
Software and Systems Modeling (2022) 21:2461–2487
https://doi.org/10.1007/s10270-022-00976-4

REGULAR PAPER

An efficient line-based approach for resolving merge conflicts in
XMI-basedmodels

Alfonso de la Vega1 · Dimitris Kolovos2

Received: 8 July 2021 / Revised: 24 November 2021 / Accepted: 10 January 2022 / Published online: 9 March 2022
© The Author(s) 2022

Abstract
Conflicts in software artefacts can appear during collaborative development through version control systems. When these
conflicts happen in XMImodels, the conflict sections generated by diff programs break the XMI serialisation and compromise
the ability to use model editors that assume well-formedness of this serialisation. While these conflict sections already mark
the conflicting lines of the model, current tools for conflict resolution in models ignore them and instead load the different
versions of a model from the repository, over which they perform a full and costly comparison that re-identifies the conflicts.
We present a novel approach that prevents this repetition of work by directly parsing XMI-basedmodels with conflict sections,
which allows for a targeted analysis of only the lines of themodel that have been detected to be in conflict by the version control
system. We have implemented this approach in the Peacemaker tool, which can load XMI models with conflict sections,
compute and display conflicts at the model level, and provide appropriate resolution actions. Compared with state-of-the-art
model comparison tools with support for conflict resolution, Peacemaker is able to identify the vast majority of conflicts
in models while reducing the required time by up to 60%. The small subset of non-identified conflicts does not introduce
issues into the models, e.g. there is no loss of model information, and the resulting models after line-merging these conflicts
conform to their metamodels.

Keywords Model-driven engineering · Version control systems · Conflict resolution

1 Introduction

Software development is usually a collaborative endeavour,
and it is frequent to find several developers working on dif-
ferent aspects of the same software system at the same time.
Version control systems (VCSs) make concurrent work pos-
sible, by allowing developers to work on different versions
or branches of the codebase.

Communicated by Philippe Collet.

The work presented in this paper has been funded through the
HICLASS InnovateUK project (Contract No. 113213).

B Alfonso de la Vega
alfonso.delavega@unican.es

Dimitris Kolovos
dimitris.kolovos@york.ac.uk

1 Software Engineering and Real-Time, Universidad de
Cantabria, Santander, Spain

2 Department of Computer Science, University of York, York,
UK

Nevertheless, concurrent work can cause conflicts to
appear when merging two branches where incompatible
changes have been made. This work focuses on file-based
VCS, such as Git or Subversion. In this type of VCSs
merge operations take place at a file-line level, by perform-
ing a three-way comparison between the two branches being
merged and their common ancestor in the version tree [1,2].
As a conflict example, when the same line of code has been
modified in different ways by two branches, the VCS does
not know which line version should be selected, so a conflict
is raised for the developer to resolve.

In model-driven software development, models become
additional software artefacts tomanage during their evolution
[3,4]. While there are several model storage solutions for
model versioning and persistence [5–8], it is also common
(if not the norm) to find models stored in mainstream file-
basedVCSs alongside related source code. Thiswork focuses
on the latter, specifically on EMF models persisted in the
standard XMI format [9] and versioned in Git repositories.

XMI models stored in VCSs can suffer from the same
issues as any other versioned artefacts, including merge

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-00976-4&domain=pdf
http://orcid.org/0000-0002-7109-4249
http://orcid.org/0000-0002-1724-6563

2462 A. de la Vega, D. Kolovos

conflicts. When conflicts appear in models, though, devel-
opers find themselves at a disadvantage in comparison
with how conflicts in regular source files are managed.
Conflicting lines are surrounded by the VCS with special
delimiters, i.e. <<<<,====, or>>>>. For source files in
a human-readable textual format, these delimiters might pre-
vent successful compilation, but a developer can open these
files with the text editor or IDE of their choice, which could
even apply a special highlight to the conflicts to ease their
resolution. Nevertheless, current EMF-based editors, such as
EMF’s reflective tree-based editor [5] or Sirius [10], require
well-formed XMI models as input to be able to open them.
So, any presence of conflict delimiters causes these editors to
fail to even parse the models. Also, the alternative of resolv-
ing conflicts in models by directly modifying XMI in a text
editor is a tedious and error-prone task.

As regular model editors do not work in such cases, devel-
opers have to resort to special tools to resolve conflicts, such
as EMF Compare [11] or EMF DiffMerge [12]. However,
these tools are also unable to parsemodel files where the con-
flicting lines have already been marked by the VCS. Instead,
all three versions of the models in conflict (i.e. the two ver-
sions being merged and their common ancestor) are loaded
from theVCS, and a full three-waymatch-and-compare oper-
ation is performed at model level to re-identify the conflicts.
Therefore, a lot of work that had already been done by the
VCS is repeated. Once identified, conflicts are presented in
a special editor for their resolution. The work of resolving
these conflicts has to be done in a single session, as existing
tools do not allow saving partial progress if there are conflicts
remaining in the model.

In this work, we aimed to answer the following research
questions:

RQ1 Can an approach that uses the line-based conflicts
marked by a VCS to identify conflicts instead of a
full model comparison offer the same results?

RQ2 Does a conflict detection approach as described in
RQ1 provide better performance and scalability than
full model comparison?

RQ3 Is relying on line-based VCSs such as Git to merge
XMImodels and to detect conflicts safe?More specif-
ically, we wish to examine whether text-level merge
operations can produce conflict-free but inconsistent
or otherwise undesirable XMI models.

RQ1 and RQ2 came from our interest in leveraging the
work that is already done by the VCS, instead on having to
re-identify the conflicts via comparing the full model ver-
sions. RQ3 is a more general question that derives from
RQ1. For instance, if the line-based conflict detection—
as implemented in contemporary file-based VCS—cannot
detect some types of conflicts in models, and this is the

only way in which conflicts are sought (e.g. when using
Git from a command-line interface), then some conflicts
might end up undetected and cause problems later. Previous
works already discourage the detection of conflicts in mod-
els using line-based merging [13–15], because this method
is not able to correctly identify some changes as conflict-
ing or not. For instance, new (but unrelated) model elements
that end up in the same XMI line of the two model versions
cause a false positive conflict when line-merged. Also, mov-
ing model elements to a different position in the model can
cause duplications of these elements when performing a line-
based merge, and this duplication will not be detected by the
VCS. Despite the existing research, we wanted to provide a
detailed analysis on the issue, and to determine if there is a
set of constraints under which merging XMI models at line
level can be made safe.

We present a novel conflict resolution approach that is
able to parse XMI-based models in which a VCS has already
identified conflicting lines. By performing a targeted analysis
of these lines, and consequently to the model elements con-
tained in them, our approach can save a lot of unnecessary
work during the conflict identification process. In addition,
this approach is able to detect issues that can appear when
doing a line-based merge of XMI models, such as model
element duplications. We have implemented the approach in
Peacemaker, which is an Eclipse-based tool that provides
an editor for visualising and resolving the identified conflicts
at the model level.

We compared the completeness and performance of
Peacemakerwith two state-of-the-art tools for model com-
parison that also allow resolving conflicts (EMF Compare
and EMFDiffMerge). Our results indicate that Peacemaker
is able to detect the vast majority of (but not all) conflicts,
while taking up to ∼ 60% less time for that detection. In
those types of conflicts that are missed by Peacemaker,
no issues are introduced into the models, e.g. after carry-
ing out a line-based merge of those conflicts there is no
loss of model information, and the resulting models con-
form to their metamodels. We also include a discussion on
how Git can be used to safely version XMI models. Our con-
clusion is that, in the general case, it is not safe to merge
XMI models using plain line-based Git merge operations,
as they can produce structurally consistent but semantically
incorrect models. Consequently, we consider using custom
merge strategies when working with models in line-based
VCSs a mandatory requirement. Also, if the small subset of
missed conflicts can be tolerated, we believe Peacemaker
offers a considerable performance improvement over exist-
ing model comparison and merge tools. This improvement
might be useful for those contexts where engineersworkwith
large and frequently updated models with clearly assigned
responsibilities over different parts of the model.

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2463

Fig. 1 Project Scheduling Language (PSL) metamodel in Ecore

The rest of this paper is structured as follows: Sect. 2
introduces a running example and some relevant background.
Section 3 details the line-based approach to process models
with conflicts, Sect. 4 presents the implemented Peace-
maker software components, and Sect. 5 compares our
approach with existing state-of-the-art tools. Finally, Sect. 6
discusses related work, and Sect. 7 concludes the article and
outlines future work.

2 Background

2.1 Running example

We use a contrived project scheduling language (or PSL) to
depict scenarios with models in conflict. Figure 1 shows an
Ecore metamodel including the main elements of the lan-
guage. In PSL, a Project is composed of Tasks, which have
a title, a start time, a duration, and a list of labels. There are
also optionalTasks which are stored separated from standard
tasks. Also, when a task is completed, it is moved to the
completedTasks list.1 Tasks are carried out by Persons that
contribute an Effort (percentage of their time) for the com-
pletion of each task in which they participate. Lastly, tasks
can have a Status that includes its completion percentage and
some optional notes.

2.2 Model serialisation

In this work, we are concerned with models persisted in the
standardXMLMetadata Interchange (XMI) format [9]. XMI
is a standard developed by the Object Management Group
that offers XML schemas for the storage and exchange of
models based in theMeta-Object Facility standard [16]. XMI
is the default model serialisation format of EMF, which is
currently the most widely used open-source domain-specific
modelling framework.

1 While the “completed” and “optional” tasks could be specified more
appropriately (e.g. by a derived feature over the completion attribute
of a task’s status, and by an optional Boolean attribute), we use three
containment references to be able to illustrate a specific type of conflict,
denoted Containing Feature Update (described in Sect. 3.3).

1 <Project xmi:id="project1" name="Blog">
2 <tasks xmi:id="task1"
3 title="Requirements" duration="2">
4 <effort xmi:id="e1" person="aliceID"/>
5 </tasks >
6 <people xmi:id="aliceID" name="Alice"/>
7 </Project >

Listing 1 PSL model serialised in XMI

Listing 1 contains a PSL model expressed in XMI that
conforms to the metamodel of Fig. 1. In XMI, an XML tag
marks the start of an element belonging to the serialised
model. For instance, line 1 contains the starting tag of a
Project element, while line 2 starts a Task. In the context of
EMF models, the starting tag of an XML element contains
all attribute values of the corresponding model element. In
the example of Listing 1, the Project tag includes a name,
which is an EAttribute of the corresponding type in the PSL
metamodel of Fig. 1. Starting tags also store the value of
non-containment references. As an example, line 3 defines
an Effort element, and the tag contains a person EReference
attribute that points to the id of the personwhowill contribute
this effort.

In addition to theXML attributes storing element features,
special attributes can appear to include externalmetadata into
the elements. The name of these attributes is typically pre-
fixed by xmlns (used to declare XML namespaces) or xmi
(allows indicating special features related to XMI seriali-
sation). The most relevant special attribute for this work is
xmi:id, which can be used to indicate an extrinsic (i.e. not
part of the element features) and immutable identifier for
a model element. For the sake of simplicity and the better
use of space in figures, in the remaining of the paper any
occurrence of an id attribute inside an XMI element refers to
xmi:id.

The remaining features of EMF model elements, i.e.
containment references, are represented by the nesting of
XML elements in the XMI representation of the model. For
instance, Project is the root element of Listing 1 starting
at line 1. This element contains a task that starts in line
2, and a person in line 5. Both these nested elements are
part of the project’s tasks and people containment references,
respectively. In those elements, the name of the containment
reference is used as tag name to allow having several con-
tainment references of the same type (e.g. Person, Task) in
the same model element.

2.3 Syntax of conflict sections

We describe now the syntax that is used by contemporary
file-based VCSs to mark lines after a merge with conflicts.

123

2464 A. de la Vega, D. Kolovos

In this work, we used Git for model versioning; however, as
the syntax of conflict sections and the line-based operations
used by the different VCSs is practically identical [2,17,18],
these descriptions and the results of our work apply to other
VCSs too (e.g. Subversion).

In its simplest form, a conflict section consists of two seg-
ments: one containing the changes of the left version (usually
the local one); and other corresponding to the right version
(generally the version in the repository index). These seg-
ments are surrounded by specific conflict section separators:
<<<<, ====, and >>>>. Nevertheless, it is possible to
include extra information in the conflict section: the diff3
conflict style allows adding an extra segment to the gener-
ated conflict sections. An extra separator (||||) is used to
include the ancestor segment after the left version one. This
segment includes the contents of the common ancestor of the
left and right branches that is used in the three-way merge,
and it allows for a better analysis of the causes behind the
appearance of conflicts [1].

Listing 2 shows a model with two conflict sections, each
one composed of a left, ancestor, and right segments as
described in the previous paragraph. The first conflict sec-
tion goes from line 5 to 11, while the second one starts at line
15 and ends at line 23. The changes that have caused these
conflicts are the following:

– The first conflict section is caused by an update of the
start and duration times of theDevelopment task. The left
version updates both start and duration (line 6), while the
right one only modifies the duration (line 10).

– The second conflict section is caused by an update of the
Deployment task effort. The ancestor information shows
that, originally, the effort for this task was split evenly
(i.e. 50:50) between Alice and Bob (lines 19–20). Never-
theless, while the left version adjusted the original efforts
of Alice and Bob from 50:50 to 70:30 (lines 16–17), the
right version removed Bob from this task and assigned
Alice the full effort (line 22). A percentage is not present
in this last effort because 100% is the default value for
that attribute.

2.4 Conflict detection throughmodel comparison

We now introduce how state-of-the-art model comparison
tools identify conflicts in XMI-based models. Instead of
using merged models such as the one of Listing 2, these tools
find conflicts by performing a three-way comparison between
the left, ancestor and right model versions, which are gath-
ered from the VCS. EMFCompare [11] and EMFDiffMerge
[12] are two of the most mature tools for the comparison of
EMF models, and both of them are actively maintained. The
descriptions of this section apply to both of these tools.

Model versions are processed through a multi-stage com-
parison pipeline. Despite differences between tool pipelines,
there are at least two stages that are performed in every case.
There is a matching stage where model elements from the
different versions are matched in preparation for subsequent
comparison. The most precise way to match model elements
is by means of unique identifiers such as XMI ids, but in
absence of these it is also possible to apply similarity/dis-
tance techniques [19]. Once themodel element versions have
been matched, they are compared in a diff stage to find all
changes.

When looking for conflicts, an extra step needs to be per-
formed to detect incompatible changes between the model
versions. For instance, if both the left and right version have
changed the value of an EAttribute with respect to the ances-
tor version, these changes are incompatible, and as such they
are marked as a conflict for the developer to resolve.

3 Processing XMImodels with conflicts

Peacemaker is able to parse and load EMF models seri-
alised in XMI that contain conflict sections, with the require-
ment of model elements having unique identifiers. These
identifiers are used for matching the model elements across
the two versions. XMI offers the possibility to set an extrin-
sic id using the special xmi:id XML attribute. Alternatively,
Ecore allows marking an EAttribute of each EClass by set-
ting its id attribute to true, which indicates that the value of
the marked EAttribute should be used as the identifier for
instances of its container EClass.

The following sections describe the steps involved in pro-
cessing the model of Listing 2.

3.1 Line-based preprocessing

The first step involves a preprocessing of the model lines to
detect any conflict sections. This preprocessing consists of
two tasks:

1. Line identification Each line of the input model is given
a type that indicates if it is a common line (i.e. not con-
tained in a conflict section), a separator (e.g.<<<<), or
if instead it belongs to the left, ancestor or right segments
of a conflict section. Also, existing conflict sections are
identified and related to their file lines for later. Figure 2a,
b shows the line type assignments and the identified con-
flict sections for Listing 2, respectively.

2. Extraction of model versions This step extracts the left,
ancestor and right versions of the model by selecting the
respective line types identified during the previous step.
Figure 2c shows which lines of the original model of
Listing 2 belong to each version. For instance, the left

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2465

1 <Project xmi:id="project1" name="Blog">
2 <tasks xmi:id="task1" title="Requirements" duration="2">
3 <effort xmi:id="e1" person="aliceID"/>
4 </tasks >
5 <<<<<<< left.model
6 <tasks xmi:id="task2" title="Development" start="3" duration="3">
7 ||||||| base.model
8 <tasks xmi:id="task2" title="Development" start="2" duration="2">
9 =======
10 <tasks xmi:id="task2" title="Development" start="2" duration="1">
11 >>>>>>> right.model
12 <effort xmi:id="e2" person="bobID"/>
13 </tasks >
14 <tasks xmi:id="task3" title="Deployment" start="4" duration="1">
15 <<<<<<< left.model
16 <effort xmi:id="e3" person="aliceID" percentage="70"/>
17 <effort xmi:id="e4" person="bobID" percentage="30"/>
18 ||||||| base.model
19 <effort xmi:id="e3" person="aliceID" percentage="50"/>
20 <effort xmi:id="e4" person="bobID" percentage="50"/>
21 =======
22 <effort xmi:id="e3" person="aliceID"/>
23 >>>>>>> right.model
24 </tasks >
25 <people xmi:id="aliceID" name="Alice"/>
26 <people xmi:id="bobID" name="Bob"/>
27 </Project >

Listing 2 XMI notation of a PSL model with conflicts

(a) (b)

(c)

Fig. 2 a Identified types for the lines of Listing 2. b Detected conflict
sections in the model. c Lines of the original model that belong to each
extracted model version

version of the model would be composed of common and
left lines, these are, 1–4, 6, 12–14, 16–17, and 24–27.

3.2 Parsing of model versions

The previous step provides model versions that are free from
the conflict section separators that originally broke the seri-
alised XMI notation. As a result, these versions can be parsed

Fig. 3 Conflict sections are populated with the contained model ele-
ment identifiers during the loading of model versions

and loaded as if they were standard XMI, which is done dur-
ing this second step.

Figure 3 contains the parts of the XMI parsing and loading
process that are relevant for this work. In the context of EMF,
XMI parsing is carried out using an event-based SAX parser
[20]. The EMF XMI parser processes XMI models sequen-
tially, this is, elements are read by a parser one by one from
the input model, and then events that indicate the appearance
of these elements are triggered and processed by an event
handler. In Peacemaker, we created a custom event han-
dler (denoted as PeacemakerXMIHandler in the figure) that
extends the default one. Apart from carrying out its model

123

2466 A. de la Vega, D. Kolovos

Fig. 4 Conflict types found in conflict sections

loading duties, this handler also checks the lines of the ele-
ments being loaded against the lines belonging to the conflict
sections identified during the preprocessing step. This check
is done against the conflict section segment that matches
the model version being loaded, i.e. left, ancestor, or right.
When the model element lines are found inside the associ-
ated segment for a concrete version, the element identifier
is registered in the conflict section, again in the appropriate
list of identifiers. After loading the three model versions, the
identifiers of the actual model elements that are part of a con-
flict section have been captured, instead of just knowing their
lines.

Let us assume we are loading the left version of the model
ofListing 2.Thefirst task element that is found is theRequire-
ments task. When the loading of this element starts, the
position of the line that contains its starting tag is checked
by the event handler against the conflict sections detected
in the preprocessing step. As line 2 is not part of any of the
conflict sections, this element is not relevant for the detection
of conflicts, so nothing is marked. The second task element
is Development. The contents of this element can be traced
back to line 6 of the original model, which belongs to the left
segment of the first conflict section. Therefore, the id of this
task, task2, is added to the list of left identifiers of the con-
flict section. Similar processing takes place for the remaining
elements of the three model versions. The resulting conflict
sections populated with conflicting identifiers can be seen on
the right of Fig. 3.

3.3 Conflict section analysis

Once the conflict sections have been populated with the iden-
tifiers of the elements in conflict, they can be analysed to
detect which type of conflicts are present in the original
model.

Figure 4 shows a categorisation of the different conflicts
that can take place in a conflict section. The Conflict abstract
class on top stores common features of all concrete conflicts.
For instance, all conflicts happen around a model element
identifier (eObjectId).

Table 1 Conflict type that applies depending on the combination of
identifiers found in the segments of a conflict section

Conflicts are detected based on the combination of model
element identifiers found in the segments of a conflict sec-
tion. This combination determineswhich type of the conflicts
of Fig. 4 applies on each case, as indicated in Table 1. We
now describe these conflict types, including possible actions
that can be taken to resolve them. These descriptions are
supported by the examples of Fig. 5.

– Double UpdateAmodel element with the same identifier
(e.g. I D1 in Table 1) has been updated in both the left
and right versions. Precisely, this conflict appears when
either an attribute and/or a non-containment reference of
an element have been modified. As resolutions for this
type of conflict, Peacemaker offers to either keep the
left or right version of the element. Figure 5a shows a
Double Update conflict where the title of the t1 task has
been updated in the left and right versions. Peacemaker
can detect if versions change the same element, but in
non-conflicting ways (e.g. when each version modifies
different element features), so that no conflict is detected
in the end. This and other Git false positives are discussed
later in Sect. 3.4.

– Containing Feature Update This conflict happens when
the containing feature of an element is changed to two
different features in the left and right versions. Again, the
user is offered the options to either keep the left or right
modifications, i.e. leaving the element under the updated
containment feature of the left version, or instead under
the feature selected by the right version. In Fig. 5c the t1
task, initially contained under the tasks reference of the
p1 project, is moved to the optionalTasks reference on
the left, and to the completedTasks one on the right.

– Single Containment Reference Update This is a special
case of the Double Update conflict that takes place when
a model element has a containment, single-valued refer-
encewhich has been updated in the left and right versions.
It is also a trickier conflict to detect, because the id of the

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2467

(a) (b) (c)

(f)(e)(d)

Fig. 5 Examples of the different line conflicts along with the element identifiers in the conflict sections

element contained by the reference is different for both
versions of the reference value (e.g. I D1 and I D2 in
Table 1). If it were the same id, the conflict would be
identified as the general Double Update one. Like in the
previous conflict, the user is offered the options to keep
either the left or right version of the contained element.
Figure 5b depicts an example of this conflict where the
status element of the t1 task has been updated to different
Status elements: an s12 element has been set on the left,
while s54 appears on the right.

– Update Delete An element with the same id has been
updated in one of the versions, but deleted in the other. To
identify this conflict, Peacemaker checks the ancestor
version to see if the element in conflict existed prior to
the changes introduced by the left and right versions. If
this conflict happens, the user is offered the options to
either keep the updated version, or accept the deletion
and remove the element. Figure 5d shows a t1 task that
has been updated on the left version (title change), while
this task has been deleted on the right. Notice that the t1
task was also present in the ancestor version.

– KeepDeleteThis is a specialUpdateDelete casewhere an
element is deleted in one version, but kept the same (i.e.
unmodified with respect to the ancestor) in the other one.
This kind of conflict is usually foundwhen other conflicts
are detected in adjacent lines. As the changes only appear
in one of the versions (i.e. the removal of an element),
this could be treated as a false positive and automatically
merged by removing the conflicting element. However,
for some scenarios it is useful to also leave the decision to
either keep or remove the unmodified element to the end
user.We present such an example in Sect. 5.1.3. Figure 5e
shows an example that is identical to the d case, but this
time no update of the title of the t1 task was carried out
in the left version.

– Collateral Element This case happens when an element
from a conflict section is not found in conflict with any
other element. One way this could happen is as a result
of finding a conflicting line during the merge, and then
having subsequent lines in either of the segments of a con-
flict section defining new elements that are not in conflict,
but that get automatically included as part of the conflict
section. Figure 5f shows an example of this, where the
same Update Delete conflict shown in case d takes place,
but in addition a collateral t2 task appears in the left ver-
sion, after t1. This can be resolved by either keeping or
removing the collateral element. If desired, an automatic
resolution can be applied to omit this conflict type and
always keep these elements.

The complete analysis of the conflict section identifiers
that results in the identification of conflicts is shown in Algo-
rithm 1. This algorithm completes the information of Table 1,
showing the extra steps to e.g. determine if a Double Update
conflict is of type Containing Feature Update (lines 6–10) or
Single Bounded Reference Update (lines 12–16), or which
type of Update Delete conflict applies (lines 17–23 and 29–
35).

Continuingwith the example of Listing 2, and based on the
information of Fig. 3(right), the first conflict section contains
a Double Update conflict, because both the left and right list
of identifiers contain the task2 id, i.e. the identifier of the
Deployment task. In the second conflict section, a Double
Update and anUpdateDelete conflicts are found. TheDouble
Update one is caused by the presence of Alice’s e3 effort id
in both the left and right identifier lists, while the Update
Delete conflict happens because Bob’s e4 effort is present in
the lists of left and ancestor ids, while it is not present in the
list of right ids.

123

2468 A. de la Vega, D. Kolovos

Input: Conflict Section (Le f t I ds, Right I ds, Ancestor Ids)
Input: get Le f t(id), get Right(id), and get Ancestor(id): get model elements by identifier from a model version
Output: A set of conflicts C

1 C ← ∅;
2 foreach le f t I d ∈ Le f t I ds do
3 le f t Elem ← get Le f t(le f t I d);
4 if le f t I d ∈ Right I ds then
5 right Elem ← get Right(le f t I d);
6 if le f t Elem.containingFeature �= right Elem.containingFeature then
7 C ← C ∪ {ContainingFeatureUpdate(le f t I d)};
8 else
9 C ← C ∪ {DoubleUpdate(le f t I d)};

10 end
11 Right I ds ← Right I ds − {le f t I d};
12 else if le f t Elem.containingFeature is single and containment and
13 there exists a right element right Elem so that
14 right Elem = get Right(le f t Elem.container .id) and
15 right Elem.get(le f t Elem.containingFeature).id �= le f t I d then

16 C ← C ∪ {SingleContainmentReferenceUpdate(le f t Elem.container .id, le f t Elem.containingFeature)};
17 else if le f t I d ∈ Ancestor Ids then
18 if equals(le f t Elem, get Ancestor(le f t I d)) then
19 C ← C ∪ {KeepDelete(le f t I d)};
20 else
21 C ← C ∪ {UpdateDelete(le f t I d)};
22 end
23 else
24 C ← C ∪ {CollateralElement(le f t I d)};
25 end
26 end

// There might be remaining identifiers in rightIds
27 foreach right I d ∈ right I ds do
28 right Elem ← get Right(right I d);
29 if right I d ∈ Ancestor Ids then
30 if equals(right Elem, get Ancestor(right I d)) then
31 C ← C ∪ {KeepDelete(right I d)};
32 else
33 C ← C ∪ {UpdateDelete(right I d)};
34 end
35 else
36 C ← C ∪ {CollateralElement(right I d)};
37 end
38 end

Algorithm 1: Procedure to identify the kind of conflicts contained in a conflict section

The application of a resolution action updates the contents
of the in-memory model versions that were loaded in the
parsing step (see Sect. 3.2) according to the selected action.
For instance, the Double Update conflict identified around
the tasks with id task2 in the example of Listing 2 could be
resolved by keeping the left or right versions. If keeping right
were selected, the element of the right model version with
id task2 would replace the one with the same id in the left
model version, removing the discrepancy and thus resolving
the conflict.

3.4 Detecting git false positives

In some cases, Git wrongly marks model elements as in con-
flict because of minor differences in their XMI serialisation,

or due to unrelated changes clashing into the same lines of the
model file. False positives could also be caused by end users
directly editing the raw XMI and including minor inconsis-
tencies, such as indentation or style differences. However,
manual editing of XMI files is out of the scope of this work,
as we assume models are modified in editors that persist
changes through an automated serialiser.

Figure 6 shows one of the false positive examples that Git
can misreport. In the example, there is a real Update Delete
conflict over the s1 Status element, which is updated in the
left version while deleted in the right one (similar to Fig. 5d).
The false positive is caused by aminimal change in the parent
element that contains the deleted status, i.e. the t1 task.When
the deletion of a model element leaves the parent element
without any contents, a self-closing tag is used to persist the

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2469

Fig. 6 Git undesirably marks as a conflict the ending tag change of task
t1 when all its contents (i.e. s1) are deleted

Fig. 7 Git detects as a conflict two simultaneous updates of the t1 task
that affect different features (start on the left, and duration on the right).
An alternative merge is shown at the bottom right, where the disjoint
changes are combined

element in XMI, this is, the element is persisted with a single
XML tag ending in/> instead of using> alongwith a closing
</task> tag. This self-closing tag is used for the t1 task on
the right version, as it has no extra contained elements after
deleting the s1 status. That subtle change makes Git to detect
the line in conflict, and thus to include themodel element into
the conflict section, as can be seen at the bottom of the figure.
Peacemaker can detect these false positives by checking the
value of the element features between the versions, so in the
end only those elements with real conflicts are reported.

The following case is also a source of false positives. A
line-based merge reports a conflict every time the left and
right versions modify the features of the same model ele-
ment. However, if the changes from each version affect a

Fig. 8 Git marks as a conflict two additions of independent model
elements that end up in the same model file line

different set of features, these changes could be automatically
merged by combining the feature updates of each version.
Figure 7 shows an example where the left version updates
the start time of the t1 task, while the right version updates
its duration. In the merged model, the task is included into
a conflict section, but an alternative merge is shown at the
bottom right, where the updates to start time and duration
are automatically merged and no conflict is reported. That is
the default behaviour of Peacemaker: updates over disjoint
sets of features are not considered a real conflict. Neverthe-
less, a defensive approach can be configured for those cases
where enforcing a manual check is preferred, to determine
if it makes sense to merge the changes coming from both
versions.

Another way in which false positive conflicts can appear
happens when two new and independent elements are added
in the same line of a file, one on eachmodel version. This case
is depicted in Fig. 8, where two Person elements, Bob and
Charlie, are added to the same project and end up serialised
in the same line of each version. A conflict section would be
generated by Git when merging this versions, and Peace-
maker would identify both elements as Collateral Elements
(described in the previous section). In some cases, this kind
of conflict can be automatically processed by simply keeping
both elements. However, if both new elements are added to
the same containment feature (e.g. Project.people in Fig. 8),
and that feature is defined as ordered, there remains the ques-
tion of which new element should be placed before the other.
As automatically selecting the order might not be correct in
all cases, solutions such as EMFCompare resort to user input
to determine which order to apply.

3.5 Conflict smells

Unfortunately, apart from the false positives described in the
previous section, Git can also suffer from false negatives,

123

2470 A. de la Vega, D. Kolovos

these are, cases where real conflicts exist, but the line-based
merge operationmisses them. In some cases, it is evenworse,
as the merge performed by Git introduces issues into the
model that can even prevent it from loading. As some of
these issues appear because of the existence of a real con-
flict, we can do the reverse: the presence of these issues
in a merged model suggests a potential conflict missed by
the merge operation. Consequently, we denote these issues
as conflict smells. From the point of view of Peacemaker,
conflict smells are treated as the conflicts of Sect. 3.3: these
smells are reported, and resolution actions are offered. We
describe the types of conflict smells in the following.

3.5.1 Duplicate ids

Peacemaker is able to find errors related to the presence of
duplicated ids in the merged model. There are two possible
sources of duplicated ids:

– Adding newelements in both versions of amodelwith the
same identifiers. This can happen when element identi-
fiers are obtained through an auto-incrementing counter,
i.e. identifying tasks as task1, task2, and so on, and then
adding anew task3 in both left and right versions.Another
potential gateway for this issue opens when an editable
EAttribute is set as the id of model elements, so man-
ual entries by end users can cause duplicate identifiers.
This issue also includes adding a new element whose id
matches the one of another element already present in the
model.

– A model element is duplicated as a side effect of the
line-based merge. This phenomenon can appear when
model elements aremoved to different positions in the left
and right versions. For instance, Fig. 9 shows an exam-
ple where a PSL Project contains four tasks, with ids
ranging from task1 to task4 (as we just mentioned in the
previous item, it is a bad idea to set ids based on incre-
mental counters, but we do it in this example for clarity).
In the ancestor version tasks are ordered by their ids in
alphabetical order. However, task1 is moved after task3
in the left version, while it is moved to the end of the
list in the right version, thus creating a conflict. When
Git merges these model versions, and because of treat-
ing model elements as lines, it duplicates the task1 task,
which appears twice in the merged version: after task3,
and at the end of the list. The same issue can also appear
when an element is changed to a different container on
the left and right versions. This case is depicted graph-
ically in Fig. 10, where an Effort element is changed to
two different tasks in left and right. When merging, the
corresponding XMI lines of the moved element in its
updated position on the left and right model versions are
treated as new lines, so the element ends up appearing

Fig. 9 Reordering of tasks in a PSL Project

Fig. 10 Example where the Effort object changes to two different con-
tainers in left and right

in two places in the merged model. Listing 3 shows the
resultingmergedmodel produced byGit, where the effort
element has been duplicated in lines 3 and 6, and no con-
flict sections have been included. As Fig. 10 shows, this
element was contained under the originContainer task
(in line 8) in the ancestor version.

When duplicated ids are found, Peacemaker offers res-
olution actions to decide which of the duplicates should be
maintained.

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2471

1 <Project xmi:id="p1">
2 <tasks xmi:id="leftContainer">
3 <effort xmi:id="e1"/>
4 </tasks >
5 <tasks xmi:id="rightContainer">
6 <effort xmi:id="e1"/>
7 </tasks >
8 <tasks xmi:id="originContainer"/>
9 </Project >

Listing 3 The e1 Effort element is duplicated as a result of merging the
three model versions of Fig. 10

Fig. 11 Reordering the labels of task t1 causes the duplication of value1

3.5.2 Duplicate values in multi-valued attributes

Multi-valued attributes are another place where line dupli-
cates can cause errors. Figure 11 shows a task with several
labels (label is a multi-valued-attribute in the PSL meta-
model of Fig. 1).WhenGit merges this test case, it duplicates
value1, which appears in the third and fifth positions of the
labels attribute of the merged model. This case is equivalent
to the one depicted in Fig. 9, where the duplication involved
Task model elements. The duplication could be detected
when validating the model if labels was defined to only con-
tain unique values. Although this attribute is indeed defined
as unique, for some multi-valued attributes repeated values
could be allowed. As a protective measure, Peacemaker
detects any duplication in a multi-valued attribute (unique or
not) as a conflict smell, so users would need to check if the
repeated values are correct, or if an unwanted duplication has
happened, and thus duplicates should be removed. This leads
us to recommend against the use of non-unique multi-valued
attributes in domain-specific metamodels if line-basedmerg-
ing is to be used. We enumerate this and other considerations
in Sect. 5.4.

Fig. 12 A reference to a deleted element (alice) is introduced in the
merged model

3.5.3 Internal dangling references

This conflict smell is caused by adding a reference from one
model element to another in one of the versions and then
deleting the referenced element in the other version. When
versions are line-merged, the referenced element is indeed
deleted, and the added reference is persisted. The combined
effect of these two changes creates an internal (i.e. it does not
involve external models) dangling reference in the merged
model, which can cause an error when the model is loaded.
Figure 12 shows this issue, where the addition of a refer-
ence from the e1 effort to the Alice person on the left and
the removal of Alice on the right introduces a dangling ref-
erence to a non-existing Alice element in the merged model.
Peacemaker is able to detect this kind of dangling refer-
ences, and they are shown along with other conflicts present
in the model. Unfortunately, Peacemaker does not have
enough information to provide other resolution actions apart
from reporting the issue to end users, and then discarding
the dangling reference. Any other solution would require a
standard three-way comparison of the model versions.

3.6 Model saving and partial resolution of conflicts

Any conflict resolution action performed over the in-memory
model versions must eventually be serialised back to disk to
reflect the changes in the original model file with conflicts.
To achieve this, Peacemaker first converts model versions
to XMI individually in memory, and then these versions are
merged in a line-based approach. One of the advantages of
this approach is support for partial resolution of conflicts:
any original conflict section can be serialised again when a
user wants to save their changes over a model with conflicts,
but not all conflicts have been resolved yet. To the best of

123

2472 A. de la Vega, D. Kolovos

our knowledge, this is the first conflict resolution approach
that allows saving a partially resolved model with remaining
conflicts.

The three-way line-based approach to merge model ver-
sions works as follows: starting from the individually seri-
alised versions, the lines of the left and right versions are
compared sequentially.When lines match, they are serialised
without any special change. As an analogy, matching lines
would be given a common type according to the preproces-
sor introduced in Sect. 3.1. On the other hand, a left line and
a right line that do not match indicate that a yet-unresolved
conflict between the versions has been reached. To serialise
this conflict, the structure of the original conflict section is
recreated: first, the nextmatching line between the left, ances-
tor and right versions is calculated. Then, the set of lines
from each version starting at the current line (i.e. the one
that did not match) up to the calculated next matching line
are serialised, starting with the left version, and followed
by the ancestor and right versions. These line sets are sur-
rounded with the appropriate <<<<, ||||, ====, and
>>>> symbols to separate the conflict section segments.

3.7 Limitations

As mentioned at the beginning of Sect. 3, this approach
requires that model elements have a unique identifier. A
strong reason behind this requirement is the possibility of
suffering from element duplication as a side effect of the line-
basedmerging (described in Sect. 3.5.1). Similaritymatching
techniques [19] are usually applied in model comparison and
merging when the elements have no identifiers. However,
these techniqueswould be computationally very expensive to
use to find element duplications, due to duplicates happening
in single versions of the models. Therefore, every element of
a model would need to be checked against all other elements
of the same type, and this process needs to be carried out
for each model version. More importantly, these techniques
are approximate, and thus, they provide no guarantees on
whether the resulting matched pairs are model duplicates or
just false positives.

The approach has been devised and evaluated over EMF
models, persisted using XMI, and versioned in Git reposito-
ries. In the following, we comment on any known limitations
of applying this approach for othermodelling and persistence
technologies, or different versioning tools.

With respect to EMF, some conflicts described in Sect. 3.3
are explicitly related to EMF concepts, such as a Containing
Feature Update for containment references; while others are
not, likeDoubleUpdate or Update Delete conflicts. A change
to a different modelling technology could cause some con-
flicts not to apply, because of concepts such as containment
not existing in the new technology. At the same time, any
concept of the new technology that is not present in EMF

might cause new kinds of conflicts to appear that could need
special resolution. If these new conflicts are detectable and
resolvable, we do not foresee a change in modelling technol-
ogy to be a hard stopper to applying the described approach.

The model persistence format is of special importance,
due to the low-level operation of the line-based merger. If
the default XMI format were changed to a different one, such
as JSON,2 the first aspect to check is whether the line-based
extraction depicted in Fig. 2 is able to provide the threemodel
versions without formatting errors or inconsistencies, as it
happens with XMI. If the versions format is correct, then the
second requirement involves being able to gather the lines of
the original file where each model element is persisted, so
that conflict section identifiers can be populated (see Fig. 3).
Lastly, a different persistent format could give room to new
conflict false positives, apart from the ones currently covered
in Sect. 3.4.

Lastly, using a differentVCSother thanGit should not rep-
resent a major issue, as the syntax to delimit conflict sections
described in Sect. 2.3 is also used by other three-way com-
parison tools such as JGit3 or GNU diff3,4 or by other VCSs
such as Mercurial5 or SVN.6 However, a thorough revision
on whether the line-based merging algorithms of the alter-
natives are equivalent to the one provided by Git should be
performed.

4 Implementation

This section presents the Eclipse-based software components
we developed to implement the conflict detection approach
described in the previous section. The source code of Peace-
maker is available in a public repository.7

4.1 PEACEMAKER editor

For end users to visualise the detected conflicts and provide
necessary inputs (i.e. resolution actions), Peacemaker pro-
vides an Eclipse-based editor that we describe here.

Figure 13 shows the contents of the Peacemaker editor
when the model of Listing 2 is opened. On the left-hand side
of this editor, there are four tree viewers. The left and right
viewers at the top show the initial contents of the left and
right versions of the model, respectively. The tree viewer

2 https://emfjson.github.io/about/.
3 https://www.eclipse.org/jgit/.
4 https://www.gnu.org/software/diffutils/manual/html_node/diff3-
Merging.html.
5 https://www.mercurial-scm.org/wiki/TutorialConflict.
6 https://svnbook.red-bean.com/en/1.7/svn.tour.cycle.html#svn.tour.
cycle.resolve.diff.
7 https://github.com/epsilonlabs/peacemaker.

123

https://emfjson.github.io/about/
https://www.eclipse.org/jgit/
https://www.gnu.org/software/diffutils/manual/html_node/diff3-Merging.html
https://www.gnu.org/software/diffutils/manual/html_node/diff3-Merging.html
https://www.mercurial-scm.org/wiki/TutorialConflict
https://svnbook.red-bean.com/en/1.7/svn.tour.cycle.html#svn.tour.cycle.resolve.diff
https://svnbook.red-bean.com/en/1.7/svn.tour.cycle.html#svn.tour.cycle.resolve.diff
https://github.com/epsilonlabs/peacemaker

An efficient line-based approach for resolving merge conflicts in XMI-based models 2473

Fig. 13 Peacemaker editor showing the conflicts of the PSL model of Listing 2

in the middle shows the ancestor model version, with the
objective of helping users to better detect the causes of the
conflicts and to decide among the feasible resolution actions.
Lastly, the result viewer appears at the bottom.While the left,
right, and ancestor viewers always show the initial content
as it was before performing any changes, the result viewer
shows the updated content of the model after applying any
resolution actions over the identified conflicts.

Resolution actions can be applied by interacting with the
conflicts list, depicted on the right-hand side of the edi-
tor. This list enumerates the identified conflicts in the input
model. For each conflict, it contains a brief description, a link
that can be clicked to reveal and select the affected elements
in the tree viewers, and a list of actions to apply represented
as a set of radio buttons. When the user selects any of those
buttons, the associated resolution action is invoked, and the
content of the result viewer is updated to reflect the results
of applying the selected action. Peacemaker also makes
use of colours to indicate the state of conflicting elements.
Green indicates an accepted element as a result of the resolu-
tion action. Red is used to mark rejected/removed elements,
and yellow is used to highlight those elements taking part in
yet-unresolved conflicts.

In the example of Fig. 13, the Keep left action has been
selected to resolve the first conflict of the list. This conflict
is of type Double Update (see Sect. 3.3), and it involves the
Development task. As the left version has been selected, the
corresponding task element on the top left tree viewer is high-
lighted in green, while the discarded one on the right version
appears in red. The Development task in the result viewer
at the bottom is also highlighted in green to reflect that the
conflict regarding that element has been resolved. The two
remaining conflicts relate to the person efforts of theDeploy-
ment task. As these conflicts have not been resolved yet, the
affected elements are highlighted in yellow in the tree view-
ers.

Standard editor operations such as undo and redo are sup-
ported. Also, Peacemaker supports other features typically
found in model editors. For instance, we can inspect the con-
tents of model elements from any of the tree viewers by using
the Properties view that can be seen at the bottom left of
Fig. 13. In the figure, this view shows the properties of the
Effort element selected in the top left tree viewer (highlighted
in blue).

After applying any of the available resolution actions, the
model can be saved to persist the changes. If not all existing
conflicts have been resolved yet, then a partial save is per-

123

2474 A. de la Vega, D. Kolovos

formed, as described in Sect. 3.6. This way, a user can save
their work at any point while resolving a conflicting merge
operation, just as it is usually possible when working with
conventional text editors and source code files.

4.2 Using a custommerge strategy

VCSs allow replacing the default line-basedmerge operation
with custom merge strategies for certain selected types of
files. In the context of models, a custom strategy can, for
instance, help avoid false positives, or prevent missing some
conflicts.

The EGit project,8 which provides Git support to the
Eclipse IDE, allows defining alternativemerge strategies. For
instance, EMFCompare [11] provides its ownmerge strategy
that performs the standard full three-way model comparison
when merging model files to detect any conflicts. We have
implemented a custom strategy that uses Peacemaker to
improve the Git line-based merge. Precisely, this strategy
takes the following steps:

1. It starts by merging the versions with the default line-
based merge. If lines are found to be in conflict, this step
includes conflict sections in the model.

2. The merged model is loaded with Peacemaker follow-
ing the steps of Sect. 3. This load removes any false
positives of the Git merge (see Sect. 3.4). In some cases,
it might be determined that the conflict sections only
contained false positives. In addition, the Peacemaker
load also detects conflict smells that can be a hint for Git
potentially missing some conflicts, e.g. duplicated ids or
dangling references (see Sect. 3.5).

3. If real conflicts or conflict smells are found by Peace-
maker, the model file is marked as in conflict.

So, this merge strategy only requires to load the model
once, instead of performing a full three-way model compari-
son as solutions like EMFCompare do. After a Git merge, we
could also just open the merged model in the Peacemaker
editor to perform the same checks, but configuring a merge
strategy to do that automatically after every merge can be
more convenient, e.g. it saves users time when several mod-
els have been merged, and it prevents from users forgetting
to open some of the merged models.

5 Evaluation

For the evaluation of our approach, we focused on two
aspects. Thefirst aspect assesses the completeness of Peace-
maker, by determining if it is able to detect the different

8 https://www.eclipse.org/egit/.

types of conflicts that can appear when merging model ver-
sions. Then, the second one involves a quantitative evaluation
of the performance and scalability of Peacemaker against
two state-of-the-art approaches.

5.1 Completeness analysis

For the first part of this evaluation, we studied the ability of
our approach to detect a variety of conflicts in models. For
that purpose, we tested Peacemaker with an external suite
that contains a comprehensive set of the types of conflicts that
can appear when merging EMF model versions. This suite
is part of the unit tests used internally by EMF Compare9

(introduced in Sect. 2.4), ensuring that all versions of this
tool are able to detect the conflict types of the suite.

Table 2 summarises the tests contained in the conflicts
suite. Tests are organised in 11 categories, from a to k. Each
category exemplifies a type of conflict that might arise in
XMI-based models. As an example, a refers to tests updat-
ing the value of a single-valued feature of a model element in
one version, while deleting the same element in the other (i.e.
an UpdateDelete conflict as described in Sect. 3.3); another
category, c, contains similar changes, but the affected features
are multi-valued. Additionally, there are several test cases for
some categories, representing different ways in which con-
flicts of the same type might appear. For instance, a1 updates
a feature with a new value on the left, while deleting the
containing element on the right. Similarly, a3 deletes the ele-
ment on the right, but to update the feature on the left it
unsets its value, instead of providing a new one. Categories
a to d are expanded into the different types of model fea-
tures where the conflict might appear, namely, EAttributes
and non-containment EReferences (attr and ref in the table).
As for containment EReferences (contRef), the test suite
included a test for the b category (i.e. single-valued features),
and we extended the suite by adding tests for multi-valued
containment references in the d category. Lastly, while most
cases contain conflicts, there are some negative cases where
no conflicts are present. Thirteen test cases, namely b5–b6
and d4–d6, apply the same changes to both sides, so no con-
flicts should be detected for these cases. We describe the
meaning of the table cell values in the next sections, along
with a discussion of the obtained results.

5.1.1 Issues with line-based merging of models

The original EMF Compare suite provides the three model
versions of each test case, these are, the left, ancestor and right
versions. So, the first step to use this suite with Peacemaker

9 https://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.
git/tree/plugins/org.eclipse.emf.compare.tests/src/org/eclipse/emf/
compare/tests/conflict.

123

https://www.eclipse.org/egit/
https://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.git/tree/plugins/org.eclipse.emf.compare.tests/src/org/eclipse/emf/compare/tests/conflict
https://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.git/tree/plugins/org.eclipse.emf.compare.tests/src/org/eclipse/emf/compare/tests/conflict
https://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.git/tree/plugins/org.eclipse.emf.compare.tests/src/org/eclipse/emf/compare/tests/conflict

An efficient line-based approach for resolving merge conflicts in XMI-based models 2475

Table 2 EMF Compare conflicts test suite, organised by modification categories, feature type (if relevant) and case number

Symbols indicate if the Git merge operation identified the case correctly (�); whether Git wrongly marked false positives (+); whether Peacemaker
was able to detect conflict smells after a wrong Git identification (∼); or those cases with conflicts that were missed by Git and Peacemaker (!)

involved the generation of merged models with conflict sec-
tions such as the one of Listing 2, which we achieved by
using the git merge-file command.10

As we have seen in Sect. 3, the merge operations per-
formed by Git are line-based, so it is irrelevant whether the
merged lines represent source code such as Java or C, or
if they contain (semi-)structured data like JSON or XML.
While this is not an issue for the majority of test cases, we
found that some of them are not properly handled by Git’s
merge operation, including concerning ones where conflicts
are not detected and the merge operation introduces errors in
the model. We consider as an error anything that breaks the
well-formedness of the model, such as references that point
to non-existing elements, or a violation of any conformance
rules of the metamodel (i.e. feature cardinalities, unique-
ness). We also consider as errors unwanted duplications
of model elements or values that cannot be automatically
detected and fixed.

We categorised the results of Table 2 into four groups,
based on the outcome of Git’s merge operation and the pos-
terior analysis byPeacemaker. The test suite is composed of
60 cases, in which there are 47 cases that contain conflicts,
and 13 cases that do not. As all 13 cases without conflicts

10 https://git-scm.com/docs/git-merge-file.

were correctly identified by Git, the separation in groups
focuses on categorising those cases that contain conflicts, as
the results for these were not homogeneous.

Figure 14 shows a flowchart with the possible paths that
a test case with conflicts could follow until it was assigned
into one of the four result groups. The flowchart starts from
the 47 test cases that contain real conflicts of some kind. The
first step involves the line-based merge performed by Git.
Cases marked with a check (�) indicate that the presence of
conflicts was correctly detected by Git, and then by Peace-
maker. When Git identification was incorrect, it was due to
either false positives or false negatives. Git false positives,
marked with a plus symbol (+), were correctly detected and
omitted by Peacemaker. As for Git false negatives, Peace-
maker was able to detect conflict smells (see Sect. 3.5) in
almost all of them by looking for issues such as duplicated
ids, internal dangling references, or broken conformance
rules (e.g. unique multi-valued attributes with duplicates).
We marked these cases with a tilde (∼) symbol. Lastly, there
were a subset of cases missed both by Git and Peacemaker,
which we marked with an exclamation (!). Although missed,
Git did not introduce any structural errors in the model. The
following sections give more details about these four groups.

123

https://git-scm.com/docs/git-merge-file

2476 A. de la Vega, D. Kolovos

Fig. 14 Flowchart that explains the different possible outcomes of the
test cases with conflicts of Table 2

5.1.2 Correct git identification (�)

These tests cases are correctly processed by the Git merge.
In all tests where this happens, Peacemaker is also able to
identify the underlying conflicts in the models. As we men-
tioned, the 13 cases that contained no conflicts were properly
identified, so they also belong to this group. This was some-
what expected, as after applying equivalent changes to the
left and right model versions the persisted XMI lines of the
affected model elements were equal. With 35 out of the 53
test cases correctly identified, this is the most frequent out-
come of the test suite.

5.1.3 Git false positives (+)

There are 10 caseswhereGitmanifested false positive issues.
First, in 8 positive test cases (i.e. with real conflicts), Git
marked additional model elements as in conflict because of
a change in the closing tag of an element whose contents
have been deleted. This type of false positive was described
in Sect. 3.4. As an example, Fig. 15 depicts the (a1attr) case,
where the root element is wrongly included in the conflict
section because of a change in its starting tag from > to />
in the right version.

Second, we include here two special cases that are consid-
ered false positives in the EMF Compare test suite, as they
do not represent real conflicts at the model level. These con-
flicts belong to the i and j categories and involve deletions
of different sets of elements on the left and right versions.
Figure 16 depicts the i category case. We can see that, on the
right version, only the A3 model element contained in C is
deleted, while on the left the C element is deleted instead,

Fig. 15 Example of a Git false positive (a1attr): the root element is
wrongly identified as in conflict because of a change in how its tag is
ended on the right (/> instead of >)

Fig. 16 Git identifies as a conflict two deletions affecting distinct sets
of elements (i category test case)

which also removes all its contents (A1, A2 and A3). Here,
EMF Compare automatically assumes that the A3 deletion is
a subset operation of the deletion of C, which indirectly also
removes A3. While we could do the same in Peacemaker,
we included the KeepDelete conflict to mark cases where
an element is deleted in one version, but is kept unmodified
in the other (see Sect. 3.3). Our rationale for this is that the

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2477

difference in the set of deleted elements between the ver-
sions could be of interest for the end users, so we leave the
final decision on which elements to keep or remove to them.
Nevertheless, the decision on whether to treat this case as a
conflict that requires manual intervention or to automatically
perform a merge could be easily managed as a configuration
parameter of the Peacemaker identification process.

5.1.4 Git false negatives with conflict smells (∼)

This group contains those caseswhereGit does not detect any
conflicts, but Peacemaker is able to find conflict smells that,
as we presented in Sect. 3.5, are often caused by unwanted
errors after a linemerge. There are two options to detect these
smells. First, models can be opened with the Peacemaker
editor after performing a merge with Git, even in those cases
where no line conflicts have been detected. Alternatively, we
presented a custom merge strategy to automatically perform
this check after each Git merge in Sect. 4.2. The identified
conflict smells for the EMF Compare test suite are detailed
in the following.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <Node ...>
3 <contents
4 xmi:id="_-iLZEJReEeGwLqrAWz -_6w"
5 name="leftContainer">
6 <contents
7 xmi:id="_CRQ58JRfEeGwLqrAWz -_6w"
8 name="conflictNode"/>
9 </contents >

10 <contents
11 xmi:id="__cxZEJReEeGwLqrAWz -_6w"
12 name="rightContainer">
13 <contents
14 xmi:id="_CRQ58JRfEeGwLqrAWz -_6w"
15 name="conflictNode"/>
16 </contents >
17 <contents
18 xmi:id="_AY8tcJRfEeGwLqrAWz -_6w"
19 name="originContainer"/>
20 </Node >

Listing 4 Test case from the g category where the conflictNode element
has been duplicated by the line-based Git merge (lines 6-8 and 13-15)

Duplicated Ids
This type of smell, which was introduced in Sect. 3.5.1,

appears in several cases of the test suite. Conflicts k1 to k3
add new elements in both versions of the model with the
same identifiers. Duplications also appear in the d3cont Re f case
due to incompatible reorderings of model elements, which is
equivalent to the duplicated tasks example of Fig. 9. Listing 4

Fig. 17 d3attr test case with conflicting reorderings to a multi-valued
attribute (mvAttr)

depicts an additional case of element duplication from the g
category, where the container of the conflictNode element is
changed to two different containers in each version: leftCon-
tainer in the left, and rightContainer in the right. The initial
container of this element in the ancestor version is originCon-
tainer. As a result of this incompatible change of containers,
the conflictNode appears twice in the merged model: first
in lines 6-8 under leftContainer and second in lines 13–15
under rightContainer.

Duplicates in Multi-Valued Attributes
Wealso found duplications inmulti-valued attributes. Fig-

ure 17 depicts the (d3attr) case, which is identical to the
duplication described in Fig. 11 over PSL task labels. When
Git merges this test case, an unwanted duplication of one of
the values (value1) takes place.

Internal Dangling References
The e category contains conflicts related to the creation

of internal dangling references, which were described in
Sect. 3.5.3. Figure 18 shows the e1 case, where a reference
from conflictHolder to origin is added on the left, while ori-
gin is deleted on the right, thus creating a dangling reference
to a non-existing origin element.

5.1.5 Conflicts not detected, model has no structural errors
(!)

This group contains the test cases where Peacemaker does
not have enough information to detect the conflicts after
Git missing them. In this group, the line-based merge does
not introduce any structural or duplication-related errors (as
defined in Sect. 5.1.1) in the merged model.

123

2478 A. de la Vega, D. Kolovos

Fig. 18 e1 test case where a reference to a deleted element (origin) is
introduced in the merged model

Fig. 19 d1attr test case with conflicting left and right modifications to
a multi-valued attribute (mvAttr)

Figure 19 depicts a simplified test case (d1attr) belonging
to this group. In the example, we have a node with a multi-
valued attribute denoted as mvAttr. In the ancestor version,
mvAttr contains three values: value1, value2 and value3. The
conflict is caused by the modifications over value1: while in
the left version that value is deleted, in the right one it is
moved to the latest position of the multi-valued attribute.
When these versions are merged, the original line belong-
ing to value1 disappears in both versions (i.e. no value1
above value2), while the right value1 appearing after value3
is merged as a new line. As a result, node.mvAttr ends up
containing value2, value3 and value1 in the merged model.
While the result matches with one of the initial versions (i.e.
the right one), the way in which this case was merged was
beyond the control of the developer. This case is equivalent to
d1cont Re f where, instead ofmulti-valued attributes, themodifi-
cations take place over amulti-valued containment reference.
Lastly, d2attr and d2cont Re f are mirrors of the respective first
two cases, this is, left changes are applied on the right version,
and vice versa.

Fig. 20 h2 test case where the container to the conflictNode is changed
to leftContainer on the left version, while that same leftContainer ele-
ment is deleted on the right version

The h cases, also belonging to this group, present a sim-
ilar situation in which no conflict is detected and the VCS
automatically decides how to combine the changes coming
from the two versions. This category of conflicts involves
changing the container of an element to a new parent in one
of the versions, while deleting the new parent in the other
version. Figure 20 depicts the h2 case, where the container
of the conflictedNode element is changed to leftContainer
on the left, while on the right version that new container is
deleted. As shown at the bottom of the figure, the line-based
merge automatically selects the left version of the changes
and disregards the deletion taking place on the right version.

We summarise the results of the completeness analysis in
Sect. 5.3 along with the results of the performance compari-
son, which comes next.

5.2 Performance comparison

We measured the time required by Peacemaker and two
state-of-the-art tools to detect and identify conflicts in con-
trived models of increasing size. These measurements were
taken using the JavaMicrobenchmark Harness (JMH) tool,11

and details about the parameters used to configure the bench-
marks and the computing platform can be seen in Table 3.
Also, the benchmarking code is openly available in an
external repository12 for reproducibility purposes. The next
sections describe the experiments carried out in more detail.

5.2.1 Compared approaches

We compared Peacemaker against EMF Compare [11] and
EMF DiffMerge [12], which were introduced in Sect. 2.4.

11 https://openjdk.java.net/projects/code-tools/jmh/.
12 https://github.com/alfonsodelavega/peacemaker-evaluation.

123

https://openjdk.java.net/projects/code-tools/jmh/
https://github.com/alfonsodelavega/peacemaker-evaluation

An efficient line-based approach for resolving merge conflicts in XMI-based models 2479

Table 3 Computing platform and benchmark parameters used during
the performance comparison

Fig. 21 Boxes language metamodel in Ecore

Both tools perform a three-way model comparison to find
differences and conflicts, so they are ideal candidates to
determine if the line-based approach used in Peacemaker
provides any performance improvements. As for Peace-
maker, we included two variants: a sequential one, where
the split model versions (see Sect. 3.2) are loaded one after
the other, and a parallel variant that uses multi-threading to
load all versions at the same time. Lastly, we also included
the standard XMI load time of the left model version as a
baseline that could help extrapolate the results to other com-
puting platforms.

5.2.2 Types of models

We generated models conforming to two different metamod-
els. The first metamodel is the Project Scheduling Language
used as running example throughout the paper and introduced
in Sect. 2.1. For the second one, we defined a Boxes language
whosemetamodel is depicted in Fig. 21. This is a very simple
language that can be used to define a list of Boxes of varying
size, this is, with a different number of attributes or things.
For instance, Box1 instances have 1 attribute, while Box10
and Box20 have 10 and 20 attributes, respectively. Boxes
models were useful to test whether having denser model ele-
ments (i.e. with more attributes to check) had any effect on
the completion times of the compared approaches

5.2.3 Comparison scenarios

The three compared approaches were used to detect conflicts
in several comparison scenarios. Each scenario is composed
of different test cases of increasing size, from 1000 to 200 K
elements. This size refers to the number of tasks in PSLmod-
els, and to the number of boxes in Boxes models. For each
scenario and test case size, we generated ancestor, left, and
right model versions, as these are required for EMFCompare
and DiffMerge. To obtain a merged input model for Peace-
maker, we used the same git merge-file command as in the
completeness evaluation. We included the time it took this
command to create each merged model as part of the conflict
detection times for both Peacemaker variants.

Given a test case with a size of N elements, the ancestor
version was generated as follows:

– PSLmodels withN tasks and 5 people. Each task effort is
shared 50–50 between 2 people (chosen at random, with
fixed seed for reproducibility).

– Boxes models with N boxes.

Over this ancestor, conflicting left and right versions were
created. Unless stated otherwise, the number of conflicts that
was included in a test case was fixed to 10. The following
conflict scenarios were generated:

1. PSL Update Delete: in conflicting tasks, the percentage
effort of one person was updated on the left, while the
whole effort element was deleted on the right.

2. PSL Double Update: we updated the title of conflicting
tasks to different values on left and right. The objective
of this scenario is to try a different kind of conflict. Also,
Peacemaker performs false positive checks for Double
Update conflicts (see Sect. 3.4), so we wanted to check
if that affects the detection times.

3. PSL Update Delete with extra changes/conflicts: this is
an extension of the first scenario where, apart from con-
flicts, we also introduced extra changes that did not create
conflicts, with the objective to see how the compared
approaches responded to them. Section 2 introduced the
comparison process for both EMF Compare and EMF
DiffMerge, which compare the model versions of the
conflicting branches This process starts by finding all dif-
ferences between the two versions and then determining
if any of these differences are conflicting. We included
changes to 10, 50 and 100% of the tasks, excluding the
ones with conflicts. Similarly, we also tested increasing
the number of conflicts in the test cases, to see if therewas
any difference with including non-conflicting changes.
The number of conflicts was again 10, 50 and 100% of
the model tasks for each size. While the cases involv-
ing 50% and 100% changes/conflicts are unrealistic in

123

2480 A. de la Vega, D. Kolovos

Fig. 22 Detection times of scenarios 1 (top) and 2 (bottom)

practice, we included them as stress tests to see how the
compared approaches behaved in extreme scenarios.

4. Boxes Update Delete: we modified the first attribute of
conflicting boxes in the left and deleted these boxes in the
right. This scenario was repeated for the three box sizes
(1, 10 and 20 attributes per box instance), to see if having
bigger model elements had an impact on the times of the
compared approaches.

5.2.4 Results

Figure 22 shows the conflict detection times for scenarios
1 and 2. Starting with the first scenario (top chart), we can
see that both the sequential and parallel versions of Peace-
maker are faster than EMF Compare and DiffMerge. This
phenomenon is consistent for all subsequent scenarios.While
the time differences are not very critical for the smaller
cases (i.e. identification times are below 1–2 s), for models
with 50 K tasks and above these differences start becoming
noticeable. The relative distance between the obtained times

remains consistent when increasing the size of the models.
If we average the differences for the 50 K, 100 K, 150 K and
200 K tasks models, then the sequential Peacemaker vari-
ant required 42% less time than EMF DiffMerge, and 24%
less time than EMF Compare. In the case of the parallel vari-
ant, the reductions increase to 61% and 50%, respectively.
When comparing the two Peacemaker variants, performing
a parallel load provides a 33% reduction on conflict detec-
tion times, which makes it a third faster than the sequential
variant. Lastly, and focusing again on the average results for
the four largest models, EMF DiffMerge took 9.38 times the
duration of the XMI load of a single model version, while
this valuewas 7.13 for EMFCompare, 5.40 for the sequential
Peacemaker, and 3.60 for the parallel Peacemaker.

Focusing now on the second scenario (Fig. 22, bottom),
the times for all the approaches are very close to the ones of
the first scenario. The change in the type of conflict found
in the models, from Update Delete conflicts in scenario 1
to Double Update conflicts in scenario 2, caused less than
2% variation in times for EMF Compare and DiffMerge on
average, and less than 1% for the Peacemaker variants.

The results for scenario 3 are depicted in Fig. 23. The top
row shows the results when conflicting models have 10%
extra non-conflicting changes, on the left, and two more
extreme cases of having 50% and 100% non-conflicting
changes in the middle and on the right. When compared with
the results of scenario 1, EMF Compare took 2%, 9% and
17% longer times to detect the conflicts for the models with
10%, 50% and 100% extra non-conflicting changes, respec-
tively. EMF DiffMerge suffered a bigger slowdown, taking
4%, 19% and 35% longer to complete the task. Nonetheless,
despite the greater penalty for the cases with a large num-
ber of differences, the results suggest that a realistic amount
of non-conflicting changes would not pose an issue to these
two approaches. As for the Peacemaker variants, there was
a small increase in the detection times, as a result of the extra
time taken by the line-based merge command to process the
non-conflicting changes. The increases for the sequential and
parallel Peacemaker variant with respect to the scenario 1
results were of less than 3% in all cases.

The bottom row of Fig. 23 shows what happens when the
number of conflicts in a model grows, starting with 10% con-
flicting tasks on the bottom left (i.e. in a model with 1000
tasks, 100 of themwould have conflicting changes), up to the
extreme cases with 50% and 100% conflicting tasks in the
bottom middle and right, respectively. While these increases
did not noticeably impact EMF DiffMerge results (1%, 2%
and 6% longer times for the models with 10%, 50% and
100% conflicts), they did affect Peacemaker variants (5%,
13% and 22% longer times for the sequential variant, and
4%, 18% and 33% for the parallel variant), and EMF Com-
pare (4%, 14% and 25% longer times). Again, these results
show that the approaches behaved decently against extreme

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2481

Fig. 23 Detection times of scenario 3. The top row shows the cases with 10%, 50% and 100% non-conflicting extra changes, and the bottom row
shows cases with 10%, 50% and 100% conflicting tasks

conflict numbers, which indicates that there should not be
any performance issue when applying these approaches to
models with more realistic (i.e. lower) conflict numbers.

Finally, Fig. 24 covers the detection times for the Boxes
models. In general, the conflict identification times in these
models were lower than for the PSL ones, e.g. the slowest
approach took up to ∼ 4 s for the Boxes model with Box1
instances (Fig. 24, left), while it took up to∼ 10 s for the PSL
model of scenario 1 (Fig. 22, top).We attribute this difference
to the existence of more model elements in PSL models,
as each Task instance also contains two Effort objects. In
addition, the loading process of PSL models has to resolve
the cross-reference that each task effort has to the person
assigned for its completion, while in the Boxes models there
are no references between the model instances.

Focusing on the results of the compared approaches, we
can see that there is a general increase in the detection times
of models with bigger Box elements, i.e. the times for Box10
instances in the middle chart are bigger than those of Box1
instances on the left chart; and the longest times are seen for
Box20 elements on the right. This is partly caused by having
bigger XMI load times, which took 0.29 s to load the largest
Box1 model (200 K instances), while it took 0.76 and 1.33 s
to load models with the same number of elements but larger
Box10 and Box20 instances, respectively. As for the result

of the different approaches, EMF DiffMerge results were
1.56 and 2.28 times slower for the models Box10 and Box20
instances, with respect to the ones with Box1 instances. Per-
forming analogous comparisons, EMF Compare was 2.03
and 3.33 times slower, sequential Peacemaker was 2.04
and 3.3 times slower, and the parallel variant of Peace-
makerwas 1.91 and 2.96 times slower for Box10 and Box20
instances than for Box1 ones.

We can see that sequential and parallel Peacemaker
kept being the fastest approaches across all Boxes models
versions, although in this case the times for the sequential
Peacemaker were closer to those of EMF Compare than in
the previous cases. This closeness might be partly explained
because of an existing issue that we experienced while using
EMF Compare with our Boxes models. This issue caused
an out-of-memory heap error (still present when using up to
25 GiB of heap size) when checking the ordering of contain-
ment references with more than 100 K values. Therefore, to
be able to complete these tests, we disabled ordering checks
with a custom EMF Compare differencer, which means that
this approach performs less work than in the test cases with
PSL models. We also found that the issue had already been
registered as a bug in the past, so we contributed an example
project with a comparison that allows reproducing it.13

13 https://bugs.eclipse.org/bugs/show_bug.cgi?id=432497.

123

https://bugs.eclipse.org/bugs/show_bug.cgi?id=432497

2482 A. de la Vega, D. Kolovos

Fig. 24 Detection times of scenario 4, for each type of box instance

Focusing on the denser Box20 instances models (Fig. 24,
right), sequential Peacemaker needed 21% and 4% less
time on average than EMF DiffMerge and EMF Compare
for the largest 4 models. The parallel Peacemaker variant
was able to perform better, achieving a time reduction of 54%
and 44% against EMF DiffMerge and EMF Compare.

5.2.5 Threats to validity

The main treat to the validity of the presented results is that
the measured performance could be specific to the generated
models for the tests, to the type of model, or to the included
conflicts. Although performing the evaluation using real,
third-partymodels would have been the ideal scenario, short-
age of large publicly available real-world models is a widely
recognised issue in model-driven engineering research (e.g.
[21]).Ourmotivation for Peacemaker comes fromourwork
with industrial partners [22] where we routinely encounter
models containing many thousands of model elements, for
which tools such as EMF Compare can take several sec-
onds to perform a full 3-way comparison. As we are not
able to meaningfully report on experiments using such mod-
els due to intellectual property reasons, we have opted for
large synthetic models conforming to a metamodel that pro-
vides a comprehensive coverage of the features of Ecore
(e.g. containment/non-containment references, single/multi-
valued and ordered/unordered features). Generating models
conforming to one or other metamodel is not immediately
relevant, as the compared approaches search for conflicts
in structural changes, and do not analyse semantics. The
only reason behind having two different metamodels in
our tests was testing model elements with different num-
ber of attributes (i.e. a structural difference), to assess if that
affected the conflict detection times for any of the compared
approaches. With respect to the created conflicts, we focused
our performance evaluation around conflicts that could be
detected by all the applied tools. We covered the detec-

tion of corner case conflicts in our completeness analysis
of Sect. 5.1.

The longer identification times of EMF Compare and
DiffMerge could be due to the fine-grained analysis they
perform to detect changes in model elements’ features, and
it could be argued that if Peacemaker performed this fine-
grained analysis, its times would be equivalent to the ones
of the other approaches. This is not the case, as conflict-
ing lines identified by the VCS already tell Peacemaker
which model elements contain the conflicts without the need
to actually check the features of all elements in the model.
If fine-grained analysis of the model element features were
needed in Peacemaker, it would only require processing
this set of pre-identified conflicting elements, instead of the
full model. Moreover, Peacemaker already performs this
fine-grained comparison of element features when searching
for false positives of the line-based merge (see Sect. 3.4), so
the Peacemaker detection times shown in the performance
comparison already include checks at the feature level of
model elements.

Finally, it could be argued that parallelising the load
of model versions in one of the Peacemaker variants is
unfair with respect to EMF Compare and DiffMerge, where
a sequential load of the three versions is performed. Our first
consideration was that parallelising the load of the other two
approaches would not be as beneficial, because three dif-
ferent model files, one for each model version, have to be
loaded from disk, which would be done sequentially. On the
contrary, Peacemaker only loads a singlemergedmodel file
from disk, and the model versions are obtained by selecting
the appropriate lines from in-memory contents (see Fig. 2).
So, as the contents are already stored in memory, parallelis-
ing the version load is more beneficial for Peacemaker.
Nonetheless, to confirm this, we performed a parallel load
for EMF Compare and DiffMerge for the conflict models of
scenario 1, and the results are shown in Fig. 25. We can see
that the parallel execution achieved a 16% average reduction

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2483

Fig. 25 Detection times of scenario 1 including parallel loads for EMF
Compare and DiffMerge

for EMF DiffMerge, while for EMF Compare the reduction
was slightly larger at 22%. However, neither of these execu-
tions achieved a better result than just the sequential variant of
Peacemaker, although EMF Compare was able to almost
match its times. It is important to also note that our load-
ing times do not take into account the extra work that both
EMF Compare and DiffMerge need to perform to gather the
model versions from the VCS. Lastly, an inspection of the
source code of both EMF Compare and Diffmerge revealed
that they do not parallelise the loading of input resources. So,
performing sequential version loads for these tools is a bet-
ter representative of the performance that would be found by
end users when actually using the tool. Based on the above,
we decided to show the sequential times of all the compared
approaches, plus the parallel variant of Peacemaker.

5.3 Discussion

In the light of the findings presented in the previous sections,
we can now answer the research questions asked in Sect. 1.

5.3.1 RQ1: Can an approach that uses the line-based
conflicts marked by a VCS to identify conflicts instead
of a full model comparison offer the same results?

Based on the analysis of Sect. 5.1,Peacemaker is not able to
detect all conflicts that existing tools such as EMF Compare
or EMF DiffMerge can find. However, it comes very close to
achieving a full detection. The results of Table 2 show that
Peacemaker is able to properly identify and resolve most
conflict cases (45 out of 60), and it is also able to detect con-
flict smells suggesting potentially missed conflicts by Git (9

Table 4 Conflict detection times in ms for some concrete model sizes
for Scenario 2 (bottom of Fig. 22)

Tool Model Size (#elements)
5000 15,000 30,000

EMF DiffMerge 165 509 1309

EMF Compare 136 428 1039

Peacemaker 97 286 578

Parallel Peacemaker 46 135 349

out of 60). The remaining 6 cases were automatically merged
by Git (identified with the ! symbol), and Peacemaker did
not detect the underlying conflicts. On the other hand, these
automatic merges did not create any immediate issues, such
as losing model information or introducing errors that pre-
vent the model from loading.

5.3.2 RQ2: Does a conflict detection approach as described
in RQ1 provide better performance and scalability
than full model comparison?

The results of Sect. 5.2 show that the two Peacemaker vari-
ants were consistently faster in all comparison scenarios. For
models smaller than ∼ 50 K elements, the time it takes all
approaches to complete might be too small (less than ∼ 2 s)
for the improvements of Peacemaker to be that noticeable,
at least considering an online use of Peacemaker (i.e. a
user working with the Peacemaker editor). On the other
hand, being up to about 2 to 3 times faster than the other
approaches for the bigger models of the comparison puts
Peacemaker in an advantageous position in terms of per-
formance, which makes our approach an interesting option
to consider in those contexts where large models are causing
existing model comparison and merging solutions to suffer
from performance issues.

Lastly, we consider that Peacemaker could also be use-
ful for smaller models, this is, without these models needing
to reach the 50 K elements mark. This mark was selected as
a usability measure on tolerable waiting time, which accord-
ing to [23] the measure sits at about 2 s (i.e. the time some
tools need to detect the conflicts at 50 K model elements).
Nevertheless, the performance improvements provided by
Peacemaker are also seen for smaller models, which could
be very useful in terms of scalability if several models have to
be merged at the same time or if merging of models happens
frequently (e.g. in a continuous integration environment).

Table 4 shows the time (in milliseconds) it took EMF
DiffMerge, EMF Compare and Peacemaker to detect the
conflicts of Scenario 2 (Double Update, bottom of Fig. 22)
for the PSL models with 5K, 15K and 30K elements. For
instance, merging five models with 15 K elements would
take around 2.5 s with EMF DiffMerge, 2.1 s with EMF

123

2484 A. de la Vega, D. Kolovos

Compare, 1.4 s with Peacemaker, and 0.67 s with paral-
lel Peacemaker. It is true that merging several models is a
fully parallelisable task (i.e. merging each model in a sepa-
rate process). However, parallel or not, the total amount of
computing work that needs to be carried out is the same, and
Peacemaker might allow reducing that amount.

5.3.3 RQ3: Is relying on line-based VCSs such as Git to
merge XMI models and to detect conflicts safe?

Wehavedemonstrated that a plain line-basedmerge approach
is not safe enough to detect a few types of conflicts that might
arise when merging XMI models. We have shown several
examples of how false positives (Sects. 3.4 and 5.1.3) and
false negatives (Sects. 3.5, 5.1.4 and 5.1.5) canmanifestwhen
applying a line-based merge over XMI models. Moreover,
this type of merge can introduce errors in the model, e.g. by
duplicating lines containing model elements or values.

Therefore, and in line with previous research [13–15], we
consider line-based merging alone is unsafe when version-
ing XMImodels in VCSs, both in terms of correctly merging
models, and related to detecting allmerge conflicts thatmight
occur. However,we have described howPeacemaker is able
to enhance the identification capabilities of plain line-based
merging. Based on our answers to RQ1 and RQ2, it offers
a trade-off between identification completeness and perfor-
mance that might be useful in some contexts, thus making
line-based merging viable. We comment on this trade-off in
detail in the next section.

5.3.4 When to use PEACEMAKER over model-based
approaches

Choosing to merge models using a VCS such as Git along
with Peacemaker requires tolerating that the conflict types
included in the ! group in Table 2 will not be detected. How-
ever, not being able to detect this group of conflicts does not
cause issues such as losing model information. As detailed
in Sect. 5.1.5:

– When a value of a multi-valued attribute is deleted in one
of the versions but moved to another position in the other
(d1attr case in Table 2), the value is retained in the new
position in the merged model.

– When moving an element in one version of the model
into a container that is deleted in the other version (h
category cases in Table 2), the merged model includes
both containers.

Tolerating this group of conflicts provides increased con-
flict detection performance as a trade-off, which could be
very reasonable in contexts where large models are updated

frequently by teams of engineers with clear responsibilities
over different parts of the model.

We consider important to remind the reader that using
Git to merge models and only applying a model-based con-
flict detection tool such as EMF Compare when Git detects
a conflict would also imply being oblivious to conflicts of
the ! group. The only way a tool such as EMF Compare can
also detect these conflicts is by configuring a custom merge
strategy in the application used tomanage source code repos-
itories (e.g. EGit in the case of the Eclipse IDE), as described
in Sect. 4.2.

Other novel features of Peacemaker that might be of
interest in certain contexts are its support of partial resolu-
tion of conflicts (see Sect. 3.6) and its ability to work directly
with stand-alone files containing conflict sections, without
requiring access to the three model versions in the repository
(although Peacemaker still needs to know of the required
metamodels to which models conform to, and of any exter-
nal cross-referenced models). This last feature might make
easier to deploy Peacemaker as part of a continuous inte-
gration (CI) process: Peacemaker checks take place after
the conventional line-based merge, so it is not necessary to
substitute that with a custommerge strategy. Instead,Peace-
maker could be added as an extra validation or test process
to execute after the line-basedmerge to check for issues. This
configurationmight require less effort than altering themerge
strategy of a CI system such as Jenkins to use a model-based
tool like EMF Compare or EMF DiffMerge. However, we
have not yet performed any validation to support this claim,
so we leave this as part of our future work.

Performance issues due to having to merge large mod-
els could be avoidable by adopting a model decomposition
strategy from the very beginning. Following such a strategy
involves splitting models into several fragments according
to certain criteria, such as division of labour over them. This
kind of strategy is only achievable if the employedmodelling
tools support model decomposition. Also, splitting models
into adequate fragments is not always a trivial task, as col-
laborative work in cross-cutting concerns might benefit from
contrasting/incompatible model split points [24].

The formulated research questions focused on the com-
pleteness, performance, and safety of the presented conflict
detection approach. The last step to evaluate the exploitabil-
ity of Peacemaker (under the acceptance of the presented
compromise between performance and precision) involves
carrying out usability experiments, where the Peacemaker
editor could be tested by final users to determine how well it
behaves against alternatives such as EMF Compare or EMF
DiffMerge. Usability is not covered by our research ques-
tions and/or our evaluation, so it lies outside the scope of this
article. Running these experiments will be part of our future
work for Peacemaker.

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2485

5.4 Considerations for merging XMImodels with
line-based version control systems

Out of the experience gathered during the development of
Peacemaker, and based on the findings of this evaluation,
we include here a set of practices to follow when wanting to
keep merging XMI models using line-based VCSs such as
Git:

– After merging a model using vanilla Git (e.g. from the
command line), it is of utmost importance that themerged
model is thoroughly validated with an approach such
as Peacemaker, as well as with domain-specific model
validation processes. We have shown how a clean line-
based merge is no guarantee of the model being correctly
merged, as it might contain structural issues and it might
not conform to its metamodel.

– As mentioned in Sect. 5.1.4, the use of non-unique
multi-valued EAttributes can cause duplicated values in
line-based merged models under certain conditions and
should be avoided whenever possible.

– Auto-incremental identifiers (e.g. task1, task2, · · ·) or ID
EAttributes can create issues when adding new elements
to a model in two independent development branches. To
avoid this, we recommend the use of Universally Unique
Identifiers (UUIDs) generators, such as the one provided
by EMF.14

6 Related work

To the best of our knowledge, Peacemaker is the first
approach that leverages the work done by the standard
line-based merge when working with models. The closest
approach we have found is the work of Asenov et al. [25],
where a line-based approach is presented for two-way com-
parison (i.e. a diff operation [17,18], instead of a merge one)
over tree structures. They define a specific syntax to store
these trees, which allows using as input the result of a line-
based diff to carry out a correct tree comparison. They also
present a three-waymerge approach over the same tree struc-
ture, but that approach works at the level of tree nodes and
edges, instead of merging text lines.

Merging operations over text files can be classified accord-
ing to their use of the inherent structure of the contents of
these files. On one side, line-basedmerging is also denoted as
unstructured merging [1,2], because the underlying structure
of the data is disregarded. On the other extreme we can find
structuredmerging, also often denoted as syntacticalmerging
[1], where the structure of the data is known and used for the

14 https://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/
eclipse/emf/ecore/util/EcoreUtil.html#generateUUID().

merge operation. This is the kind of operation that is carried
out by model merging solutions, such as EMF Compare [11]
and EMF DiffMerge [12] and that we described in Sect. 2.4.
There are other solutions that apply structured comparison
to source code files by comparing their abstract syntax tree
(AST), such as Gumtree [26] or ChangeDistiller [27] for the
Java programming language. Lastly, there is a third type,
known as semi-structured merging [28,29], where a frac-
tion of the file contents are merged based on their structure
(e.g. part of the AST of a source code file), and the remain-
ing contents are merged using an unstructured approach. For
instance, when merging a Java class, its method signatures
can be treated as a tree (i.e. structured merge), while the
body of these methods is merged as standard lines (unstruc-
turedmerge).As for thePeacemaker approach, it falls under
targeted structured merging, as the XMI files are loaded as
models, but the merging operation focuses on those model
elements initially marked by the line-based merge, instead
of performing a full-model comparison.

Model merging utilities come either bundled within soft-
ware solutions that target specific modelling technologies,
or as standalone third-party applications specifically tailored
for the comparison task. For instance, Simulink Models can
be merged with the comparison tool provided by MAT-
LAB [30], or by using DiffPlug [31]. Other solutions target
general-purpose modelling frameworks, such as IBM Ratio-
nal Rhapsody [32] forUML; or EMFCompare [11] andEMF
DiffMerge [12] for the Eclipse Modelling Framework. This
allows reusing the same comparison tools for any domain
specific language built atop the concrete framework. Lastly,
there are some solutions that are defined generically, but they
can be adapted to support specific model technologies. SiD-
iff [33] and many other academic solutions [15,25,34] are
examples of these.

There is also a different family of tools for model ver-
sioning that offer specific repositories for the persistence of
models. Examples of these tools are Eclipse CDO [35], EMF
Store [36], MetaEdit+ [6], MagicDraw [7] or Obeo Designer
[8], among others. Developing custom model repositories
can provide benefits in different aspects, such as scalabil-
ity, or a more controlled versioning of models. For instance,
change-based persistence techniques [36] could be applied to
have a fine-grained control of the changes that are included
in models, and to better detect incoming conflicts [37,38].
Another technique that is implemented by several commer-
cial solutions allows avoiding conflicts by locking the whole
model or specific parts of the model where a user is currently
includingmodifications [6–8]. This technique requireswork-
ing against an always-online and centralised model server,
so that locking information can be distributed among all
concurrent users. While specific model repositories offer
interesting features, such repositories are typically propri-
etary, re-implement similar functionality (user management,

123

https://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/util/EcoreUtil.html#generateUUID()
https://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/util/EcoreUtil.html#generateUUID()

2486 A. de la Vega, D. Kolovos

model fragment locking/unlocking, check-in/out), and lack
in features such as branching and tagging. In addition, these
repositories need to be administered separately from theVCS
used to store any source code, and there is limited tool support
for them outside the modelling environments for which they
were initially developed for (e.g. integrationwith other IDEs,
continuous integration systems, and other third-party model
measurement and analysis tools). Finally, they arguably lack
in robustness compared to file-based VCSs such as Subver-
sion and Git.

7 Conclusions and future work

Wehave introduced a new approach for the detection and res-
olution of conflicts that works against merged XMI files with
conflict sections produced by mainstream text-based VCSs
like Git. This approach, which has been implemented in the
EMF-based Peacemaker tool, can detect almost the same
types of conflicts than standard model-based approaches are
able to, while taking up to 60% less time to do so. The unde-
tected conflicts do not cause any loss of model information,
which makes Peacemaker an option to consider in those
contexts where missing these conflicts is tolerable and extra
performance is required.

For future work, we plan to test Peacemaker with end
users to polish any issues related to the usability of the editor.
In addition, we wish to test if a similar line-based approach
could be valid to also speed up 2-way model comparison,
i.e. by parsing the added and deleted lines of a diff com-
mand over the two compared versions. We would also like
to study whether Peacemaker could be integrated easily
with external version control tools and continuous integra-
tion environments, either by adding a custom merge strategy
for models or by including an extra validation step where
Peacemaker is used to analyse the resulting models after a
line-based merge.

Acknowledgements We would like to thank the developers of EMF
Compare for making their tests suites available, which were very useful
during the development and evaluation of Peacemaker.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Mens, T.: A state-of-the-art survey on software merging. IEEE
Trans. Softw. Eng. 28(5), 449–462 (2002). https://doi.org/10.1109/
TSE.2002.1000449

2. Khanna, S., Kunal, K., Pierce, B.C.: A formal investigation of
diff3. In: FSTTCS 2007: Foundations of Software Technology and
Theoretical Computer Science, pp. 485–496. Springer, Berlin, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-77050-3_40

3. Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wim-
mer, M.: An introduction to model versioning. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), vol. 7320
LNCS, pp. 336–398 (2012). https://doi.org/10.1007/978-3-642-
30982-3_10

4. Paige, R.F.,Matragkas, N., Rose, L.M.: Evolvingmodels inmodel-
driven engineering: state-of-the-art and future challenges. J. Syst.
Softw. 111, 272–280 (2016). https://doi.org/10.1016/j.jss.2015.08.
047

5. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework, 2nd edn. Addison-Wesley Profes-
sional (2009)

6. Kelly, S.: Collaborative modelling with version control. In: Soft-
ware Technologies: Applications and Foundations, pp. 20–29.
Springer (2018). https://doi.org/10.1007/978-3-319-74730-9_3

7. No Magic: MagicDraw. https://www.nomagic.com/products/
magicdraw

8. Obeo: Obeo Designer. https://www.obeodesigner.com/
9. Object Management Group: XML Metadata Interchange Specifi-

cation. https://www.omg.org/spec/XMI/
10. Eclipse Foundation: Sirius. https://www.eclipse.org/sirius/
11. Eclipse Foundation: EMF Compare. https://www.eclipse.org/emf/

compare/
12. Eclipse Foundation: EMF DiffMerge. https://www.eclipse.org/

diffmerge/
13. Barrett, S., Chalin, P., Butler, G.: Model merging falls short of

software engineering needs. In: Proceedings of the 2nd Workshop
on Model-Driven Software Evolution (2008)

14. Altmanninger, K., Brosch, P., Langer, P., Seidl, M., Wiel, K.,
Wimmer,M.:Whymodel versioning research is needed!?An expe-
rience report. In:MoDSE-MCCMWorkshop inMoDELS, pp. 1–12
(2009)

15. Schwägerl, F., Uhrig, S., Westfechtel, B.: A graph-based algo-
rithm for three-waymerging of ordered collections in EMFmodels.
Sci. Comput. Program. 113, 51–81 (2015). https://doi.org/10.
1016/j.scico.2015.02.008. (Model Driven Development (Selected
& extended papers from MODELSWARD 2014))

16. Object Management Group: Meta Object Facility (MOF) Core
Specification. https://www.omg.org/spec/MOF/ (2016)

17. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing
longest common subsequences. Commun. ACM 20(5), 350–353
(1977). https://doi.org/10.1145/359581.359603

18. Miller, W., Myers, E.W.: A file comparison program. Softw.
Pract. Exp. 15(11), 1025–1040 (1985). https://doi.org/10.1002/
spe.4380151102

19. Somogyi, F.A., Asztalos, M.: Systematic review of matching
techniques used in model-driven methodologies. Softw. Syst.
Model. 19(3), 693–720 (2020). https://doi.org/10.1007/s10270-
019-00760-x

20. SAX Project: Simple API for XML. http://www.saxproject.org/

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1007/978-3-540-77050-3_40
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1007/978-3-319-74730-9_3
https://www.nomagic.com/products/magicdraw
https://www.nomagic.com/products/magicdraw
https://www.obeodesigner.com/
https://www.omg.org/spec/XMI/
https://www.eclipse.org/sirius/
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/diffmerge/
https://www.eclipse.org/diffmerge/
https://doi.org/10.1016/j.scico.2015.02.008
https://doi.org/10.1016/j.scico.2015.02.008
https://www.omg.org/spec/MOF/
https://doi.org/10.1145/359581.359603
https://doi.org/10.1002/spe.4380151102
https://doi.org/10.1002/spe.4380151102
https://doi.org/10.1007/s10270-019-00760-x
https://doi.org/10.1007/s10270-019-00760-x
http://www.saxproject.org/

An efficient line-based approach for resolving merge conflicts in XMI-based models 2487

21. López, J.A.H., Cuadrado, J.S.: Towards the characterization of
realistic model generators using graph neural networks. In: 2021
ACM/IEEE 24th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS), pp. 58–69 (2021).
https://doi.org/10.1109/MODELS50736.2021.00015

22. Cooper, J., de la Vega, A., Paige, R.F., Kolovos, D.S., Bennett,
M., Brown, C., Piña, B.S., Rodriguez, H.H.: Model-based devel-
opment of engine control systems: Experiences and lessons learnt.
In: 24th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2021, Fukuoka, Japan, Octo-
ber 10–15, 2021, pp. 308–319. IEEE (2021). https://doi.org/10.
1109/MODELS50736.2021.00038

23. Nah, F.F.H.: A study on tolerable waiting time: how long are web
users willing to wait? Behav. Inf. Technol. 23(3), 153–163 (2004).
https://doi.org/10.1080/01449290410001669914

24. Bendix, L., Emanuelsson, P.: Diff and merge support for model
based development. In: Proceedings of the 2008 International
Workshop on Comparison and Versioning of Software Models—
CVSM’08, p. 31. ACM Press, Leipzig, Germany (2008). https://
doi.org/10.1145/1370152.1370161. http://portal.acm.org/citation.
cfm?doid=1370152.1370161

25. Asenov,D., Guenat, B.,Müller, P., Otth,M.: Precise version control
of trees with line-based version control systems. In: Fundamen-
tal Approaches to Software Engineering (FASE), pp. 152–169.
Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54494-5_9

26. Falleri, J.R., Morandat, F., Blanc, X., Martinez, M., Monper-
rus, M.: Fine-grained and accurate source code differencing. In:
Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE’14, pp. 313–324. Associ-
ation for ComputingMachinery, New York (2014). https://doi.org/
10.1145/2642937.2642982

27. Fluri, B., Wursch, M., PInzger, M., Gall, H.: Change distilling:
tree differencing for fine-grained source code change extraction.
IEEE Trans. Softw. Eng. 33(11), 725–743 (2007). https://doi.org/
10.1109/TSE.2007.70731

28. Apel, S., Liebig, J., Brandl, B., Lengauer, C., Kästner, C.:
Semistructured merge: Rethinking merge in revision control sys-
tems. In: Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engi-
neering, ESEC/FSE’11, pp. 190–200. Association for Computing
Machinery, New York (2011). https://doi.org/10.1145/2025113.
2025141

29. Cavalcanti, G., Borba, P., Seibt, G., Apel, S.: The impact of struc-
ture on software merging: semistructured versus structured merge.
In: 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 1002–1013. IEEE (2019). https://
doi.org/10.1109/ASE.2019.00097

30. MathWorks: Merge Simulink Models. https://uk.mathworks.com/
help/simulink/ug/merge-simulink-models-from-the-comparison-
report.html

31. DiffPlug: Simulink Diff. https://www.diffplug.com/features/
simulink

32. IBM: Rational Rhapsody DiffMerge. https://www.ibm.
com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.
diffmerge.doc/topics/rhp_c_col_parallel_dev_with_diffmerge.
html

33. Schmidt, M., Gloetzner, T.: Constructing difference tools for mod-
els using the sidiff framework. In: W. Schäfer, M.B. Dwyer,
V. Gruhn (eds.) 30th International Conference on Software Engi-
neering (ICSE 2008), Leipzig, Germany, May 10–18, 2008,
Companion Volume, pp. 947–948. ACM (2008). https://doi.org/
10.1145/1370175.1370201

34. Alanen,M., Porres, I.: Difference andUnion ofModels. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

2863, pp. 2–17 (2003). https://doi.org/10.1007/978-3-540-45221-
8_2

35. Eclipse Foundation: Eclipse CDO. https://www.eclipse.org/cdo/
36. Koegel, M., Helming, J.: Emfstore: A model repository for EMF

models. In: Proceedings of the 32ndACM/IEEE International Con-
ference on Software Engineering—Volume 2, ICSE’10, pp. 307–
308. Association for Computing Machinery, New York (2010).
https://doi.org/10.1145/1810295.1810364

37. Koegel, M., Helming, J., Seyboth, S.: Operation-based conflict
detection and resolution. In: 2009 ICSE Workshop on Compari-
son and Versioning of Software Models, pp. 43–48. IEEE (2009).
https://doi.org/10.1109/CVSM.2009.5071721

38. Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: A fundamen-
tal approach to model versioning based on graph modifications:
from theory to implementation. Softw. Syst. Model. 13(1), 239–
272 (2014). https://doi.org/10.1007/s10270-012-0248-x

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Alfonso de la Vega is an Assis-
tant Professor at the University
of Cantabria. Previously, he was
a Research Associate working at
the University of York. He col-
laborates as an Eclipse Founda-
tion Committer for the Epsilon
project. His more recent research
focuses on novel model visualisa-
tion and comparison approaches.
He has also worked in how to
apply modelling and domain-
specific languages to reduce the
complexity of carrying out data
engineering and data mining tasks.

Dimitris Kolovos is a Professor
of Software Engineering in the
Department of Computer Science
at the University of York, where
he researches and teaches auto-
mated and model-driven software
engineering. He is also an Eclipse
Foundation committer, leading the
development of the open-source
Epsilon model-driven software
engineering platform, and an edi-
tor of the Software and Systems
Modelling journal. He has co-
authored more than 150 peer-
reviewed papers and his research

has been supported by the European Commission, UK’s Engineering
and Physical Sciences Research Council (EPSRC), InnovateUK and
by companies such as Rolls-Royce and IBM.

123

https://doi.org/10.1109/MODELS50736.2021.00015
https://doi.org/10.1109/MODELS50736.2021.00038
https://doi.org/10.1109/MODELS50736.2021.00038
https://doi.org/10.1080/01449290410001669914
https://doi.org/10.1145/1370152.1370161
https://doi.org/10.1145/1370152.1370161
http://portal.acm.org/citation.cfm?doid=1370152.1370161
http://portal.acm.org/citation.cfm?doid=1370152.1370161
https://doi.org/10.1007/978-3-662-54494-5_9
https://doi.org/10.1007/978-3-662-54494-5_9
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1109/ASE.2019.00097
https://uk.mathworks.com/help/simulink/ug/merge-simulink-models-from-the-comparison-report.html
https://uk.mathworks.com/help/simulink/ug/merge-simulink-models-from-the-comparison-report.html
https://uk.mathworks.com/help/simulink/ug/merge-simulink-models-from-the-comparison-report.html
https://www.diffplug.com/features/simulink
https://www.diffplug.com/features/simulink
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.diffmerge.doc/topics/rhp_c_col_parallel_dev_with_diffmerge.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.diffmerge.doc/topics/rhp_c_col_parallel_dev_with_diffmerge.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.diffmerge.doc/topics/rhp_c_col_parallel_dev_with_diffmerge.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.diffmerge.doc/topics/rhp_c_col_parallel_dev_with_diffmerge.html
https://doi.org/10.1145/1370175.1370201
https://doi.org/10.1145/1370175.1370201
https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1007/978-3-540-45221-8_2
https://www.eclipse.org/cdo/
https://doi.org/10.1145/1810295.1810364
https://doi.org/10.1109/CVSM.2009.5071721
https://doi.org/10.1007/s10270-012-0248-x

	An efficient line-based approach for resolving merge conflicts in XMI-based models
	Abstract
	1 Introduction
	2 Background
	2.1 Running example
	2.2 Model serialisation
	2.3 Syntax of conflict sections
	2.4 Conflict detection through model comparison

	3 Processing XMI models with conflicts
	3.1 Line-based preprocessing
	3.2 Parsing of model versions
	3.3 Conflict section analysis
	3.4 Detecting git false positives
	3.5 Conflict smells
	3.5.1 Duplicate ids
	3.5.2 Duplicate values in multi-valued attributes
	3.5.3 Internal dangling references

	3.6 Model saving and partial resolution of conflicts
	3.7 Limitations

	4 Implementation
	4.1 Peacemaker editor
	4.2 Using a custom merge strategy

	5 Evaluation
	5.1 Completeness analysis
	5.1.1 Issues with line-based merging of models
	5.1.2 Correct git identification ("458)
	5.1.3 Git false positives (+)
	5.1.4 Git false negatives with conflict smells (sim)
	5.1.5 Conflicts not detected, model has no structural errors (!)

	5.2 Performance comparison
	5.2.1 Compared approaches
	5.2.2 Types of models
	5.2.3 Comparison scenarios
	5.2.4 Results
	5.2.5 Threats to validity

	5.3 Discussion
	5.3.1 RQ1: Can an approach that uses the line-based conflicts marked by a VCS to identify conflicts instead of a full model comparison offer the same results?
	5.3.2 RQ2: Does a conflict detection approach as described in RQ1 provide better performance and scalability than full model comparison?
	5.3.3 RQ3: Is relying on line-based VCSs such as Git to merge XMI models and to detect conflicts safe?
	5.3.4 When to use Peacemaker over model-based approaches

	5.4 Considerations for merging XMI models with line-based version control systems

	6 Related work
	7 Conclusions and future work
	Acknowledgements
	References

