
This is a repository copy of Flexmi:a generic and modular textual syntax for domain-
specific modelling.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/208475/

Version: Published Version

Article:

Kolovos, Dimitris orcid.org/0000-0002-1724-6563 and de la Vega, Alfonso (2023) Flexmi:a 
generic and modular textual syntax for domain-specific modelling. Software and Systems 
Modeling. pp. 1197-1215. ISSN 1619-1366 

https://doi.org/10.1007/s10270-022-01064-3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Software and Systems Modeling (2023) 22:1197–1215

https://doi.org/10.1007/s10270-022-01064-3

REGULAR PAPER

FLEXMI: a generic andmodular textual syntax for domain-specific
modelling

Dimitris Kolovos1 · Alfonso de la Vega2

Received: 24 February 2022 / Revised: 14 October 2022 / Accepted: 31 October 2022 / Published online: 18 November 2022

© The Author(s) 2022

Abstract

Domain-specific languages allow engineers and domain experts to express problems and design solutions using domain-

focused vocabularies and abstractions, by means of graphical or textual syntaxes. In the case of textual syntaxes, language

engineers can opt for creating a language-specific syntax by defining and maintaining a BNF-style grammar, or use an

existing general-purpose reflective syntax such as the XML Metadata Interchange (XMI) or the Human Usable Textual

Notation (HUTN), which do not require any development and maintenance effort, but which are more verbose and cannot be

customised. We present Flexmi: a new general-purpose textual syntax for defining models that conform to Eclipse Modelling

Framework’s Ecore-based metamodels. Flexmi offers XML and YAML/JSON syntax flavours, it can be fuzzily parsed

to reduce verbosity, and it includes a templating system to facilitate encapsulation of reusable composite model element

structures, thus enabling more concise model specifications. We have evaluated Flexmi for verbosity and model loading

performance against XMI, HUTN, and a bespoke (i.e. custom) textual syntax for Ecore (Emfatic). Our results indicate that

the use of fuzzy parsing and templates allow Flexmi to achieve a significant reduction in the verbosity of models compared

to XMI/HUTN and can become almost as concise as a bespoke textual syntax, with a moderate performance penalty.

Keywords Domain-specific languages · Generic textual syntaxes · Model-driven engineering

1 Introduction

Model-based software development processes commonly

involve the development of domain-specific languages (DSLs)

that provide domain-focused vocabularies and abstractions.

A DSL consists of an abstract syntax describing the lan-

guage’s concepts, features and permitted relationships; one

or more concrete (e.g. graphical, textual) syntaxes that

allow modellers to construct models conforming to the lan-

Communicated by Zhenjiang Hu.

The work presented in this paper has been funded through the

HICLASS InnovateUK project (Contract No. 113213).

B Alfonso de la Vega

alfonso.delavega@unican.es

Dimitris Kolovos

dimitris.kolovos@york.ac.uk

1 Department of Computer Science, University of York, York,

UK

2 Software Engineering and Real-Time Group, Universidad de

Cantabria, Santander, Spain

guage; and artefacts specifying the language’s semantics (e.g.

denotational/operational semantics specifications, transla-

tors, interpreters). A DSL is classified as internal, when it

extends the syntax and semantics of an existing language, or

external, when its abstract and concrete syntaxes are defined

from scratch.

This paper is concerned with text-based editing of models

conforming to external DSLs, defined using the metamod-

elling facilities of the widely used and open-source Eclipse

Modelling Framework (EMF) [1]. In this technological

space, developers of DSLs have two main options for textual

model editing: they can either define a dedicated grammar for

their textual syntax using tools such as Xtext [2], EMFText

[3], or Monticore [4], from which language-specific parsers

and editors can be generated; or they can use generic syntaxes

such as HUTN [5], EMFJSON [6] or XMI [7].

The main benefits of language-specific textual syntaxes

are customisability and conciseness. On the flip side, devel-

oping a bespoke textual syntax requires substantial expertise

and upfront development effort, and incurs a maintenance

cost over time as the abstract syntax of the language and the

underlying framework/IDE evolve. General-purpose reflec-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01064-3&domain=pdf
http://orcid.org/0000-0002-7109-4249


1198 D. Kolovos, A. de la Vega

tive syntaxes on the other hand are more verbose and lack

in customisability, but they eliminate the cost and effort of

developing, distributing and maintaining language-specific

tooling. Intuitively, reflective syntaxes can be more desirable

at the early stages of development of a DSL where the abstract

syntax is fluid or for smaller-scale applications that do not

justify the effort of implementing and maintaining custom

tooling, while bespoke syntaxes can be more appropriate at

more mature stages of development and in larger endeavours

where the return of investment is clearer.

To address some of the weaknesses of existing reflective

textual syntaxes, we present Flexmi: a new XML/YAML-

based, general-purpose textual syntax for EMF-based DSLs,

which (1) can be fuzzily parsed to reduce verbosity, and (2)

includes a templating mechanism for encapsulating reusable

composite model element structures to reduce repetition.

To assess Flexmi’s verbosity and repetition reduction

capabilities, we replicated 503 Ecore models from a pub-

licly available dataset [8] and we compared the resulting

Flexmi files against equivalent models in XMI, HUTN and in

a bespoke textual syntax for Ecore (Emfatic [9]). Our results

indicate that Flexmi is able to reduce model size roughly

by half with respect to XMI, with close results to those of

Emfatic. These improvements in conciseness come at the cost

of lower parsing speed, which depends on the Flexmi fea-

tures that are used to specify a model (e.g. reusable templates

and the YAML flavour take longer to parse).

Early versions of Flexmi’s fuzzy parsing algorithm and

its mechanism for defining reusable templates were intro-

duced in two (workshop) papers, [10,11] respectively. This

paper consolidates and updates those works, including the

following novel contributions:

– A more detailed commentary on the advantages and dis-

advantages of bespoke and generic modelling syntaxes

in Sect. 2

– A description-by-example of Flexmi’s syntax and fea-

tures in Sect. 3 that complements the explanation of the

parsing algorithm from [10] (adapted in Sect. 3.1)

– A new YAML syntax flavour for Flexmi models with full

feature parity with respect to the original XML flavour

(Sect. 3.2)

– Support for dynamic values via executable attributes, and

for importing external EOL [12] operations (Sects. 3.5

and 3.8)

– The ability to set attribute values with the contents of

external files (Sect. 3.6)

– An improved templating mechanism over the previous

work [11] that allows filling elements generated from

templates through internal slots (Sect. 3.7)

– A systematic experimental evaluation of the impact of

Flexmi’s fuzzy parsing and templating mechanism on

verbosity and repetition (Sect. 4)

– A systematic performance evaluation of Flexmi’s XML

and YAML-based parsers

The rest of the paper is organised as follows: Section 2

introduces to domain-specific modelling and to bespoke and

generic textual syntaxes. Section 3 presents the main features

of Flexmi, and Sect. 4 describes the evaluation we carried

out. Lastly, Sect. 5 concludes the article and outlines future

work.

2 Background andmotivation

2.1 Domain-specific modelling

This paper focuses on external domain-specific languages

defined using object-oriented metamodelling techniques

[13]. When defining a new modelling language using these

techniques, there is a separation between the specification of

the intrinsic concepts and relationships that define the lan-

guage, denoted as the abstract syntax; and the graphical or

textual constructs that can be used to create models in the

language, known as the concrete syntax. The abstract syntax

is specified with a metamodel, which is generally depicted

in the form of a UML-like class diagram containing the

main classes of the language, their attributes, and their ref-

erences. Models that adhere to the structural rules defined in

the abstract syntax of a language are said to conform to such

abstract syntax.

The Eclipse Modelling Framework (EMF) [1] is the de-

facto metamodelling standard in the Java ecosystem. EMF’s

Ecore is an object-oriented meta-metamodelling language

that allows defining the abstract syntax of domain-specific

languages. As an example of an abstract syntax of a DSL,

which is also used to demonstrate Flexmi throughout the

paper, we present a contrived EMF-based project schedul-

ing language (PSL), whose Ecore metamodel is depicted in

Fig. 1. In PSL, projects contain tasks, which are allocated to

one or more people in a team. Tasks have a start month and

a duration (also in months), and people can specify a list of

skills and allocate part of their time to a task (percentage in

class Effort).

Creating PSL models would require one or more concrete

syntaxes, which allow users to specify models in some sort

or graphical or textual manner that is later parsed into an in-

memory model conforming to the abstract syntax of Fig. 1.

We focus on textual concrete syntaxes in this work, which

are introduced next.

2.2 Textual concrete syntaxes

An important component of an external domain-specific lan-

guage is its concrete syntax, through which users of the

123



Flexmi: a generic and modular textual syntax for domain-specific modelling 1199

Fig. 1 PSL metamodel in Ecore

1 Project {

2 title: "ACME"

3 description: "A bespoke ERP

System."

4 tasks: Task {

5 title: "Analysis"

6 start: 1

7 duration: 3

8 effort: Effort {

9 person: Person "Alice"

10 }

11 }

12 people: Person "Alice" {

13 name: "Alice"

14 }

15 }

Listing 1 Instance of the PSL metamodel in HUTN

language can create models that conform to it. The concrete

syntax of a DSL can be graphical, textual, form-based, table-

based or hybrid, integrating multiple styles for different parts

of the language (e.g. a graphical syntax for the structural parts

of the language and an embedded textual micro-syntax for

capturing behaviour).

The concrete syntax of a DSL is driven by a range of

factors, such as the nature and purpose of the DSL and the

skills and preferences of its target audience. In this work,

we are concerned with textual syntaxes for external DSLs,

with a particular focus on the widely adopted open-source

Eclipse modelling ecosystem [1]. Therefore, a discussion on

other forms of concrete syntaxes and a comparison of their

relative strengths and weaknesses is beyond the scope of this

paper.

In the Eclipse modelling ecosystem, there are two main

options for textual editing of models that conform to Ecore-

based DSLs: defining a bespoke (i.e. custom, specific) textual

syntax, or using a generic syntax. These options are discussed

in detail as follows:

2.2.1 Bespoke textual syntaxes

Xtext [2,14] is currently the most widely used and actively

maintained framework for defining bespoke textual syn-

taxes for DSLs in the Eclipse modelling ecosystem. From

an EBNF-like grammar, the Xtext tooling can produce an

ANTLR-based parser for the syntax as well as Eclipse-based

and web-based editors that support syntax highlighting, and

advanced features such as context-aware code completion,

reference navigation and refactoring. Xtext also provides

a reusable expression language (Xbase [15]), support for

defining custom scoping and name resolution rules, and a

workspace indexer. The XSemantics [16] framework extends

Xtext with support for defining complex type systems.

Frameworks with similar aims and capabilities include EMF-

Text [3], Spoofax [17] and Monticore [4].

The main benefits of developing a bespoke textual syn-

tax using one of the available frameworks discussed above

include the ability to fully customise the syntax of the lan-

guage to meet the needs and accommodate the preferences of

its target audience, and the ability to offer high-quality sup-

porting tooling to users with features such as code writing

assistance and reference navigation with minimal effort.

On the other hand, a bespoke textual syntax needs to be

accompanied by supporting documentation and examples, it

needs to co-evolve with the abstract syntax of the language,

and mechanisms need to be provided to allow installing and

updating its supporting parser and development tools as the

abstract syntax, underlying framework (e.g. Xtext) and host

IDE (e.g. Eclipse) evolve over time.

2.2.2 Generic textual syntaxes

If developing a bespoke textual syntax is not desirable or is

deemed unlikely to provide an acceptable return of invest-

ment, another option is to use a generic textual syntax such

as the Object Management Group’s Human Usable Textual

Notation (HUTN) [5], EMFJSON [6] or XMI [7].

An excerpt of a HUTN model that conforms to the PSL

metamodel is shown in Listing 1. When the HUTN parser

processes this model, it interprets the Project token of line 1

as an instance of the Project type from the PSL metamodel,

it populates the title and description attributes of the project

from the string literals in lines 2 and 3; and it processes the

rest of the document in a similar fashion to create, populate

and link a task (line 4), an effort (line 8) and a person (line

12) instance.

The XMI and EMFJSON syntaxes are very similar to

HUTN, with the main difference being that XMI is XML-

based while EMFJSON is JSON-based. All three formats

require exact matching between tokens in the textual model

and names of classes and features in the metamodel; for

example if “description” was changed to “desc” in line 3

123



1200 D. Kolovos, A. de la Vega

Table 1 Pros and Contras of bespoke and generic syntaxes

Syntax type Pros & Contras

Bespoke + As customisable as needed

+ Can be accommodated to end users

- Requires some initial cost

- Requires maintenance

Generic + No upfront cost to use them

- High rigidity due to exact matching

- Verbose

- Lacks the ability to reuse elements

of Listing 1, the HUTN parser would fail, as it would not be

able to find a feature with that name in the Project class. This

can make models rather verbose when longer class/feature

names are used in the metamodel. Also, none of these syn-

taxes provides support for encapsulating and reusing (instead

of repeating) recurring model element patterns, which are

discussed later in Sect. 3.7 of the paper.

Based on the above, bespoke and existing generic syntaxes

present some advantages and disadvantages, which we have

summarised in Table 1. The following section introduces our

flexible and generic syntax that aims to improve the current

state of the art.

3 FLEXMI

Flexmi is a generic textual syntax for EMF-based DSLs

which attempts to address the weaknesses listed in Sect. 2.2.2

by providing the following novel features:

– Intelligent and forgiving parsing that does not require

exact lexical correspondence with type or feature names

present in the metamodel (useful for conciseness)

– A language-agnostic mechanism for defining and instan-

tiating reusable model element templates (useful for

conciseness and reuse)

Figure 2 shows an overview of the main components

involved in writing and parsing a Flexmi model. As the fol-

lowing sections explain, Flexmi offers two syntax flavours:

one is XML-based, while the other is based in YAML. Both

flavours can be used from the same Flexmi editor. XML

Flexmi models are translated with a standard parser into an

XML DOM, while for YAML a custom parser is used to

achieve the same task. Lastly, the Flexmi parser is able to

convert the XML DOM into an in-memory EMF model by

applying fuzzy parsing, among other features. Next section

describes the Flexmi parsing process in detail.

1 <?nsuri psl?>

2 <proj title="ACME">

3 <desc >A bespoke ERP system </

desc >

4 <person name="Alice"/>

5 <person name="Bob"/>

6 <task title="Analysis" start="1

" dur="3">

7 <effort person="Alice"/>

8 </task >

9 <task t="Design" start="4" dur=

"6">

10 <effort person="Bob"/>

11 </task >

12 <task t="Implementation" start=

"7" dur="3">

13 <effort person="Bob" perc="

50"/>

14 <effort person="Alice" perc

="50"/>

15 </task >

16 </proj >

Listing 2 Flexmi model conforming to the PSL metamodel of Fig. 1

3.1 Fuzzy parsing of elements

Listing 2 presents an XML document that Flexmi can parse

into a valid instance of the PSL metamodel in Fig. 1. To

start using Flexmi, the only requirement is the existence

of an Ecore metamodel. On every Flexmi model, we must

indicate the namespace URI of the metamodel being instan-

tiated: this is achieved by means of a special nsuri XML

processing instruction. In line 1 of Listing 2, a nsuri is used to

specify that the model instantiates types from the PSL meta-

model. Other XML processing instructions allow importing

external Flexmi models, as well as operations defined in

the Epsilon Object Language (EOL) [12] that can be invoked

inside the expressions of executable model element attributes

(described in Sect. 3.5).

The parsing of a Flexmi model takes place by transform-

ing XML elements into elements of an in-memory EMF

model in a depth-first fashion. An overview of how the XML

syntax is used to represent EMF models in Flexmi is given

in Fig. 3. In the following, we discuss how the Flexmi parser

interprets the document of Listing 2. The parsing process is

depicted in Fig. 4, and the complete algorithm that is applied

over each XML element can be found in Listing 3.

The parsing of XML elements takes place with the help

of a stack. When Flexmi encounters the proj element in

line 2 of the model, the parser stack is empty, which means

that the name of this element is matched against the names

of all classes in the PSL metamodel. This case is covered

by lines 2–6 of the algorithm in Listing 3. By contrast to

parsers of existing reflective textual formats, Flexmi’s fuzzy

parser does not require exact lexical matching between the

123



Flexmi: a generic and modular textual syntax for domain-specific modelling 1201

Fig. 2 Overview of the main Flexmi components and parsing process

Fig. 3 XML syntax to EMF model in Flexmi

names of types/features in the metamodel and the XML tags

it encounters in a model—the closest match by name simi-

larity is selected instead. For the proj element, this match is

the Project class, and therefore, Flexmi creates an instance

of Project in the in-memory representation of the model.

In addition, the project instance is pushed into the stack, to

keep track of the context of the children of the proj element

(Fig. 4a). A model element is maintained in the stack until all

descendants of its associated XML element have been pro-

cessed. For instance, element desc in line 3 is only matched

against the possible features (i.e. attributes and references)

of the Project class, and in this case, it is paired with the

description attribute (Fig. 4b). The structure of this element

is treated in a special way by the Flexmi algorithm (covered

in lines 9–12 of Listing 3), because it has no XML attributes,

and it only contains text (i.e. no extra children). When that

is the case, the (trimmed) text of the XML element is set as

the value of the selected feature, which in this example is the

project’s description. This use of the text of an XML element

is useful for multi-line string attribute values.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 Parsing process over a simplified Listing 2

Line 4 presents the general case of finding an XML ele-

ment that will eventually be parsed as a model element, while

there are model elements in the stack (corresponds with lines

16–30 in Listing 3 and Fig. 4c). Again in the context of a

123



1202 D. Kolovos, A. de la Vega

1 procedure start_element(xml_element , stack)

2 if the stack is empty then /* xml_element is interpreted as a model element */

3 let new_model_element_type = the EClass whose name has the highest similarity to

the tag of the xml_element , chosen from the EClasses in the available

metamodel(s)

4 let new_model_element = new instance of new_model_element_type

5 call set_attribute_values (new_model_element , xml_element)

6 push new_model_element to the stack

7 else if stack.peek() is a model element then

8 let parent_model_element = stack.peek()

9 if xml_element has no attributes and only text then /* xml_element -> feature */

10 let feat = the feature of the parent_model_element 's class with the highest

string similarity to the name of the xml_element

11 let parent_model_element.feat = textual content of the xml_element , casting

appropriately

12 push null to the stack

13 else if xml_element has no attributes then /* xml_element -> containment slot */

14 let reference = the containment reference of the parent_model_element 's class

with the highest string similarity to the tag of the xml_element

15 push a containment slot encapsulating parent_model_element and the reference

to the stack

16 else /* the element has attributes , so xml_element -> model element */

17 let candidates = all parent_model_element 's containment references , and the

class types and subtypes of such references

18 let best_candidate = the class or reference with the highest similarity with

the name of xml_element

19 if best_candidate is a class

20 let new_model_element_type = best_candidate

21 let reference = the one with the highest string similarity to xml_element

containing the new_model_element_type among its accepted types

22 else /* best_candidate is a reference */

23 let new_model_element_type = the class type with the highest string

similarity with xml_element among the possible subtypes of

best_candidate

24 let reference = best_candidate

25 end

26 let new_model_element = new instance of new_model_element_type

27 call set_attribute_values (new_model_element , xml_element)

28 add new_model_element to the reference // attending reference multiplicity

29 push new_model_element to the stack

30 end

31 else if stack.peek() is a containment slot then /* xml_element -> model element */

32 let containment_slot = stack.peek()

33 let new_model_element_type = the class with the highest similarity to the tag of

the xml_element among the subtypes of the reference of the containment_slot

34 let new_model_element = new instance of new_model_element_type

35 call set_attribute_values (new_model_element , xml_element)

36 add new_model_element to the containment_slot 's reference // attending

multiplicity

37 push new_model_element to the stack

38 end

39 end procedure

Listing 3 Procedure that is applied to parse each new XML element

project, the parser has two options for interpreting the per-

son element: it can be either a Task belonging to the tasks

containment (analogous to UML’s composition) reference

of the project, or a Person belonging to its people reference.

Based on string similarity, it opts for the latter. Things change

in line 6, where the task element is a better match for a Task

under the tasks reference. The rest of the XML elements are

processed into model elements in the same fashion.

Fuzzy matching is also used to map XML attribute names

to attributes and non-containment references of model ele-

ments. The algorithm that is used to set element feature values

from XML attributes is defined in Listing 4. This algorithm

is called in lines 5, 27 and 35 of Listing 3. For example,

in line 8 of Listing 2, after a Task element is created, the

Flexmi parser uses the Hungarian algorithm [18] to decide

the optimal mapping between the title, start and dur XML

attribute names and the possible features of elements of type

123



Flexmi: a generic and modular textual syntax for domain-specific modelling 1203

1 procedure set_attribute_values(

xml_element , model_element)

2 let attrs = the attributes of

xml_element

3 store variable attributes for later

resolution and remove them from

attrs

4 let assignment = the map from attrs to

features of the model_element type

with the maximum total similarity

5 foreach xml_attribute in attrs do

6 let feature = the corresponding

feature of xml_attribute in

assignment

7 if xml_attribute starts with ":" then

8 /* executable attribute: evaluated

later */

9 store feature computation of

xml_attribute , feature and

model_element

10 else

11 let value = that of xml_attribute

12 if feature is an EAttribute then

13 if feature is single -valued then

14 set feature to value //

typecast

15 else

16 let values = split value by

comma

17 set feature to values //

typecast

18 end

19 else // the feature is an

EReference

20 if feature is single -valued then

21 create an unresolved reference

22 else

23 let values = split value by

comma

24 foreach value in values do

25 create an unresolved

reference

26 end

27 end

28 end

29 end

30 end

31 end procedure

Listing 4 Algorithm that maps XML element attribute values to values

of EAttributes and non-containment EReferences

Task (line 4 of Listing 4 and Fig. 4d). In this case, the XML

attributes are allocated and hence used to populate the title,

start and duration Task attributes, respectively (lines 12–18

of Listing 4).

3.2 YAML/JSON syntax flavours

Apart from XML, Flexmi also offers a YAML [19] flavour

to specify models. The rationale behind this inclusion was

providing an even more concise and human-readable syntax

on top of what is already achieved by the fuzzy parsing of

XML-based Flexmi models.

1 ?nsuri: psl

2 project:

3 - name: ACME

4 - desc: A bespoke ERP system

5 - person: {name: Alice}

6 - person: {name: Bob}

7 - task:

8 - title: Analysis

9 - start: 1

10 - dur: 3

11 - effort:

12 - person: Alice

13 - task: {

14 title: Design ,

15 start: 4,

16 dur: 6,

17 effort: {person: Bob}

18 }

19 - task: {

20 title: Implementation ,

21 start: 7,

22 dur: 3,

23 effort: {person: Bob , perc: 50},

24 effort: {person: Alice , perc:

50}

25 }

Listing 5 Flexmi model of Listing 2 using the YAML flavour

Listing 5 shows the Flexmi model of Listing 2 represented

in YAML. In this format, content is organised as entries, com-

posed of a key and a value separated by a colon (:). There are

two main constructs to specify the nesting structure of these

entries: block sequences and flow mappings. In YAML, block

styles use space-based indentation to denote structure, while

flow styles include explicit indicators to organise entries.

Both types of styles can be mixed to define the elements

of a model.

Block sequences are formed by placing a succession of

entries at the same level of indentation and by having each

entry key prefixed by a dash (-) and a space. For instance,

lines (7–12) of Listing 5 define a block sequence that rep-

resents the attributes and references of the Analysis task,

and line 12 (which is indented an extra level) represents

a single-entry sequence containing a person reference that

belongs to the effort element of line 11. Alternatively, flow

mappings are specified by surrounding with braces a set of

comma-separated entries. In the example, lines 13–18 show

a specification of the Design task that uses a flow mapping

to define the task features. This flow style basically allows

defining models using the JSON [20] format, and this is pos-

sible due to YAML being a superset of JSON.

Implementation-wise, and to minimise duplication, YAML-

based Flexmi models are parsed into an XML Document

Object Model (DOM), and then, they are processed by the

algorithms shown in Listings 3 and 4 as it happens with XML-

based models. Figure 5 depicts model examples of how the

123



1204 D. Kolovos, A. de la Vega

main YAML constructs are translated into XML, and how the

final XML is then parsed to obtain an EMF model. Exam-

ples a and b show two YAML specifications of the same PSL

model, composed of a root element (a project), an attribute

(the project’s name), and a nested element (a task). While

example a uses block sequences for structuring elements,

example b applies flow mappings. Nevertheless, the internal

XML DOM generated during the parsing of both examples

is the same, which is shown as example c. These examples

also show an nsuri processing instruction being detected and

translated: any key of a YAML entry starting with a question

mark (?) symbol is translated into a processing instruction

in the internal XML DOM. Lastly, examples d and e show a

model fragment where an Alice person is defined having two

skills: Java and XML. These examples present the last YAML

constructs required when specifying Flexmi models: block

sequences of scalars and flow sequences. Both constructs are

used to specify lists of scalars (i.e. primitive values), which in

EMF are needed to specify non-containment references (e.g.

the skills of the person in the example) and multi-valued

attributes. While block sequences imply placing each scalar

into its own line (example d), flow sequences are delimited

by brackets and separate the scalars by commas, like JSON

arrays (example e). Example f shows the resulting transla-

tion to XML of d and e, where the scalar values are stored

as the text of XML elements. These text elements are pro-

cessed by Flexmi as described in Sect. 3.1 and in lines 0–12

of Listing 3.

The Flexmi parser detects whether a file is XML- or

YAML-based by checking the first non-whitespace char-

acter of the file contents: when it is a less-than symbol

(<), Flexmi selects XML as the model flavour; it selects

YAML otherwise. This detection also makes it possible for

the Eclipse-based Flexmi editor to detect the flavour used

and adapt its syntax highlighting capabilities accordingly.

Both the XML and YAML syntax flavours have full feature

parity, so they can specify the same Flexmi models. Apart

from personal preference, using a more human-readable and

writeable syntax is the main reason for choosing the YAML

flavour over the XML one. On the flip side, XML might be a

better candidate when models have multi-line text attributes,

as these can be specified as the text content between the tags

of an XML element, such as the description of a PSL Project

(line 3 of Listing 2). Other reasons for choosing XML over

YAML are avoiding mandatory style requirements like the

space indentation required in Fig. 5a, d, or the minor pars-

ing performance penalty of having to first parse the YAML

models into XML DOMs.

For simplicity, the examples found in the remainder of this

article are presented using the XML flavour. The interested

1 <?nsuri psl?>

2 <proj title="ACME">

3 <regular -tasks >

4 <task t="Analysis" start="1"

dur="3"/>

5 <task t="Design" start="4" dur="

6"/>

6 </regular -tasks >

7 <dissemination -tasks >

8 <task t="Seminar" start="6"

dur="2"/>

9 </dissemination -tasks >

10 </proj >

Listing 6 Example of containment reference slots to disambiguate in

which reference to store tasks

reader can find alternative model specifications in YAML as

part of the external repository accompanying this work.1

3.3 Containment slots

Depending on the modelling language, a model element

could fit into more than one containment reference of its

parent. For instance, let’s suppose that a PSL project has

two containment references of type Task, namely regular-

Tasks and disseminationTasks, instead of the tasks reference

depicted in Fig. 1. Naming XML elements that represent

tasks as task (e.g. as in Listing 2) would not explicitly indi-

cate in which of the two references the element should be

placed. The Flexmi parser would choose a reference based

on name similarity,2 which in this case would mean that tasks

elements would always be placed into regularTasks. There

are two ways to actually specify which containment refer-

ence to populate. First, instead of using task to name the task

elements, we could use a name closer to the containment

reference we wish to select, e.g. regtask or dissemtask, or

the full reference name if preferred. Second, Flexmi offers

an optional construct to include model elements (e.g. tasks)

under the compatible containment reference of our choice:

containment slots.

Listing 6 shows an example with two containment slots:

regular-tasks and dissemination-tasks. A containment slot is

detected by Flexmi because of having a name with the high-

est string similarity with a containment reference and having

no XML attributes (lines 13–15 of Listing 3). When such a

containment slot is detected, it is pushed to the parser’s stack,

so any children of the slot are directly added to the associated

containment reference of the parent model element (lines

31–37 of Listing 3). Containment slots might be preferred

1 Click to visit an external repository containing YAML and XML rep-

resentations of the paper examples.

2 Flexmi currently uses Levenshtein’s distance [21] to calculate string

similarity, but other methods could also be applied.

123

https://github.com/alfonsodelavega/flexmi-evaluation/tree/master/org.eclipse.epsilon.flexmi.transformations/models/paperExamples/


Flexmi: a generic and modular textual syntax for domain-specific modelling 1205

Fig. 5 Parsing of YAML

representations using block and

flow-based styles to XML

DOMs

(a) (b) (c)

(d) (e) (f)

over the alternative of using the containment reference name

when users want to be consistent with the naming of model

elements, e.g., using task to denote all Task elements of the

model.

3.4 Non-containment references

So far we have discussed how the Flexmi parser interprets

XML element names and attributes to create model elements

and populate their containment references and attributes. To

support non-containment references such as the person ref-

erence of the PSL Effort type, target elements need to have a

unique identifier. If a class has an attribute marked as iden-

tifier in the Ecore metamodel [1], Flexmi will use that to

identify its instances. Otherwise, it will use the value of the

name attribute, if present. Using this convention, the XML

element of Listing 2, line 7, which is interpreted as an instance

of the Effort type, refers to the Alice person defined in line

4 of the document via her name. Fully qualified ID paths

separated by dots (.) are also supported. The path of an ele-

ment is formed by combining the IDs of all its containers

until the root of the model is reached (i.e. ACME.Alice to

refer to the person in line 4). These paths can be useful to

resolve ambiguities caused when two elements have the same

local identifier. Independently of the ID that is finally used,

non-containment references are collected during the parsing

process (Listing 4, lines 19–27 and Fig. 4e), and they are

resolved at the end of the document, so that all elements

that can be referenced are already present in the in-memory

model (Fig. 4f).

It could happen that a model element has neither an

attribute defined as identifier in its associated class, nor a

name attribute that could be used instead. In this case, it

is still possible to reference this element through the use

of Flexmi’s variables and executable attributes, which are

introduced next.

1 <?nsuri psl?>

2 <project title="ACME">

3 <person name="Alice" :global="alice

"/>

4 <person name="Bob"/>

5

6 <task title="Analysis" start="1"

dur="3">

7 <effort person="Alice"/>

8 </task >

9 <task t="Design" start="4" dur="6"

:var="design">

10 <effort person="Bob"/>

11 </task >

12 <task title="Implementation" :start

="design.start + design.duration

" dur="3">

13 <effort person="Bob" perc="50"/>

14 <effort :person="alice" perc="50"/>

15 </task >

16 </project >

Listing 7 Using variables and executable attributes

3.5 Executable attributes and variables

Prepending a colon (:) to the name of an attribute instructs the

Flexmi parser to interpret its value as an executable EOL [12]

expression instead of a literal value. Also, Flexmi supports

attaching a :var or a :global attribute to XML elements, to

declare local/global variables that can be used in EOL expres-

sions. The scope of local (:var) variables includes siblings

of the element, and their descendants, while global variables

can be accessed from anywhere in the model.

For example, in line 9 of the Flexmi model in Listing 7,

the Design task is assigned to a local variable named design,

which is then used in line 12 to compute the value of the start

month of the implementation task.

Continuing with the ways of targeting elements from the

previous section, line 3 of Listing 7 shows how the person

instance can be made available through a :global attribute

denoted alice (notice the lowercase name). That attribute cre-

ates a global variable, which is later used in line 14 to refer to

123



1206 D. Kolovos, A. de la Vega

1 <?nsuri psl?>

2 <proj title="ACME"

3 desc_="acmeDescription.txt">

4 ...

5 </proj >

Listing 8 Loading the description of a project from the

acmeDescription.txt file

the person element contained in such variable through an exe-

cutable :person attribute. As in the case for non-containment

references, variables and executable attributes are collected

and resolved once the end of the document has been reached

(lines 3 and 9 of Listing 4).

3.6 Setting attribute values from file contents

Apart from using executable attributes as defined above, it is

also possible to set model element features with the con-

tents of external files. To do this, the name of the XML

attribute must have an underscore (_) suffix, and the value

of the attribute should point to the file from which to load the

contents. The loading of the contents of the referenced file as

the value of the XML attribute takes place before calling to

the start_element algorithm of Listing 3, which allows using

fuzzy matching for the attribute name as if it were a regular

one.

Listing 8 shows how the description of a project is loaded

from an external file acmeDescription.txt, by using the desc_

attribute name and the relative path of the file, which indi-

cates that the text file must be located in the same folder as

the Flexmi model. In the different places where Flexmi can

reference external resources, both absolute/relative filesys-

tem paths and Eclipse-based platform URIs are supported.

3.7 Templates

Flexmi supports defining reusable templates through the

reserved <:template> XML tag. For example, when

designing one-person projects where all tasks take place in

sequence, we can omit all the repetitive <effort> ele-

ments that refer to the same person, and we can automate the

calculation of the start date of each task by using a template,

as shown in Listing 9.

All Flexmi templates have two properties: the name that

must be used as tag name to instantiate the template; and a

content children, which provides the XML elements that will

be processed by the Flexmi parser. In Listing 9, a template

named simpletask is defined in lines 10–21. This tem-

plate is used three times in lines 5–7. Based on its content

(lines 11–20), each usage of this template generates a task

element, which also contains an effort element. The start of

the task and the person allocated to the effort are defined

1 <?nsuri psl?>

2 <_>

3 <project title="ACME">

4 <person name="Alice"/>

5 <simpletask title="Analysis

" dur="3"/>

6 <simpletask title="Design"

dur="3"/>

7 <simpletask title="Impl."

dur="6"/>

8 </project >

9

10 <:template name="simpletask">

11 <content >

12 <task :start="Task.all

13 .indexOf(self)

14 .asVar('index ') == 0 ? 1 :

15 Task.all.get(index -1)

16 .asVar('previous ').

start

17 + previous.duration">

18 <effort :person="Person

.all.first"/>

19 </task >

20 </content >

21 </:template >

22 </_>

Listing 9 Flexmi model with a simpletask template

through executable attributes. The :start expression calcu-

lates the start time of a task by obtaining the task index in

the list of all existing tasks, and then by accumulating the

duration of all preceding tasks. The :person expression sim-

ply assigns the effort to the first Person element of the model

(i.e. the only one available, Alice). As a side note, this is

the first appearance of the <_></_> special XML element,

which is used to support Flexmi models that have more than

one top-level elements (similarly to the <xmi:xmi> tag in

XMI).

3.7.1 Parametric templates

Flexmi templates also support string parameters, which can

be used to customise the generated content when instantiated.

Listing 10 includes a template (solo) that can be used to

define tasks carried out by a single person (lines 8–16). This

template accepts a name and a person parameter (lines 9 and

10), which are used to name the task and to assign all the

effort to the provided person, respectively. Parameters are

provided as regular XML attributes when instantiating the

template, as it happens in line 5 where Design and Alice are

passed as name and person.

123



Flexmi: a generic and modular textual syntax for domain-specific modelling 1207

1 <?nsuri psl?>

2 <_>

3 <project title="ACME">

4 <person name="Alice"/>

5 <solo name="Design" dur="3"

person="Alice"/>

6 </project >

7

8 <:template name="solo">

9 <parameter name="name"/>

10 <parameter name="person"/>

11 <content >

12 <task name="${name}">

13 <effort person="${

person}"/>

14 </task >

15 </content >

16 </:template >

17 </_>

Listing 10 A template (solo) with name and person parameters

1 <?nsuri psl?>

2 <_>

3 <project title="ACME">

4 <person name="Alice"/>

5 <longtask title="

Implementation" years="2

">

6 <effort person="Alice"/>

7 </longtask >

8 </project >

9

10 <:template name="longtask">

11 <parameter name="years"/>

12 <content language="EGL">

13 <![CDATA[

14 <task dur="[%

15 <:slot/>

16 </task >

17 ]]>

18 </content >

19 </:template >

20 </_>

Listing 11 A dynamic template (longtask) with a <:slot>

3.7.2 Dynamic templates and slots

It is possible to use embedded model-to-text transformations

to further customise the content that templates produce. In

Listing 11, an EGL [22] transformation is defined inside the

<content> element of the longtask template (lines

10–19). This template can be used to create tasks using years

as duration unit, by providing a years value through a param-

eter (lines 5 and 11), which is translated to months in the EGL

code (line 14). Also, Flexmi supports including a <:slot>

element in the content of templates, which specifies where

any nested elements of the caller (e.g. the effort element of

line 6) should be placed in the produced XML.

1 <?nsuri psl?>

2 <_>

3 <person name="Alice"/>

4 <person name="Bob"/>

5 <person name="Charlie"/>

6 </_>

Listing 12 The people.flexmi model

1 <?nsuri psl?>

2 <?import people.flexmi?>

3 <proj title="ACME">

4 <task title="Analysis" start="1

" dur="3">

5 <effort person="Alice"/>

6 </task >

7 ...

Listing 13 Importing people.flexmi in a model

3.8 Importing other FLEXMI Models and External
Operations

Other Flexmi models can be imported through the use of

the <?import other.flexmi?> and <?include

other.flexmi?> processing instructions. The use of

import creates a new EMF Resource for theother.flexmi

file, which is useful for referencing elements and for having

the same Flexmi model imported by several models. On the

other hand, include parses the contents of other.flexmi

as if they were embedded in the Flexmi model that contains

the include processing instruction, just as the input com-

mand works for embedding LATEX documents. This inclusion

happens at the position where the processing instruction is

placed, this means, we could include the contents of an exter-

nal Flexmi file as children of a concrete XML element in the

source file.

In the context of PSL, all Person elements working in

different projects could be centralised in a model denoted

people.flexmi, which is depicted in Listing 12. This

model can be imported from Flexmi models containing

project details to reference the people that will carry out that

project tasks, as shown in Listing 13. While we could also

use the include instruction here, using import is preferred

because if any project model also references another project,

then the people.flexmi will only be loaded once.

It is also possible to use processing instructions to import

operations contained in an external EOL file, with the aim of

using them as part of executable attributes (see Sect. 3.5).

For instance, the expression of the :start attribute in the

simpletask template of Listing 9 (lines 12–17) is a one-

liner that could be made more readable if divided into several

lines. Listing 14 shows a pslOperations.eol file doing

just that in the getStartTime() operation, which is defined in

123



1208 D. Kolovos, A. de la Vega

1 operation Task getStartTime () {

2 var taskIndex = Task.all.

indexOf(self);

3 if (taskIndex == 0) {

4 return 1;

5 } else {

6 var previous = Task.all.get

(taskIndex -1);

7 return previous.start +

previous.duration;

8 }

9 }

Listing 14 The pslOperations.eol file

1 <?nsuri psl?>

2 <?eol pslOperations.eol?>

3 <_>

4 ...

5 <:template name="simpletask">

6 <content >

7 <task :start="self.getStartTime

()">

8 <effort :person="Person.all

.first()"/>

9 </task >

10 </content >

11 </:template >

12 </_>

Listing 15 Updates Listing 9 to use the external pslOperations.eol file

a block of instructions and with the help of syntax highlight-

ing. Then, Listing 15 shows how to use this EOL file from a

Flexmi model: the eol processing instruction must be used

(line 2), which allows changing the :start attribute to a sim-

pler call to getStartTime() (line 7).

3.9 Tool support

Flexmi is developed as part of the Eclipse Epsilon

project,3 and it is supported by a dedicated Eclipse edi-

tor that can be seen on Fig. 6. As mentioned in Sect. 3.2,

this editor can detect whether the chosen flavour for the

opened Flexmi model is XML or YAML, and then select

the appropriate syntax highlighting. In addition, the editor

offers comprehensive error reporting capabilities, including

malformed XML/YAML mistakes, exceptions in executable

attributes, unresolved references, missing imported/included

files, or other errors detected by standard EMF validation

(e.g. violation of minimum and maximum metamodel cardi-

nalities, omission of mandatory features). In Fig. 6, the editor

(top right) shows the Flexmi model depicted in Listing 2.

This editor is integrated with other views of the Eclipse IDE.

For instance, the top left of the figure shows the Outline view,

3 https://www.eclipse.org/epsilon/.

1 ResourceSet resourceSet =

2 new ResourceSetImpl ();

3 resourceSet.

getResourceFactoryRegistry()

4 .getExtensionToFactoryMap ()

5 .put("flexmi", new

FlexmiResourceFactory ());

6 Resource resource =

7 resourceSet.createResource(

8 URI.createFileURI("acme.

flexmi"));

9 resource.load(null);

Listing 16 Java snippet that loads a Flexmi model as an EMF Resource

which depicts the tree structure of the in-memory EMF model

parsed from the Flexmi model. The elements of this EMF

model can be inspected in the Properties view (bottom left),

which in the figure shows the three attributes of the Analysis

task selected in line 6 of the editor. Lastly, any warnings or

errors in the model would be listed in the Problems view (bot-

tom right), as well as marked in the editor. In the example, we

have introduced a small mistake by assigning the string fifty

to the percentage numerical attribute of the effort element in

line 13. The Problems view shows this mistake as a warning,

including its location in the acme.flexmi file.

Flexmi also provides an implementation of EMF’s Resource

interface, which allows Flexmi models to be consumed

by any EMF-compatible application or model management

language (e.g. ATL, Acceleo). Listing 16 shows a Java

snippet that loads a Flexmi model as a standard EMF

Resource. Additionally, Flexmi offers a facility for trans-

forming Flexmi models to XMI. Finally, apart from being

installable as an Eclipse bundle, Flexmi is also available as

a standalone Java library on Maven Central4 and is used as

the modelling format of choice in Epsilon’s web-based Play-

ground.5

3.10 Limitations

Although Flexmi models can be seamlessly loaded and

used by any EMF-compatible application, changes made to

their in-memory representations cannot be serialised back to

XML/YAML. While the shortened terms of the fuzzy match-

ing could be stored and recovered for serialisation, the results

of executable attributes and the application of templates (see

Sects. 3.5 to 3.7) cannot be unrolled in the general case.

In Sect. 3.1, we introduced the nsuri processing instruction

that allows specifying the namespace URIs of the metamod-

els that the Flexmi model is instantiating. Multiple nsuri

4 https://mvnrepository.com/artifact/org.eclipse.epsilon/org.eclipse.

epsilon.flexmi.

5 https://eclipse.org/epsilon/live.

123

https://www.eclipse.org/epsilon/
https://mvnrepository.com/artifact/org.eclipse.epsilon/org.eclipse.epsilon.flexmi
https://mvnrepository.com/artifact/org.eclipse.epsilon/org.eclipse.epsilon.flexmi
https://eclipse.org/epsilon/live


Flexmi: a generic and modular textual syntax for domain-specific modelling 1209

Fig. 6 The Flexmi editor and its integration with the Outline, Properties and Problems view from the Eclipse IDE

instructions can appear in a Flexmi model if it contains

instances of types from multiple metamodels. However, a

caveat of Flexmi’s fuzzy matching mechanism is that it is

not able to differentiate between two classes with the same

name coming from different metamodels. While this issue

could be solved by adopting namespace prefixes, this option

was discarded in favour of simplicity and conciseness, as

supporting such prefixes would bring back part of the unde-

sirable complexity and verbosity of XMI.

Metamodel evolution could cause unexpected mappings

of XML elements or attributes to model element types or

features, respectively. For instance, if an Effort’s percent-

age attribute is renamed to cost in the PSL metamodel of

Fig. 1, the Flexmi parser will automatically map the perc

XML attributes in lines 13–14 of Listing 2 to the new cost

attribute of an Effort, which might or might not be the desired

behaviour. While setting a minimum similarity threshold

below which no matching is accepted could help, this is

an approach that needs to be further studied, as establish-

ing a threshold that is too restrictive could also prevent valid

matches from being accepted.

Lastly, as part of the tooling, Flexmi’s Eclipse-based edi-

tor does not currently offer syntax highlighting for inlined

code from Epsilon languages, such as EOL expressions (e.g.

see Sect. 3.5) or EGL-based dynamic templates (described in

Sect. 3.7.2). We will aim to support these languages as future

work.

4 Evaluation

To evaluate Flexmi, we measured the impact of fuzzy parsing

and templates in terms of conciseness and performance. All

code and artefacts involved in this evaluation can be found

in an external repository.6 In terms of testing, the Flexmi

parser is backed by 57 automated unit and integration tests

that assert that it behaves as expected against 76 test models,

and protect future development from regressions.

4.1 Evaluationmethod

We compared Flexmi against three existing textual syntaxes

for Ecore models: XMI and HUTN (generic syntaxes), and

Emfatic (bespoke syntax). For the purposes of our evalua-

tion, we treat Ecore as an EMF-based object-oriented DSL

(i.e. a mini UML), overlooking its role as the metamodelling

language of EMF. The reasons behind opting for Ecore are

(1) the availability of many existing Ecore models in the pub-

lic domain (to avoid bias), and (2) the availability of existing

bespoke textual syntaxes for it such as Emfatic, Xcore [23]

and OCLInEcore [24]. The selection of Emfatic over Xcore

and OCLInEcore was a free choice given that all three syn-

taxes are very similar in terms of conciseness.

6 https://github.com/alfonsodelavega/flexmi-evaluation.

123

https://github.com/alfonsodelavega/flexmi-evaluation


1210 D. Kolovos, A. de la Vega

4.1.1 Ecore model dataset

We reused the dataset presented in [8], which consists of

2,420 XMI-based Ecore models mined from different open

source software repositories. However, most of these Ecore

models contain issues, such as syntactical errors or unresolv-

able proxies (i.e. references to external models). We limited

the evaluation to self-contained models (i.e. no proxies),

which did not suffer from errors during the evaluation proce-

dure, and with at least 5KiB in size (to filter out toy examples),

ending up with 503 models, whose XMI byte size ranges from

5KiB to 3.4 MiB.

4.1.2 Textual syntaxes generation

The Ecore models in the dataset were stored in XMI, from

which we automatically generated replica models in the other

syntaxes. For instance, for Emfatic and HUTN, we used the

built-in transformations provided by their implementations to

obtain, for each Ecore XMI model, an Emfatic and HUTN-

based model, respectively.

We used a model-to-text transformation to generate

Flexmi Ecore models out of the XMI ones. In particular,

we generated two Flexmi model versions for each Ecore

model: one that makes use of templates (see Sect. 3.7) and one

that does not (denoted as plain in the following). The ratio-

nale behind this decision was so that we could independently

measure the conciseness benefits and performance overhead

of the templating mechanism on top of a plain version of

Flexmi, where only fuzzy parsing was applied (described in

Sect. 3.1). Additionally, we generated two Flexmi models

for each variant: one using the XML flavour, and another

using YAML (introduced in Sect. 3.2), with the objective

to measure the overhead of the extra YAML-to-XML trans-

formation that takes place when using the YAML flavour.

Therefore, a total of four Flexmi models was generated for

each Ecore XMI model.

The plain Flexmi versions only benefit from fuzzy match-

ing mechanisms to allow a concise wording of Ecore terms

for the model tags and attributes. Table 2 shows how these

terms were shortened when generating Flexmi models. The

shortened terms were not chosen focusing exclusively on

reducing length, as this might make the model more difficult

to understand (i.e. using u instead of upperBound for EType-

dElements), but also in maintaining readability (so, upper

was finally used in this case).

The templated versions are plain Flexmi models that also

use a set of templates where possible. An excerpt of the tem-

plates file for XML Flexmi models can be seen in Listing 17.

These templates are mostly parametric ones (see Sect. 3.7.1),

and allow representing Ecore EAttributes (lines 3–9), ERef-

erences (lines 10–24), and a special type of EAnnotations

(GenModel documentation, in lines 25–32) more concisely.

Table 2 Fuzzy terms shortened in Flexmi Ecore models

XMI term Shortened as

EPackage package

EClass class

eStructuralFeatures (for EAttributes) attr

eStructuralFeatures (for EReferences) ref

eType (ETypedElement) type

upperBound (ETypedElement) upper

lowerBound (ETypedElement) lower

EAnnotation annotation

EOperation op

EDataType type

EEnum enum

EEnumLiteral lit

Fig. 7 An Ecore EEnum representing the months of the year in all the

compared notations

Applying templates allowed us to mimic the bespoke Emfatic

syntax in some cases. For instance, there are two templates

that use the val term to represent containment references,

just as Emfatic does. The val term is used for single-valued

containment references (lines 10–14), while vals is used for

multi-valued ones (lines 15–19). There is also a dynamic

template t_enum (see Sect. 3.7.2) that allows representing

an Ecore’s EEnum in a single XML element that enumer-

ates the list of literal names, instead of having to define a

tag for the enum and then an additional nested element for

each literal (EEnumLiteral). This is achieved by means of

a model-to-text transformation (lines 36–45), which iterates

over the list of literals to generate the EEnumLiteral elements

in the background, assigning an incremental literal value to

each one of them. Figure 7 contains an example of a Month

EEnum expressed in all the compared syntaxes, which were

extracted from one of the metamodels of the dataset .

123



Flexmi: a generic and modular textual syntax for domain-specific modelling 1211

1 <?nsuri psl?>

2 <_>

3 <!-- There are extra templates that

match

4 attributes with other Ecore

EDataTypes -->

5 <:template name="string">

6 <content >

7 <attr type="// EString" ><:slot

/></attr >

8 </content >

9 </:template >

10 <:template name="val">

11 <content >

12 <ref containment="true"><:slot

/></ref >

13 </content >

14 </:template >

15 <:template name="vals">

16 <content >

17 <ref containment="true" upper="

-1" ><:slot/></ref >

18 </content >

19 </:template >

20 <:template name="refs">

21 <content >

22 <ref upper=" -1"><:slot/></ref >

23 </content >

24 </:template >

25 <:template name="genmodel">

26 <parameter name="doc"/>

27 <content >

28 <annotation source="http :// www.

eclipse.org/emf /2002/ GenModel

">

29 <details key="documentation"

value="${doc}"/>

30 </annotation >

31 </content >

32 </:template >

33 <:template name="t_enum">

34 <parameter name="name"/>

35 <parameter name="literals"/>

36 <content language="EGL">

37 <![CDATA[

38 <eenum name="[%

39 <:slot/>

40 [%

41 <lit name="[%

42 [%

43 </eenum >

44 ]]>

45 </content >

46 </:template >

47 </_>

Listing 17 Some of the Flexmi XML templates for Ecore

4.1.3 Measuring method

For the conciseness, we measured the character counts of the

models corresponding to each syntax, omitting whitespace.

This size measure was preferred over a more conventional

lines of code (LOC) one because of the different styles of

the compared syntaxes, e.g. the tag-based format of the XMI

Fig. 8 Character counts relative to Emfatic (dashed line)

and Flexmi XML models differs from the Java-like syntax

of Emfatic. Nonetheless, given the popularity of the LOC

measure we also included it in our analysis.

Related to performance, we compared model loading

times of each textual syntax. Due to the small size of

some models, individual model loading measurements turned

impractical, as some load operations took less than one mil-

lisecond. Therefore, we instead measured the accumulated

time it took each syntax to load the whole dataset of models,

which was in the order of seconds.

Performance measurements were carried out in a Mac-

Book Pro with a quad-core i5 CPU, 32 GiB of LPDDR4X

RAM, and an NVME SSD. To increase reliability, mea-

surements were taken 20 times, and unmeasured warm-up

repetitions were included to mitigate any perturbation due to

idle states of the operating system.

4.2 Results

4.2.1 Conciseness comparison

To compare measurements of heterogeneous models, char-

acter counts were normalised with respect to the ones of

Emfatic. As this notation offers a tailored syntax for Ecore,

it consistently achieved the lowest character counts across all

measured models. Therefore, the closer the results of other

syntaxes get to the ones of Emfatic, the better they score

in terms of conciseness. Figure 8 shows character count box

plots of XMI, HUTN, and the four Flexmi variants relative to

the Emfatic results, which are represented by a green dashed

line at the “1” value.

At a first glance, there is a higher dispersion in the XMI and

HUTN results with respect of those of the Flexmi versions,

whose boxes and distances between the exterior whiskers

are smaller. This higher dispersion can be explained by these

syntaxes having a much greater verbosity for certain syn-

tax constructs with respect to Emfatic, and by the different

proportion of these constructs in the models of the dataset.

123



1212 D. Kolovos, A. de la Vega

(a) (b)

(c) (d)

(e)

Fig. 9 Examples of how EAttributes and EReferences are represented

in the compared notations

For instance, Ecore EAttributes and EReferences take way

more characters to be expressed in XMI and HUTN than in

Emfatic. An example of this can be seen in Fig. 9. We can

see that the Emfatic syntax (e) is free of all the verbosity that

is required for the XMI and HUTN serialisation (a and b,

respectively). Therefore, models having a greater number of

EReferences and EAttributes would have a greater relative

size in XMI/HUTN with respect to Emfatic than those con-

taining a lower proportion of these syntax constructs. Similar

comparisons can be made with other Ecore syntax constructs,

such as EAnnotations or EEnums (see Fig. 7).

While the same analogy can be made for the Flexmi ver-

sions, these are much more concise than XMI, making their

results less sensitive to the input model contents and thus

more consistent. Coming back to Fig. 9 example, in plain

Flexmi (c) an attr or ref tag name is enough to start the ele-

ment, and similar fuzzy names are used for tag attributes (see

Table 2 for other fuzzy matching examples). When defining

attribute types, Flexmi allows omitting the Ecore names-

pace URI, so just the type identifier needs to be specified,

which in the case of Ecore is done through a name-based

URI (e.g. //EString). Lastly, as depicted in Fig. 9d, the tem-

plated Flexmi version includes templates for data types and

for representing containment references of different multi-

plicities. In the example, an EAttribute of type EString is

represented simply with a string tag, and a multi-valued con-

tainment reference is defined by using the vals tag (these

Flexmi templates are defined in Listing 17, among others).

Although Fig. 9 only contains the Flexmi examples for the

XML flavour due to space restrictions, the same rationale

applies to the YAML one too, which in addition is a bit more

concise because of the added verbosity of XML tags.

When considering numerical results, the XMI and HUTN

median values sit at 3.70 and 3.74, respectively, which are

considerably higher than the 2.01 and 1.81 results of the XML

(a)

(b)

(c)

(d)

Fig. 10 GenModel annotation representation

and YAML plain Flexmi versions, and than the 1.71 and 1.53

results of the templated versions, respectively. Focusing on

the 75th percentile (i.e. the rightest line of the box of each

boxplot), XMI and HUTN sizes are 4.31 and 4.20 times those

of Emfatic, while the Flexmi versions are only 2.21, 1.98,

1.88 and 1.68 times as big.

Lastly, related to LOC measurements, the effect of certain

Ecore syntax constructs is even more pronounced than in

the character counts, specially in the case of EAnnotations.

We show an example of this in Fig. 10 depicting a GenModel

annotation, which is used to include documentation in model

elements. Such an annotation always has, at least, a nested

doc detail element. As can be seen, this annotation takes a

minimum of 3 LOC in XMI. In plain XML Flexmi, it takes

the same number of lines, while there is a GenModel tem-

plate that can be seen in lines 25–32 of Listing 17, so the

templated version of Flexmi can make use of it to take only

one LOC. Emfatic has a specific syntax construct for anno-

tations that allows representing them in a single line as well.

Moreover, this syntax construct can be also used with custom

annotations, these are, those that were defined specifically

for a concrete Ecore metamodel, in which case there is no

generic Flexmi defined in our evaluation setup. Therefore,

Emfatic can represent any EAnnotation in the metamodel as

a one-liner.

In summary, Emfatic has a great advantage in the LOC

measurements, and a model-by-model relative comparison

as done in the character count analysis was not as fair in this

case. Therefore, we performed a dataset-level LOC count,

answering the following question: how many lines does it

take each syntax to specify all Ecore models in the dataset?

The results can be found in Table 3.

Starting with HUTN and the Flexmi YAML versions,

these syntaxes require more LOC because of their greater

usage of new lines when specifying model elements. When

comparing the two, HUTN requires a greater number of lines,

due to the extra curly brace that is required to close each

element (e.g. see lines 10–11 or 14–15 of Listing 1). With

respect to the XML-based syntaxes, we can see how∼10% of

123



Flexmi: a generic and modular textual syntax for domain-specific modelling 1213

Table 3 Number of LOC required to represent the whole dataset of

Ecore models

Syntax #LOC

HUTN 789,430

Plain Yaml Flexmi 692,546

Templated YAML Flexmi 536,044

XMI 351,027

Plain XML Flexmi 314,053

Templated XML Flexmi 250,156

Emfatic 167,521

Fig. 11 Accumulated time taken to load the whole dataset

lines are skipped in plain XML Flexmi with respect to XMI,

which goes up to ∼ 28% when Flexmi templates are also

applied. Lastly, and mainly due to the special EAnnotation

syntax described above, Emfatic is able to use ∼ 52% less

lines than XMI.

4.2.2 Performance comparison

Figure 11 shows the accumulated time it took the Emfatic,

XMI and Flexmi parsers to load the whole models dataset,

including 95% confidence intervals. We opted to leave HUTN

out of these results, as the performance of its implementation

[5] is not on par with the others (the full dataset load took

more than 8 minutes, far from the seconds it takes the other

approaches). We can see that the results for Emfatic and plain

XML Flexmi are very close, at 2.39 and 2.49 times the results

of XMI (i.e. the faster notation), respectively. As for the tem-

plated XML Flexmi version, its result is 3.96 times the one

of XMI, and 1.5 times that of Emfatic. This is due to the

overhead of processing of parametric and dynamic templates

(see Sects. 3.7.1 and 3.7.2, respectively). The Flexmi YAML

flavours are the slower ones, taking 3.57 times that of XMI

for the plain version, and 4.46 times for the templated ver-

sion. When comparing the flavours, the plain YAML version

takes 30% more time than the XML one, while the templated

YAML version takes 12% more time than the XML counter-

part. This increase was expected, as the YAML models are

Table 4 Some statistics of the Ecore models in the dataset

Measurement #Classes #Attributes #References

First Quartile 11 11 11

Median 20 19 19

Third Quartile 39 35 43

Max 945 7933 881

first transformed to an XML DOM before being processed

by the Flexmi parser.

4.3 Threats to validity

We comment here on any detected threat that might be influ-

encing the outcome of our experiments.

With the aim of avoiding bias in the results for the specific

case of Ecore, XMI, HUTN and Emfatic, we opted for a third-

party dataset with a reasonable distribution in terms of the

size and key characteristics of the models it contains, such

as the number of classes, attributes and references in each,

summarised in Table 4.

It could also be argued that using just an example lan-

guage (Ecore) may not be enough to generalise the results.

While this might be true, we prioritised quality over quan-

tity of examples, this is, we avoided the creation of synthetic

examples to prevent the potential inclusion of biases due to

the performed experiments. In fact, the inherent simplicity

of the Ecore language caused that only a handful of tem-

plates were worth considering, so some Flexmi features

might prove even more useful when applied to models from

other domains, which we will explore in the future.

The better results in conciseness provided by Flexmi

might come at a cost of readability of the models. We tried to

mitigate this risk by selecting terms that offered a good bal-

ance between conciseness and understandability (see Table 2

to check how terms were shortened). When in doubt, the

complete, original terms were used. We will perform real

readability and learnability experiments with end users as

part of our future work.

For the comparison, the models of the two Flexmi

versions and of the Emfatic notation were automatically gen-

erated. So, it could be argued that the conciseness results

are tied to how good the generator that created the models

is. After a manual inspection of the automatically generated

models, apart from some whitespace (which is ignored in

the character counts of the comparison), we did not detect

any extra-verbose syntax construct that might be improved

if manually defined. We consider that model contents would

be very close to those of hand-crafted models if the trans-

formation was performed manually instead (a much more

error-prone task though), so we believe that the use of

123



1214 D. Kolovos, A. de la Vega

1 <or >

2 <and >

3 <var id="a"/>

4 <var id="b"/>

5 </and >

6 <var id="c"/>

7 </or >

Listing 18 Boolean expression captured in Flexmi

transformations to obtain the compared models of certain

notations is not affecting the validity of the results.

The incurred performance overhead ranged from 2.5 to

4.5 slower parse times with respect to XMI, being in some

configurations nearly as fast to parse as the bespoke Emfatic

syntax. On the other hand, the performance of a bespoke

parser can depend on a number of factors such as the sophis-

tication of the underlying parser generator and the complexity

of the BNF grammar, and therefore, the performance results

against Emfatic cannot be safely generalised.

4.4 Discussion

While Flexmi is certain to be more concise than XMI and

HUTN, and has been shown to be nearly as concise as

Emfatic, bespoke textual syntaxes can be substantially more

concise than Flexmi in some scenarios. For example, in the

context of a DSL that allows defining arbitrarily complex

Boolean expressions, a bespoke syntax could provide a very

concise encoding such as (a and b) or c, while it would require

a much more verbose encoding in Flexmi as shown in List-

ing 18.

In general, factors that can affect the compactness of a cus-

tom textual syntax include (1) the ability to reuse established

concise notations that the target audience are already famil-

iar with (e.g. single-character mathematical symbols with

already well-understood semantics instead of longer key-

words) and (2) the training effort one is prepared to invest

since a more concise syntax might require more training for

users to understand and remember.

Beyond conciseness, when deciding whether Flexmi or a

custom syntax is more appropriate for the task at hand, the

following concerns should be taken into account:

– Stability of the metamodel: in early iteration cycles

Flexmi can be preferable to a custom syntax as it can

eliminate the need to co-evolve a grammar as the meta-

model evolves;

– Expected return of investment: a custom textual syntax

can provide usability benefits but also involves devel-

oping, maintaining, testing and distributing dedicated

software (e.g. a grammar, scoping rules). While for large-

scale projects (e.g. long-lived, many developers) the

usability benefits of dedicated tooling can justify this

additional effort, for smaller-scale projects a generic tex-

tual syntax like Flexmi can be preferable.

5 Conclusions and future work

We have presented Flexmi, a generic textual syntax for EMF-

based DSLs that provides greater conciseness, flexibility and

customisability than existing generic syntaxes, while avoid-

ing the upfront cost of developing a bespoke textual syntax.

Flexmi achieves this by applying fuzzy parsing, by allowing

the definition and instantiation of reusable templates, and by

supporting dynamic functionality through executable expres-

sions and embedded model-to-text transformations. It also

provides two feature-equivalent syntax flavours to choose

from, based in XML and YAML, respectively.

Our planned future work includes improving the Flexmi

editor to better support syntax highlighting of inlined

EOL/EGL languages, auto-completion and preview/naviga-

tion of references. We also wish to evaluate the performance

implications of making the parsing algorithm smarter by e.g.

also considering value types during attribute allocation, or by

including look-ahead mechanisms that check deeper levels

of the parsed DOM to decide e.g. whether an XML element

represents a model element or a containment reference slot.

Usability and learnability experiments involving end users

trying out Flexmi are also part of our future goals.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

References

1. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:

Eclipse Modeling Framework, 2nd edn. Addison-Wesley Profes-

sional (2009)

2. Eysholdt, M., Behrens, H.: Xtext: implement your language faster

than the quick and dirty way. In: Proceedings of the ACM Interna-

tional Conference Companion on Object Oriented Programming

Systems Languages and Applications Companion, pp. 307–309

(2010)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Flexmi: a generic and modular textual syntax for domain-specific modelling 1215

3. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.:

Model-based language engineering with emftext. In: International

Summer School on Generative and Transformational Techniques

in Software Engineering, pp. 322–345. Springer (2011)

4. Hölldobler, K., Rumpe, B.: MontiCore 5 Language Workbench

Edition 2017. Aachener Informatik-Berichte, Software Engineer-

ing, Band 32. Shaker Verlag (2017). http://www.se-rwth.de/

phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf

5. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: Constructing

models with the human-usable textual notation. In: Model Driven

Engineering Languages and Systems, 11th International Confer-

ence, MoDELS 2008, Toulouse, France, September 28–October 3,

2008. Proceedings, Lecture Notes in Computer Science, vol. 5301,

pp. 249–263. Springer (2008). https://doi.org/10.1007/978-3-540-

87875-9_18

6. Hillairet, G.: EMFJSON—EMF Binding for JSON. https://github.

com/emfjson/emfjson-jackson

7. Group, O.M.: XML metadata interchange (XMI) specification.

https://www.omg.org/spec/XMI/About-XMI/

8. Barriga, A., Di Ruscio, D., Iovino, L., Nguyen, P.T., Pierantonio,

A.: An extensible tool-chain for analyzing datasets of metamodels.

In: Proceedings of the 23rd ACM/IEEE International Conference

on Model Driven Engineering Languages and Systems: Companion

Proceedings, pp. 1–8. ACM, Virtual Event Canada (2020). https://

doi.org/10.1145/3417990.3419626

9. Foundation, E.: Emfatic. https://www.eclipse.org/emfatic/

10. Kolovos, D.S., Matragkas, N., García-Domínguez, A.: Towards

Flexible Parsing of Structured Textual Model Representations. In:

Proceedings of the 2nd Workshop on Flexible Model Driven Engi-

neering Co-located with ACM/IEEE 19th International Conference

on Model Driven Engineering Languages & Systems (MoDELS

2016), Saint-Malo, France, October 2, 2016, CEUR Workshop Pro-

ceedings, vol. 1694, pp. 22–31. CEUR-WS.org (2016). http://ceur-

ws.org/Vol-1694/FlexMDE2016_paper_3.pdf

11. Kolovos, D.S., Paige, R.F.: Towards a modular and flexi-

ble human-usable textual syntax for EMF models. In: R.

Hebig, T. Berger (eds.) Proceedings of MODELS 2018 Work-

shops: ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE,

MDETools, GEMOC, MORSE, MDE4IoT, MDEbug, MoD-

eVVa, ME, MULTI, HuFaMo, AMMoRe, PAINS co-located with

ACM/IEEE 21st International Conference on Model Driven Engi-

neering Languages and Systems (MODELS 2018), Copenhagen,

Denmark, October, 14, 2018, CEUR Workshop Proceedings, vol.

2245, pp. 223–232. CEUR-WS.org (2018). http://ceur-ws.org/Vol-

2245/flexmde_paper_3.pdf

12. Kolovos, D.S., Paige, R.F., Polack, F.: The epsilon object lan-

guage (EOL). In: A. Rensink, J. Warmer (eds.) Model Driven

Architecture—Foundations and Applications, 2nd European Con-

ference, ECMDA-FA 2006, Bilbao, Spain, July 10–13, 2006,

Proceedings, Lecture Notes in Computer Science, vol. 4066, pp.

128–142. Springer (2006). https://doi.org/10.1007/11787044_11

13. Kleppe, A.: Software Language Engineering: Creating Domain-

Specific Languages Using Metamodels. Addison-Wesley Profes-

sional (2008)

14. Bettini, L.: Implementing Domain-Specific Languages with Xtext

and Xtend. Packt Publishing Ltd. (2016)

15. Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow,

R., Hasselbring, W., Hanus, M.: Xbase: implementing domain-

specific languages for Java. ACM SIGPLAN Not. 48(3), 112–121

(2012)

16. Bettini, L.: Implementing type systems for the ide with xseman-

tics. J. Log. Algebr. Methods Progr. 85(5, Part 1), 655–680 (2016).

https://doi.org/10.1016/j.jlamp.2015.11.005. (Special Issue on

Automated Verification of Programs and Web Systems)

17. Wachsmuth, G.H., Konat, G.D., Visser, E.: Language design with

the spoofax language workbench. IEEE Softw. 31(5), 35–43 (2014)

18. Kuhn, H.W.: The Hungarian method for the assignment problem.

Nav. Res. Logist. Q. 2(1–2), 83–97 (1955). https://doi.org/10.1002/

nav.3800020109

19. YAML: YAML Ain’t Markup Language. https://yaml.org/

20. JSON: JavaScript Object Notation. https://www.json.org/

21. Levenshtein, V.I.: Binary codes capable of correcting deletions,

insertions, and reversals. Sov. Phys. Dokl. 10, 707–710 (1966)

22. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: The epsilon gen-

eration language. In: I. Schieferdecker, A. Hartman (eds.) Model

Driven Architecture—Foundations and Applications, 4th European

Conference, ECMDA-FA 2008, Berlin, Germany, June 9–13, 2008.

Proceedings, Lecture Notes in Computer Science, vol. 5095, pp.

1–16. Springer (2008). https://doi.org/10.1007/978-3-540-69100-

6_1

23. Foundation, E.: Xcore. https://wiki.eclipse.org/Xcore

24. Foundation, E.: OCLInEcore. https://wiki.eclipse.org/OCL/

OCLinEcore

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

Dimitris Kolovos is a Professor

of Software Engineering in the

Department of Computer Science

at the University of York, where

he researches and teaches auto-

mated and model-driven software

engineering. He is also an Eclipse

Foundation committer, leading the

development of the open-source

Epsilon model-driven software engi-

neering platform, and an editor of

the Software and Systems Mod-

elling journal. He has co-authored

more than 150 peer-reviewed papers,

and his research has been sup-

ported by the European Commission, UK’s Engineering and Physical

Sciences Research Council (EPSRC), Innovate UK and by companies

such as Rolls-Royce and IBM.

Alfonso de la Vega is an Assis-

tant Professor at the University

of Cantabria. Previously, he was

a Research Associate working at

the University of York. He col-

laborates as an Eclipse Founda-

tion Committer for the Epsilon

project. His more recent research

focuses on novel model visualisa-

tion and comparison approaches.

He has also worked in how to

apply modelling and domain-specific

languages to reduce the complex-

ity of carrying out data engineer-

ing and data mining tasks.

123

http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
https://doi.org/10.1007/978-3-540-87875-9_18
https://doi.org/10.1007/978-3-540-87875-9_18
https://github.com/emfjson/emfjson-jackson
https://github.com/emfjson/emfjson-jackson
https://www.omg.org/spec/XMI/About-XMI/
https://doi.org/10.1145/3417990.3419626
https://doi.org/10.1145/3417990.3419626
https://www.eclipse.org/emfatic/
http://ceur-ws.org/Vol-1694/FlexMDE2016_paper_3.pdf
http://ceur-ws.org/Vol-1694/FlexMDE2016_paper_3.pdf
http://ceur-ws.org/Vol-2245/flexmde_paper_3.pdf
http://ceur-ws.org/Vol-2245/flexmde_paper_3.pdf
https://doi.org/10.1007/11787044_11
https://doi.org/10.1016/j.jlamp.2015.11.005
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://yaml.org/
https://www.json.org/
https://doi.org/10.1007/978-3-540-69100-6_1
https://doi.org/10.1007/978-3-540-69100-6_1
https://wiki.eclipse.org/Xcore
https://wiki.eclipse.org/OCL/OCLinEcore
https://wiki.eclipse.org/OCL/OCLinEcore

	Flexmi: a generic and modular textual syntax for domain-specific modelling
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Domain-specific modelling
	2.2 Textual concrete syntaxes
	2.2.1 Bespoke textual syntaxes
	2.2.2 Generic textual syntaxes


	3 Flexmi
	3.1 Fuzzy parsing of elements
	3.2 YAML/JSON syntax flavours
	3.3 Containment slots
	3.4 Non-containment references
	3.5 Executable attributes and variables
	3.6 Setting attribute values from file contents
	3.7 Templates
	3.7.1 Parametric templates
	3.7.2 Dynamic templates and slots

	3.8 Importing other Flexmi Models and External Operations
	3.9 Tool support
	3.10 Limitations

	4 Evaluation
	4.1 Evaluation method
	4.1.1 Ecore model dataset
	4.1.2 Textual syntaxes generation
	4.1.3 Measuring method

	4.2 Results
	4.2.1 Conciseness comparison
	4.2.2 Performance comparison

	4.3 Threats to validity
	4.4 Discussion

	5 Conclusions and future work
	References


