
This is a repository copy of An efficient line-based approach for resolving merge conflicts
in XMI-based models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/208474/

Version: Published Version

Article:

de la Vega, Alfonso and Kolovos, Dimitris orcid.org/0000-0002-1724-6563 (2022) An
efficient line-based approach for resolving merge conflicts in XMI-based models. Software
and Systems Modeling. pp. 2461-2487. ISSN 1619-1366

https://doi.org/10.1007/s10270-022-00976-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Software and Systems Modeling (2022) 21:2461–2487

https://doi.org/10.1007/s10270-022-00976-4

REGULAR PAPER

An efficient line-based approach for resolving merge conflicts in
XMI-basedmodels

Alfonso de la Vega1 · Dimitris Kolovos2

Received: 8 July 2021 / Revised: 24 November 2021 / Accepted: 10 January 2022 / Published online: 9 March 2022

© The Author(s) 2022

Abstract

Conflicts in software artefacts can appear during collaborative development through version control systems. When these

conflicts happen in XMI models, the conflict sections generated by diff programs break the XMI serialisation and compromise

the ability to use model editors that assume well-formedness of this serialisation. While these conflict sections already mark

the conflicting lines of the model, current tools for conflict resolution in models ignore them and instead load the different

versions of a model from the repository, over which they perform a full and costly comparison that re-identifies the conflicts.

We present a novel approach that prevents this repetition of work by directly parsing XMI-based models with conflict sections,

which allows for a targeted analysis of only the lines of the model that have been detected to be in conflict by the version control

system. We have implemented this approach in the Peacemaker tool, which can load XMI models with conflict sections,

compute and display conflicts at the model level, and provide appropriate resolution actions. Compared with state-of-the-art

model comparison tools with support for conflict resolution, Peacemaker is able to identify the vast majority of conflicts

in models while reducing the required time by up to 60%. The small subset of non-identified conflicts does not introduce

issues into the models, e.g. there is no loss of model information, and the resulting models after line-merging these conflicts

conform to their metamodels.

Keywords Model-driven engineering · Version control systems · Conflict resolution

1 Introduction

Software development is usually a collaborative endeavour,

and it is frequent to find several developers working on dif-

ferent aspects of the same software system at the same time.

Version control systems (VCSs) make concurrent work pos-

sible, by allowing developers to work on different versions

or branches of the codebase.

Communicated by Philippe Collet.

The work presented in this paper has been funded through the

HICLASS InnovateUK project (Contract No. 113213).

B Alfonso de la Vega

alfonso.delavega@unican.es

Dimitris Kolovos

dimitris.kolovos@york.ac.uk

1 Software Engineering and Real-Time, Universidad de

Cantabria, Santander, Spain

2 Department of Computer Science, University of York, York,

UK

Nevertheless, concurrent work can cause conflicts to

appear when merging two branches where incompatible

changes have been made. This work focuses on file-based

VCS, such as Git or Subversion. In this type of VCSs

merge operations take place at a file-line level, by perform-

ing a three-way comparison between the two branches being

merged and their common ancestor in the version tree [1,2].

As a conflict example, when the same line of code has been

modified in different ways by two branches, the VCS does

not know which line version should be selected, so a conflict

is raised for the developer to resolve.

In model-driven software development, models become

additional software artefacts to manage during their evolution

[3,4]. While there are several model storage solutions for

model versioning and persistence [5–8], it is also common

(if not the norm) to find models stored in mainstream file-

based VCSs alongside related source code. This work focuses

on the latter, specifically on EMF models persisted in the

standard XMI format [9] and versioned in Git repositories.

XMI models stored in VCSs can suffer from the same

issues as any other versioned artefacts, including merge

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-00976-4&domain=pdf
http://orcid.org/0000-0002-7109-4249
http://orcid.org/0000-0002-1724-6563

2462 A. de la Vega, D. Kolovos

conflicts. When conflicts appear in models, though, devel-

opers find themselves at a disadvantage in comparison

with how conflicts in regular source files are managed.

Conflicting lines are surrounded by the VCS with special

delimiters, i.e. <<<<,====, or >>>>. For source files in

a human-readable textual format, these delimiters might pre-

vent successful compilation, but a developer can open these

files with the text editor or IDE of their choice, which could

even apply a special highlight to the conflicts to ease their

resolution. Nevertheless, current EMF-based editors, such as

EMF’s reflective tree-based editor [5] or Sirius [10], require

well-formed XMI models as input to be able to open them.

So, any presence of conflict delimiters causes these editors to

fail to even parse the models. Also, the alternative of resolv-

ing conflicts in models by directly modifying XMI in a text

editor is a tedious and error-prone task.

As regular model editors do not work in such cases, devel-

opers have to resort to special tools to resolve conflicts, such

as EMF Compare [11] or EMF DiffMerge [12]. However,

these tools are also unable to parse model files where the con-

flicting lines have already been marked by the VCS. Instead,

all three versions of the models in conflict (i.e. the two ver-

sions being merged and their common ancestor) are loaded

from the VCS, and a full three-way match-and-compare oper-

ation is performed at model level to re-identify the conflicts.

Therefore, a lot of work that had already been done by the

VCS is repeated. Once identified, conflicts are presented in

a special editor for their resolution. The work of resolving

these conflicts has to be done in a single session, as existing

tools do not allow saving partial progress if there are conflicts

remaining in the model.

In this work, we aimed to answer the following research

questions:

RQ1 Can an approach that uses the line-based conflicts

marked by a VCS to identify conflicts instead of a

full model comparison offer the same results?

RQ2 Does a conflict detection approach as described in

RQ1 provide better performance and scalability than

full model comparison?

RQ3 Is relying on line-based VCSs such as Git to merge

XMI models and to detect conflicts safe? More specif-

ically, we wish to examine whether text-level merge

operations can produce conflict-free but inconsistent

or otherwise undesirable XMI models.

RQ1 and RQ2 came from our interest in leveraging the

work that is already done by the VCS, instead on having to

re-identify the conflicts via comparing the full model ver-

sions. RQ3 is a more general question that derives from

RQ1. For instance, if the line-based conflict detection—

as implemented in contemporary file-based VCS—cannot

detect some types of conflicts in models, and this is the

only way in which conflicts are sought (e.g. when using

Git from a command-line interface), then some conflicts

might end up undetected and cause problems later. Previous

works already discourage the detection of conflicts in mod-

els using line-based merging [13–15], because this method

is not able to correctly identify some changes as conflict-

ing or not. For instance, new (but unrelated) model elements

that end up in the same XMI line of the two model versions

cause a false positive conflict when line-merged. Also, mov-

ing model elements to a different position in the model can

cause duplications of these elements when performing a line-

based merge, and this duplication will not be detected by the

VCS. Despite the existing research, we wanted to provide a

detailed analysis on the issue, and to determine if there is a

set of constraints under which merging XMI models at line

level can be made safe.

We present a novel conflict resolution approach that is

able to parse XMI-based models in which a VCS has already

identified conflicting lines. By performing a targeted analysis

of these lines, and consequently to the model elements con-

tained in them, our approach can save a lot of unnecessary

work during the conflict identification process. In addition,

this approach is able to detect issues that can appear when

doing a line-based merge of XMI models, such as model

element duplications. We have implemented the approach in

Peacemaker, which is an Eclipse-based tool that provides

an editor for visualising and resolving the identified conflicts

at the model level.

We compared the completeness and performance of

Peacemaker with two state-of-the-art tools for model com-

parison that also allow resolving conflicts (EMF Compare

and EMF DiffMerge). Our results indicate that Peacemaker

is able to detect the vast majority of (but not all) conflicts,

while taking up to ∼ 60% less time for that detection. In

those types of conflicts that are missed by Peacemaker,

no issues are introduced into the models, e.g. after carry-

ing out a line-based merge of those conflicts there is no

loss of model information, and the resulting models con-

form to their metamodels. We also include a discussion on

how Git can be used to safely version XMI models. Our con-

clusion is that, in the general case, it is not safe to merge

XMI models using plain line-based Git merge operations,

as they can produce structurally consistent but semantically

incorrect models. Consequently, we consider using custom

merge strategies when working with models in line-based

VCSs a mandatory requirement. Also, if the small subset of

missed conflicts can be tolerated, we believe Peacemaker

offers a considerable performance improvement over exist-

ing model comparison and merge tools. This improvement

might be useful for those contexts where engineers work with

large and frequently updated models with clearly assigned

responsibilities over different parts of the model.

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2463

Fig. 1 Project Scheduling Language (PSL) metamodel in Ecore

The rest of this paper is structured as follows: Sect. 2

introduces a running example and some relevant background.

Section 3 details the line-based approach to process models

with conflicts, Sect. 4 presents the implemented Peace-

maker software components, and Sect. 5 compares our

approach with existing state-of-the-art tools. Finally, Sect. 6

discusses related work, and Sect. 7 concludes the article and

outlines future work.

2 Background

2.1 Running example

We use a contrived project scheduling language (or PSL) to

depict scenarios with models in conflict. Figure 1 shows an

Ecore metamodel including the main elements of the lan-

guage. In PSL, a Project is composed of Tasks, which have

a title, a start time, a duration, and a list of labels. There are

also optionalTasks which are stored separated from standard

tasks. Also, when a task is completed, it is moved to the

completedTasks list.1 Tasks are carried out by Persons that

contribute an Effort (percentage of their time) for the com-

pletion of each task in which they participate. Lastly, tasks

can have a Status that includes its completion percentage and

some optional notes.

2.2 Model serialisation

In this work, we are concerned with models persisted in the

standard XML Metadata Interchange (XMI) format [9]. XMI

is a standard developed by the Object Management Group

that offers XML schemas for the storage and exchange of

models based in the Meta-Object Facility standard [16]. XMI

is the default model serialisation format of EMF, which is

currently the most widely used open-source domain-specific

modelling framework.

1 While the “completed” and “optional” tasks could be specified more

appropriately (e.g. by a derived feature over the completion attribute

of a task’s status, and by an optional Boolean attribute), we use three

containment references to be able to illustrate a specific type of conflict,

denoted Containing Feature Update (described in Sect. 3.3).

1 <Project xmi:id="project1" name="Blog">

2 <tasks xmi:id="task1"

3 title="Requirements" duration="2">

4 <effort xmi:id="e1" person="aliceID"/>

5 </tasks >

6 <people xmi:id="aliceID" name="Alice"/>

7 </Project >

Listing 1 PSL model serialised in XMI

Listing 1 contains a PSL model expressed in XMI that

conforms to the metamodel of Fig. 1. In XMI, an XML tag

marks the start of an element belonging to the serialised

model. For instance, line 1 contains the starting tag of a

Project element, while line 2 starts a Task. In the context of

EMF models, the starting tag of an XML element contains

all attribute values of the corresponding model element. In

the example of Listing 1, the Project tag includes a name,

which is an EAttribute of the corresponding type in the PSL

metamodel of Fig. 1. Starting tags also store the value of

non-containment references. As an example, line 3 defines

an Effort element, and the tag contains a person EReference

attribute that points to the id of the person who will contribute

this effort.

In addition to the XML attributes storing element features,

special attributes can appear to include external metadata into

the elements. The name of these attributes is typically pre-

fixed by xmlns (used to declare XML namespaces) or xmi

(allows indicating special features related to XMI seriali-

sation). The most relevant special attribute for this work is

xmi:id, which can be used to indicate an extrinsic (i.e. not

part of the element features) and immutable identifier for

a model element. For the sake of simplicity and the better

use of space in figures, in the remaining of the paper any

occurrence of an id attribute inside an XMI element refers to

xmi:id.

The remaining features of EMF model elements, i.e.

containment references, are represented by the nesting of

XML elements in the XMI representation of the model. For

instance, Project is the root element of Listing 1 starting

at line 1. This element contains a task that starts in line

2, and a person in line 5. Both these nested elements are

part of the project’s tasks and people containment references,

respectively. In those elements, the name of the containment

reference is used as tag name to allow having several con-

tainment references of the same type (e.g. Person, Task) in

the same model element.

2.3 Syntax of conflict sections

We describe now the syntax that is used by contemporary

file-based VCSs to mark lines after a merge with conflicts.

123

2464 A. de la Vega, D. Kolovos

In this work, we used Git for model versioning; however, as

the syntax of conflict sections and the line-based operations

used by the different VCSs is practically identical [2,17,18],

these descriptions and the results of our work apply to other

VCSs too (e.g. Subversion).

In its simplest form, a conflict section consists of two seg-

ments: one containing the changes of the left version (usually

the local one); and other corresponding to the right version

(generally the version in the repository index). These seg-

ments are surrounded by specific conflict section separators:

<<<<, ====, and >>>>. Nevertheless, it is possible to

include extra information in the conflict section: the diff3

conflict style allows adding an extra segment to the gener-

ated conflict sections. An extra separator (||||) is used to

include the ancestor segment after the left version one. This

segment includes the contents of the common ancestor of the

left and right branches that is used in the three-way merge,

and it allows for a better analysis of the causes behind the

appearance of conflicts [1].

Listing 2 shows a model with two conflict sections, each

one composed of a left, ancestor, and right segments as

described in the previous paragraph. The first conflict sec-

tion goes from line 5 to 11, while the second one starts at line

15 and ends at line 23. The changes that have caused these

conflicts are the following:

– The first conflict section is caused by an update of the

start and duration times of the Development task. The left

version updates both start and duration (line 6), while the

right one only modifies the duration (line 10).

– The second conflict section is caused by an update of the

Deployment task effort. The ancestor information shows

that, originally, the effort for this task was split evenly

(i.e. 50:50) between Alice and Bob (lines 19–20). Never-

theless, while the left version adjusted the original efforts

of Alice and Bob from 50:50 to 70:30 (lines 16–17), the

right version removed Bob from this task and assigned

Alice the full effort (line 22). A percentage is not present

in this last effort because 100% is the default value for

that attribute.

2.4 Conflict detection throughmodel comparison

We now introduce how state-of-the-art model comparison

tools identify conflicts in XMI-based models. Instead of

using merged models such as the one of Listing 2, these tools

find conflicts by performing a three-way comparison between

the left, ancestor and right model versions, which are gath-

ered from the VCS. EMF Compare [11] and EMF DiffMerge

[12] are two of the most mature tools for the comparison of

EMF models, and both of them are actively maintained. The

descriptions of this section apply to both of these tools.

Model versions are processed through a multi-stage com-

parison pipeline. Despite differences between tool pipelines,

there are at least two stages that are performed in every case.

There is a matching stage where model elements from the

different versions are matched in preparation for subsequent

comparison. The most precise way to match model elements

is by means of unique identifiers such as XMI ids, but in

absence of these it is also possible to apply similarity/dis-

tance techniques [19]. Once the model element versions have

been matched, they are compared in a diff stage to find all

changes.

When looking for conflicts, an extra step needs to be per-

formed to detect incompatible changes between the model

versions. For instance, if both the left and right version have

changed the value of an EAttribute with respect to the ances-

tor version, these changes are incompatible, and as such they

are marked as a conflict for the developer to resolve.

3 Processing XMImodels with conflicts

Peacemaker is able to parse and load EMF models seri-

alised in XMI that contain conflict sections, with the require-

ment of model elements having unique identifiers. These

identifiers are used for matching the model elements across

the two versions. XMI offers the possibility to set an extrin-

sic id using the special xmi:id XML attribute. Alternatively,

Ecore allows marking an EAttribute of each EClass by set-

ting its id attribute to true, which indicates that the value of

the marked EAttribute should be used as the identifier for

instances of its container EClass.

The following sections describe the steps involved in pro-

cessing the model of Listing 2.

3.1 Line-based preprocessing

The first step involves a preprocessing of the model lines to

detect any conflict sections. This preprocessing consists of

two tasks:

1. Line identification Each line of the input model is given

a type that indicates if it is a common line (i.e. not con-

tained in a conflict section), a separator (e.g. <<<<), or

if instead it belongs to the left, ancestor or right segments

of a conflict section. Also, existing conflict sections are

identified and related to their file lines for later. Figure 2a,

b shows the line type assignments and the identified con-

flict sections for Listing 2, respectively.

2. Extraction of model versions This step extracts the left,

ancestor and right versions of the model by selecting the

respective line types identified during the previous step.

Figure 2c shows which lines of the original model of

Listing 2 belong to each version. For instance, the left

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2465

1 <Project xmi:id="project1" name="Blog">
2 <tasks xmi:id="task1" title="Requirements" duration="2">
3 <effort xmi:id="e1" person="aliceID"/>
4 </tasks >
5 <<<<<<< left.model
6 <tasks xmi:id="task2" title="Development" start="3" duration="3">
7 ||||||| base.model
8 <tasks xmi:id="task2" title="Development" start="2" duration="2">
9 =======

10 <tasks xmi:id="task2" title="Development" start="2" duration="1">
11 >>>>>>> right.model
12 <effort xmi:id="e2" person="bobID"/>
13 </tasks >
14 <tasks xmi:id="task3" title="Deployment" start="4" duration="1">
15 <<<<<<< left.model
16 <effort xmi:id="e3" person="aliceID" percentage="70"/>
17 <effort xmi:id="e4" person="bobID" percentage="30"/>
18 ||||||| base.model
19 <effort xmi:id="e3" person="aliceID" percentage="50"/>
20 <effort xmi:id="e4" person="bobID" percentage="50"/>
21 =======
22 <effort xmi:id="e3" person="aliceID"/>
23 >>>>>>> right.model
24 </tasks >
25 <people xmi:id="aliceID" name="Alice"/>
26 <people xmi:id="bobID" name="Bob"/>
27 </Project >

Listing 2 XMI notation of a PSL model with conflicts

(a) (b)

(c)

Fig. 2 a Identified types for the lines of Listing 2. b Detected conflict

sections in the model. c Lines of the original model that belong to each

extracted model version

version of the model would be composed of common and

left lines, these are, 1–4, 6, 12–14, 16–17, and 24–27.

3.2 Parsing of model versions

The previous step provides model versions that are free from

the conflict section separators that originally broke the seri-

alised XMI notation. As a result, these versions can be parsed

Fig. 3 Conflict sections are populated with the contained model ele-

ment identifiers during the loading of model versions

and loaded as if they were standard XMI, which is done dur-

ing this second step.

Figure 3 contains the parts of the XMI parsing and loading

process that are relevant for this work. In the context of EMF,

XMI parsing is carried out using an event-based SAX parser

[20]. The EMF XMI parser processes XMI models sequen-

tially, this is, elements are read by a parser one by one from

the input model, and then events that indicate the appearance

of these elements are triggered and processed by an event

handler. In Peacemaker, we created a custom event han-

dler (denoted as PeacemakerXMIHandler in the figure) that

extends the default one. Apart from carrying out its model

123

2466 A. de la Vega, D. Kolovos

Fig. 4 Conflict types found in conflict sections

loading duties, this handler also checks the lines of the ele-

ments being loaded against the lines belonging to the conflict

sections identified during the preprocessing step. This check

is done against the conflict section segment that matches

the model version being loaded, i.e. left, ancestor, or right.

When the model element lines are found inside the associ-

ated segment for a concrete version, the element identifier

is registered in the conflict section, again in the appropriate

list of identifiers. After loading the three model versions, the

identifiers of the actual model elements that are part of a con-

flict section have been captured, instead of just knowing their

lines.

Let us assume we are loading the left version of the model

of Listing 2. The first task element that is found is the Require-

ments task. When the loading of this element starts, the

position of the line that contains its starting tag is checked

by the event handler against the conflict sections detected

in the preprocessing step. As line 2 is not part of any of the

conflict sections, this element is not relevant for the detection

of conflicts, so nothing is marked. The second task element

is Development. The contents of this element can be traced

back to line 6 of the original model, which belongs to the left

segment of the first conflict section. Therefore, the id of this

task, task2, is added to the list of left identifiers of the con-

flict section. Similar processing takes place for the remaining

elements of the three model versions. The resulting conflict

sections populated with conflicting identifiers can be seen on

the right of Fig. 3.

3.3 Conflict section analysis

Once the conflict sections have been populated with the iden-

tifiers of the elements in conflict, they can be analysed to

detect which type of conflicts are present in the original

model.

Figure 4 shows a categorisation of the different conflicts

that can take place in a conflict section. The Conflict abstract

class on top stores common features of all concrete conflicts.

For instance, all conflicts happen around a model element

identifier (eObjectId).

Table 1 Conflict type that applies depending on the combination of

identifiers found in the segments of a conflict section

Conflicts are detected based on the combination of model

element identifiers found in the segments of a conflict sec-

tion. This combination determines which type of the conflicts

of Fig. 4 applies on each case, as indicated in Table 1. We

now describe these conflict types, including possible actions

that can be taken to resolve them. These descriptions are

supported by the examples of Fig. 5.

– Double Update A model element with the same identifier

(e.g. I D1 in Table 1) has been updated in both the left

and right versions. Precisely, this conflict appears when

either an attribute and/or a non-containment reference of

an element have been modified. As resolutions for this

type of conflict, Peacemaker offers to either keep the

left or right version of the element. Figure 5a shows a

Double Update conflict where the title of the t1 task has

been updated in the left and right versions. Peacemaker

can detect if versions change the same element, but in

non-conflicting ways (e.g. when each version modifies

different element features), so that no conflict is detected

in the end. This and other Git false positives are discussed

later in Sect. 3.4.

– Containing Feature Update This conflict happens when

the containing feature of an element is changed to two

different features in the left and right versions. Again, the

user is offered the options to either keep the left or right

modifications, i.e. leaving the element under the updated

containment feature of the left version, or instead under

the feature selected by the right version. In Fig. 5c the t1

task, initially contained under the tasks reference of the

p1 project, is moved to the optionalTasks reference on

the left, and to the completedTasks one on the right.

– Single Containment Reference Update This is a special

case of the Double Update conflict that takes place when

a model element has a containment, single-valued refer-

ence which has been updated in the left and right versions.

It is also a trickier conflict to detect, because the id of the

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2467

(a) (b) (c)

(f)(e)(d)

Fig. 5 Examples of the different line conflicts along with the element identifiers in the conflict sections

element contained by the reference is different for both

versions of the reference value (e.g. I D1 and I D2 in

Table 1). If it were the same id, the conflict would be

identified as the general Double Update one. Like in the

previous conflict, the user is offered the options to keep

either the left or right version of the contained element.

Figure 5b depicts an example of this conflict where the

status element of the t1 task has been updated to different

Status elements: an s12 element has been set on the left,

while s54 appears on the right.

– Update Delete An element with the same id has been

updated in one of the versions, but deleted in the other. To

identify this conflict, Peacemaker checks the ancestor

version to see if the element in conflict existed prior to

the changes introduced by the left and right versions. If

this conflict happens, the user is offered the options to

either keep the updated version, or accept the deletion

and remove the element. Figure 5d shows a t1 task that

has been updated on the left version (title change), while

this task has been deleted on the right. Notice that the t1

task was also present in the ancestor version.

– Keep Delete This is a special Update Delete case where an

element is deleted in one version, but kept the same (i.e.

unmodified with respect to the ancestor) in the other one.

This kind of conflict is usually found when other conflicts

are detected in adjacent lines. As the changes only appear

in one of the versions (i.e. the removal of an element),

this could be treated as a false positive and automatically

merged by removing the conflicting element. However,

for some scenarios it is useful to also leave the decision to

either keep or remove the unmodified element to the end

user. We present such an example in Sect. 5.1.3. Figure 5e

shows an example that is identical to the d case, but this

time no update of the title of the t1 task was carried out

in the left version.

– Collateral Element This case happens when an element

from a conflict section is not found in conflict with any

other element. One way this could happen is as a result

of finding a conflicting line during the merge, and then

having subsequent lines in either of the segments of a con-

flict section defining new elements that are not in conflict,

but that get automatically included as part of the conflict

section. Figure 5f shows an example of this, where the

same Update Delete conflict shown in case d takes place,

but in addition a collateral t2 task appears in the left ver-

sion, after t1. This can be resolved by either keeping or

removing the collateral element. If desired, an automatic

resolution can be applied to omit this conflict type and

always keep these elements.

The complete analysis of the conflict section identifiers

that results in the identification of conflicts is shown in Algo-

rithm 1. This algorithm completes the information of Table 1,

showing the extra steps to e.g. determine if a Double Update

conflict is of type Containing Feature Update (lines 6–10) or

Single Bounded Reference Update (lines 12–16), or which

type of Update Delete conflict applies (lines 17–23 and 29–

35).

Continuing with the example of Listing 2, and based on the

information of Fig. 3(right), the first conflict section contains

a Double Update conflict, because both the left and right list

of identifiers contain the task2 id, i.e. the identifier of the

Deployment task. In the second conflict section, a Double

Update and an Update Delete conflicts are found. The Double

Update one is caused by the presence of Alice’s e3 effort id

in both the left and right identifier lists, while the Update

Delete conflict happens because Bob’s e4 effort is present in

the lists of left and ancestor ids, while it is not present in the

list of right ids.

123

2468 A. de la Vega, D. Kolovos

Input: Conflict Section (Le f t I ds, Right I ds, Ancestor I ds)

Input: get Le f t(id), get Right(id), and get Ancestor(id): get model elements by identifier from a model version

Output: A set of conflicts C

1 C ← ∅;

2 foreach le f t I d ∈ Le f t I ds do

3 le f t Elem ← get Le f t(le f t I d);

4 if le f t I d ∈ Right I ds then

5 right Elem ← get Right(le f t I d);

6 if le f t Elem.containingFeature �= right Elem.containingFeature then

7 C ← C ∪ {ContainingFeatureUpdate(le f t I d)};

8 else

9 C ← C ∪ {DoubleUpdate(le f t I d)};

10 end

11 Right I ds ← Right I ds − {le f t I d};

12 else if le f t Elem.containingFeature is single and containment and

13 there exists a right element right Elem so that

14 right Elem = get Right(le f t Elem.container .id) and

15 right Elem.get(le f t Elem.containingFeature).id �= le f t I d then

16 C ← C ∪ {SingleContainmentReferenceUpdate(le f t Elem.container .id, le f t Elem.containingFeature)};

17 else if le f t I d ∈ Ancestor I ds then

18 if equals(le f t Elem, get Ancestor(le f t I d)) then

19 C ← C ∪ {KeepDelete(le f t I d)};

20 else

21 C ← C ∪ {UpdateDelete(le f t I d)};

22 end

23 else

24 C ← C ∪ {CollateralElement(le f t I d)};

25 end

26 end

// There might be remaining identifiers in rightIds
27 foreach right I d ∈ right I ds do

28 right Elem ← get Right(right I d);

29 if right I d ∈ Ancestor I ds then

30 if equals(right Elem, get Ancestor(right I d)) then

31 C ← C ∪ {KeepDelete(right I d)};

32 else

33 C ← C ∪ {UpdateDelete(right I d)};

34 end

35 else

36 C ← C ∪ {CollateralElement(right I d)};

37 end

38 end

Algorithm 1: Procedure to identify the kind of conflicts contained in a conflict section

The application of a resolution action updates the contents

of the in-memory model versions that were loaded in the

parsing step (see Sect. 3.2) according to the selected action.

For instance, the Double Update conflict identified around

the tasks with id task2 in the example of Listing 2 could be

resolved by keeping the left or right versions. If keeping right

were selected, the element of the right model version with

id task2 would replace the one with the same id in the left

model version, removing the discrepancy and thus resolving

the conflict.

3.4 Detecting git false positives

In some cases, Git wrongly marks model elements as in con-

flict because of minor differences in their XMI serialisation,

or due to unrelated changes clashing into the same lines of the

model file. False positives could also be caused by end users

directly editing the raw XMI and including minor inconsis-

tencies, such as indentation or style differences. However,

manual editing of XMI files is out of the scope of this work,

as we assume models are modified in editors that persist

changes through an automated serialiser.

Figure 6 shows one of the false positive examples that Git

can misreport. In the example, there is a real Update Delete

conflict over the s1 Status element, which is updated in the

left version while deleted in the right one (similar to Fig. 5d).

The false positive is caused by a minimal change in the parent

element that contains the deleted status, i.e. the t1 task. When

the deletion of a model element leaves the parent element

without any contents, a self-closing tag is used to persist the

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2469

Fig. 6 Git undesirably marks as a conflict the ending tag change of task

t1 when all its contents (i.e. s1) are deleted

Fig. 7 Git detects as a conflict two simultaneous updates of the t1 task

that affect different features (start on the left, and duration on the right).

An alternative merge is shown at the bottom right, where the disjoint

changes are combined

element in XMI, this is, the element is persisted with a single

XML tag ending in/> instead of using> along with a closing

</task> tag. This self-closing tag is used for the t1 task on

the right version, as it has no extra contained elements after

deleting the s1 status. That subtle change makes Git to detect

the line in conflict, and thus to include the model element into

the conflict section, as can be seen at the bottom of the figure.

Peacemaker can detect these false positives by checking the

value of the element features between the versions, so in the

end only those elements with real conflicts are reported.

The following case is also a source of false positives. A

line-based merge reports a conflict every time the left and

right versions modify the features of the same model ele-

ment. However, if the changes from each version affect a

Fig. 8 Git marks as a conflict two additions of independent model

elements that end up in the same model file line

different set of features, these changes could be automatically

merged by combining the feature updates of each version.

Figure 7 shows an example where the left version updates

the start time of the t1 task, while the right version updates

its duration. In the merged model, the task is included into

a conflict section, but an alternative merge is shown at the

bottom right, where the updates to start time and duration

are automatically merged and no conflict is reported. That is

the default behaviour of Peacemaker: updates over disjoint

sets of features are not considered a real conflict. Neverthe-

less, a defensive approach can be configured for those cases

where enforcing a manual check is preferred, to determine

if it makes sense to merge the changes coming from both

versions.

Another way in which false positive conflicts can appear

happens when two new and independent elements are added

in the same line of a file, one on each model version. This case

is depicted in Fig. 8, where two Person elements, Bob and

Charlie, are added to the same project and end up serialised

in the same line of each version. A conflict section would be

generated by Git when merging this versions, and Peace-

maker would identify both elements as Collateral Elements

(described in the previous section). In some cases, this kind

of conflict can be automatically processed by simply keeping

both elements. However, if both new elements are added to

the same containment feature (e.g. Project.people in Fig. 8),

and that feature is defined as ordered, there remains the ques-

tion of which new element should be placed before the other.

As automatically selecting the order might not be correct in

all cases, solutions such as EMF Compare resort to user input

to determine which order to apply.

3.5 Conflict smells

Unfortunately, apart from the false positives described in the

previous section, Git can also suffer from false negatives,

123

2470 A. de la Vega, D. Kolovos

these are, cases where real conflicts exist, but the line-based

merge operation misses them. In some cases, it is even worse,

as the merge performed by Git introduces issues into the

model that can even prevent it from loading. As some of

these issues appear because of the existence of a real con-

flict, we can do the reverse: the presence of these issues

in a merged model suggests a potential conflict missed by

the merge operation. Consequently, we denote these issues

as conflict smells. From the point of view of Peacemaker,

conflict smells are treated as the conflicts of Sect. 3.3: these

smells are reported, and resolution actions are offered. We

describe the types of conflict smells in the following.

3.5.1 Duplicate ids

Peacemaker is able to find errors related to the presence of

duplicated ids in the merged model. There are two possible

sources of duplicated ids:

– Adding new elements in both versions of a model with the

same identifiers. This can happen when element identi-

fiers are obtained through an auto-incrementing counter,

i.e. identifying tasks as task1, task2, and so on, and then

adding a new task3 in both left and right versions. Another

potential gateway for this issue opens when an editable

EAttribute is set as the id of model elements, so man-

ual entries by end users can cause duplicate identifiers.

This issue also includes adding a new element whose id

matches the one of another element already present in the

model.

– A model element is duplicated as a side effect of the

line-based merge. This phenomenon can appear when

model elements are moved to different positions in the left

and right versions. For instance, Fig. 9 shows an exam-

ple where a PSL Project contains four tasks, with ids

ranging from task1 to task4 (as we just mentioned in the

previous item, it is a bad idea to set ids based on incre-

mental counters, but we do it in this example for clarity).

In the ancestor version tasks are ordered by their ids in

alphabetical order. However, task1 is moved after task3

in the left version, while it is moved to the end of the

list in the right version, thus creating a conflict. When

Git merges these model versions, and because of treat-

ing model elements as lines, it duplicates the task1 task,

which appears twice in the merged version: after task3,

and at the end of the list. The same issue can also appear

when an element is changed to a different container on

the left and right versions. This case is depicted graph-

ically in Fig. 10, where an Effort element is changed to

two different tasks in left and right. When merging, the

corresponding XMI lines of the moved element in its

updated position on the left and right model versions are

treated as new lines, so the element ends up appearing

Fig. 9 Reordering of tasks in a PSL Project

Fig. 10 Example where the Effort object changes to two different con-

tainers in left and right

in two places in the merged model. Listing 3 shows the

resulting merged model produced by Git, where the effort

element has been duplicated in lines 3 and 6, and no con-

flict sections have been included. As Fig. 10 shows, this

element was contained under the originContainer task

(in line 8) in the ancestor version.

When duplicated ids are found, Peacemaker offers res-

olution actions to decide which of the duplicates should be

maintained.

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2471

1 <Project xmi:id="p1">
2 <tasks xmi:id="leftContainer">
3 <effort xmi:id="e1"/>
4 </tasks >
5 <tasks xmi:id="rightContainer">
6 <effort xmi:id="e1"/>
7 </tasks >
8 <tasks xmi:id="originContainer"/>
9 </Project >

Listing 3 The e1 Effort element is duplicated as a result of merging the

three model versions of Fig. 10

Fig. 11 Reordering the labels of task t1 causes the duplication of value1

3.5.2 Duplicate values in multi-valued attributes

Multi-valued attributes are another place where line dupli-

cates can cause errors. Figure 11 shows a task with several

labels (label is a multi-valued-attribute in the PSL meta-

model of Fig. 1). When Git merges this test case, it duplicates

value1, which appears in the third and fifth positions of the

labels attribute of the merged model. This case is equivalent

to the one depicted in Fig. 9, where the duplication involved

Task model elements. The duplication could be detected

when validating the model if labels was defined to only con-

tain unique values. Although this attribute is indeed defined

as unique, for some multi-valued attributes repeated values

could be allowed. As a protective measure, Peacemaker

detects any duplication in a multi-valued attribute (unique or

not) as a conflict smell, so users would need to check if the

repeated values are correct, or if an unwanted duplication has

happened, and thus duplicates should be removed. This leads

us to recommend against the use of non-unique multi-valued

attributes in domain-specific metamodels if line-based merg-

ing is to be used. We enumerate this and other considerations

in Sect. 5.4.

Fig. 12 A reference to a deleted element (alice) is introduced in the

merged model

3.5.3 Internal dangling references

This conflict smell is caused by adding a reference from one

model element to another in one of the versions and then

deleting the referenced element in the other version. When

versions are line-merged, the referenced element is indeed

deleted, and the added reference is persisted. The combined

effect of these two changes creates an internal (i.e. it does not

involve external models) dangling reference in the merged

model, which can cause an error when the model is loaded.

Figure 12 shows this issue, where the addition of a refer-

ence from the e1 effort to the Alice person on the left and

the removal of Alice on the right introduces a dangling ref-

erence to a non-existing Alice element in the merged model.

Peacemaker is able to detect this kind of dangling refer-

ences, and they are shown along with other conflicts present

in the model. Unfortunately, Peacemaker does not have

enough information to provide other resolution actions apart

from reporting the issue to end users, and then discarding

the dangling reference. Any other solution would require a

standard three-way comparison of the model versions.

3.6 Model saving and partial resolution of conflicts

Any conflict resolution action performed over the in-memory

model versions must eventually be serialised back to disk to

reflect the changes in the original model file with conflicts.

To achieve this, Peacemaker first converts model versions

to XMI individually in memory, and then these versions are

merged in a line-based approach. One of the advantages of

this approach is support for partial resolution of conflicts:

any original conflict section can be serialised again when a

user wants to save their changes over a model with conflicts,

but not all conflicts have been resolved yet. To the best of

123

2472 A. de la Vega, D. Kolovos

our knowledge, this is the first conflict resolution approach

that allows saving a partially resolved model with remaining

conflicts.

The three-way line-based approach to merge model ver-

sions works as follows: starting from the individually seri-

alised versions, the lines of the left and right versions are

compared sequentially. When lines match, they are serialised

without any special change. As an analogy, matching lines

would be given a common type according to the preproces-

sor introduced in Sect. 3.1. On the other hand, a left line and

a right line that do not match indicate that a yet-unresolved

conflict between the versions has been reached. To serialise

this conflict, the structure of the original conflict section is

recreated: first, the next matching line between the left, ances-

tor and right versions is calculated. Then, the set of lines

from each version starting at the current line (i.e. the one

that did not match) up to the calculated next matching line

are serialised, starting with the left version, and followed

by the ancestor and right versions. These line sets are sur-

rounded with the appropriate <<<<, ||||, ====, and

>>>> symbols to separate the conflict section segments.

3.7 Limitations

As mentioned at the beginning of Sect. 3, this approach

requires that model elements have a unique identifier. A

strong reason behind this requirement is the possibility of

suffering from element duplication as a side effect of the line-

based merging (described in Sect. 3.5.1). Similarity matching

techniques [19] are usually applied in model comparison and

merging when the elements have no identifiers. However,

these techniques would be computationally very expensive to

use to find element duplications, due to duplicates happening

in single versions of the models. Therefore, every element of

a model would need to be checked against all other elements

of the same type, and this process needs to be carried out

for each model version. More importantly, these techniques

are approximate, and thus, they provide no guarantees on

whether the resulting matched pairs are model duplicates or

just false positives.

The approach has been devised and evaluated over EMF

models, persisted using XMI, and versioned in Git reposito-

ries. In the following, we comment on any known limitations

of applying this approach for other modelling and persistence

technologies, or different versioning tools.

With respect to EMF, some conflicts described in Sect. 3.3

are explicitly related to EMF concepts, such as a Containing

Feature Update for containment references; while others are

not, like Double Update or Update Delete conflicts. A change

to a different modelling technology could cause some con-

flicts not to apply, because of concepts such as containment

not existing in the new technology. At the same time, any

concept of the new technology that is not present in EMF

might cause new kinds of conflicts to appear that could need

special resolution. If these new conflicts are detectable and

resolvable, we do not foresee a change in modelling technol-

ogy to be a hard stopper to applying the described approach.

The model persistence format is of special importance,

due to the low-level operation of the line-based merger. If

the default XMI format were changed to a different one, such

as JSON,2 the first aspect to check is whether the line-based

extraction depicted in Fig. 2 is able to provide the three model

versions without formatting errors or inconsistencies, as it

happens with XMI. If the versions format is correct, then the

second requirement involves being able to gather the lines of

the original file where each model element is persisted, so

that conflict section identifiers can be populated (see Fig. 3).

Lastly, a different persistent format could give room to new

conflict false positives, apart from the ones currently covered

in Sect. 3.4.

Lastly, using a different VCS other than Git should not rep-

resent a major issue, as the syntax to delimit conflict sections

described in Sect. 2.3 is also used by other three-way com-

parison tools such as JGit3 or GNU diff3,4 or by other VCSs

such as Mercurial5 or SVN.6 However, a thorough revision

on whether the line-based merging algorithms of the alter-

natives are equivalent to the one provided by Git should be

performed.

4 Implementation

This section presents the Eclipse-based software components

we developed to implement the conflict detection approach

described in the previous section. The source code of Peace-

maker is available in a public repository.7

4.1 PEACEMAKER editor

For end users to visualise the detected conflicts and provide

necessary inputs (i.e. resolution actions), Peacemaker pro-

vides an Eclipse-based editor that we describe here.

Figure 13 shows the contents of the Peacemaker editor

when the model of Listing 2 is opened. On the left-hand side

of this editor, there are four tree viewers. The left and right

viewers at the top show the initial contents of the left and

right versions of the model, respectively. The tree viewer

2 https://emfjson.github.io/about/.

3 https://www.eclipse.org/jgit/.

4 https://www.gnu.org/software/diffutils/manual/html_node/diff3-

Merging.html.

5 https://www.mercurial-scm.org/wiki/TutorialConflict.

6 https://svnbook.red-bean.com/en/1.7/svn.tour.cycle.html#svn.tour.

cycle.resolve.diff.

7 https://github.com/epsilonlabs/peacemaker.

123

https://emfjson.github.io/about/
https://www.eclipse.org/jgit/
https://www.gnu.org/software/diffutils/manual/html_node/diff3-Merging.html
https://www.gnu.org/software/diffutils/manual/html_node/diff3-Merging.html
https://www.mercurial-scm.org/wiki/TutorialConflict
https://svnbook.red-bean.com/en/1.7/svn.tour.cycle.html#svn.tour.cycle.resolve.diff
https://svnbook.red-bean.com/en/1.7/svn.tour.cycle.html#svn.tour.cycle.resolve.diff
https://github.com/epsilonlabs/peacemaker

An efficient line-based approach for resolving merge conflicts in XMI-based models 2473

Fig. 13 Peacemaker editor showing the conflicts of the PSL model of Listing 2

in the middle shows the ancestor model version, with the

objective of helping users to better detect the causes of the

conflicts and to decide among the feasible resolution actions.

Lastly, the result viewer appears at the bottom. While the left,

right, and ancestor viewers always show the initial content

as it was before performing any changes, the result viewer

shows the updated content of the model after applying any

resolution actions over the identified conflicts.

Resolution actions can be applied by interacting with the

conflicts list, depicted on the right-hand side of the edi-

tor. This list enumerates the identified conflicts in the input

model. For each conflict, it contains a brief description, a link

that can be clicked to reveal and select the affected elements

in the tree viewers, and a list of actions to apply represented

as a set of radio buttons. When the user selects any of those

buttons, the associated resolution action is invoked, and the

content of the result viewer is updated to reflect the results

of applying the selected action. Peacemaker also makes

use of colours to indicate the state of conflicting elements.

Green indicates an accepted element as a result of the resolu-

tion action. Red is used to mark rejected/removed elements,

and yellow is used to highlight those elements taking part in

yet-unresolved conflicts.

In the example of Fig. 13, the Keep left action has been

selected to resolve the first conflict of the list. This conflict

is of type Double Update (see Sect. 3.3), and it involves the

Development task. As the left version has been selected, the

corresponding task element on the top left tree viewer is high-

lighted in green, while the discarded one on the right version

appears in red. The Development task in the result viewer

at the bottom is also highlighted in green to reflect that the

conflict regarding that element has been resolved. The two

remaining conflicts relate to the person efforts of the Deploy-

ment task. As these conflicts have not been resolved yet, the

affected elements are highlighted in yellow in the tree view-

ers.

Standard editor operations such as undo and redo are sup-

ported. Also, Peacemaker supports other features typically

found in model editors. For instance, we can inspect the con-

tents of model elements from any of the tree viewers by using

the Properties view that can be seen at the bottom left of

Fig. 13. In the figure, this view shows the properties of the

Effort element selected in the top left tree viewer (highlighted

in blue).

After applying any of the available resolution actions, the

model can be saved to persist the changes. If not all existing

conflicts have been resolved yet, then a partial save is per-

123

2474 A. de la Vega, D. Kolovos

formed, as described in Sect. 3.6. This way, a user can save

their work at any point while resolving a conflicting merge

operation, just as it is usually possible when working with

conventional text editors and source code files.

4.2 Using a custommerge strategy

VCSs allow replacing the default line-based merge operation

with custom merge strategies for certain selected types of

files. In the context of models, a custom strategy can, for

instance, help avoid false positives, or prevent missing some

conflicts.

The EGit project,8 which provides Git support to the

Eclipse IDE, allows defining alternative merge strategies. For

instance, EMF Compare [11] provides its own merge strategy

that performs the standard full three-way model comparison

when merging model files to detect any conflicts. We have

implemented a custom strategy that uses Peacemaker to

improve the Git line-based merge. Precisely, this strategy

takes the following steps:

1. It starts by merging the versions with the default line-

based merge. If lines are found to be in conflict, this step

includes conflict sections in the model.

2. The merged model is loaded with Peacemaker follow-

ing the steps of Sect. 3. This load removes any false

positives of the Git merge (see Sect. 3.4). In some cases,

it might be determined that the conflict sections only

contained false positives. In addition, the Peacemaker

load also detects conflict smells that can be a hint for Git

potentially missing some conflicts, e.g. duplicated ids or

dangling references (see Sect. 3.5).

3. If real conflicts or conflict smells are found by Peace-

maker, the model file is marked as in conflict.

So, this merge strategy only requires to load the model

once, instead of performing a full three-way model compari-

son as solutions like EMF Compare do. After a Git merge, we

could also just open the merged model in the Peacemaker

editor to perform the same checks, but configuring a merge

strategy to do that automatically after every merge can be

more convenient, e.g. it saves users time when several mod-

els have been merged, and it prevents from users forgetting

to open some of the merged models.

5 Evaluation

For the evaluation of our approach, we focused on two

aspects. The first aspect assesses the completeness of Peace-

maker, by determining if it is able to detect the different

8 https://www.eclipse.org/egit/.

types of conflicts that can appear when merging model ver-

sions. Then, the second one involves a quantitative evaluation

of the performance and scalability of Peacemaker against

two state-of-the-art approaches.

5.1 Completeness analysis

For the first part of this evaluation, we studied the ability of

our approach to detect a variety of conflicts in models. For

that purpose, we tested Peacemaker with an external suite

that contains a comprehensive set of the types of conflicts that

can appear when merging EMF model versions. This suite

is part of the unit tests used internally by EMF Compare9

(introduced in Sect. 2.4), ensuring that all versions of this

tool are able to detect the conflict types of the suite.

Table 2 summarises the tests contained in the conflicts

suite. Tests are organised in 11 categories, from a to k. Each

category exemplifies a type of conflict that might arise in

XMI-based models. As an example, a refers to tests updat-

ing the value of a single-valued feature of a model element in

one version, while deleting the same element in the other (i.e.

an UpdateDelete conflict as described in Sect. 3.3); another

category, c, contains similar changes, but the affected features

are multi-valued. Additionally, there are several test cases for

some categories, representing different ways in which con-

flicts of the same type might appear. For instance, a1 updates

a feature with a new value on the left, while deleting the

containing element on the right. Similarly, a3 deletes the ele-

ment on the right, but to update the feature on the left it

unsets its value, instead of providing a new one. Categories

a to d are expanded into the different types of model fea-

tures where the conflict might appear, namely, EAttributes

and non-containment EReferences (attr and ref in the table).

As for containment EReferences (contRef), the test suite

included a test for the b category (i.e. single-valued features),

and we extended the suite by adding tests for multi-valued

containment references in the d category. Lastly, while most

cases contain conflicts, there are some negative cases where

no conflicts are present. Thirteen test cases, namely b5–b6

and d4–d6, apply the same changes to both sides, so no con-

flicts should be detected for these cases. We describe the

meaning of the table cell values in the next sections, along

with a discussion of the obtained results.

5.1.1 Issues with line-based merging of models

The original EMF Compare suite provides the three model

versions of each test case, these are, the left, ancestor and right

versions. So, the first step to use this suite with Peacemaker

9 https://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.

git/tree/plugins/org.eclipse.emf.compare.tests/src/org/eclipse/emf/

compare/tests/conflict.

123

https://www.eclipse.org/egit/
https://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.git/tree/plugins/org.eclipse.emf.compare.tests/src/org/eclipse/emf/compare/tests/conflict
https://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.git/tree/plugins/org.eclipse.emf.compare.tests/src/org/eclipse/emf/compare/tests/conflict
https://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.git/tree/plugins/org.eclipse.emf.compare.tests/src/org/eclipse/emf/compare/tests/conflict

An efficient line-based approach for resolving merge conflicts in XMI-based models 2475

Table 2 EMF Compare conflicts test suite, organised by modification categories, feature type (if relevant) and case number

Symbols indicate if the Git merge operation identified the case correctly (�); whether Git wrongly marked false positives (+); whether Peacemaker

was able to detect conflict smells after a wrong Git identification (∼); or those cases with conflicts that were missed by Git and Peacemaker (!)

involved the generation of merged models with conflict sec-

tions such as the one of Listing 2, which we achieved by

using the git merge-file command.10

As we have seen in Sect. 3, the merge operations per-

formed by Git are line-based, so it is irrelevant whether the

merged lines represent source code such as Java or C, or

if they contain (semi-)structured data like JSON or XML.

While this is not an issue for the majority of test cases, we

found that some of them are not properly handled by Git’s

merge operation, including concerning ones where conflicts

are not detected and the merge operation introduces errors in

the model. We consider as an error anything that breaks the

well-formedness of the model, such as references that point

to non-existing elements, or a violation of any conformance

rules of the metamodel (i.e. feature cardinalities, unique-

ness). We also consider as errors unwanted duplications

of model elements or values that cannot be automatically

detected and fixed.

We categorised the results of Table 2 into four groups,

based on the outcome of Git’s merge operation and the pos-

terior analysis by Peacemaker. The test suite is composed of

60 cases, in which there are 47 cases that contain conflicts,

and 13 cases that do not. As all 13 cases without conflicts

10 https://git-scm.com/docs/git-merge-file.

were correctly identified by Git, the separation in groups

focuses on categorising those cases that contain conflicts, as

the results for these were not homogeneous.

Figure 14 shows a flowchart with the possible paths that

a test case with conflicts could follow until it was assigned

into one of the four result groups. The flowchart starts from

the 47 test cases that contain real conflicts of some kind. The

first step involves the line-based merge performed by Git.

Cases marked with a check (�) indicate that the presence of

conflicts was correctly detected by Git, and then by Peace-

maker. When Git identification was incorrect, it was due to

either false positives or false negatives. Git false positives,

marked with a plus symbol (+), were correctly detected and

omitted by Peacemaker. As for Git false negatives, Peace-

maker was able to detect conflict smells (see Sect. 3.5) in

almost all of them by looking for issues such as duplicated

ids, internal dangling references, or broken conformance

rules (e.g. unique multi-valued attributes with duplicates).

We marked these cases with a tilde (∼) symbol. Lastly, there

were a subset of cases missed both by Git and Peacemaker,

which we marked with an exclamation (!). Although missed,

Git did not introduce any structural errors in the model. The

following sections give more details about these four groups.

123

https://git-scm.com/docs/git-merge-file

2476 A. de la Vega, D. Kolovos

Fig. 14 Flowchart that explains the different possible outcomes of the

test cases with conflicts of Table 2

5.1.2 Correct git identification (�)

These tests cases are correctly processed by the Git merge.

In all tests where this happens, Peacemaker is also able to

identify the underlying conflicts in the models. As we men-

tioned, the 13 cases that contained no conflicts were properly

identified, so they also belong to this group. This was some-

what expected, as after applying equivalent changes to the

left and right model versions the persisted XMI lines of the

affected model elements were equal. With 35 out of the 53

test cases correctly identified, this is the most frequent out-

come of the test suite.

5.1.3 Git false positives (+)

There are 10 cases where Git manifested false positive issues.

First, in 8 positive test cases (i.e. with real conflicts), Git

marked additional model elements as in conflict because of

a change in the closing tag of an element whose contents

have been deleted. This type of false positive was described

in Sect. 3.4. As an example, Fig. 15 depicts the (a1attr) case,

where the root element is wrongly included in the conflict

section because of a change in its starting tag from > to />
in the right version.

Second, we include here two special cases that are consid-

ered false positives in the EMF Compare test suite, as they

do not represent real conflicts at the model level. These con-

flicts belong to the i and j categories and involve deletions

of different sets of elements on the left and right versions.

Figure 16 depicts the i category case. We can see that, on the

right version, only the A3 model element contained in C is

deleted, while on the left the C element is deleted instead,

Fig. 15 Example of a Git false positive (a1attr): the root element is

wrongly identified as in conflict because of a change in how its tag is

ended on the right (/> instead of >)

Fig. 16 Git identifies as a conflict two deletions affecting distinct sets

of elements (i category test case)

which also removes all its contents (A1, A2 and A3). Here,

EMF Compare automatically assumes that the A3 deletion is

a subset operation of the deletion of C, which indirectly also

removes A3. While we could do the same in Peacemaker,

we included the KeepDelete conflict to mark cases where

an element is deleted in one version, but is kept unmodified

in the other (see Sect. 3.3). Our rationale for this is that the

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2477

difference in the set of deleted elements between the ver-

sions could be of interest for the end users, so we leave the

final decision on which elements to keep or remove to them.

Nevertheless, the decision on whether to treat this case as a

conflict that requires manual intervention or to automatically

perform a merge could be easily managed as a configuration

parameter of the Peacemaker identification process.

5.1.4 Git false negatives with conflict smells (∼)

This group contains those cases where Git does not detect any

conflicts, but Peacemaker is able to find conflict smells that,

as we presented in Sect. 3.5, are often caused by unwanted

errors after a line merge. There are two options to detect these

smells. First, models can be opened with the Peacemaker

editor after performing a merge with Git, even in those cases

where no line conflicts have been detected. Alternatively, we

presented a custom merge strategy to automatically perform

this check after each Git merge in Sect. 4.2. The identified

conflict smells for the EMF Compare test suite are detailed

in the following.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <Node ...>

3 <contents

4 xmi:id="_-iLZEJReEeGwLqrAWz -_6w"

5 name="leftContainer">

6 <contents

7 xmi:id="_CRQ58JRfEeGwLqrAWz -_6w"

8 name="conflictNode"/>

9 </contents >

10 <contents

11 xmi:id="__cxZEJReEeGwLqrAWz -_6w"

12 name="rightContainer">

13 <contents

14 xmi:id="_CRQ58JRfEeGwLqrAWz -_6w"

15 name="conflictNode"/>

16 </contents >

17 <contents

18 xmi:id="_AY8tcJRfEeGwLqrAWz -_6w"

19 name="originContainer"/>

20 </Node >

Listing 4 Test case from the g category where the conflictNode element

has been duplicated by the line-based Git merge (lines 6-8 and 13-15)

Duplicated Ids

This type of smell, which was introduced in Sect. 3.5.1,

appears in several cases of the test suite. Conflicts k1 to k3

add new elements in both versions of the model with the

same identifiers. Duplications also appear in the d3cont Re f
case

due to incompatible reorderings of model elements, which is

equivalent to the duplicated tasks example of Fig. 9. Listing 4

Fig. 17 d3attr test case with conflicting reorderings to a multi-valued

attribute (mvAttr)

depicts an additional case of element duplication from the g

category, where the container of the conflictNode element is

changed to two different containers in each version: leftCon-

tainer in the left, and rightContainer in the right. The initial

container of this element in the ancestor version is originCon-

tainer. As a result of this incompatible change of containers,

the conflictNode appears twice in the merged model: first

in lines 6-8 under leftContainer and second in lines 13–15

under rightContainer.

Duplicates in Multi-Valued Attributes

We also found duplications in multi-valued attributes. Fig-

ure 17 depicts the (d3attr) case, which is identical to the

duplication described in Fig. 11 over PSL task labels. When

Git merges this test case, an unwanted duplication of one of

the values (value1) takes place.

Internal Dangling References

The e category contains conflicts related to the creation

of internal dangling references, which were described in

Sect. 3.5.3. Figure 18 shows the e1 case, where a reference

from conflictHolder to origin is added on the left, while ori-

gin is deleted on the right, thus creating a dangling reference

to a non-existing origin element.

5.1.5 Conflicts not detected, model has no structural errors

(!)

This group contains the test cases where Peacemaker does

not have enough information to detect the conflicts after

Git missing them. In this group, the line-based merge does

not introduce any structural or duplication-related errors (as

defined in Sect. 5.1.1) in the merged model.

123

2478 A. de la Vega, D. Kolovos

Fig. 18 e1 test case where a reference to a deleted element (origin) is

introduced in the merged model

Fig. 19 d1attr test case with conflicting left and right modifications to

a multi-valued attribute (mvAttr)

Figure 19 depicts a simplified test case (d1attr) belonging

to this group. In the example, we have a node with a multi-

valued attribute denoted as mvAttr. In the ancestor version,

mvAttr contains three values: value1, value2 and value3. The

conflict is caused by the modifications over value1: while in

the left version that value is deleted, in the right one it is

moved to the latest position of the multi-valued attribute.

When these versions are merged, the original line belong-

ing to value1 disappears in both versions (i.e. no value1

above value2), while the right value1 appearing after value3

is merged as a new line. As a result, node.mvAttr ends up

containing value2, value3 and value1 in the merged model.

While the result matches with one of the initial versions (i.e.

the right one), the way in which this case was merged was

beyond the control of the developer. This case is equivalent to

d1cont Re f
where, instead of multi-valued attributes, the modifi-

cations take place over a multi-valued containment reference.

Lastly, d2attr and d2cont Re f
are mirrors of the respective first

two cases, this is, left changes are applied on the right version,

and vice versa.

Fig. 20 h2 test case where the container to the conflictNode is changed

to leftContainer on the left version, while that same leftContainer ele-

ment is deleted on the right version

The h cases, also belonging to this group, present a sim-

ilar situation in which no conflict is detected and the VCS

automatically decides how to combine the changes coming

from the two versions. This category of conflicts involves

changing the container of an element to a new parent in one

of the versions, while deleting the new parent in the other

version. Figure 20 depicts the h2 case, where the container

of the conflictedNode element is changed to leftContainer

on the left, while on the right version that new container is

deleted. As shown at the bottom of the figure, the line-based

merge automatically selects the left version of the changes

and disregards the deletion taking place on the right version.

We summarise the results of the completeness analysis in

Sect. 5.3 along with the results of the performance compari-

son, which comes next.

5.2 Performance comparison

We measured the time required by Peacemaker and two

state-of-the-art tools to detect and identify conflicts in con-

trived models of increasing size. These measurements were

taken using the Java Microbenchmark Harness (JMH) tool,11

and details about the parameters used to configure the bench-

marks and the computing platform can be seen in Table 3.

Also, the benchmarking code is openly available in an

external repository12 for reproducibility purposes. The next

sections describe the experiments carried out in more detail.

5.2.1 Compared approaches

We compared Peacemaker against EMF Compare [11] and

EMF DiffMerge [12], which were introduced in Sect. 2.4.

11 https://openjdk.java.net/projects/code-tools/jmh/.

12 https://github.com/alfonsodelavega/peacemaker-evaluation.

123

https://openjdk.java.net/projects/code-tools/jmh/
https://github.com/alfonsodelavega/peacemaker-evaluation

An efficient line-based approach for resolving merge conflicts in XMI-based models 2479

Table 3 Computing platform and benchmark parameters used during

the performance comparison

Fig. 21 Boxes language metamodel in Ecore

Both tools perform a three-way model comparison to find

differences and conflicts, so they are ideal candidates to

determine if the line-based approach used in Peacemaker

provides any performance improvements. As for Peace-

maker, we included two variants: a sequential one, where

the split model versions (see Sect. 3.2) are loaded one after

the other, and a parallel variant that uses multi-threading to

load all versions at the same time. Lastly, we also included

the standard XMI load time of the left model version as a

baseline that could help extrapolate the results to other com-

puting platforms.

5.2.2 Types of models

We generated models conforming to two different metamod-

els. The first metamodel is the Project Scheduling Language

used as running example throughout the paper and introduced

in Sect. 2.1. For the second one, we defined a Boxes language

whose metamodel is depicted in Fig. 21. This is a very simple

language that can be used to define a list of Boxes of varying

size, this is, with a different number of attributes or things.

For instance, Box1 instances have 1 attribute, while Box10

and Box20 have 10 and 20 attributes, respectively. Boxes

models were useful to test whether having denser model ele-

ments (i.e. with more attributes to check) had any effect on

the completion times of the compared approaches

5.2.3 Comparison scenarios

The three compared approaches were used to detect conflicts

in several comparison scenarios. Each scenario is composed

of different test cases of increasing size, from 1000 to 200 K

elements. This size refers to the number of tasks in PSL mod-

els, and to the number of boxes in Boxes models. For each

scenario and test case size, we generated ancestor, left, and

right model versions, as these are required for EMF Compare

and DiffMerge. To obtain a merged input model for Peace-

maker, we used the same git merge-file command as in the

completeness evaluation. We included the time it took this

command to create each merged model as part of the conflict

detection times for both Peacemaker variants.

Given a test case with a size of N elements, the ancestor

version was generated as follows:

– PSL models with N tasks and 5 people. Each task effort is

shared 50–50 between 2 people (chosen at random, with

fixed seed for reproducibility).

– Boxes models with N boxes.

Over this ancestor, conflicting left and right versions were

created. Unless stated otherwise, the number of conflicts that

was included in a test case was fixed to 10. The following

conflict scenarios were generated:

1. PSL Update Delete: in conflicting tasks, the percentage

effort of one person was updated on the left, while the

whole effort element was deleted on the right.

2. PSL Double Update: we updated the title of conflicting

tasks to different values on left and right. The objective

of this scenario is to try a different kind of conflict. Also,

Peacemaker performs false positive checks for Double

Update conflicts (see Sect. 3.4), so we wanted to check

if that affects the detection times.

3. PSL Update Delete with extra changes/conflicts: this is

an extension of the first scenario where, apart from con-

flicts, we also introduced extra changes that did not create

conflicts, with the objective to see how the compared

approaches responded to them. Section 2 introduced the

comparison process for both EMF Compare and EMF

DiffMerge, which compare the model versions of the

conflicting branches This process starts by finding all dif-

ferences between the two versions and then determining

if any of these differences are conflicting. We included

changes to 10, 50 and 100% of the tasks, excluding the

ones with conflicts. Similarly, we also tested increasing

the number of conflicts in the test cases, to see if there was

any difference with including non-conflicting changes.

The number of conflicts was again 10, 50 and 100% of

the model tasks for each size. While the cases involv-

ing 50% and 100% changes/conflicts are unrealistic in

123

2480 A. de la Vega, D. Kolovos

Fig. 22 Detection times of scenarios 1 (top) and 2 (bottom)

practice, we included them as stress tests to see how the

compared approaches behaved in extreme scenarios.

4. Boxes Update Delete: we modified the first attribute of

conflicting boxes in the left and deleted these boxes in the

right. This scenario was repeated for the three box sizes

(1, 10 and 20 attributes per box instance), to see if having

bigger model elements had an impact on the times of the

compared approaches.

5.2.4 Results

Figure 22 shows the conflict detection times for scenarios

1 and 2. Starting with the first scenario (top chart), we can

see that both the sequential and parallel versions of Peace-

maker are faster than EMF Compare and DiffMerge. This

phenomenon is consistent for all subsequent scenarios. While

the time differences are not very critical for the smaller

cases (i.e. identification times are below 1–2 s), for models

with 50 K tasks and above these differences start becoming

noticeable. The relative distance between the obtained times

remains consistent when increasing the size of the models.

If we average the differences for the 50 K, 100 K, 150 K and

200 K tasks models, then the sequential Peacemaker vari-

ant required 42% less time than EMF DiffMerge, and 24%

less time than EMF Compare. In the case of the parallel vari-

ant, the reductions increase to 61% and 50%, respectively.

When comparing the two Peacemaker variants, performing

a parallel load provides a 33% reduction on conflict detec-

tion times, which makes it a third faster than the sequential

variant. Lastly, and focusing again on the average results for

the four largest models, EMF DiffMerge took 9.38 times the

duration of the XMI load of a single model version, while

this value was 7.13 for EMF Compare, 5.40 for the sequential

Peacemaker, and 3.60 for the parallel Peacemaker.

Focusing now on the second scenario (Fig. 22, bottom),

the times for all the approaches are very close to the ones of

the first scenario. The change in the type of conflict found

in the models, from Update Delete conflicts in scenario 1

to Double Update conflicts in scenario 2, caused less than

2% variation in times for EMF Compare and DiffMerge on

average, and less than 1% for the Peacemaker variants.

The results for scenario 3 are depicted in Fig. 23. The top

row shows the results when conflicting models have 10%

extra non-conflicting changes, on the left, and two more

extreme cases of having 50% and 100% non-conflicting

changes in the middle and on the right. When compared with

the results of scenario 1, EMF Compare took 2%, 9% and

17% longer times to detect the conflicts for the models with

10%, 50% and 100% extra non-conflicting changes, respec-

tively. EMF DiffMerge suffered a bigger slowdown, taking

4%, 19% and 35% longer to complete the task. Nonetheless,

despite the greater penalty for the cases with a large num-

ber of differences, the results suggest that a realistic amount

of non-conflicting changes would not pose an issue to these

two approaches. As for the Peacemaker variants, there was

a small increase in the detection times, as a result of the extra

time taken by the line-based merge command to process the

non-conflicting changes. The increases for the sequential and

parallel Peacemaker variant with respect to the scenario 1

results were of less than 3% in all cases.

The bottom row of Fig. 23 shows what happens when the

number of conflicts in a model grows, starting with 10% con-

flicting tasks on the bottom left (i.e. in a model with 1000

tasks, 100 of them would have conflicting changes), up to the

extreme cases with 50% and 100% conflicting tasks in the

bottom middle and right, respectively. While these increases

did not noticeably impact EMF DiffMerge results (1%, 2%

and 6% longer times for the models with 10%, 50% and

100% conflicts), they did affect Peacemaker variants (5%,

13% and 22% longer times for the sequential variant, and

4%, 18% and 33% for the parallel variant), and EMF Com-

pare (4%, 14% and 25% longer times). Again, these results

show that the approaches behaved decently against extreme

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2481

Fig. 23 Detection times of scenario 3. The top row shows the cases with 10%, 50% and 100% non-conflicting extra changes, and the bottom row

shows cases with 10%, 50% and 100% conflicting tasks

conflict numbers, which indicates that there should not be

any performance issue when applying these approaches to

models with more realistic (i.e. lower) conflict numbers.

Finally, Fig. 24 covers the detection times for the Boxes

models. In general, the conflict identification times in these

models were lower than for the PSL ones, e.g. the slowest

approach took up to ∼ 4 s for the Boxes model with Box1

instances (Fig. 24, left), while it took up to ∼ 10 s for the PSL

model of scenario 1 (Fig. 22, top). We attribute this difference

to the existence of more model elements in PSL models,

as each Task instance also contains two Effort objects. In

addition, the loading process of PSL models has to resolve

the cross-reference that each task effort has to the person

assigned for its completion, while in the Boxes models there

are no references between the model instances.

Focusing on the results of the compared approaches, we

can see that there is a general increase in the detection times

of models with bigger Box elements, i.e. the times for Box10

instances in the middle chart are bigger than those of Box1

instances on the left chart; and the longest times are seen for

Box20 elements on the right. This is partly caused by having

bigger XMI load times, which took 0.29 s to load the largest

Box1 model (200 K instances), while it took 0.76 and 1.33 s

to load models with the same number of elements but larger

Box10 and Box20 instances, respectively. As for the result

of the different approaches, EMF DiffMerge results were

1.56 and 2.28 times slower for the models Box10 and Box20

instances, with respect to the ones with Box1 instances. Per-

forming analogous comparisons, EMF Compare was 2.03

and 3.33 times slower, sequential Peacemaker was 2.04

and 3.3 times slower, and the parallel variant of Peace-

maker was 1.91 and 2.96 times slower for Box10 and Box20

instances than for Box1 ones.

We can see that sequential and parallel Peacemaker

kept being the fastest approaches across all Boxes models

versions, although in this case the times for the sequential

Peacemaker were closer to those of EMF Compare than in

the previous cases. This closeness might be partly explained

because of an existing issue that we experienced while using

EMF Compare with our Boxes models. This issue caused

an out-of-memory heap error (still present when using up to

25 GiB of heap size) when checking the ordering of contain-

ment references with more than 100 K values. Therefore, to

be able to complete these tests, we disabled ordering checks

with a custom EMF Compare differencer, which means that

this approach performs less work than in the test cases with

PSL models. We also found that the issue had already been

registered as a bug in the past, so we contributed an example

project with a comparison that allows reproducing it.13

13 https://bugs.eclipse.org/bugs/show_bug.cgi?id=432497.

123

https://bugs.eclipse.org/bugs/show_bug.cgi?id=432497

2482 A. de la Vega, D. Kolovos

Fig. 24 Detection times of scenario 4, for each type of box instance

Focusing on the denser Box20 instances models (Fig. 24,

right), sequential Peacemaker needed 21% and 4% less

time on average than EMF DiffMerge and EMF Compare

for the largest 4 models. The parallel Peacemaker variant

was able to perform better, achieving a time reduction of 54%

and 44% against EMF DiffMerge and EMF Compare.

5.2.5 Threats to validity

The main treat to the validity of the presented results is that

the measured performance could be specific to the generated

models for the tests, to the type of model, or to the included

conflicts. Although performing the evaluation using real,

third-party models would have been the ideal scenario, short-

age of large publicly available real-world models is a widely

recognised issue in model-driven engineering research (e.g.

[21]). Our motivation for Peacemaker comes from our work

with industrial partners [22] where we routinely encounter

models containing many thousands of model elements, for

which tools such as EMF Compare can take several sec-

onds to perform a full 3-way comparison. As we are not

able to meaningfully report on experiments using such mod-

els due to intellectual property reasons, we have opted for

large synthetic models conforming to a metamodel that pro-

vides a comprehensive coverage of the features of Ecore

(e.g. containment/non-containment references, single/multi-

valued and ordered/unordered features). Generating models

conforming to one or other metamodel is not immediately

relevant, as the compared approaches search for conflicts

in structural changes, and do not analyse semantics. The

only reason behind having two different metamodels in

our tests was testing model elements with different num-

ber of attributes (i.e. a structural difference), to assess if that

affected the conflict detection times for any of the compared

approaches. With respect to the created conflicts, we focused

our performance evaluation around conflicts that could be

detected by all the applied tools. We covered the detec-

tion of corner case conflicts in our completeness analysis

of Sect. 5.1.

The longer identification times of EMF Compare and

DiffMerge could be due to the fine-grained analysis they

perform to detect changes in model elements’ features, and

it could be argued that if Peacemaker performed this fine-

grained analysis, its times would be equivalent to the ones

of the other approaches. This is not the case, as conflict-

ing lines identified by the VCS already tell Peacemaker

which model elements contain the conflicts without the need

to actually check the features of all elements in the model.

If fine-grained analysis of the model element features were

needed in Peacemaker, it would only require processing

this set of pre-identified conflicting elements, instead of the

full model. Moreover, Peacemaker already performs this

fine-grained comparison of element features when searching

for false positives of the line-based merge (see Sect. 3.4), so

the Peacemaker detection times shown in the performance

comparison already include checks at the feature level of

model elements.

Finally, it could be argued that parallelising the load

of model versions in one of the Peacemaker variants is

unfair with respect to EMF Compare and DiffMerge, where

a sequential load of the three versions is performed. Our first

consideration was that parallelising the load of the other two

approaches would not be as beneficial, because three dif-

ferent model files, one for each model version, have to be

loaded from disk, which would be done sequentially. On the

contrary, Peacemaker only loads a single merged model file

from disk, and the model versions are obtained by selecting

the appropriate lines from in-memory contents (see Fig. 2).

So, as the contents are already stored in memory, parallelis-

ing the version load is more beneficial for Peacemaker.

Nonetheless, to confirm this, we performed a parallel load

for EMF Compare and DiffMerge for the conflict models of

scenario 1, and the results are shown in Fig. 25. We can see

that the parallel execution achieved a 16% average reduction

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2483

Fig. 25 Detection times of scenario 1 including parallel loads for EMF

Compare and DiffMerge

for EMF DiffMerge, while for EMF Compare the reduction

was slightly larger at 22%. However, neither of these execu-

tions achieved a better result than just the sequential variant of

Peacemaker, although EMF Compare was able to almost

match its times. It is important to also note that our load-

ing times do not take into account the extra work that both

EMF Compare and DiffMerge need to perform to gather the

model versions from the VCS. Lastly, an inspection of the

source code of both EMF Compare and Diffmerge revealed

that they do not parallelise the loading of input resources. So,

performing sequential version loads for these tools is a bet-

ter representative of the performance that would be found by

end users when actually using the tool. Based on the above,

we decided to show the sequential times of all the compared

approaches, plus the parallel variant of Peacemaker.

5.3 Discussion

In the light of the findings presented in the previous sections,

we can now answer the research questions asked in Sect. 1.

5.3.1 RQ1: Can an approach that uses the line-based

conflicts marked by a VCS to identify conflicts instead

of a full model comparison offer the same results?

Based on the analysis of Sect. 5.1, Peacemaker is not able to

detect all conflicts that existing tools such as EMF Compare

or EMF DiffMerge can find. However, it comes very close to

achieving a full detection. The results of Table 2 show that

Peacemaker is able to properly identify and resolve most

conflict cases (45 out of 60), and it is also able to detect con-

flict smells suggesting potentially missed conflicts by Git (9

Table 4 Conflict detection times in ms for some concrete model sizes

for Scenario 2 (bottom of Fig. 22)

Tool Model Size (#elements)

5000 15,000 30,000

EMF DiffMerge 165 509 1309

EMF Compare 136 428 1039

Peacemaker 97 286 578

Parallel Peacemaker 46 135 349

out of 60). The remaining 6 cases were automatically merged

by Git (identified with the ! symbol), and Peacemaker did

not detect the underlying conflicts. On the other hand, these

automatic merges did not create any immediate issues, such

as losing model information or introducing errors that pre-

vent the model from loading.

5.3.2 RQ2: Does a conflict detection approach as described

in RQ1 provide better performance and scalability

than full model comparison?

The results of Sect. 5.2 show that the two Peacemaker vari-

ants were consistently faster in all comparison scenarios. For

models smaller than ∼ 50 K elements, the time it takes all

approaches to complete might be too small (less than ∼ 2 s)

for the improvements of Peacemaker to be that noticeable,

at least considering an online use of Peacemaker (i.e. a

user working with the Peacemaker editor). On the other

hand, being up to about 2 to 3 times faster than the other

approaches for the bigger models of the comparison puts

Peacemaker in an advantageous position in terms of per-

formance, which makes our approach an interesting option

to consider in those contexts where large models are causing

existing model comparison and merging solutions to suffer

from performance issues.

Lastly, we consider that Peacemaker could also be use-

ful for smaller models, this is, without these models needing

to reach the 50 K elements mark. This mark was selected as

a usability measure on tolerable waiting time, which accord-

ing to [23] the measure sits at about 2 s (i.e. the time some

tools need to detect the conflicts at 50 K model elements).

Nevertheless, the performance improvements provided by

Peacemaker are also seen for smaller models, which could

be very useful in terms of scalability if several models have to

be merged at the same time or if merging of models happens

frequently (e.g. in a continuous integration environment).

Table 4 shows the time (in milliseconds) it took EMF

DiffMerge, EMF Compare and Peacemaker to detect the

conflicts of Scenario 2 (Double Update, bottom of Fig. 22)

for the PSL models with 5K, 15K and 30K elements. For

instance, merging five models with 15 K elements would

take around 2.5 s with EMF DiffMerge, 2.1 s with EMF

123

2484 A. de la Vega, D. Kolovos

Compare, 1.4 s with Peacemaker, and 0.67 s with paral-

lel Peacemaker. It is true that merging several models is a

fully parallelisable task (i.e. merging each model in a sepa-

rate process). However, parallel or not, the total amount of

computing work that needs to be carried out is the same, and

Peacemaker might allow reducing that amount.

5.3.3 RQ3: Is relying on line-based VCSs such as Git to

merge XMI models and to detect conflicts safe?

We have demonstrated that a plain line-based merge approach

is not safe enough to detect a few types of conflicts that might

arise when merging XMI models. We have shown several

examples of how false positives (Sects. 3.4 and 5.1.3) and

false negatives (Sects. 3.5, 5.1.4 and 5.1.5) can manifest when

applying a line-based merge over XMI models. Moreover,

this type of merge can introduce errors in the model, e.g. by

duplicating lines containing model elements or values.

Therefore, and in line with previous research [13–15], we

consider line-based merging alone is unsafe when version-

ing XMI models in VCSs, both in terms of correctly merging

models, and related to detecting all merge conflicts that might

occur. However, we have described how Peacemaker is able

to enhance the identification capabilities of plain line-based

merging. Based on our answers to RQ1 and RQ2, it offers

a trade-off between identification completeness and perfor-

mance that might be useful in some contexts, thus making

line-based merging viable. We comment on this trade-off in

detail in the next section.

5.3.4 When to use PEACEMAKER over model-based

approaches

Choosing to merge models using a VCS such as Git along

with Peacemaker requires tolerating that the conflict types

included in the ! group in Table 2 will not be detected. How-

ever, not being able to detect this group of conflicts does not

cause issues such as losing model information. As detailed

in Sect. 5.1.5:

– When a value of a multi-valued attribute is deleted in one

of the versions but moved to another position in the other

(d1attr case in Table 2), the value is retained in the new

position in the merged model.

– When moving an element in one version of the model

into a container that is deleted in the other version (h

category cases in Table 2), the merged model includes

both containers.

Tolerating this group of conflicts provides increased con-

flict detection performance as a trade-off, which could be

very reasonable in contexts where large models are updated

frequently by teams of engineers with clear responsibilities

over different parts of the model.

We consider important to remind the reader that using

Git to merge models and only applying a model-based con-

flict detection tool such as EMF Compare when Git detects

a conflict would also imply being oblivious to conflicts of

the ! group. The only way a tool such as EMF Compare can

also detect these conflicts is by configuring a custom merge

strategy in the application used to manage source code repos-

itories (e.g. EGit in the case of the Eclipse IDE), as described

in Sect. 4.2.

Other novel features of Peacemaker that might be of

interest in certain contexts are its support of partial resolu-

tion of conflicts (see Sect. 3.6) and its ability to work directly

with stand-alone files containing conflict sections, without

requiring access to the three model versions in the repository

(although Peacemaker still needs to know of the required

metamodels to which models conform to, and of any exter-

nal cross-referenced models). This last feature might make

easier to deploy Peacemaker as part of a continuous inte-

gration (CI) process: Peacemaker checks take place after

the conventional line-based merge, so it is not necessary to

substitute that with a custom merge strategy. Instead, Peace-

maker could be added as an extra validation or test process

to execute after the line-based merge to check for issues. This

configuration might require less effort than altering the merge

strategy of a CI system such as Jenkins to use a model-based

tool like EMF Compare or EMF DiffMerge. However, we

have not yet performed any validation to support this claim,

so we leave this as part of our future work.

Performance issues due to having to merge large mod-

els could be avoidable by adopting a model decomposition

strategy from the very beginning. Following such a strategy

involves splitting models into several fragments according

to certain criteria, such as division of labour over them. This

kind of strategy is only achievable if the employed modelling

tools support model decomposition. Also, splitting models

into adequate fragments is not always a trivial task, as col-

laborative work in cross-cutting concerns might benefit from

contrasting/incompatible model split points [24].

The formulated research questions focused on the com-

pleteness, performance, and safety of the presented conflict

detection approach. The last step to evaluate the exploitabil-

ity of Peacemaker (under the acceptance of the presented

compromise between performance and precision) involves

carrying out usability experiments, where the Peacemaker

editor could be tested by final users to determine how well it

behaves against alternatives such as EMF Compare or EMF

DiffMerge. Usability is not covered by our research ques-

tions and/or our evaluation, so it lies outside the scope of this

article. Running these experiments will be part of our future

work for Peacemaker.

123

An efficient line-based approach for resolving merge conflicts in XMI-based models 2485

5.4 Considerations for merging XMImodels with
line-based version control systems

Out of the experience gathered during the development of

Peacemaker, and based on the findings of this evaluation,

we include here a set of practices to follow when wanting to

keep merging XMI models using line-based VCSs such as

Git:

– After merging a model using vanilla Git (e.g. from the

command line), it is of utmost importance that the merged

model is thoroughly validated with an approach such

as Peacemaker, as well as with domain-specific model

validation processes. We have shown how a clean line-

based merge is no guarantee of the model being correctly

merged, as it might contain structural issues and it might

not conform to its metamodel.

– As mentioned in Sect. 5.1.4, the use of non-unique

multi-valued EAttributes can cause duplicated values in

line-based merged models under certain conditions and

should be avoided whenever possible.

– Auto-incremental identifiers (e.g. task1, task2, · · ·) or ID

EAttributes can create issues when adding new elements

to a model in two independent development branches. To

avoid this, we recommend the use of Universally Unique

Identifiers (UUIDs) generators, such as the one provided

by EMF.14

6 Related work

To the best of our knowledge, Peacemaker is the first

approach that leverages the work done by the standard

line-based merge when working with models. The closest

approach we have found is the work of Asenov et al. [25],

where a line-based approach is presented for two-way com-

parison (i.e. a diff operation [17,18], instead of a merge one)

over tree structures. They define a specific syntax to store

these trees, which allows using as input the result of a line-

based diff to carry out a correct tree comparison. They also

present a three-way merge approach over the same tree struc-

ture, but that approach works at the level of tree nodes and

edges, instead of merging text lines.

Merging operations over text files can be classified accord-

ing to their use of the inherent structure of the contents of

these files. On one side, line-based merging is also denoted as

unstructured merging [1,2], because the underlying structure

of the data is disregarded. On the other extreme we can find

structured merging, also often denoted as syntactical merging

[1], where the structure of the data is known and used for the

14 https://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/

eclipse/emf/ecore/util/EcoreUtil.html#generateUUID().

merge operation. This is the kind of operation that is carried

out by model merging solutions, such as EMF Compare [11]

and EMF DiffMerge [12] and that we described in Sect. 2.4.

There are other solutions that apply structured comparison

to source code files by comparing their abstract syntax tree

(AST), such as Gumtree [26] or ChangeDistiller [27] for the

Java programming language. Lastly, there is a third type,

known as semi-structured merging [28,29], where a frac-

tion of the file contents are merged based on their structure

(e.g. part of the AST of a source code file), and the remain-

ing contents are merged using an unstructured approach. For

instance, when merging a Java class, its method signatures

can be treated as a tree (i.e. structured merge), while the

body of these methods is merged as standard lines (unstruc-

tured merge). As for the Peacemaker approach, it falls under

targeted structured merging, as the XMI files are loaded as

models, but the merging operation focuses on those model

elements initially marked by the line-based merge, instead

of performing a full-model comparison.

Model merging utilities come either bundled within soft-

ware solutions that target specific modelling technologies,

or as standalone third-party applications specifically tailored

for the comparison task. For instance, Simulink Models can

be merged with the comparison tool provided by MAT-

LAB [30], or by using DiffPlug [31]. Other solutions target

general-purpose modelling frameworks, such as IBM Ratio-

nal Rhapsody [32] for UML; or EMF Compare [11] and EMF

DiffMerge [12] for the Eclipse Modelling Framework. This

allows reusing the same comparison tools for any domain

specific language built atop the concrete framework. Lastly,

there are some solutions that are defined generically, but they

can be adapted to support specific model technologies. SiD-

iff [33] and many other academic solutions [15,25,34] are

examples of these.

There is also a different family of tools for model ver-

sioning that offer specific repositories for the persistence of

models. Examples of these tools are Eclipse CDO [35], EMF

Store [36], MetaEdit+ [6], MagicDraw [7] or Obeo Designer

[8], among others. Developing custom model repositories

can provide benefits in different aspects, such as scalabil-

ity, or a more controlled versioning of models. For instance,

change-based persistence techniques [36] could be applied to

have a fine-grained control of the changes that are included

in models, and to better detect incoming conflicts [37,38].

Another technique that is implemented by several commer-

cial solutions allows avoiding conflicts by locking the whole

model or specific parts of the model where a user is currently

including modifications [6–8]. This technique requires work-

ing against an always-online and centralised model server,

so that locking information can be distributed among all

concurrent users. While specific model repositories offer

interesting features, such repositories are typically propri-

etary, re-implement similar functionality (user management,

123

https://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/util/EcoreUtil.html#generateUUID()
https://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/util/EcoreUtil.html#generateUUID()

2486 A. de la Vega, D. Kolovos

model fragment locking/unlocking, check-in/out), and lack

in features such as branching and tagging. In addition, these

repositories need to be administered separately from the VCS

used to store any source code, and there is limited tool support

for them outside the modelling environments for which they

were initially developed for (e.g. integration with other IDEs,

continuous integration systems, and other third-party model

measurement and analysis tools). Finally, they arguably lack

in robustness compared to file-based VCSs such as Subver-

sion and Git.

7 Conclusions and future work

We have introduced a new approach for the detection and res-

olution of conflicts that works against merged XMI files with

conflict sections produced by mainstream text-based VCSs

like Git. This approach, which has been implemented in the

EMF-based Peacemaker tool, can detect almost the same

types of conflicts than standard model-based approaches are

able to, while taking up to 60% less time to do so. The unde-

tected conflicts do not cause any loss of model information,

which makes Peacemaker an option to consider in those

contexts where missing these conflicts is tolerable and extra

performance is required.

For future work, we plan to test Peacemaker with end

users to polish any issues related to the usability of the editor.

In addition, we wish to test if a similar line-based approach

could be valid to also speed up 2-way model comparison,

i.e. by parsing the added and deleted lines of a diff com-

mand over the two compared versions. We would also like

to study whether Peacemaker could be integrated easily

with external version control tools and continuous integra-

tion environments, either by adding a custom merge strategy

for models or by including an extra validation step where

Peacemaker is used to analyse the resulting models after a

line-based merge.

Acknowledgements We would like to thank the developers of EMF

Compare for making their tests suites available, which were very useful

during the development and evaluation of Peacemaker.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

References

1. Mens, T.: A state-of-the-art survey on software merging. IEEE

Trans. Softw. Eng. 28(5), 449–462 (2002). https://doi.org/10.1109/

TSE.2002.1000449

2. Khanna, S., Kunal, K., Pierce, B.C.: A formal investigation of

diff3. In: FSTTCS 2007: Foundations of Software Technology and

Theoretical Computer Science, pp. 485–496. Springer, Berlin, Hei-

delberg (2007). https://doi.org/10.1007/978-3-540-77050-3_40

3. Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wim-

mer, M.: An introduction to model versioning. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics), vol. 7320

LNCS, pp. 336–398 (2012). https://doi.org/10.1007/978-3-642-

30982-3_10

4. Paige, R.F., Matragkas, N., Rose, L.M.: Evolving models in model-

driven engineering: state-of-the-art and future challenges. J. Syst.

Softw. 111, 272–280 (2016). https://doi.org/10.1016/j.jss.2015.08.

047

5. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:

Eclipse Modeling Framework, 2nd edn. Addison-Wesley Profes-

sional (2009)

6. Kelly, S.: Collaborative modelling with version control. In: Soft-

ware Technologies: Applications and Foundations, pp. 20–29.

Springer (2018). https://doi.org/10.1007/978-3-319-74730-9_3

7. No Magic: MagicDraw. https://www.nomagic.com/products/

magicdraw

8. Obeo: Obeo Designer. https://www.obeodesigner.com/

9. Object Management Group: XML Metadata Interchange Specifi-

cation. https://www.omg.org/spec/XMI/

10. Eclipse Foundation: Sirius. https://www.eclipse.org/sirius/

11. Eclipse Foundation: EMF Compare. https://www.eclipse.org/emf/

compare/

12. Eclipse Foundation: EMF DiffMerge. https://www.eclipse.org/

diffmerge/

13. Barrett, S., Chalin, P., Butler, G.: Model merging falls short of

software engineering needs. In: Proceedings of the 2nd Workshop

on Model-Driven Software Evolution (2008)

14. Altmanninger, K., Brosch, P., Langer, P., Seidl, M., Wiel, K.,

Wimmer, M.: Why model versioning research is needed!? An expe-

rience report. In: MoDSE-MCCM Workshop in MoDELS, pp. 1–12

(2009)

15. Schwägerl, F., Uhrig, S., Westfechtel, B.: A graph-based algo-

rithm for three-way merging of ordered collections in EMF models.

Sci. Comput. Program. 113, 51–81 (2015). https://doi.org/10.

1016/j.scico.2015.02.008. (Model Driven Development (Selected

& extended papers from MODELSWARD 2014))

16. Object Management Group: Meta Object Facility (MOF) Core

Specification. https://www.omg.org/spec/MOF/ (2016)

17. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing

longest common subsequences. Commun. ACM 20(5), 350–353

(1977). https://doi.org/10.1145/359581.359603

18. Miller, W., Myers, E.W.: A file comparison program. Softw.

Pract. Exp. 15(11), 1025–1040 (1985). https://doi.org/10.1002/

spe.4380151102

19. Somogyi, F.A., Asztalos, M.: Systematic review of matching

techniques used in model-driven methodologies. Softw. Syst.

Model. 19(3), 693–720 (2020). https://doi.org/10.1007/s10270-

019-00760-x

20. SAX Project: Simple API for XML. http://www.saxproject.org/

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1007/978-3-540-77050-3_40
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1007/978-3-319-74730-9_3
https://www.nomagic.com/products/magicdraw
https://www.nomagic.com/products/magicdraw
https://www.obeodesigner.com/
https://www.omg.org/spec/XMI/
https://www.eclipse.org/sirius/
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/diffmerge/
https://www.eclipse.org/diffmerge/
https://doi.org/10.1016/j.scico.2015.02.008
https://doi.org/10.1016/j.scico.2015.02.008
https://www.omg.org/spec/MOF/
https://doi.org/10.1145/359581.359603
https://doi.org/10.1002/spe.4380151102
https://doi.org/10.1002/spe.4380151102
https://doi.org/10.1007/s10270-019-00760-x
https://doi.org/10.1007/s10270-019-00760-x
http://www.saxproject.org/

An efficient line-based approach for resolving merge conflicts in XMI-based models 2487

21. López, J.A.H., Cuadrado, J.S.: Towards the characterization of

realistic model generators using graph neural networks. In: 2021

ACM/IEEE 24th International Conference on Model Driven Engi-

neering Languages and Systems (MODELS), pp. 58–69 (2021).

https://doi.org/10.1109/MODELS50736.2021.00015

22. Cooper, J., de la Vega, A., Paige, R.F., Kolovos, D.S., Bennett,

M., Brown, C., Piña, B.S., Rodriguez, H.H.: Model-based devel-

opment of engine control systems: Experiences and lessons learnt.

In: 24th International Conference on Model Driven Engineering

Languages and Systems, MODELS 2021, Fukuoka, Japan, Octo-

ber 10–15, 2021, pp. 308–319. IEEE (2021). https://doi.org/10.

1109/MODELS50736.2021.00038

23. Nah, F.F.H.: A study on tolerable waiting time: how long are web

users willing to wait? Behav. Inf. Technol. 23(3), 153–163 (2004).

https://doi.org/10.1080/01449290410001669914

24. Bendix, L., Emanuelsson, P.: Diff and merge support for model

based development. In: Proceedings of the 2008 International

Workshop on Comparison and Versioning of Software Models—

CVSM’08, p. 31. ACM Press, Leipzig, Germany (2008). https://

doi.org/10.1145/1370152.1370161. http://portal.acm.org/citation.

cfm?doid=1370152.1370161

25. Asenov, D., Guenat, B., Müller, P., Otth, M.: Precise version control

of trees with line-based version control systems. In: Fundamen-

tal Approaches to Software Engineering (FASE), pp. 152–169.

Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-

3-662-54494-5_9

26. Falleri, J.R., Morandat, F., Blanc, X., Martinez, M., Monper-

rus, M.: Fine-grained and accurate source code differencing. In:

Proceedings of the 29th ACM/IEEE International Conference on

Automated Software Engineering, ASE’14, pp. 313–324. Associ-

ation for Computing Machinery, New York (2014). https://doi.org/

10.1145/2642937.2642982

27. Fluri, B., Wursch, M., PInzger, M., Gall, H.: Change distilling:

tree differencing for fine-grained source code change extraction.

IEEE Trans. Softw. Eng. 33(11), 725–743 (2007). https://doi.org/

10.1109/TSE.2007.70731

28. Apel, S., Liebig, J., Brandl, B., Lengauer, C., Kästner, C.:

Semistructured merge: Rethinking merge in revision control sys-

tems. In: Proceedings of the 19th ACM SIGSOFT Symposium and

the 13th European Conference on Foundations of Software Engi-

neering, ESEC/FSE’11, pp. 190–200. Association for Computing

Machinery, New York (2011). https://doi.org/10.1145/2025113.

2025141

29. Cavalcanti, G., Borba, P., Seibt, G., Apel, S.: The impact of struc-

ture on software merging: semistructured versus structured merge.

In: 2019 34th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pp. 1002–1013. IEEE (2019). https://

doi.org/10.1109/ASE.2019.00097

30. MathWorks: Merge Simulink Models. https://uk.mathworks.com/

help/simulink/ug/merge-simulink-models-from-the-comparison-

report.html

31. DiffPlug: Simulink Diff. https://www.diffplug.com/features/

simulink

32. IBM: Rational Rhapsody DiffMerge. https://www.ibm.

com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.

diffmerge.doc/topics/rhp_c_col_parallel_dev_with_diffmerge.

html

33. Schmidt, M., Gloetzner, T.: Constructing difference tools for mod-

els using the sidiff framework. In: W. Schäfer, M.B. Dwyer,

V. Gruhn (eds.) 30th International Conference on Software Engi-

neering (ICSE 2008), Leipzig, Germany, May 10–18, 2008,

Companion Volume, pp. 947–948. ACM (2008). https://doi.org/

10.1145/1370175.1370201

34. Alanen, M., Porres, I.: Difference and Union of Models. In: Lecture

Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

2863, pp. 2–17 (2003). https://doi.org/10.1007/978-3-540-45221-

8_2

35. Eclipse Foundation: Eclipse CDO. https://www.eclipse.org/cdo/

36. Koegel, M., Helming, J.: Emfstore: A model repository for EMF

models. In: Proceedings of the 32nd ACM/IEEE International Con-

ference on Software Engineering—Volume 2, ICSE’10, pp. 307–

308. Association for Computing Machinery, New York (2010).

https://doi.org/10.1145/1810295.1810364

37. Koegel, M., Helming, J., Seyboth, S.: Operation-based conflict

detection and resolution. In: 2009 ICSE Workshop on Compari-

son and Versioning of Software Models, pp. 43–48. IEEE (2009).

https://doi.org/10.1109/CVSM.2009.5071721

38. Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: A fundamen-

tal approach to model versioning based on graph modifications:

from theory to implementation. Softw. Syst. Model. 13(1), 239–

272 (2014). https://doi.org/10.1007/s10270-012-0248-x

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

Alfonso de la Vega is an Assis-

tant Professor at the University

of Cantabria. Previously, he was

a Research Associate working at

the University of York. He col-

laborates as an Eclipse Founda-

tion Committer for the Epsilon

project. His more recent research

focuses on novel model visualisa-

tion and comparison approaches.

He has also worked in how to

apply modelling and domain-

specific languages to reduce the

complexity of carrying out data

engineering and data mining tasks.

Dimitris Kolovos is a Professor

of Software Engineering in the

Department of Computer Science

at the University of York, where

he researches and teaches auto-

mated and model-driven software

engineering. He is also an Eclipse

Foundation committer, leading the

development of the open-source

Epsilon model-driven software

engineering platform, and an edi-

tor of the Software and Systems

Modelling journal. He has co-

authored more than 150 peer-

reviewed papers and his research

has been supported by the European Commission, UK’s Engineering

and Physical Sciences Research Council (EPSRC), InnovateUK and

by companies such as Rolls-Royce and IBM.

123

https://doi.org/10.1109/MODELS50736.2021.00015
https://doi.org/10.1109/MODELS50736.2021.00038
https://doi.org/10.1109/MODELS50736.2021.00038
https://doi.org/10.1080/01449290410001669914
https://doi.org/10.1145/1370152.1370161
https://doi.org/10.1145/1370152.1370161
http://portal.acm.org/citation.cfm?doid=1370152.1370161
http://portal.acm.org/citation.cfm?doid=1370152.1370161
https://doi.org/10.1007/978-3-662-54494-5_9
https://doi.org/10.1007/978-3-662-54494-5_9
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1109/ASE.2019.00097
https://uk.mathworks.com/help/simulink/ug/merge-simulink-models-from-the-comparison-report.html
https://uk.mathworks.com/help/simulink/ug/merge-simulink-models-from-the-comparison-report.html
https://uk.mathworks.com/help/simulink/ug/merge-simulink-models-from-the-comparison-report.html
https://www.diffplug.com/features/simulink
https://www.diffplug.com/features/simulink
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.diffmerge.doc/topics/rhp_c_col_parallel_dev_with_diffmerge.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.diffmerge.doc/topics/rhp_c_col_parallel_dev_with_diffmerge.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.diffmerge.doc/topics/rhp_c_col_parallel_dev_with_diffmerge.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.diffmerge.doc/topics/rhp_c_col_parallel_dev_with_diffmerge.html
https://doi.org/10.1145/1370175.1370201
https://doi.org/10.1145/1370175.1370201
https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1007/978-3-540-45221-8_2
https://www.eclipse.org/cdo/
https://doi.org/10.1145/1810295.1810364
https://doi.org/10.1109/CVSM.2009.5071721
https://doi.org/10.1007/s10270-012-0248-x

	An efficient line-based approach for resolving merge conflicts in XMI-based models
	Abstract
	1 Introduction
	2 Background
	2.1 Running example
	2.2 Model serialisation
	2.3 Syntax of conflict sections
	2.4 Conflict detection through model comparison

	3 Processing XMI models with conflicts
	3.1 Line-based preprocessing
	3.2 Parsing of model versions
	3.3 Conflict section analysis
	3.4 Detecting git false positives
	3.5 Conflict smells
	3.5.1 Duplicate ids
	3.5.2 Duplicate values in multi-valued attributes
	3.5.3 Internal dangling references

	3.6 Model saving and partial resolution of conflicts
	3.7 Limitations

	4 Implementation
	4.1 Peacemaker editor
	4.2 Using a custom merge strategy

	5 Evaluation
	5.1 Completeness analysis
	5.1.1 Issues with line-based merging of models
	5.1.2 Correct git identification ("458)
	5.1.3 Git false positives (+)
	5.1.4 Git false negatives with conflict smells (sim)
	5.1.5 Conflicts not detected, model has no structural errors (!)

	5.2 Performance comparison
	5.2.1 Compared approaches
	5.2.2 Types of models
	5.2.3 Comparison scenarios
	5.2.4 Results
	5.2.5 Threats to validity

	5.3 Discussion
	5.3.1 RQ1: Can an approach that uses the line-based conflicts marked by a VCS to identify conflicts instead of a full model comparison offer the same results?
	5.3.2 RQ2: Does a conflict detection approach as described in RQ1 provide better performance and scalability than full model comparison?
	5.3.3 RQ3: Is relying on line-based VCSs such as Git to merge XMI models and to detect conflicts safe?
	5.3.4 When to use Peacemaker over model-based approaches

	5.4 Considerations for merging XMI models with line-based version control systems

	6 Related work
	7 Conclusions and future work
	Acknowledgements
	References

