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Magnon diffuse scattering (MDS) signals could, in principle, be studied with high spatial resolution in scan-
ning transmission electron microscopy (STEM), thanks to recent technological progress in electron energy-loss
spectroscopy. However, detecting MDS signals in STEM is technically challenging due to their overlap with
the much stronger thermal diffuse scattering (TDS) signals. In bcc Fe at 300 K, MDS signals greater than or
comparable to TDS signals have been predicted to occur under the central Bragg disk, well into a currently
inaccessible energy-loss region. Therefore, to successfully detect MDS in STEM, it is necessary to identify
conditions in which TDS and MDS signals can be distinguished from one another in regions outside the central
Bragg disk. Temperature may be a key factor due to the distinct thermal signatures of magnon and phonon
signals. In this work, we present a study on the effects of temperature on MDS and TDS in bcc Fe—considering
a detector outside the central Bragg disk and a fixed convergent electron probe—using the frozen phonon and
frozen magnon multislice methods. Our study reveals that neglecting the effects of atomic vibrations causes
the MDS signal to grow approximately linearly up to the Curie temperature of Fe, after which it exhibits less
variation. The MDS signal displays an alternating behavior due to dynamical diffraction, instead of increasing
monotonically as a function of thickness. The inclusion of the effects of atomic vibrations through a complex
atomic electrostatic potential causes the linear growth of the MDS signal to change to a nonlinear behavior
that exhibits a predominant peak for a sample of thickness 16.072 nm at 1100 K. In contrast, the TDS signal
grows more linearly than the MDS signal through the studied temperature range but still exhibits appreciable
dynamical diffraction effects. An analysis of the signal-to-noise ratio (SNR) shows that the MDS signal can be a
statistically significant contribution to the total scattering intensity under realizable measurement conditions and
feasible acquisition times. For example, our study found that a SNR of 3 can be achieved with a beam current of
1 nA in less than 30 min for the 16.072-nm-thick bcc Fe sample at 1100 K.

DOI: 10.1103/PhysRevB.108.134435

I. INTRODUCTION

Scanning transmission electron microscopy (STEM) is a
powerful and versatile technique to study and characterize
micro- and nanostructures [1]. Recent progress in STEM
monochromators and spectrometers has made it possible
to perform electron energy-loss spectroscopy (EELS) with
sub-10 meV energy resolution at nanometric and atomic spa-
tial resolutions [2–5]. This has opened the possibility for
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high-spatial-resolution STEM-EELS studies of elementary
excitations in the zero-to-few-hundreds meV range, such as
molecular vibrations, infrared plasmons, and phonons [6]. It
has been pointed out that high-spatial-resolution STEM-EELS
could, in principle, be performed also for magnons [7–9],
since their excitation energies lie in the same range [10].

Magnons are quanta of collective spin excitations (quan-
tized spin waves), pictured semiclassically as waves of
precessing magnetic dipole moments [10]. These quasiparti-
cles lie at the core of the current understanding of the ordered
magnetism of solids [11,12]. Therefore, studying magnons at
high spatial resolution in STEM would be relevant not only for
magnetic solid-state technologies (such as spintronics, spin
caloritronics [13,14], and magnonics [15]) but also for the
foundations of solid-state magnetism.

Other inelastic-scattering techniques have been already
employed to study magnons [10]. In particular, magnons have
been probed with energy and momentum resolution using
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reflection EELS (REELS) and spin-polarized EELS
(SPEELS) [16–18]. However, both SPEELS and REELS
setups are limited to surface or thin-film studies due to the
low energy and limited penetration depth of the electron
probe. Furthermore, these techniques cannot achieve the
spatial resolution offered by STEM.

Detecting magnon signals in STEM is technically chal-
lenging since they are typically orders of magnitude less
intense than the so-called thermal diffuse scattering (TDS)
signals [7,9], produced by the inelastic scattering of the
electron probe due to lattice vibrations (i.e., phonons). For
example, in Ref. [7] it was reported that the simulated TDS
signal for bcc Fe at 300 K is four orders of magnitude greater
than the corresponding magnon diffuse scattering (MDS) sig-
nal. Furthermore, simulations in Ref. [9] of the same system
predicted another challenge: that MDS signals exceeding or
matching TDS signals are observed solely for scattering an-
gles �0.5 mrad [refer to Fig. 2(b) in Ref. [9] along with the
associated discussion]. This region corresponds, through the
dispersion relation, to magnons with energies below 10 meV
[10], practically on the current energy resolution limit of
monochromated EELS [2–5].

Hence, to achieve MDS detection in STEM at high-spatial
resolution, it is necessary to find conditions in which MDS
and TDS signals can be told apart. In particular, as has been
argued in Ref. [7], temperature could play a decisive role for
this purpose, especially since experiments featuring STEM,
equipped with precise temperature control capabilities, can
already be conducted successfully [19–22].

In this paper, we investigate the behavior of MDS at differ-
ent temperatures and explore the possibility of temperature-
aided detection of MDS in STEM. Employing the prototypical
bcc Fe as the magnetic system and the methodology devel-
oped in Ref. [7], we investigate the temperature dependence
of simulated MDS signals considering a fixed convergent
electron beam. From the studied cases, we establish optimal
combinations of temperature and sample thickness having
the highest MDS signals. In particular, we focus on signals
surrounding the central Bragg disk to explore and address
the challenge reported in Ref. [9]. Finally, we compare our
results with TDS simulations and discuss the feasibility of
MDS detection in STEM. Our study, not incorporating energy
resolution, represents a worst-case scenario for magnon detec-
tion in STEM. Additionally, it is worth noting that we do not
include the use of a scanning probe. Thus, many of the results
presented below are relevant for both STEM and conventional
transmission electron microscopy (TEM).

II. METHODS

To simulate the inelastic electron-probe scattering on a
specimen at a certain temperature in (S)TEM [we will use the
term (S)TEM when referring to both TEM and STEM], it is
necessary to have a model for the specimen at the considered
temperature and to implement a method for electron-beam
propagation through it. In this work, the inelastic signals, TDS
and MDS, of ferromagnetic bcc Fe are obtained following
the methodology of Ref. [7]. Explicitly, the TDS signals are
calculated via the frozen phonon multislice (FPMS) method
[23] and the MDS signals via the analogous frozen magnon

multislice (FMMS) method, originally introduced in Ref. [7].
These methods are named “frozen” because each electron
from the (S)TEM probe travels with a relativistic speed, in-
teracting with the specimen in a time on the order of tens of
attoseconds, at which the motion of atoms and their magnetic
moments look practically “frozen.”

To simulate the electron-beam propagation through the
specimen in FPMS, the conventional multislice method [24]
is employed. In FMMS, to account for the effects of spins
and magnetism, the Pauli multislice method—a multislice ap-
proach to solving the relativistically corrected paraxial Pauli
equation [25,26]—is utilized. We employed an in-house de-
veloped software for both multislice methods.

For TDS calculations at a given temperature, the magnetic
moments of Fe atoms are completely ignored, and the dynam-
ics of the Fe atomic vibrations (phonons) are obtained through
molecular dynamics (MD) simulations. Meanwhile, for the
MDS calculations, atomistic spin dynamics (ASD) [10] sim-
ulations are employed to obtain the dynamics of the magnons
[i.e., the evolution of the precessing magnetic moments of Fe
atoms (of imposed constant magnitude)] assuming that the
atomic positions are kept fixed. ASD simulations accurately
model the dynamics of thermally excited magnetic moment
configurations in a manner analogous to how MD does for
atomic vibrations.

In FPMS, the TDS signal is obtained by sampling over the
possible atomic displacement configurations [23,27]. Analo-
gously, the MDS signal in FMMS is computed by sampling
over the magnetic moment configurations [7]. In both FPMS
and FMMS, the inelastic signal at the diffraction plane, for
a given temperature, is calculated as the difference between
the so-called incoherent and coherent intensities [7,28,29].
On the one hand, the incoherent intensity—corresponding to
the total scattered signal Itot in the diffraction plane—is the
average, over all samples, of the exit wavefunctions’ inten-
sities (squared amplitudes). On the other hand, the coherent
intensity is the squared amplitude of the averaged exit wave-
functions, and it corresponds to the purely elastic scattering
signal Iela in the diffraction plane. Therefore, the inelastic
signal Iine(T ) at temperature T is given by

Iine(T ) = Itot(T ) − Iela(T ), (1)

where “ine” stands for MDS in the case of FMMS, and TDS
in the case of FPMS. It is worth noting that, in practice,
additional inelastic signals, such as valence and core losses,
as well as plasmon scattering, coexist alongside TDS and
MDS [1]. Due to their different range of energy losses, these
additional signals can be effectively filtered from experimen-
tal diffraction patterns and, consequently, will not be further
considered in this work.

We have chosen ferromagnetic bcc Fe as our model sys-
tem because it is a prototypical magnetic material for which
magnons have been detected using electron beams [17]. More-
over, the methodology discussed above has already been
tested in Ref. [7] for bcc Fe.

For the calculations, we have employed supercells St con-
sisting of 20 × 20 × (14t ) repetitions of the bcc Fe unit cell
(in x, y, and z directions, respectively; see Fig. 1), with
t ∈ {1, 2, 3, 4, 5} to account for five different thicknesses, of
dimensions 5.74 × 5.74 × (4.018t ) nm3, containing 11 200t
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FIG. 1. Scheme of the system under consideration (not to scale).
A 200-kV aberration-free (S)TEM electron probe, propagating in the
z direction with 1 mrad convergence semiangle, illuminates a sample
of bcc Fe (having z as its [001] direction) at a certain temperature,
with lattice parameter 0.287 nm and 2.30μB atomic magnetic mo-
ment (μB is the Bohr magneton).

atoms. Periodic boundary conditions were considered in x and
y directions (and in z direction for the t = 5 supercells).

To implement FMMS, we generated a representative sam-
pling of the magnetic moment configurations from ASD
simulations using the UppASD code [10,30,31]. We consid-
ered the Heisenberg Hamiltonian with exchange interactions
and magnetic moments computed ab initio with the scalar-
relativistic SPRKKR code [32]. The magnitude of Fe magnetic
moments was 2.30μB (where μB is the Bohr magneton). To
account for the effect of the microscope’s objective lens, we
have included a 1 T external static magnetic field oriented
along the positive z direction. A sample of 101 configurations
per temperature, from 0 to 1700 K, was obtained by taking
a snapshot (i.e., a static configuration), every 10 fs, out of
an ASD simulation with a 0.1-fs time step. To minimize the
correlation between different snapshots, we set a large Gilbert
damping parameter α = 0.5 in the simulations. Then, for each
snapshot, we performed a Pauli multislice simulation. Finally,
the MDS signal at a given temperature was obtained using the
coherent and incoherent averages (over all the snapshots) as
in Eq. (1). A discussion about the level of convergence of our
calculations in terms of the accuracy of the computed averages
is presented in Appendix A.

Analogously, we performed FPMS simulations using snap-
shots sampled from trajectories of constant temperature MD
simulations (“NV T ensemble”) in the LAMMPS software
[33–35]. The size of the supercell was set in the same way as
in the UppASD calculations described above. The simulations
were run using a Nosé-Hoover thermostat, which maintained
the specified temperature with a temperature damping param-
eter Tdamp = 100 fs. In order to account for thermal expansion,
the average lattice parameter in the NV T ensemble simu-
lations was determined from constant temperature and con-
stant pressure MD simulations (“NPT ensemble”) for each

temperature. The time step of the MD simulation was set to 1
fs and the interatomic forces between Fe atoms were described
by a so-called embedded-atom method potential [36]. Similar
to the case of the FMMS simulations, we sample 101 configu-
rations per temperature from the MD trajectories in the NV T
ensemble by taking a snapshot of the atomic positions every
1000 fs after an initial thermal equilibration time of 10 000 fs.

In the conventional and Pauli multislice simulations, fol-
lowing the discussion of Ref. [7] regarding the resolution of
inelastic signals in the diffraction plane, we have employed
a fixed 200-kV aberration-free electron probe focused on the
entrance surface of the supercell, with a 1 mrad convergence
semiangle, propagating in the [001] direction (corresponding
to the z direction). This is illustrated in Fig. 1, not drawn to
scale [37]. For the supercell St , the multislice calculations
were performed on a regular grid Gt consisting of 1000 ×
1000 × (420t ) points in x, y, and z directions, spanning the
entire supercell.

The magnetic field B(r) and vector potential A(r), at posi-
tion r, produced by Fe magnetic moments on a given snapshot
(used for multislice simulations) were calculated using the
parametrization by Lyon and Rusz [38], which has been
successfully benchmarked against density functional theory
calculations of bcc Fe.

For the electrostatic potential V (r) of Fe atoms, we
employed the parametrization developed by Peng et al.
[39,40], which incorporates absorption effects due to phonons
by considering a complex V (r) (see Appendix B for de-
tails). In particular, this complex potential incorporates the
Debye-Waller factor (DWF) [11]—leading to weaker elas-
tic scattering at high angles and stronger at low angles—in
both its real part (elastic potential) and in its imaginary
part (absorptive potential). Hence, in our FPMS simulations,
we exclusively consider the elastic potential without DWF,
since the effect of atomic vibrations is already fully included
through averaging over snapshots. Conversely, our FMMS
simulations incorporate the complete complex potential to
model (in first approximation) the absorption by phonons and
the corresponding attenuation of elastic signals due to ther-
mal motions. The mean-squared displacements used for the
implementation of the DWF were computed from a running
average, computed at every time step in the aforementioned
MD simulations in the NV T ensemble, and are presented in
Table I in Appendix B.

In all cases, V (r), B(r), and A(r) were computed in the
gridpoints of Gt surrounding each Fe atom up to a specified
cutoff distance rcut, beyond which all are set to zero. The
specific value of rcut used in each case was chosen as a
compromise between numerical accuracy and computational
resources demand (see Appendix C).

III. EFFECTS OF THE TEMPERATURE ON MDS AND
FEASIBILITY OF TEMPERATURE-AIDED DETECTION

The aim of this work is to investigate the behavior of
MDS at different temperatures, particularly, to explore the
possibility of temperature-aided MDS detection in (S)TEM.
Therefore, we start our study in Sec. III A presenting
the general features of the resulting electron-probe diffrac-
tion patterns. At this first stage, we select a detector that
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collects relevant MDS signals surrounding the central Bragg
disk and study these signals as a function of temperature in the
following.

In Sec. III B we first study the MDS while completely
ignoring the effects of atomic vibrations, considering only
the elastic potential without the DWF [i.e., setting B = 0 and
U (abs)

n = 0 in Eqs. (B3) and (B4)]. Therein, we present the
results of the MDS as a function of temperature for all the
specimen thicknesses considered.

Two significant effects of atomic vibrations in (S)TEM
are the attenuation of elastic signals with increasing scat-
tering angle and/or temperature and temperature-dependent
absorption due to phonons [1,11,39,40]. These effects can be
incorporated into static-lattice calculations by considering the
complete complex electrostatic potential, which includes the
DWF in both the elastic and absorptive potentials. Hence, to
continue our investigations, in Sec. III C we examine how
these effects alter the MDS signal with varying temperatures,
representing an initial approximation to the incorporation of
atomic vibrations. To complement this, in Sec. III D, we
present simulations of the TDS signal, where we completely
ignore the magnetic moments of Fe and consider only the
elastic electrostatic potential without the DWF. We then com-
pare and contrast these results with the MDS signal. Lastly, in
Sec. III E, we delve into the implications of our findings for
the successful detection of MDS in (S)TEM.

All the intensities presented in the figures of this work
are divided by the total intensity of the incident electron
beam integrated over the whole diffraction plane, I0, to show
dimensionless results. Moreover, when plotted in regions of
the diffraction plane, as a function of the scattering angle,
they actually correspond to intensities integrated over pixels.
This is the case for Figs. 2, 4, 7, 9. The size of a pixel in
our calculations (that can be computed from the parameters
described in Sec. II) is 0.19 mrad 2.

A. MDS diffraction patterns and selection of an annular
dark-field detector

We simulated MDS signals for different temperatures and
thicknesses while keeping the atomic positions fixed, both
when considering only the elastic electrostatic potential while
ignoring the DWF, and when considering the full complex
potential V (r). The relevant features of all the resulting
diffraction patterns can be appreciated in the upper row of
Fig. 2, showing results for bcc Fe of 16.072 nm thickness
at 1100 K, including the full complex V (r). Additionally, we
included the corresponding TDS results in the lower row of
Fig. 2 as a reference.

The general behavior of the total signal is illustrated in
Fig. 2(a), showing log10(Itot/I0). The total signal consists
of Bragg disks, alternating on high and low (kinematically
forbidden reflections) intensities, with low-intensity lobes sur-
rounding the high-intensity Bragg disks.

The MDS signal, log10(IMDS/I0), computed from Eq. (1), is
shown in Fig. 2(b). In particular, it can be appreciated that the
MDS signal is concentrated around the high-intensity Bragg
disks, vanishing away from the center of the diffraction plane.
We employed rcut = 1 nm in Fig. 2 for a better resolution of
the MDS near the Bragg disks (see Appendix C). In particular,

FIG. 2. Diffraction patterns computed for bcc Fe with a thickness
of 16.072 nm at 1100 K, considering the full complex potential V (r).
(a) FMMS total signal log10(Itot/I0) [I0 denotes the total intensity
of the incident electron beam integrated over the whole diffraction
plane] and annular dark-field detector (ADF; shown in green dashed
lines). (b) Magnon diffuse scattering (MDS) signal log10(IMDS/I0 ).
For reference, the lower panels show FPMS diffraction patterns
showing the TDS: panel (c) corresponds to (a), and panel (d) cor-
responds to (b).

the highest MDS signal is located within the central Bragg
disk, in agreement with Ref. [9]. Therefore, for experimental
detection, it is relevant to analyze the MDS signal at small
scattering angles surrounding the central Bragg spot.

Thus, to study the effects of temperature, we considered
an annular dark-field (ADF) detector [24] of inner collection
semiangle 2 mrad and outer collection semiangle 7 mrad
[illustrated by the green dashed lines in Fig. 2(a)], to avoid
all Bragg disks, including the kinematically forbidden reflec-
tions. Hence, this detector collects only the MDS signal. In
particular, as discussed in Appendix C, the calculations in this
ADF detector are already converged at rcut = 0.4 nm, having
MDS signals two orders of magnitude greater than the error
coming from the averaging process (see Appendix A). There-
fore, in the following, we study the effects of temperature
on the signals collected by the aforementioned ADF detector
using rcut = 0.4 nm .

B. MDS neglecting the effect of the atomic vibrations

In the top panel of Fig. 3, we show the simulated MDS
signals as a function of temperature for the five different thick-
nesses considered in this work (in all cases, the continuous
lines joining the computed values are only a guide to the eye).
Specifically, we present IMDS/I0 collected by the selected ADF
detector up to 1700 K (the melting temperature of our system
is around 1800 K). It can be appreciated in this panel that, for
all thicknesses, the MDS signal grows approximately linearly
up to ≈1100 K, corresponding roughly to the Curie tempera-
ture (TC) of the samples. Above TC, the linear increment stops,
giving place to a less-varying behavior. These features are
consistent with the semiclassical picture of the interaction, in
which the MDS signal would increase with the randomness
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FIG. 3. MDS signals collected by the selected ADF detector for
bcc Fe of different thicknesses (indicated in the legend of the top
panel) as a function of temperature. The top panel shows IMDS/I0

neglecting the effect of the atomic vibrations, while the bottom
panel incorporates these effects through the complex V (r). The gray
vertical line indicates the Curie temperature of the samples. Solid
lines joining the computed values are only a guide to the eye.

in the orientation of the magnetic moments (this randomness
reaches its maximum for T � TC).

It could be expected that the MDS signal increases with
the thickness. However, in the top panel of Fig. 3, the signal
corresponding to the thickness 8.036 nm is greater than the
one of 12.054 nm. Also, the results of 16.072 nm are greater
than those of 20.090 nm. This alternating behavior is due to
dynamical diffraction (multiple scattering) [1]. In particular,
increasing the thickness of the specimen for the electron beam
propagation can lead to constructive and destructive interfer-
ence conditions for the coherent intensity that are negligible
at the lowest thickness.

C. Effects of the atomic vibrations on MDS

The effects of including the atomic vibrations, as a first
approximation, by fully incorporating the complex potential
V (r) into the MDS calculations can be appreciated in the
lower panel of Fig. 3. This panel displays the signals collected
by the selected ADF detector, following the same format as
the top panel within the same figure.

For the thinnest specimen considered (4.018 nm), the ADF-
collected signal in the bottom panel of Fig. 3 again grows
linearly up to TC, saturating at a slightly higher value than
in the top panel. However, the higher sample thicknesses

FIG. 4. IMDS/I0 [including the effects of atomic vibrations
through the complex potential V (r)] and ITDS/I0 as a function of the
scattering angle θy, with θx = 0, for bcc Fe at 300 K and thickness
4.018 nm (orange curves), at 300 K and thickness 20.09 nm (blue
curves), at 1700 K and thickness 4.018 nm (red curves), and at
1700 K and thickness 20.09 nm (green curves). In all cases, rcut =
0.4 nm has been used. The TDS signals, always greater than the
corresponding MDS signals, are located in the upper portion of the
plot (above the horizontal black dashed line), while the MDS ones
are in the lower portion.

display a qualitatively different temperature dependence, in
which the saturation and linearity disappear. Instead, there is a
contrasting nonlinear behavior, which presents a predominant
peak for the sample of thickness 16.072 nm at 1100 K.

The changes between the behavior of the MDS signals
in the top and bottom panels of Fig. 3 come from the fact
that the DWF and the absorption vary with temperature (see
Appendix B). In particular, an effect of the DWF is to re-
duce the probability that the electron probe scatters to higher
angles. This reduction becomes stronger as the temperature
increases [11]. Therefore, the DWF will modify the interfer-
ence effects that produced the alternating (thickness) behavior
in the case of the top panel of Fig. 3, where there was no DWF.
In general, dynamical diffraction effects [1], which affect the
thickness dependence of the electron-scattering signals, will
be modified by the DWF.

D. Comparison between MDS and TDS

In Ref. [7] it was reported that the TDS signal was typically
at least four orders of magnitude greater than the correspond-
ing TDS signal at 300 K. We have found that this is also the
case at the different temperatures and thicknesses considered
in this work. This is illustrated in Fig. 4 showing vertical
profiles of the TDS and MDS [including the complex V (r)]
signals through the center of the diffraction plane (i.e., as a
function of the scattering angle θy, with θx = 0).

Specifically, in Fig. 4 we show ITDS/I0 and IMDS/I0 for
the thickest (blue and green curves) and the thinnest (orange
and red curves) bcc Fe samples at 300 K (in orange and
blue curves) and 1700 K (in red and green curves). In all
cases, rcut = 0.4 nm has been used. We have employed the
same colors for the corresponding MDS and TDS signals,
since they are well separated (we have included a horizon-
tal black dashed line dividing them). In particular, it can be
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FIG. 5. Top panel: ITDS/I0 collected by the ADF detector as a
function of temperature in the same format as Fig. 3. Bottom panel:
signal-to-noise ratio (SNR) evaluated for a dose of one electron. Line
colors follow the legend of the top panel.

appreciated that the difference between the TDS and MDS
signals becomes even larger at higher scattering angles. There-
fore, the region of interest for MDS detection, now in the
presence of the TDS signal, is again that of small scattering
angles. This, together with avoiding the Bragg disks, supports
the choice of the same ADF detector used for the MDS studies
in the previous subsections.

In the top panel of Fig. 5, we present the signal ITDS/I0

collected by the ADF detector, as a function of temperature,
for the different sample thicknesses, in the same format as
in Fig. 3. It can be observed that the TDS signal is about
five orders of magnitude greater than the corresponding MDS
signal (see Fig. 3). In contrast to the MDS case (including
the complex potential), the TDS curves grow more linearly
with the temperature (up to TC and above), but dynamical
diffraction effects can also be appreciated.

To determine the optimal combination of temperature and
sample thickness for MDS detection, it is relevant to consider
the signal-to-noise ratio (SNR) in the ADF detector, which is
given in this case by

SNR =
(

IMDS√
ITDS + IMDS

√
I0

I0

)√
ibta
e

, (2)

where ib is the (S)TEM-electron-beam current, ta is the ac-
quisition time, e is the elementary electric charge, and the
inelastic intensities are those collected by the detector.

In the bottom panel of Fig. 5 we show the SNR evalu-
ated for an electron dose of one electron [i.e., for ibta/e = 1

FIG. 6. Log-log plots of the electron beam current ib as a function
of the acquisition time ta, computed from Eq. (2), producing signal-
to-noise ratios (SNR) of 3 and 5, for bcc Fe of 16.072 nm thickness
at 1100 K.

in Eq. (2)] for all the temperatures and sample thicknesses
considered. It can be observed that the optimal detection
setup corresponds to the sample of 16.072 nm thickness at
1100 K. This is a consequence of the contrasting behavior
of the MDS and TDS signals for the 16.072 nm specimen
around 1100 K, which can be appreciated in the top panel of
Fig. 5 and the bottom panel of Fig. 3. While the MDS has
a peak at 1100 K, with a distinctive concave behavior, the
TDS presents an increasing and slightly convex behavior in
the same region. Could this change be detected and resolved
in current (S)TEM machines? A positive answer would imply
a method for temperature-aided detection of MDS in (S)TEM.

A typical criterion for successful detection conditions in
(S)TEM is to have at least SNR = 3 [41], while in general
signal processing SNR = 5 criterion is used [42]. Therefore,
using Eq. (2) for the sample of 16.072 nm thickness at 1100 K,
we present in Fig. 6 log-log plots of ib as a function of ta giving
SNR = 3 and SNR = 5.

It is worth mentioning that existing (S)TEM machines
vary from some of which have low ib, on the order of pi-
coamperes, to others capable of routinely working well above
1 nA [43–45]. Therefore, it can be appreciated in Fig. 6 that
our calculations predict large yet attainable acquisition times
for realistic conditions (below 1 h for beam currents over
1 nA). For example, it is predicted that a SNR = 3 could be
obtained in less than 30 min. using a 1-nA electron probe.
Also, it is worth noting that for tens of picoamperes, the
acquisition times are less than 1 day. Clearly, experiments will
encounter constraints related to sample drift and the maximum
allowable electron dose before beam-induced damage appears
[46]. Nevertheless, employing a scanning probe across an
area of uniform sample thickness and orientation may help to
alleviate these limitations. Another potential path to increase
the relative strength of IMDS could be an exploration of the use
of patterned apertures [47]. Furthermore, in specific systems,
magnon and phonon signals may be sufficiently separated in
energy, allowing individual filtering or mapping (including as
a function of temperature) by incorporating energy resolution
through EELS, offering another level to disentangle their con-
tributions.
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E. Discussion

We have shown that, in our simulations, there are optimal
detection conditions at which IMDS can be statistically signif-
icant at conceivable acquisition times. Therefore, there might
exist experimental configurations allowing for temperature-
aided detection of MDS in (S)TEM.

However, we have not put forward an explicit method to
separate the two contributions, ITDS and IMDS. A possible start-
ing point in this endeavor could rely on the difference in the
concavity of the signals at the optimal conditions, pointed out
in the previous subsection (i.e., the behavior around 1100 K
for the 16.072-nm curves in the top panel of Fig. 5 and in the
bottom panel of Fig. 3). In particular, it could be useful to
fit with Gaussian functions the experimental ADF-collected
signals at different temperatures to detect the IMDS peaks.
Moreover, rotating the samples’ magnetization could be at-
tempted, since it may influence IMDS, leaving ITDS unaltered.

Nevertheless, independently of any specific detection strat-
egy, we consider that the main finding of our work is that,
under accomplishable measurement conditions, the IMDS sig-
nal can become a statistically significant contribution to the
total scattering intensity within a suitably chosen detector.

To further bridge the gap toward successful MDS detection
in STEM, it would be valuable to perform energy-resolved
STEM studies. For that matter, a theoretical methodology
allowing for MDS simulations with energy resolution would
be of utmost relevance. Nevertheless, the findings reported
in this work could likely help to establish optimal condi-
tions for STEM-EELS MDS studies, both theoretical and
experimental.

IV. CONCLUSIONS

We have presented a study of simulated MDS in bcc Fe
samples, of different thicknesses and temperatures, to ex-
plore the possibility of temperature-aided MDS detection in

FIG. 7. Elastic and magnon diffuse scattering signals, Iela and
IMDS (divided by the total intensity I0 of the incident beam integrated
over the whole diffraction plane), respectively [see Eq. (1)], for bcc
Fe of 16.072 nm thickness at 1100 K, including the effects of atomic
vibrations through the complex V (r) and using the cutoff distance
rcut = 1 nm . A curve of IMDS/I0 divided by 100 is included for
comparison with Iela. The position and width of the Bragg disks are
indicated by the vertical gray bars.

TABLE I. Mean-squared displacement 〈u2〉T , used for the imple-
mentation of Debye-Waller factors, and bcc Fe lattice parameter a, at
temperature T , used for TDS calculations.

T (K) a (Å) 〈u2〉T (Å2) T (K) a (Å) 〈u2〉T (Å2)

100 2.855389 0.004693 1000 2.881882 0.061313
200 2.856854 0.009678 1100 2.886190 0.069974
300 2.858989 0.014849 1200 2.890794 0.079865
400 2.861494 0.020589 1300 2.895650 0.090492
500 2.864269 0.026535 1400 2.900800 0.102204
600 2.867294 0.032765 1500 2.906238 0.115404
700 2.870572 0.038693 1600 2.912003 0.130029
800 2.874080 0.045774 1700 2.918126 0.148881
900 2.877857 0.053119

STEM. An ADF detector that collects the relevant MDS signal
surrounding the central Bragg disk [illustrated by the green
dashed lines in Fig. 2(a)] has been employed.

It was found that when the effects of the atomic vibrations
are neglected, the MDS signal IMDS grows approximately
linearly up to the Curie temperature (TC) of Fe, presenting
a much less-varying behavior for higher temperatures. Also,
instead of increasing monotonically as a function of thickness,
the MDS signal displayed an alternating behavior due to dy-
namical diffraction.

When the effects of the atomic vibrations are incorporated
through the complex atomic electrostatic potential, the linear
growth of IMDS gives place to a different nonlinear behavior,
which presents a predominant peak for the sample of thickness
16.072 nm at 1100 K.

In contrast, the TDS, due to the atomic vibrations
(phonons), presented a signal (ITDS) that grows more linearly,
in all the temperature ranges considered,than the correspond-
ing IMDS [including the complex V (r)], but still displayed
appreciable dynamical diffraction effects. Moreover, it was
found that ITDS was five orders of magnitude greater than
the corresponding IMDS. Nevertheless, an analysis of the SNR
showed that under realizable measurement conditions, the
IMDS signal can become a statistically significant contribution
to the total scattering intensity. In particular, we found that
SNR � 3 could be achieved with existing (S)TEM machines
in less than 30 min. of data acquisition for a bcc Fe sample of
16.072 nm thickness at 1100 K.
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TABLE III. Values of the parameters b(Re)
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1 (Å2) b(Re)
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5 (Å2)
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APPENDIX A: CONVERGENCE IN TERMS OF THE
AVERAGING OF SNAPSHOTS

The accuracy of the inelastic signals Iine(T ) computed with
Eq. (1) depends, in particular, on the number of snapshots Ns

considered for the averaging process. A higher Ns produces a
more converged value of Iine(T ).

Given a fixed Ns, it is relevant to estimate the degree of
accuracy of the computed signals. A rough estimation can be
achieved by exploiting the fact that the elastic signal Iela(T )
should consist of only Bragg disks.

Take, for example, Fig. 7, showing signals for bcc Fe of
16.072 nm thickness at 1100 K, including the complex V (r)
to account for the effects of atomic vibrations, and using
the cutoff distance rcut = 1 nm [for information about V (r)
and rcut, please refer to the last two paragraphs of Sec. II).
Specifically, in Fig. 7 we show Iela/I0 and IMDS/I0 (where
I0 denotes the intensity of the incident electron beam inte-
grated over the whole diffraction plane) along a vertical profile
through the center of the diffraction plane, i.e., as a function of
the scattering angle θy, with θx = 0. We have included vertical
gray bars indicating the position and width of the Bragg disks.

It can be appreciated in Fig. 7 that there is a nonzero elastic
signal between the Bragg disks. This signal, called hereafter
INs
error, goes to zero as Ns increases. Hence, from Eq. (1), com-

puting IMDS with a given Ns gives an error on the order of INs
error

in the resulting MDS signal (outside the Bragg disks). In this
work, in which Ns = 101, and in particular in Fig. 7, INs=101

error is
about two orders of magnitude smaller than the corresponding
IMDS. We include IMDS/(100I0) in Fig. 7 (red curve) to help
illustrate this result.

APPENDIX B: COMPLEX ATOMIC ELECTROSTATIC
POTENTIAL

We have employed the parametrization for the complex
atomic electrostatic potential V (r) developed by Peng et al.
[39,40], which includes absorption effects due to TDS. Specif-
ically, we utilized Eq. (8) of Ref. [39], corresponding to the
following formula for the complex electrostatic potential en-
ergy U (r) = eV (r) (where e represents the elemental charge):

U (r) = −2π h̄2

m0

∑
a

5∑
n=1

Un(r − Ra). (B1)

In Eq. (B1), Ra denotes the equilibrium position of atom a,∑
a denotes the sum over the atomic positions in the crystal,

TABLE IV. Values of the parameters a(abs)
n (in Åunits) and b(abs)

n (in Å2 units) of Eq. (B4) for bcc Fe determined by the fitting procedure
described in Refs. [39,40] for a 200-kV electron probe. The DWF B factor was computed from the 〈u2〉T values of Table I. The rightmost
column shows the standard deviation σ of our fit, determined using Eq. (11) of Ref. [40].

T (K) a(abs)
1 a(abs)

2 a(abs)
3 a(abs)

4 a(abs)
5 b(abs)

1 b(abs)
2 b(abs)

3 b(abs)
4 b(abs)

5 B (Å2) σ (Å)

100 0.01733 0.00383 0.09533 −0.05651 −0.01291 1.07730 4.85519 0.18916 0.22153 0.05072 0.123515 0.858 × 10−5

200 0.00750 0.03280 10.92648 −10.88299 −0.00728 5.02555 1.16514 0.16692 0.16659 0.04500 0.254715 1.689 × 10−5

300 0.01106 0.04708 0.06690 −0.02151 −0.00392 5.16181 1.24349 0.28783 0.12304 0.03903 0.390810 2.471 × 10−5

400 0.01409 0.05949 0.06826 −0.01895 −0.00243 5.44356 1.36831 0.40155 0.12765 0.03306 0.541881 3.196 × 10−5

500 0.01576 0.06723 0.07671 −0.01878 −0.00230 5.91156 1.55839 0.53568 0.14657 0.03487 0.698373 3.699 × 10−5

600 0.01517 0.06845 0.09338 −0.00233 −0.01962 6.77315 1.87670 0.69916 0.03835 0.17037 0.862340 3.869 × 10−5

700 0.06572 0.01236 0.11428 −0.00241 −0.02114 2.32300 8.24889 0.86116 0.04238 0.19603 1.018359 3.621 × 10−5

800 0.00902 0.06413 0.13665 −0.00261 −0.02376 10.75286 2.87720 1.03051 0.04849 0.23155 1.204723 2.914 × 10−5

900 0.06472 0.00728 0.15457 −0.00279 −0.02691 3.32041 13.27529 1.17903 0.05471 0.26989 1.398036 2.089 × 10−5

1000 0.06607 0.00645 0.17089 −0.00290 −0.03024 3.70311 15.55992 1.33059 0.06062 0.30992 1.613693 1.420 × 10−5

1100 0.00607 0.06724 0.18583 −0.00296 −0.03326 17.47419 4.04853 1.48567 0.06600 0.34819 1.841642 1.294 × 10−5

1200 0.00588 0.06775 0.20123 −0.00299 −0.03603 19.25031 4.41662 1.66213 0.07158 0.38765 2.101963 1.755 × 10−5

1300 0.06716 0.00577 0.21670 −0.00301 −0.03834 4.81115 20.86226 1.85335 0.07734 0.42646 2.381654 2.440 × 10−5

1400 0.06522 0.00568 0.23302 −0.00306 −0.04030 5.26642 22.43683 2.06637 0.08369 0.46646 2.689901 3.189 × 10−5

1500 0.06181 0.00556 0.25073 −0.00313 −0.04203 5.82167 24.08175 2.30793 0.09110 0.50960 3.037312 3.965 × 10−5

1600 0.05720 0.00537 0.26944 −0.00325 −0.04359 6.50055 25.84895 2.57465 0.09981 0.55638 3.422226 4.733 × 10−5

1700 0.30563 0.04107 −0.04288 −0.00036 −0.00470 2.99216 10.03400 0.63216 0.02431 0.17428 3.918391 7.502 × 10−5

134435-8



UNVEILING THE IMPACT OF TEMPERATURE ON MAGNON … PHYSICAL REVIEW B 108, 134435 (2023)

FIG. 8. Comparison of the elastic signal Iph
ela obtained in FPMS

simulations with the total signal Imag
tot from FMMS simulations

[including the effects of atomic vibrations through the complex
potential V (r)] as a function of temperature for various specimen
thicknesses. Both signals are integrated over the entire diffraction
plane and normalized by the total incident beam intensity I0, which
is also integrated over the entire diffraction plane.

m0 is the electron rest mass, and h̄ is Planck’s reduced con-
stant. The complex function Un(r) can be expressed in terms
of its real (elastic) and imaginary (absorptive) parts as

Un(r) = U (Re)
n (r) + iU (abs)

n (r), (B2)

with i = √−1, and

U (Re)
n (r) = a(Re)

n

[
4π

b(Re)
n +B

]3/2

exp

[−4π2r2

b(Re)
n +B

]
, (B3)

U (abs)
n (r)=a(abs)

n

[
4π

b(abs)
n + B

2

]3/2

exp

[
−4π2r2

b(abs)
n + B

2

]
. (B4)

The constants a(Re)
n , b(Re)

n , a(abs)
n , and b(abs)

n are real-valued fit-
ting parameters [48]. The symbol B represents the isotropic
B factor of the Debye-Waller factor for bcc Fe, Biso =
8π2〈u2〉T /3 [49,50], in which 〈u2〉T is the mean-squared dis-
placement at temperature T . The values of 〈u2〉T used for
the determination of B factors at temperature T are given in
Table I, alongside the lattice parameter of bcc Fe, as obtained
by molecular dynamics calculations.

In our study, we employed the numerical value 2π h̄2/m0 =
47.877 98 Å2 eV [39] in Eq. (B1). Furthermore, for the
parameters in Eqs. (B3) and (B4) we used the values of
Tables II–IV.

The values of the parameters in Tables II and III are re-
produced from Table 3 of Ref. [40]. To obtain the values of
Table IV, we implemented the fitting methodology described
in Refs. [39,40] in an in-house program, employing (i) the
values of Tables II and III, (ii) the values of B computed from
〈u2〉T in Table I, and (iii) a 200-kV acceleration voltage. We
have included in Table IV the standard deviation σ of our fit,
computed as Eq. (11) of Ref. [40].

To demonstrate the effectiveness of the complex potential
in replicating TDS absorption, we display in Fig. 8 the elastic
signal obtained in the FPMS simulations, denoted as Iph

ela, in-

FIG. 9. Convergence of the magnon diffuse scattering signal
IMDS (divided by the intensity I0 of the incident beam integrated
over the whole diffraction plane) for different cutoff distances rcut,
indicated in the inset of the top plot [Fig. 9(a)], for bcc Fe of
16.072 nm thickness at 1100 K, including the Debye-Waller factor.
(a) Vertical [i.e., as a function of the scattering angle θy for fixed

θx = 0] and (b) diagonal [i.e., as a function of θr =
√

θ2
x + θ2

y , with
θx = θy] profiles through the origin of the diffraction plane. The gray
bars indicate the position and width of the Bragg disks.

tegrated over the entire diffraction plane. This signal is shown
as a function of temperature for various specimen thicknesses,
along with the integrated total signal from FMMS simulations,
denoted as Imag

tot . Both signals are normalized by the total
incident beam intensity, denoted as I0, integrated over the
entire diffraction plane. The percentage difference between
both signals, given by 100 × |Iph

ela − Imag
tot |/|Iph

ela|, remains below
8% for all cases considered. Consequently, the reduction of
the integrated intensity in the elastic channel observed in
FPMS simulations, attributed to phonons, closely matches the
corresponding total signal decrease in FMMS simulations due
to the absorptive component of the complex potential.

Notably, in Fig. 8, it can be appreciated that Iph
ela � Imag

tot ,
indicating that the depletion of Iph

ela consistently exceeds that
of Imag

tot . This behavior likely stems from the contrasting
approaches used to address atomic motion in the two method-
ologies. The complex potential model assumes uncorrelated
atomic motion, whereas the FPMS methodology fully consid-
ers these correlations. Consequently, there could be nonlocal
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(off-diagonal) contributions to the absorptive potential result-
ing from correlated atomic motion, which are neglected in
a local absorptive potential (see Fig. 3 in Ref. [51]). These
contributions could explain the slightly increased depletion of
the elastic channel in FPMS as compared to FMMS (see Fig. 3
and the related discussion in Ref. [52]).

APPENDIX C: CONVERGENCE IN TERMS OF THE
CUTOFF DISTANCE

The microscopic electromagnetic fields V (r), B(r), and
A(r) of an atom vanish as the distance from the atom in-
creases. Therefore, it is customary to define a cutoff distance
rcut above which these fields are set to zero to economize com-
putational resources in crystals simulations. This establishes
a compromise between the precision of a calculation and its
computational resources demand.

To show the convergence level of our calculations, in Fig. 9
we show MDS profiles (in logarithmic scale) for different
values of rcut, as a function of the scattering angle θr , for
bcc Fe of 16.072 nm thickness, at 1100 K, fully including the
complex V (r). Specifically, in Fig. 9(a) we show the vertical

profile of IMDS/I0 (I0 denotes the intensity of the incident
electron beam) through the origin of the diffraction plane; that
is, as a function of θy for fixed θx = 0. Meanwhile, Fig. 9(b)
shows a diagonal profile of IMDS/I0 through the origin of
the diffraction plane; i.e., as a function of θr =

√
θ2

x + θ2
y

with θx = θy. We have included vertical gray bars indicating
the position and width of the Bragg disks in both Figs. 9(a)
and 9(b).

It can be observed in these figures that the MDS signal
decreases as the scattering angle increases, presenting max-
ima near the position of the high-intensity Bragg disks [in
agreement with Figs. 2(a), 2(b), and 7]. Moreover, the high-
est MDS signal is located around the central Bragg spot (at
zero scattering angle), in conformity with Ref. [9]. Therefore,
in our study, we considered an ADF detector [24] of outer
collection semiangle 7 mrad and inner collection semiangle 2
mrad [represented by the green dashed lines in Fig. 2(a)] to
avoid all Bragg disks.

In particular, well converged MDS signals within the con-
sidered ADF detector can be obtained with rcut = 0.4 nm,
as shown Figs. 9(a) and 9(b). However, to better resolve
the MDS near and within the Bragg disks, a higher rcut is
necessary.
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