sensitive to
the thermal fluctuations, with the signature corresponding to
the critical concentration (kinks at CC in panels e and f) being
washed out for V0 < 3J. Thermal fluctuations also affect the be-
havior characterizing the watershed value V0 = U in Figure 4
(panels a, c, and f): in Figure 5 these signatures are shifted at
higher values of V0. Thermal fluctuation increase the probability
of higher energy transitions, and indeed the work distribution be-
comes wider (second moment), but also more asymmetric (third
moment): compare ranges of the y-axis in, e.g., panels e and pan-
els f of Figures 4 and 5.
Finally, high-temperature results (T = 30J∕kB, Figure 6)

washes away any sign of critical behavior, as expected. Interest-
ingly, for this lesser quantum-correlated system, work can now

be extracted for any parameter combination (i.e., ⟨W⟩ < 0), sug-
gesting that work has to be done to the system in order to create
quantum correlations. Examples of P(W) for each temperature
are presented in the Appendix.

4. Conclusion

In this paper, we investigated the statistics of work in a
fermionic quantum system undergoing a sudden quench across
the superfluid-insulator transition. We demonstrate that at the
critical concentration all central moments of the work probabil-
ity distribution exactly vanish. In fact, in a sudden quench, the
work is reduced to a sum of local operators, while the SIT crit-
ical state has zero average-site entanglement. This implies that
all density fluctuations exactly vanish at all orders and hence
all central moments of the work probability distribution fol-
low suit. We note that this property would extend to quench-
ing protocols in other phases for which local entanglement
is negligible.
We numerically compared two paths for the SIT in fermionic

systems with randomly distributed impurities and explored the
first three moments of the work distribution from very low to
high temperatures. Our results indicate that the SIT increases
work absorption both when triggered by a change in the impu-
rity concentration or by a quench in the disorder strength. In-
deed, we demonstrate that the average work is maximized when,
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Figure 6. Same as Figure 4, but for T = 30J∕kB.

at criticality, the single-site entanglement is minimized and ex-
plain this analytically. This property could be employed for the
implementation of efficient energy storage (quantum batteries).
Work fluctuations become more pronounced away from the

critical concentration. Interestingly, deviations fromGaussianity,
as revealed by the skewness of the distribution, behave qualita-

tively differently in the two protocols. When triggering the SIT
by varying the impurity concentration the skewness changes
sign at the critical point, resembling the behavior seen in ref.
[11]; however the skewness remains negative on both sides of the
critical concentration when the transition is triggered by varying
the impurities’ potential strength. In this second protocol, both

Figure A1. Example of work distributions resulting from quenches in C for chains with L = 8 sites, with fixed initial and final impurity potential V0 =
Vf = −5J at T = 0 (a), T = 2J∕kB (b) and T = 30J∕kB (c). The initial and final configurations are randomly picked among all possibilities for Ci and Ci+1.
However, the chosen initial and final configurations’ pairs remain the same at different T’s.
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Figure A2. Work distribution for chains with L = 8 sites resulting from a quench in V from V0 = −J to Vf = −10J with fixed concentration Ci at T = 0J∕kB,
T = 2J∕kB and T = 30J∕kB. The initial and final configurations are randomly picked among all possibilities for Ci. However, initial and final configurations
for the same Ci at different T are the same.

average work and skewness are also highly sensitive to the
interplay between impurity and Coulomb potential, with the
regime in which the impurity potential dominates been clearly
marked in both moments. We verified that all signatures of the
SIT are washed by increasing temperatures.
Future directions include the development of finite-time proto-

cols in which the trade-off between the work and its fluctuations
can be controlled dynamically, such as proposed in ref. [70], and
its application to improve the performance of fermionic thermal
machines operating at finite temperature.

Appendix: Temperature Dependence of the Work
Distribution

Figure A1 shows examples of P(W) from quenches in C at different con-
centrations and for the three temperatures T = 0J∕kB (panel a), T = 2J∕kB
(panel b), and T = 30J∕kB (panel c). The intermediate temperature has
been chosen to be low enough so that the most populated state is the
ground-state, while a few low-lying states contribute to the dynamics.

Figure A2 displays one example of P(W) from quenches in V for each
temperature. We stress that here we do not averaged over all possible con-
figurations, but just plot results for a single calculation. Even so, it can be
observed how, with increasing temperature, the distributions at any Ci be-
come wider and then, at T = 30, more regular (single relevant maximum)
though still displaying a substantial skewness.

We note that averaging over distributions first and, then, calculating the
moments is not a procedure equivalent to ours (described in Section 2.3)
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