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Abstract

Baryon number conservation is not guaranteed by any fundamental symmetry
within the standard model, and therefore has been a subject of experimental
and theoretical scrutiny for decades. So far, no evidence for baryon number
violation has been observed. Large underground detectors have long been used
for both neutrino detection and searches for baryon number violating pro-
cesses. The next generation of large neutrino detectors will seek to improve
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upon the limits set by past and current experiments and will cover a range of
lifetimes predicted by several Grand Unified Theories. In this White Paper, we
summarize theoretical motivations and experimental aspects of searches for
baryon number violation in neutrino experiments.

Keywords: Proton decay, neutrino experiments, baryon number violation

1. Introduction and executive summary

1.1. Theory summary

The stability of ordinary matter has long been a subject of both theoretical and experimental
interests. The electron is stable because of electric charge conservation. On the other hand, in
the standard model (SM), the stability of the proton is guaranteed by the accidental global
symmetry of baryon number at the renormalizable level. In models of quark-lepton unifica-
tion, such as the grand unified theories (GUTs), baryon number is necessarily violated. As a
result, the proton is not stable, and decays dominantly into e+π0 (in non-supersymmetric
theories) or K n̄+ (in supersymmetric theories). Another compelling reason for baryon non-
conservation is that understanding the origin of matter in the Universe requires it as one of the
three fundamental Sakharov conditions in addition to CP violation and thermal non-
equilibrium.

This striking prediction of GUTs on proton decay, which are otherwise inaccessible to
laboratory experiments, motivated the construction of large-scale water Cherenkov detectors
like Irvine–Michigan–Brookhaven (IMB), Kamiokande, and its subsequent upgrade, Super-
Kamiokande. Although there is no direct evidence of proton decay so far, but only stringent
lower limits on the proton lifetime, it is important to continue the searches for proton (and
bound neutron) decay and other baryon number violating (BNV) processes in general. A large
class of GUTs predict proton lifetime to be within an order of magnitude above the current
experimental limit. It is also important to keep in mind that the same experiments originally
constructed to search for proton decay have now become truly multi-purpose experiments. In
particular, they have played a major role in neutrino physics, starting with the serendipitous
detection of SN1987A neutrinos, as well as the discovery of neutrino oscillations in atmo-
spheric and solar neutrinos.

Therefore, the significance of current and next-generation neutrino experiments simulta-

neously searching for baryon number violation and studying neutrino properties cannot be
overemphasized. While the main focus of the BNV experiments is on proton decay searches,
there also exist other equally important baryon and/or lepton number violating processes,
such as dinucleon decays and neutron-antineutron oscillations which must be studied as well
along with their experimental detection prospects. Possible connections of BNV observables
to other beyond the SM (BSM) physics, such as neutrino mass, baryogenesis, dark matter
(DM), flavor physics, and gravitational waves are also being explored. The recent lattice
developments for the relevant nucleon and nuclear matrix elements of effective BNV
operators are also crucial for reducing the theoretical uncertainties in the BNV predictions.

1.2. Experimental summary

Experiments have long sought evidence of the decay of the proton as proof of physics BSM.
The lower limit on the proton’s lifetime is currently of order 1034 years. Experimental
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searches that seek to probe beyond this limit therefore need a huge source of protons and
years of exposure. The large mass and long operation times of detectors used for observation
of neutrino oscillations make them well-suited for searches for baryon number violation,
including nucleon decay and neutron-antineutron oscillations. The Super-Kamiokande neu-
trino experiment, which uses a water Cherenkov detector with a fiducial mass of 22.5 ktons
and began operation in 1996, has published leading limits on 30 BNV processes. Next-
generation neutrino detectors, such as DUNE (40 kton fiducial mass liquid argon TPC),
Hyper-Kamiokande (HK) (190 kton fiducial mass water Cherenkov), and JUNO (20 kton
fiducial mass liquid scintillator), all include searches for baryon number violation as a major
component of their physics programs and hope to improve upon the limits set by Super-
Kamiokande, if not observe baryon number violation for the first time.

Detector mass is a crucial characteristic in next-generation baryon number violation
searches. For small detectors, the exposure required to improve upon limits already set by
Super-Kamiokande can exceed the likely lifetime of the experiment. Clearly HK has the
advantage in this respect. That being said, detector technology is also extremely important;
DUNE’s excellent imaging capabilities and JUNO’s superb timing resolution offer advan-
tages in some channels over HK’s larger mass. NOvA, a currently-running neutrino
experiment with a 14 kton segmented liquid scintillator detector, is developing a search for
neutron-antineutron oscillations that could potentially have sensitivity comparable to current
limits. THEIA is a proposed water-based liquid scintillator detector that would combine the
advantages of the large mass of a water Cherenkov detector with the good resolution of a
liquid scintillator detector. With this worldwide program, should a BNV signal be observed
by any of the detectors in the next generation, confirmation from other detectors using
different technologies would provide powerful evidence of physics BSM.

In addition to detector mass and technology, simulation and analysis techniques can also
affect the potential of these searches. As with neutrino interactions, the experimental com-
munity has come to understand how important nuclear effects are in predicting the char-
acteristics of final-state particles. Final-state interactions (FSIs) in the nucleus alter the
multiplicity and momenta of final-state particles. Uncertainties in modeling FSIs therefore
introduce uncertainties into the signal efficiency estimates and lifetime limits. Furthermore,
analysis techniques are continually improving. For example, Super-Kamiokande made
improvements to the search for proton decay via p→ e+π0 by reducing backgrounds via
neutron tagging. Potential improvements to searches in a liquid argon TPC could come from
tagging of nuclear de-excitations.

The experimental neutrino physics community has long been conducting searches for
baryon number violation using neutrino detectors. The next generation of neutrino detectors,
situated in underground laboratories with good shielding to reduce cosmic ray backgrounds,
will allow the continued pursuit of this goal, with massive detectors and continually
improving analysis techniques.

2. Theoretical motivations

2.1. Historical context

‘Is ordinary matter stable?’ This question has been a subject of experimental and theoretical
interest over many decades. Ordinary matter made up of electrons and nucleons (protons and
neutrons) is stable first because electrons are stable because of electric charge conservation;
but what about nucleons? So far, experimental searches for the decay of protons and bound
neutrons have not found evidence for nucleon decay and have only led to decay mode
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dependent upper limits on the nucleon lifetime. From a theoretical point of view, the stability
of matter can be guaranteed by assigning a baryon number B=+1 to the proton (the lightest
baryon), which is known as the principle of conservation of baryon number formulated by
Weyl in 1929 [1] (see also [2–4]). Baryon number conservation, however, is not guaranteed
by any fundamental symmetry within the SM. Instead, baryon number is an accidental
classical (global) symmetry of the SM Lagrangian, which is violated by small amounts via
non-perturbative effects (namely, SU(2)L sphalerons) [5–8]. These are however negligibly
small at temperatures low compared with the electroweak scale, but are important in the early
universe.

After the recent discovery [9, 10] of the Higgs boson, the SM seems to be remarkably
complete; furthermore, as modified to include nonzero neutrino masses and lepton mixing
(which were absent in the original SM), it is generally consistent with the current exper-
imental data. (Here, we note that there are indications of possible violation of lepton flavor
universality in the B-meson decays reported by the LHCb experiment [11]. Furthermore, the
g 2( )- m measured value shows a significant deviation compared to the SM prediction
recently confirmed by the Fermilab experiment [12]. There is an intensive experimental
program to check these indications.) However, it is clear that the SM has several deficiencies
[13]. For example, even apart from its prediction of (i) zero neutrino masses, the original SM
accommodated, but did not explain, the quark and charged lepton masses or the observed
Cabibbo–Kobayashi–Maskawa (CKM) quark mixing. Other deficiencies include the fact that
(ii) there is no cold DM candidate in the SM (aside from primordial black holes, whose
possible contributions to DM have long been studied), (iii) the observed matter-antimatter
asymmetry of the Universe cannot be explained, (iv) the fundamental reason for electric
charge quantization is not understood, and (v) the Higgs hierarchy (fine-tuning) problem is
not solved. These are clear indications that the SM must be extended. A natural pathway
towards building an ultraviolet (UV) complete model follows directly from the unification of
the electromagnetic and weak forces already realized within the SM. These two interactions
are of quite different strengths at low energy scales, owing to the electroweak symmetry
breaking (EWSB), which produces masses of O(102) GeV for the W and Z vector bosons,
while keeping the photon massless. However, at energy scales above the EWSB scale, the
SU(2)L and U(1)Y gauge interactions have coupling that are of comparable strength.

Therefore, a natural expectation is that all forces might unify at some higher scale. His-
torically, the first such attempts at unification were the Pati-Salam (PS) model [14, 15] that
unifies quarks and leptons and the Georgi–Glashow (GG) [16] model that unifies all three
forces (electromagnetic, weak, and strong) within a fundamental symmetry group SU(5),
which also unifies particles and antiparticles. Spontaneous breaking of these symmetries at
some ultrahigh-energy scale leads to the SM with three distinct unbroken symmetries that
result in separate electroweak and strong forces. This idea of embedding the entire SM into a
single unified group is called Grand Unification [15–20].

An immediate consequence of GUTs is that baryon number is necessarily violated and the
proton decays. These processes are mediated by the new superheavy gauge bosons associated
with the GUT group. Assuming the unified gauge coupling to take a value similar to the fine-
structure constant, and using the best experimental lower limit of the proton lifetime known
around the time unified theories were proposed (1974) [21]: τp 1030 years (using 20 tons of
liquid scintillator), one obtains a limit on the superheavy gauge boson mass MX 1014GeV.
This corresponds to a scale at which SM gauge couplings are expected to be unified. Being
twelve orders of magnitude larger than the electroweak scale, there is no hope to directly test
GUT scale physics at colliders (see however [22] for indirect tests). On the other hand, proton
decay (and the decay of neutrons that would otherwise be stably bound in nuclei) provides a
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clear signature of GUTs, and therefore, it was the prime target of early experiments using
water Cherenkov and other detectors. Since 1 kiloton of water contains about 6× 1032

nucleons, it was thought that proton decay predicted by GUTs should be within reach of
experimental searches.

The search for nucleon decay has a long history. The first useful limits on nucleon decay
rates were obtained using radiochemical methods. Alternatively, nucleon decays were also
searched for using geochemical techniques. Both of these methods are discussed in [23], and
a strong bound on the nucleon lifetime of τp> 2× 1027 years was obtained using the second
method [24]. The advantage of these indirect methods was that limits on nucleon lifetime
were obtained independent of the decay modes. On the other hand, the direct detection
method is based on detecting particles emitted by the decay of a nucleon. The primary
advantage of detectors of this type is that much larger quantities of matter can be used as
nucleon sources. Furthermore, large backgrounds encountered in the nuclear experiments can
be significantly reduced in the direct detection experiments. The CERN group [25] carried out
the first deep underground experiment hunting for proton decay in a railway tunnel (in
Switzerland) that provided an upper bound on the nucleon lifetime of 3× 1026 years (1960).
By analyzing results from earlier deep underground experiments, the proton lifetime reached
about τp> 3× 1030 years by 1981 [26, 27]. For an overview of early proton decay experi-
ments, see [28].

During the 1980s, five underground detectors started searching for proton decay. Three of
them were based on calorimeter-type detectors: (i) NUSEX (in Europe) [29], (ii) Frejus (in
Europe) [30], (iii) Soudan-2 (in Minnesota) [31], and two of them were water Cerenkov
detectors: (iv) IMB (in Ohio) [32], (v) Kamiokande (in Japan) [33]. After several years of
operation, these experiments observed no clear indication of nucleon decay; however, some
of these experiments led to unexpected groundbreaking discoveries in neutrino physics.
Kamiokande (Kamioka Nucleon Decay Experiment), funded in 1982, listed in its proposal the
possibility of detecting neutrino bursts from supernovae as well as studying neutrino oscil-
lations through the measurements of atmospheric neutrinos. Shortly after Kamiokande started
taking data in 1983, it was realized that this experiment could be upgraded to measure solar
neutrinos. The upgraded experiment Kamiokande-II started taking data in 1987 and, imme-
diately after, it detected a neutrino burst from supernova SN1987A [34]. Neutrinos from this
supernova explosion were also detected by the IMB experiment [35]. This historical obser-
vation demonstrates the excellent capability of water Cherenkov detectors to measure low-
energy neutrinos. Two years later, Kamiokande-II also successfully detected solar neutrinos
and confirmed the deficit of neutrinos from the Sun [33].

Subsequently, the construction of Super-K (Super-Kamiokande) was approved in 1991,
which had proton decay and neutrino astronomy (solar neutrinos and supernova neutrinos) in
its top-listed search agenda. The making of the Super-K detector was completed in 1996, and
within two years of data taking, the discovery of neutrino oscillation (of the atmospheric
neutrinos) was announced in 1998 [36]. Remarkably, the data analysis exhibited that a muon
neutrino produced in the atmosphere was converting to another neutrino flavor. The Super-K
experiment also played a significant role in discovering neutrino oscillation in solar neutrinos.
Measurements of the solar neutrino flux at Super-K showed that solar electron neutrinos were
transforming to different neutrino flavors [37, 38]. These two major milestones clearly depict
the importance of experiments that are simultaneously searching for BNV processes and
studying neutrino properties. At the time of writing this White Paper, no convincing evidence
of proton decay has been reported, and the current lower limit on the proton lifetime exceeds
1034 years for some channels.
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2.2. Proton decay in GUTs

The basic idea of GUTs is the embedding of the entire SM gauge group
SU SU U G3 2 1c L Y SM( ) ( ) ( )´ ´ º in a larger (non-Abelian) group GGUT, which thus
involves a single gauge coupling. Importantly, electric charge quantization is guaranteed in
this framework, since the electric charge operator is a generator of GGUT. Even though the
values of three gauge couplings associated with GSM are different at the low energy scales,
they are expected to get unified at the GUT scale. However, within the SM, these gauge
couplings do not quite combine into a single coupling. Interestingly, if TeV scale super-
symmetry (SUSY) [39–43] is assumed, the Minimal Supersymmetric SM (MSSM) leads to
unification at about MGUT= 2× 1016GeV. Since SUSY can also provide a solution to the
hierarchy problem [40, 44–46] and since a DM candidate naturally arises in an R-parity-
conserving SUSY theory if the lightest SUSY particle (LSP) does not carry electric and/or
color charge, SUSY GUTs [47] can be considered an appealing extensions of the SM. In
order for SUSY to provide a solution to the fine-tuning problem with the Higgs mass, it was
necessary that the SUSY breaking scale should not be much higher than the EWSB scale of
250 GeV. Thus, it was widely expected that supersymmetric partners of SM particles would
be observed at the LHC. However, no evidence of these superpartners (in particular, the
squarks and gluinos, which interact strongly) has been seen at the LHC running at 14 TeV
[13]. This subsection summarizes the state of theoretical knowledge of both non-SUSY and
SUSY GUTs. In our discussion, we mostly focus on minimal models; however, nucleon
decay predictions of a wide range of models are summarized in table 2. For reviews on this
subject, see [20, 48–50].

• SU(5) GUTs: The simplest GUT model is the GG model [16] with the gauge group
GGUT= SU(5). In this model, the GUT group is spontaneously broken to the GSM in a single
step by a Higgs field in the adjoint (24) representation. Finally, SM symmetry is broken down
to SU U3 1c em( ) ( )´ when a scalar field in the fundamental (5) representation acquires VEU.
The latter field contains the SM Higgs doublet that remains light, whereas its color-triplet
partner needs to reside roughly above 1011GeV since it leads to proton decay predominantly
through p Kn̄ + channel [51]. The SM fermions of each generation are contained in a 5-
and a 10-dimensional representations. Notably, the 5 contains the lepton doublet and the d c

quark field, while the 10 contains the quark doublet, and the u c as well as the e c fields. The
gauge multiplet belonging to the adjoint representation contains twelve SM and twelve BSM
vector bosons (labeled by X and Y with electric charges 4/3 and 1/3, respectively). These
new gauge boson interactions involve both quarks and leptons; consequently, the new
interactions violate baryon number B, and lead to proton decay via dimension-6 operators of
the form such as u Qe Qc cg gm

m etc [48, 52–54]. An example diagram is presented in figure 1
(diagram on the left).

Non-observation of proton decay requires these gauge bosons to be superheavy, and this
bound can be computed easily by approximating the left diagram in figure 1 by a four-fermion
interaction; by doing so, one obtains,

M

g m

16
, 1p

X

p

2 4

GUT
4 5

( )t
p

~

where gGUT is the unified gauge coupling and mp and MX are the proton and superheavy
gauge boson masses, respectively. Then the current experimental bound of
τp(p→ e

+π0)> 2.4× 1034 years from the Super-Kamiokande Collaboration [55] typically
implies MX∼MGUT 5× 1015GeV. In addition to p→ e+π0, current (as well as future)
experimental bounds (sensitivities) on other important proton decay modes are summarized in
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table 1. Further information about nucleon decays and relevant experiments are also provided
in table 4 and table 7. For the convenience of the readers, in the following, we list the table
numbers and the information (regarding nucleon decays) contained within:

Table no. Information contained

Table 1 • Current proton decay limits of the most important decay modes (namely, p→ e+π0,
p→ μ+π0, and p Kn +) along with the name of the relevant experiments.

• Future proton decay sensitivities of the most important decay modes (namely, p→ e+π0,
p→ μ+π0, and p Kn +)after 10 years of operation along with the names of the relevant
experiments.

Table 4 • Current limits from Super-Kamiokande of various BNV processes such as p ℓM (ℓ=
anti-lepton and M=meson), n→ νγ, p ℓℓℓ , as well as some selected dinucleon (for
example, pp, np) decays.

Table 7 • Future sensitivities of numerous single nucleon decay modes (such as p ℓM and
p ℓℓℓ ) after 10 years of Hyper-Kamiokande operation.

Figure 1. Left-diagram: Dominant proton decay mode p→ e
+π0 in non-SUSY GUTs

(here X X Y,i
a a a T( ) ( )=m m m is the iso-doublet gauge field). Right-diagram: Dominant

proton decay mode p Kn + in SUSY GUTs (example diagram with Higgsino
dressing, see text for details). The blob here represents the dimension-5 operator
induced by colored Higgs exchange.

Table 1. Current lower limits from Super-Kamiokande on partial lifetime for different
proton decay modes are presented in the second column. The third column shows
future sensitivities at 90% CL of the Hyper-K, DUNE, JUNO, and THEIA detectors.

Modes (partial lifetime)
Current limit [90% CL]

(1034 years)
Future Sensitivity [90% CL]
(1034 years)

p ep
0( )t p + Super-K: 2.4 [55] Hyper-K (1900kton-yrs): 7.8 [56]

DUNE (400 kton-yrs):
∼1.0 [57]

THEIA (800 kton-yrs): 4.1
pp

0( )t m p + Super-K: 1.6 [55] Hyper-K (1900 kton-yrs): 7.7 [56]

p Kp ( )t n + Super-K: 0.66 [58] Hyper-K (1900 kton-yrs): 3.2 [56]

DUNE (400 kton-yrs): 1.3 [59]
JUNO (200 kton-yrs): 1.9 [60]
THEIA (800 kton-yrs) 3.8

J. Phys. G: Nucl. Part. Phys. 51 (2024) 033001 Topical Review

8



(Continued.)

Table no. Information contained

• Future sensitivities of several dinucleon decay modes after 20 years of Hyper-Kamiokande
operation.

In fact, the minimal SU(5) GUT (GG model) in combination with imprecise unification of
gauge couplings predicts the proton lifetime of order τp≈ 1028−1032 years and was already
ruled out by early proton decay experiments. Moreover, there are additional flaws of the GG
model: (i) gauge couplings do not unify, (ii) it predicts an incorrect fermion mass relation,
me/mμ=md/ms, (iii) there is a doublet-triplet splitting problem [61, 62] (a generic problem in
most of the GUT models), i.e. the fine tuning needed to render the electroweak-doublet Higgs
in the 5-dimensional SU(5) Higgs light while keeping the color-triplet components at the
GUT scale, and (iii) neutrinos remain massless, as in the SM. Nevertheless, many proposals
were made in the literature towards building a viable GUT by extending the GG model; for an
incomplete list of realistic models that also incorporate non-zero neutrino masses, see, e.g.,
[20, 63–86]. One of the most minimal renormalizable extensions of the GG model was
advanced recently in [81] and employs fields residing in the first five lowest dimensional
representations of the SU(5) group. In this model, a vectorlike fermion in the 15-dimensional
representation is assisted with a 35-dimensional scalar multiplet to serve three purposes: (a)
the wrong fermion mass relations are corrected, (b) unification is achieved at a high enough
scale to be consistent with the current experimental bounds, and (c) neutrinos receive non-
zero masses via 1-loop quantum corrections. In addition to having the least number of
parameters in the Yukawa sector, this model inextricably connects the origin of neutrino
masses with the experimentally observed difference between the charged lepton and down-
type quark masses. Due to its minimality, this model turns out to be very predictive. The
outcomes are as follows: (a) neutrinos are Majorana particles and predicted to have normal
mass ordering, (b) the lightest neutrino is massless, (c) there are four light scalar relics at or
below a 100 TeV mass scale, and (d) the proton lifetime is expected to be within
τp(p→ e

+π0)≈ 1034− 1036 yrs with an upper bound of τp 2.3× 1036 years.
One can also attempt to correct the wrong fermion mass relations by adding a 45-

dimensional Higgs field [87] or by considering non-renormalizable operators [88]. However,
these modifications reduce the predictivity of the model. Higher-dimensional operators,
however, are not enough to provide sufficient contributions to neutrino masses. In building
realistic extensions along this line, the options include the following (i) a 15-dimensional
scalar [63] or (ii) a 24-dimensional fermionic [64] representation. The former (latter) option
generates correct neutrino mass via a type-II [89–92] (type-III [93] + type-I [94–98]) seesaw
mechanism. The analyses of both these theories typically suggest that proton lifetime has an
upper bound of τp(p→ e+π0) 1036 years [67].

On the other hand, predictivity can be achieved by employing the single operator dom-

inance [99, 100], where a single higher-dimensional operator dominates each Yukawa entry.
Group-theoretical factors from GUT symmetry breaking can lead to predictions for the ratios
of quark and lepton masses at the unification scale [99, 100] that can be utilized to correct the
bad mass relations between the down-type quarks and the charged-leptons. For a recent
analysis utilizing this concept in the context of non-SUSY SU(5) GUT that predicts nucleon
decay rates from specific quark-lepton Yukawa ratios at the GUT scale, see, e.g. [101].

• SUSY SU(5) GUTs: If supersymmetry is realized in nature and the SUSY breaking scale
is not too far above the electroweak scale, then gauge coupling unification takes place close to
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MGUT= 2× 1016GeV, and therefore the gauge-boson-induced proton lifetime is predicted to
be τp≈ 1035 years [102], which is above the current experimental lower limit. However,
SUSY GUTs predict new proton decay contributions arising from dangerous dimension-5
[52, 103] operators of the type QQQL, among which the dominant decay mode is p Kn +

[104, 105] generated by the exchange of the colored Higgs multiplet (of mass MHc); these
operators are proportional to M1 Hc. Therefore the colored Higgs fields must be superheavy.
By dressing these dimension-5 operators by gauginos or Higgsinos, dimension-6 operators
are generated [106–108] that cause the proton to decay as shown in figure 1 (diagram on the
right). Typically the Wino exchange dominates; however, for larger tanb , the Higgsino
exchange (the one shown in figure 1) also becomes important. Also, the Higgsino exchange
dominates the Wino exchange if the Higgsino mass is much larger than the Wino masssuch a
situation is realized in, e.g. mini-split SUSY. This is because the loop diagram like the right
figure in figure 1 is accompanied with a chirality flip and thus is proportional to the mass of
the exchanged particle. Interestingly, assuming SUSY particles of masses of order of the
electroweak scale, the lifetime of the proton is typically found to be p K 10p

30( )t n + 
years [108, 109]. On the other hand, the Super-Kamiokande experiment gives a stringent limit
on this channel: p K 6.6 10p

33( )t n ´+  years [58]. This apparent contradiction rules
out minimal SUSY SU(5) GUT [42, 43] with low-scale SUSY (typically for sfermion mas-
ses  TeV).

The solution to this problem resides in the Higgs boson mass which is currently accurately
measured at 125.35± 0.15 GeV. This is close to the upper limit of ∼131 GeV predicted in
supergravity unified models [111, 112] and implies that the weak SUSY scale is high lying in
the several TeV region which in turn implies that the sfermion masses could be high, even as
large as 10 TeV and above. Such a scale could still be natural on the hyperbolic branch of
radiative breaking of the electroweak symmetry [113]. Thus the proton lifetime exhibits a
sensitive dependence on the Higgs boson mass [114]. Using the precise value of the Higgs
boson mass one finds for the proton decay mode Kn + a lifetime range of
3× 1034−2× 1035 years for mSUGRA and 3× 1034− 1036 years for SUGRA models with
non-universal soft breaking (NUSUGRA) consistent with analyses that a heavy SUSY
spectrum might revive the minimal SU(5) GUT [102, 108, 115–119]. Further, SUSY Charge
Conjugation (CP) phases enter in proton decay and can lead to cancellations in the decay rate
enhancing the lifetime [120]. Similar cancellations due to specific flavor mixings are possible
and can suppress proton decay rate, see, e.g., [121, 122]. The cancellation mechanism is quite
general and can apply to wide class of unified models including SO(10) [123]. Additionally,
higher-dimensional operators can affect proton decay textures which are in general different
from the textures for the fermion masses and affect proton lifetime [124, 125] as well as can
easily increase the triplet mass and thus increase the proton lifetime significantly, see, e.g.
[122, 126, 127]. Recently, proton decay in minimal SUSY SU(5) has been revisited in [110]
(see also [128]) where various SSB conditions are imposed and uncertainties associated with
numerous phenomenological inputs in the calculation of the proton lifetime are analyzed. For
example, in constraint MSSM (cMSSM) case, assuming sparticle masses O(10) TeV, the
proton lifetime is found to be p K 2 6 10p

34( ) ( )t n - ´+  years which can be tested in
the near future.

We emphasize that unusual decay modes, such as p→ μ+π0 and p→ μ+K0, can also be
within the reach of the future experiments even in the minimal SUSY SU(5), if there exists
flavor violation in sfermion mass matrices [116]. These decay modes can also be enhanced in
flipped SU(5) GUTs with R symmetry, as recently discussed in [129, 130].

• SO(10) GUTs:GUTs based on SO(10) gauge symmetry [18, 19] are especially attractive
since all SM fermions of each family are unified into a single irreducible 16-dimensional
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representation. Additionally, 16 contains a right-handed neutrino which naturally leads to
non-zero neutrino mass via a type-I seesaw mechanism. Furthermore, SO(10) is free of gauge
anomalies, whereas, in contrast, in SU(5), the gauge anomaly due to the 5R cancels the
anomaly due to the 10L of fermions (separately for each generation). The unification of all
fermions of each generation into a single multiplet suggests that SO(10) may serve as a fertile
ground for addressing the flavor puzzle. In fact, it turns out that SO(10) GUTs are very
predictive and have only a limited number of parameters to fit charged fermion as well as
neutrino masses and mixings, which have been extensively analyzed in the literature
[131–152]. As shown in [147], the most economical Yukawa sector with only SO(10) gauge
symmetry consists of a real 10H, a real 120H, and a complex 126H Higgs fields. Another
widely studied class of models [131], with minimal Yukawa sector, utilizes a complex 10H
and a complex 126H fields, which relies on the additional Peccei–Quinn symmetry exterior to
the SO(10) gauge symmetry. Moreover, from decays of the heavy right-handed neutrinos, the
matter-antimatter asymmetry of the Universe [8, 153, 154] can also be generated [155] in SO

(10) GUTs.
Since the SO(10) group has rank 5, whereas the SM has rank 4, there are various possible

pathways for the GUT symmetry to break down to the SM as demonstrated in figure 3.
Depending on which Higgs multiplet is employed to break the GUT symmetry, at the clas-
sical level, there are typically four possibilities with minimal Higgs content for the inter-
mediate gauge symmetry [20, 156]: (a) G422×D, (b) G422, (c) G3221×D, and (d) G3221. Here
G422 is the PS group SU SU SU4 2 2C L R( ) ( ) ( )´ ´ and G3221 is the group of the left–right
symmetric model SU(3)c× SU(2)L× SU(2)R×U(1)B−L. PS symmetry with (without) D-
parity [157] is obtained if GUT symmetry is broken by a 54 [158, 159] (210 [160–162])
Higgs representation, whereas left–right symmetry with (without) D-parity is achieved if a
210 [160–162] (45+ 54 [163–165]) Higgs is used. Depending on the intermediate gauge
symmetry, these models with predominant decay mode p→ e+π0 predict a lifetime in a wide
range that varies in between 1028 and 1040 years [156]. For a recent study along similar lines
using a non-minimal Higgs sector in generic SO(10) models see [166, 167]. In these works,
amounts of threshold corrections required to be consistent with present bounds on proton
decay for various intermediate breaking chains are quantified. In [168], a minimal renor-
malizable model with a symmetry breaking sector consisting of Higgs fields in the
10 54 126+ + is analyzed and shown to have an upper limit on the lifetime
τp(p→ e+π0) 5× 1035 years. A variant of this framework with the adjoint 45 scalar instead
of 54 has been studied thoroughly in [169, 170] due to its very special quantum structure
[171–173] and particular robustness with respect to the leading Planck-scale effects.

Recently, a minimal non-renormalizable version of SO(10) GUT utilizing 10+16+45

Higgs multiplets in the symmetry breaking sector was proposed in [176]. To be consistent
with the current proton decay bounds, three scalar multiplets—a scalar quark doublet, a weak
triplet, and a color octet—must remain lighter than 10( ) TeV. With this spectrum, maximum
unification scale and proton lifetime are found to be MGUT 1016GeV and τp 1035 years,
respectively.

For another model that uses a combination of type I and type II seesaw for neutrino masses
and leads to a prediction of proton lifetime in the accessible range is in [177]. The model
solves also the baryogenesis and DM problems of the SM.

• SUSY SO(10) GUTs: In SUSY SO(10) GUTs, if the intermediate symmetry is broken
by a 126 Higgs that breaks B−L by two units, in addition to giving large masses to the right-
handed neutrinos (that in turn generates tiny neutrino masses), R-parity of the MSSM
automatically emerges from within the SO(10) symmetry. Therefore, SUSY SO(10) GUTs are
highly attractive as they naturally provide a DM candidate and prohibit d= 4 BNV operators
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without any additional symmetry assumptions. The minimal renormalizable model
[131, 200, 201] with a symmetry breaking sector consisting of 10 126 126 210+ + + was
found to be very successful in fitting fermion data [133–137, 139–144]. Soon after, it was
realized [140, 202–204] that the intermediate symmetry breaking scale that is required to be
of order 1012−1013 GeV from fits to light neutrino masses, subsequently leads to certain
colored particles from various Higgs fields with masses of order 1010GeV that spoil the
successful perturbative gauge coupling unification. Besides that, current proton decay limits
completely rule out this version of the model with TeV scale SUSY spectrum.

These caveats can be resolved by extending the minimal version of the SUSY SO(10)
GUT. Without introducing any new parameter in the Yukawa sector, it was shown in [149]
that a minimal realistic extension is to add a 54 multiplet to the symmetry breaking sector.
This setup allows the intermediate breaking scale of order 1012–1013GeV to fit neutrino data,
yet preserves perturbative gauge coupling unification. The viability of this model requires a
mini-split SUSY spectrum with sfermion masses of order 100 TeV using the current
experimental lower bound p K 6.6 10p

33( )t n > ´+ years. Even though squarks and
sleptons are far beyond the reach of LHC, the model can be tested at colliders with the
discovery of LSP (Wino) along with its charged partners. Improvement of the proton lifetime
limits in the channel p Kn + by one order of magnitude will highly disfavor this version of
the model (expected upper limit on the proton lifetime with O(100) TeV sfermions is
τp 6× 1034 years). On the other hand, implementation of Peccei–Quinn (PQ) symmetry
[205] to solve the strong CP problem (for a recent review see [206]) in renormalizable SUSY
SO(10) with minimal Yukawa sector allows TeV scale sfermion masses as shown in [150].
This is possible since Higgsino mediated proton decay rate is strongly suppressed by an
additional factor of M MPQ GUT

2( ) [150, 207] and the expected proton lifetime in this fra-
mework is τp≈ 1033–1036 years. This scenario is exciting since the proton decay suppression
mechanism is inherently linked to the solution to the strong CP problem.

The axion solution to the strong CP problem is particularly interesting since axion can be a
cold DM candidate. Models in which the axion field is embedded into a scalar representation
responsible for breaking the GUT symmetry show an interesting correlation between the
proton decay rate and the axion mass. Models of this type were first proposed in the context of
SU(5) in [208] and SO(10) in [209]. For recent works along this line, see, e.g. [83, 210–213].

Another option to accommodate low scale SUSY in the SO(10) context is to permit more
parameters in the Yukawa sector by introducing a 120 multiplet on top of 10 126+
[189, 214]. With new parameters in the Yukawa sector, it is possible to realize some can-
cellations to save the theory from too rapid proton decay even with a TeV scale SUSY
spectrum. As shown in [189], type-II seesaw case is highly disfavored by the current proton
decay lower limit, whereas for type-I scenario, the proton lifetime for the channel p Kn +

can reach up to 1037 years.
SUSY SO(10) GUTs that adopt small Higgs representations, to be specific, 16 instead of

126, do not guarantee automatic R-parity, but they still provide quite simply matter-parity
which keeps the LSP stable to serve as DM. Nevertheless, models of this class (consisting of
16 16+ , 10, and 45 Higgs fields) are particularly interesting, not only because doublet-triplet
splitting occurs naturally but also an interesting correlation of the decay rates between the two
major proton decay modes p Kn + and p→ e0π+ emerges [215]. This interdependence
shows that the empirical lower limit on the lifetime for p Kn + provides a constrained
upper limit on the lifetime for p→ e+π0 mode and vice versa. Based on this correlation,
estimated upper limits for proton lifetimes have been obtained in the context of an updated
version of [215] (to be published; private communications from the authors of [215]; see also
section 7.2 of [216]). This updated version takes two factors into account: (a) the current LHC
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constraints on SUSY spectrum by allowing for an inverted hierarchy of the sfermion masses
with a light stop (∼800 GeV to 1 TeV) and lighter higgsino/bino (∼700–800 GeV), together
with heavy masses (∼18–20 TeV) for the sfermions of the first two generations on the one
hand, and (b) the appropriate normalization factors in the definitions of certain effective
couplings involving identical fields, which were missed in [215], on the other hand. With this
updating, the correlation mentioned above yields conservative estimates for the upper limits
of τp(p→ e+π0) less than about (2− 10)× 1034 years, and p Kp( )t n + less than about
(1− 8)× 1034 years. These upper limits are within the reach of the Hyper-K and Dune
detectors including their planned upgrades respectively.

Moreover, GUT models with family symmetries (for an incomplete list of references, see,
e.g. [217–231]) are particularly interesting since they tend to explain the flavor puzzle. An
important aspect of this class of models is that Yukawa couplings emerge dynamically from
minimization of the flavon potential, thereby reducing the number of parameters con-
siderably. For example, assuming S4 flavor symmetry on top of SO(10) gauge symmetry, in
[196], in addition to explaining the hierarchies in the charged fermion masses and mixings,
neutrino observables are also predicted (such as θ13∼ 9°). Furthermore, the proton decay
mode p Kn + in this model is found to have a lifetime of ∼1034 years, which is within
reach of the upcoming experiments.

It should be noted that unified models such as SO(10) with appropriate symmetry breaking
that produce the SM gauge group are also constrained by electroweak physics. It is then of
interest to investigate the consistency of the unified models (such as Yukawa coupling uni-
fication) with the recent result from the Fermilab E989 experiment [12] on the muon
anomalous magnetic moment. The Fermilab experiment has measured aμ= (gμ− 2)/2 with a
significantly greater accuracy than the previous Brookhaven [232] experiment and the
combined Fermilab and Brookhaven experimental data gives a 4.2σ deviation [233] from the
SM. An investigation of the Yukawa coupling unification for the third generation in a class of
SUSY SO(10) unified models [234, 235] shows that the SO(10) model is fully consistent with
the Fermilab result.

Finally we mention two new classes of SO(10) models not discussed thus far. As noted
above, SO(10) models require several Higgs representations to break the GUT symmetry to
the SM gauge group. Thus a 16 or a 126 of Higgs field is needed to change rank, and one of
45, 54 or a 210 is needed to break the symmetry down further, and to achieve EWSB and to
generate quark and lepton masses an additional 10 dimensional representation is also needed.
Recently a class of SO(10) models have been proposed consisting of 144 144+ of Higgs
fields [236, 237] which can break the symmetry down to SU(3)c×U(1)em. Proton decay
analysis in this model exhibits a cancellation mechanism consistent with the current exper-
imental constraints and the possibility of observation in future experiment [123]. Another
class of SO(10) models relates to the doublet-triplet splitting problem which as noted earlier is
quite generic in grand unified models. One way to resolve it is the so called missing VEV
mechanism [238, 239] (see also [192, 215, 240]) where the VEU of a 45 Higgs field which
breaks the SO(10) symmetry lies in the (B− L)-preserving direction, and generates masses for
the Higgs triplets but not for the Higgs doublets from a 10-plet. This mechanism works in SO

(10) and has no analog in SU(5). A second approach is the missing partner mechanism
[234, 241, 242]. For SO(10) it leads to a variety of models discussed in [234]. B− L=−2
violating dimension-7 and dimension-9 operators have been computed in this class of models
[243]. Thus previous analyses using a bottom up effective low energy operator approach can
now be extended to a top down one [243] for GUT scale baryogenesis and for B− L=−2
proton decay such p→ νπ+, n→ e−π+, e−K+ and n n̄- oscillations.
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In short, well-motivated non-SUSY and SUSY GUTs generically predict rates of BNV
processes that can be probed by next-generation experiments if not already ruled out by the
current experimental data. A sketch of theoretical predictions for selected models and
experimental reach of upcoming detectors are depicted in figure 2 for non-SUSY and SUSY
GUTs. Furthermore, nucleon decay predictions for a wide range of models are summarized in
table 2. For details on theoretical assumptions associated with each model’s predictions, the
readers are referred to the original literature.

As a cautionary remark, it is worth noting that none of the predictions in figure 2 or in
table 2 is actually sharp; one typically encounters ranges stretching over several orders of
magnitude. This has to do with a number of theoretical uncertainties affecting the precision of
the calculations at various levels of significance. These can be loosely divided into three main
classes corresponding to different ways the quantitative estimates based on diagrams in
figure 1 are influenced: (i) uncertainties in the determination of the masses of the relevant
leptoquark fields (i.e. the GUT scale), (ii) uncertainties in the couplings (gauge, Yukawa)
governing the GUT-scale dynamics and (iii) uncertainties in the relevant hadronic or nuclear
matrix elements. As for the first class, the most prominent of these effects are the uncertainties
related to the generally unknown shape of the GUT-scale spectrum of the models at stakes, to
the proximity of the GUT and the Planck scales enhancing the uncontrolled corrections from
higher-dimensional operators (for instance those due to gravity effects) [244–246] and to the
limited precision attainable in the perturbative accounts (see e.g. [173]), all inflicting
uncertainties in the GUT-scale matching conditions. The second class corresponds to the

Figure 2. Theoretical predictions of proton lifetime for representative GUT models are
presented (for the underlying assumptions, see text). (c here represents the coefficient
of a Planck suppressed dimension-5 operator, for details, see [110].) Current Super-K
data rule out the gray shaded regions. Future projections/sensitives from JUNO,
DUNE, THEIA, and Hyper-K are also specified in the diagram (see section 3 for
details). For these proton decay modes, the current and the future sensitivities (after
10 years of operation) are summarized in table 1. Future sensitivities after 20 years of
operation are also presented, which are simply estimated as twice the sensitivities of
10 years of operation.
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Table 2. Synopsis of the expected nucleon lifetime in various representative GUT models (see also [199]). NR here stands for non-renormalizable.
For details, see text.

Model Decay modes τN (N= p, n) [years] References

Non-SUSY minimal SU(5) p→ e
+π0 1030–1032 Georgi, Glashow [16]

Non-SUSY minimally extended p→ e+π0 2.3× 1036 Doršner, Saad [81]
SU(5) (neutrino mass: 1-loop)
Non-SUSY minimally extended p→ e

+π0 1032−1036 Perez, Murgui [73]
SU(5) (neutrino mass: 1-loop) p Kn + 1034−1037

Non-SUSY Minimal SU(5) [NR] p K , ,( )n p r + + + + 1031−1038 Doršner, Perez [63]

(neutrino mass: type-II seesaw) n K, , , ,0 0 0 0 0( )n p r h w +
Non-SUSY Minimal SU(5) [NR] p→ e

+π0 1036 Bajc, Senjanović [64]
(neutrino mass: type-III+I seesaw)

Non-SUSY Extended SU(5) p→ e+π0 1034–1040 Saad [79]
(neutrino mass: 2-loop)
Minimal flipped non-SUSY SU(5) p→ e/μ+π0 1038−1042 Arbeláez, Kolešová, Malinský [178]
Non-SUSY Minimal SO(10) p→ e+π0 5× 1035 Babu, Khan [168]
Minimal SO(10) with 45 Higgs p→ e+π0 1036 Bertolini, Di Luzio, Malinský [179]
Minimal non-Renormalizable SO(10) p→ e+π0 1035 Preda, Senjanović, Zantedeschi [176]
Non-SUSY Generic SO(10) p→ e

+π0 Chakrabortty, King, Maji [167]
Mint: G422 1034–1046

Mint: G422D 1031–1034

Mint: G3221 1036−1046

Mint: G3221D 1033−1043

Non-SUSY Generic E6 p→ e+π0 Chakrabortty, King, Maji [167]
Mint: G4221 1027−1036

Mint: G4221D 1027−1036

Mint: G333 → G3221 1032−1036

Mint: G4221D → G421 1026−1048

Mint: G4221 → G421 1025−1048

Minimal SUSY SU(5) p Kn̄ + Dimopoulos, Georgi [42], Sakai [103]

n K 0n̄ 1028−1032 Hisano, Murayama, Yanagida [102]
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Table 2. (Continued.)

Model Decay modes τN (N= p, n) [years] References

Minimal SUSY SU(5) p Kn̄ + (2−6) × 1034 Ellis et al [110]

(cMSSM) p→ e+π0 1035−1040

Minimal SUSY SU(5) p Kn̄ + 4× 1033 Babu, Bajc, Tavartkiladze [180]

(5 5+ matter fields) p K n K,0 0 0 0m p np + 1033−1034

SUGRA SU(5) p Kn̄ + 1032−1034 Nath, Arnowitt [106, 181]

mSUGRA SU(5) (Higgs mass constraint) p Kn̄ + 3× 1034 − 2× 1035 Liu, Nath [114]

NUSUGRA SU(5) (Higgs mass constraint) p Kn̄ + 3× 1034 − 1036

SUSY SU(5) or SO(10) p→ e+π0 ∼1034.9±1 Pati [182]
MSSM (d= 6)
Flipped SUSY SU(5) (cMSSM) p→ e/μ+π0 1035−1037 Ellis et al [183–185]
Split SUSY SU(5) p→ e+π0 1035−1037 Arkani-Hamed, et. al. [186]
SUSY SU(5) in 5D p→ μ+

K
0 1034−1035 Hebecker, March-Russell[187]

p→ e+π0

SUSY SU(5) in 5D variant II p Kn̄ + 1036−1039 Alciati et al [188]

Mini-split SUSY SO(10) p Kn̄ + 6× 1034 Babu, Bajc, Saad [149]

SUSY SO(10) × U(1)PQ p Kn̄ + 1033−1035 Babu, Bajc, Saad [150]

Extended SUSY SO(10) p Kn̄ +

Type-I seesaw 1030−1037 Mohapatra, Severson [189]
Type-II seesaw 6.6× 1033 Mohapatra, Severson [189]
Inverse seesaw 1034 Dev, Mohapatra [190]
SUSY SO(10) p Kn̄ + Shafi, Tavartkiladze [191]

with anomalous n K 0n̄ 1032−1035

flavor U(1) p→ μ+
K
0

SUSY SO(10) p Kn̄ + 1033−1034 Lucas, Raby [192], Pati [182]

MSSM n K 0n̄ 1032−1033

SUSY SO(10) p Kn̄ + 1033−1034 Pati [182]

ESSM 1035

SUSY SO(10)/G(224) p Kn̄ + 2× 1034 Babu, Pati, Wilczek [193–195],
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Table 2. (Continued.)

Model Decay modes τN (N= p, n) [years] References

MSSM or ESSM p→ μ+
K
0 Pati [182]

(new d= 5) B∼ (1− 50)%
SUSY SO(10) × S4 p Kn̄ + 7× 1033 Dev, Mohapatra, Dutta, Severson [196]

SUSY SO(10) in 6D p→ e+π0 1034−1035 Buchmuller, Covi, Wiesenfeldt [197]
GUT-like models from p→ e+π0 ∼1036 Klebanov, Witten [198]
Type IIA string with D6-branes
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limits in our understanding of the flavor structure of the relevant B- and L-violating charged
currents (see [247, 248]) which, indeed, gets only partially reflected in the flavor observables
accessible at low energies (the quark and lepton masses and mixings). It is also worth
mentioning that unknown CP phases in the GUT Yukawa couplings [249] can change the
proton decay rate significantly (see, e.g. [250] and [110]). The third class concerns the general
difficulty with ab initio QCD calculations in the strongly coupled low-energy regime. While
the modern lattice techniques have recently brought enormous progress in point (iii), see
Section 2.9, (i) and (ii) still represent a formidable challenge to any precision calculations
with rather limited prospects for any significant near-future improvement.

Thus far, we have discussed gauge-mediated proton decay, which dominates if the mass
scale of vector-bosons and scalar-bosons are of a similar order. This happens for the latter
contribution because the first-generation Yukawa couplings suppress the scalar-mediated
proton decay. Naively, color-triplet scalar contributions become significant only if
M M10S V

4( )-  . It should be emphasized that the scalar-mediated contributions depend
highly on the Yukawa sector of the theory and are model-dependent to a large extent. For
minimal SO(10) GUTs, using typical Yukawa coupling structures, color-triplet masses need
to be heavier than about 1010−1011 GeV [251]. In the context of a minimal model based on
10H and 126H with Peccei–Quinn symmetry, when scalar-mediated contributions dominate,
the proton decay spectrum is found to be quite different from the one typically anticipated
[251]. For example, (i) proton dominantly decays into Kn + or μ+K0 for lighter 3, 1, 1 3( ) or
(3, 1, −1/3), respectively, and (ii) BR(p→ μ+π0)? BR(p→ e+π0) is expected. Both these
features are distinct from gauge-mediated proton decays; hence, if scalar-mediated con-
tributions dominate, proton decay can provide very useful insight into the Yukawa structure
of the theory.

• GUTs in extra spatial dimensions: Extra spatial dimensions provide a useful avenue
for GUT model building in which some of the usual problems of four-dimensional GUTs can
be addressed. For example, some versions of orbifold GUTs [187, 252–254] use compacti-
fication to break the unified gauge symmetry avoiding the doublet-triplet splitting problem.
Moreover, localizing fermion fields appropriately in the bulk of extra dimension, a natural
understanding of hierarchical fermion mass spectrum can be achieved in certain versions of

Figure 3. Various symmetry breaking chains [174] in SO(10) GUTs (reproduced from
[175]). The left (right) diagram shows breaking chains along the PS GG route.
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GUTs [255–257]. In 6D GUTs, the origin of multiple families of matter fields can be realized
by quantization of flux in torus constructed from the compact extra two dimensions
[258–260]. In these classes of GUTs, the Yukawa couplings become calculable parameters
and the quarks and lepton spectrum can be obtained from a very small number of parameters.
In the extra-dimensional GUT models, proton decay can have distinct features. For example,
in a class of 5D models, the proton decay mediated by vector bosons has an additional
suppression due to the wave-function profiles of first-generation fermions and the underlying
vector bosons in the bulk [188, 253, 261, 262]. In SUSY orbifold GUTs, the dimension-5
operators are often suppressed due to U(1)R symmetry [188, 262]. In 6D models with flux
compactification, the proton decay also receives a non-trivial contribution from the higher
Kaluza–Klein modes of the vector bosons [263]. This, along with the special flavour structure
of these theories, implies proton dominantly decaying into μ+ π0 which is otherwise sup-
pressed in the 4D GUT models.

The absence of indication of low energy supersymmetry in the experimental searches so
far has inspired investigations of the GUTs in the regime of split [141] or high scale SUSY
[264]. Gauge coupling unification in this class of models is achieved by keeping only a part of
SUSY spectrum at the intermediate energy scale while the remaining MSSM fields stay close
to the GUT scale. Despite having most of the spectrum at intermediate or at very high
energies, this class of theories are still reasonably constrained from the perspectives of Higgs
mass, stability of the electroweak vacuum, flavour transitions, DM and proton decay
[265–268]. It has been shown that if TeV scale Higgssino forms almost all of the DM of the
Universe then it leads to particular ranges for the unified couplings and the scale of unification
which in turn put an upper bound on the proton decay requiring the proton lifetime less than
7× 1035 years [267, 268].

Finally, we point out that a public software package SusyTCProton for nucleon decay
calculations in non-SUSY and SUSY GUTs is available, which includes, e.g., the full loop-
dressing at the SUSY scale; for details, see [269].

2.3. PS partial unification

The first step towards unification was made in [14] (see also [15, 216, 270]) that are based on
partial unification with non-Abelian gauge group G422= SU(4)C× SU(2)L× SU(2)R. By
proposing the G422 symmetry, this work [14] introduced many new concepts into the lit-
erature, which include: (i) Quark-lepton unification; (ii) The first realistic model of matter and
its three interactions which quantized electric charge, and thus (as was realized later) the first
quantum-theoretically consistent model of magnetic monopoles; (iii) The first left–right
symmetric gauge structure providing a compelling reason for the existence of the right-
handed neutrino and the right-handed gauge-boson WR; and (iv) The first model that ques-
tioned baryon number conservation and proton stability in the context of higher unification;
while this was in the context of integer-charge quarks, nevertheless it served to remove partly
the major conceptual barrier against BNV violation and proton instability that existed in the
community in the early 1970s.

In this PS model, unlike SO(10), there is no gauge-mediated proton decay. In fact in the
original PS model, proton decay appears only if the quarks are chosen to have integer charges.
This is why PS symmetry can be realized at rather low energy scales. In minimal models, the
PS breaking scale can be as low as vR 103 TeV [271, 272], which is coming from exper-
imental limits on the branching ratios for K eL

0 m  mediated by the new gauge bosons Xμ

carrying 4/3 charge under B− L. However, in the extended models, where additional fer-
mionic degrees of freedom are introduced, the PS symmetry can even break down close to the
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TeV scale that has the potential to be directly probed at colliders; for a recent study, see, e.g.
[273]. In light of recent anomalies [274–277] in the beauty-meson decays, low scale PS
models have gained a lot of attention. Within this setup, the vector leptoquark Xμ is an
attractive candidate to explain some of the flavor anomalies [278–286].

Even though baryon number violation does not proceed through gauge bosons, such
processes naturally arise via the scalar sector, even with the minimal Higgs content
[287–290]. In the minimal model, to generate a realistic charged fermion mass spectrum, the
presence of both Φ(1, 2, 2) and Σ(15, 2, 2) Higgs fields are required. Furthermore, ΔR(10, 1,
3) multiplet breaks the PS symmetry to the SM group and generates non-zero neutrino mass
via type-I seesaw. In this PS version, quartic terms of the form R

2 2S D in the scalar potential
lead to BNV decays which are distinct from the proton decay modes discussed above (such as
p→ e+π0) that realize the Δ(B− L)= 0 selection rule. On the contrary, these BNV nucleon
decay modes correspond to dimension-9 operators and obey a selection rule Δ(B− L)=−2
[53, 289–297]. There are two types of such decays: (i) a single lepton p, n→ ℓ+mesons
(such as p→ e−π+π+, e−π+K+, μ−π+K+, νπ+ etc) and (ii) three leptons p n ℓℓℓ,  +
mesons (such as n e e e e, ,n m n nnp - + - + - + as well as p e e e e, ,n n np nnp p + - + + - + +

etc) in the final state as shown in figure 4, where ℓand ℓ are lepton and antilepton,
respectively.

The difference between the left and the right Feynman diagrams in figure 4 is: the right-
diagram is obtained from the left-diagram by replacing the di-quark Σ8 by a leptoquark Σ3.
A priori, the amplitudes for these alternative decay modes could compete with each other. It is
interesting to note that, in a certain region of the parameter space of the theory, the three
lepton final states can dominate over single lepton final states; moreover, all these BNV
processes can be within the observable range. Stringent limits on three-body decays
p e ( )m nn + + have been set by the Super-Kamiokande experiment, with τ> 2× 1032 years
[298]. Unlike two-body nucleon decay channels, phase space alone provides only a crude
approximation for the resulting particle spectra from these processes. For the trilepton modes,
dynamics and phase space can be approximately accounted for using a general effective
Fermi theory formalism of electroweak muon decay em nn + [299]. Searches for nucleon
decay in other channels have also been conducted and typically have present lower bounds in
the range of 1031−1033 years [13].

Figure 4. Nucleon decay modes in the SU(4)C × SU(2)L × SU(2)R model with
inclusion of color sextet Higgs fields ΔR a la [287]. Here the scalar sub-multiplets R

qqD ,

Σ8, and , R
qℓ

3{ }S D are color sextet, di-quark, and leptoquarks, respectively; moreover,

R
0D is SM singlet that acquires a VEV and breaks B− L by two units. The Feynman

diagram on the left (right) leads to nucleon decay of the type q ℓqq3  ( q ℓℓℓ3  ).
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2.4. Neutron-antineutron oscillation

Oscillations of electrically neutral particles are well-known phenomena; for example, neutrino
oscillations and neutral meson (K K0 0- , B B0 0- , D D0 0- ) oscillations are all experi-
mentally well established. Therefore, one would naturally expect to observe neutron-anti-
neutron (n n- ) oscillations. However, the conservation of baryon number forbids the
transition from a neutron (with one unit of baryon number) to an antineutron (with negative
one unit of baryon number). As already pointed out, in the SM there is a global symmetry
which forbids baryon number violation. However, once we go BSM, there is no obvious
reason to expect baryon number conservation to hold. Indeed, baryon number violation is one
of the necessary conditions noted by Sakharov for the generation of a baryon asymmetry in
the Universe [300]. It was observed by Kuzmin that n–n̄ oscillations might provide a source
of baryon number violation connected with this generation of baryon asymmetry in the
Universe [301]. Proton decay is mediated by four-fermion operators, which have coefficients
of the dimensional form 1/M2, whereas n-n̄ oscillations are mediated by six-quark operators,
which have coefficients of the dimensional form 1/M5. Consequently, if there were only one
high scale M responsible for baryon number violation, one might expect that n–n̄ oscillations
would be suppressed relative to proton (and bound neutron) decay. However, there are
theories BSM where BNV nucleon decays are absent or highly suppressed and n-n̄ oscilla-
tions are the main manifestation of baryon number violation [287, 302]. Observation of n n-
transition would show that baryon number is violated by two units |ΔB|= 2, which can be
naturally expected within GUTs and other extensions of the SM. However, the selection rule |
ΔB|= 2 is again very different from p→ e+π0 that follows ΔB=−1 (and ΔL=−1, hence
Δ(B−L)= 0). Nucleon decay with a selection rule ΔB=−1 are induced by dimension-6 (or
dimension-5) operators and, therefore, would correspond to the existence of new physics at an
energy scale of about 1015GeV, whereas n n- transitions with |ΔB|= 2 are induced by
dimension-9 operators, and therefore, would imply new physics around the 100 TeV scale.
Some early studies of n-n̄ oscillations include [287, 303–307]. Some recent reviews include
[308, 309].

Although, in general, a theory may violate L without violating B, in most of the well-
motivated extensions of the SM, these two are connected via fundamental symmetries. As an
example, within left–right symmetric models, U(1)B−L is promoted to a gauge symmetry
[310]. As long as this symmetry is exact, ΔB=ΔL is realized. This is highly motivating

Figure 5. Feynman diagram for n n- oscillation in the model of [287]. Here, sub-
multiplets ΔR,ab are color sextets and R

0D acquires a VEV that breaks SU(4)C × SU

(2)L× SU(2)R symmetry to the SM.
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since the existence of |ΔL|= 2 generates the Majorana neutrino mass term, which is then
connected to the existence of |ΔB|= 2 operators. Therefore, n n- oscillation may be
directly linked to neutrinoless double beta decay processes; see section 2.8.1.

It was shown in [287] that if the Higgs multiplet that breaks the SU(4)C× SU(2)L× SU(2)R
group to the SM group is ΔR(10, 1, 3) (instead of the Higgs set chosen in the original PS
model), it generates Majorana neutrino mass via |ΔL|= 2 processes while at the same time
yielding n n- transition via |ΔB|= 2 processes at an observable rate, keeping the proton
stable. A term of the form R

4D in the scalar potential gives rise to a cubic term among three
color sextet scalars once the B−L violating VEU of the neutral component of ΔR is inserted,
which causes n n- oscillations [287, 308] as shown in figure 5. The n n- oscillations
arising in this class of models with TeV scale color sextet scalars have an upper limit of

10nn
10 11t - sec [311, 312], within the reach of the next-generation experiments; see

figure 19. This upper bound is a consequence of the model requirements to satisfy the
neutrino oscillation data via type-II seesaw, observed baryon asymmetry via the post-spha-
leron baryogenesis mechanism [313], as well as the low-energy flavor changing neutral
current (FCNC) constraints. Besides, TeV scale color sextets have rich phenomenology and
can be uniquely probed at the hadron colliders [314–320]. There exist other simplified models
of n n- [321–323], which, however, do not have an upper limit on nnt , although they can
still be tested using the collider probes of colored particles.

An interesting class of BSM theories hypothesizes that our usual four spacetime dimen-
sions are embedded in a space with higher (spatial) dimensions, such that SM fermions have
strongly localized wave functions in the extra dimensions [324]. It has also been shown that in
these extra-dimensional models, neutron-anti-neutron oscillations can occur at an observable
rate while baryon-number-violating nucleon decays are suppressed far below experimental
limits keeping the proton stable [302, 325, 326]. The BNV nucleon decays are suppressed by
separating quark wave function centers sufficiently far from lepton wave function centers in
the extra dimensions, but this does not suppress n–n̄ oscillations since the operators that
mediate these oscillations only involve quarks. These models can also produce a seesaw
mechanism with naturally light neutrino masses and viable DM candidates [327, 328].
Another study of baryon-number violation without proton decay is [329].

An experimental search for n–n̄ oscillations was carried out using neutrons from a reactor
at the Institut Laue-Langevin (ILL) and obtained a lower limit 0.86 10 snn

8
¯t > ´ (90 % CL)

[330]. Neutron-antineutron oscillations also lead to instability of matter with associated ΔB

=−2 dinucleon decays yielding mainly multi-pion final states. These have been searched for
in deep underground nucleon decay detectors, most recently in Super-Kamiokande
[331, 332], obtaining a lower limit on a lifetime characterizing such matter instability of
τ> 3.6× 1032 years, which, when converted to a corresponding free neutron oscillation time,
is 4.7 10 snn

8
¯t > ´ . This difference is due to the suppression of n n- oscillations in matter

as a result of nuclear potential differences. The oscillation time is matter (τm) is related to free
neutron oscillation time ( n n)t - as Rm n n

2t t= - , with the conversion factor R for Oxygen
evaluated to be about 0.5 10 s23 1´ - [333]. Upcoming experiments at the ESS (European
Spallation Source) and Deep Underground Neutrino Experiment (DUNE) plan to improve
these bounds to 10nn

9 10t - sec [334–336]. These oscillation times can be translated into

new physics scales of roughly O 100 1000nn QCD
6 1 5( ) ( )t L ~ - TeV, which are well above

energies directly accessible at colliders. For recent reviews on this subject, see [308, 309].
Existing upper bounds on the rates for the dinucleon decays nn→ π0π0, nn→ π+π−, and
np→ π+π0 imply upper bounds on the rates for dinucleon decays to dileptons nn→ e+e−,
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nn→ μ+μ−, nn ¯nn , and np→ ℓ
+νℓ, where ℓ= e, μ. These have been calculated in

[302, 337].

2.5. Other B−L violating processes

Nonzero neutrino masses, if these are Majorana fermions, are evidence for new physics that
violates lepton number by two units. GUTs, as argued earlier, will ultimately lead to a
connection between lepton-number and baryon-number violating new physics. While the
details depend on both the mechanism behind nonzero neutrino masses and the underlying
GUT, it is often the case that the lepton number violating physics is a subset of different
phenomena correlated with Δ(B−L)= 2 phenomena. Some connections have been explored
at the effective operator level, in a number of papers; e.g. [307, 338].

Other than neutrinoless double-beta-decay (ΔL= 2) and nn̄-oscillations (ΔB= 2), there
are several other physics processes that are mediated by Δ(B− L)= 2 new physics. For
example, there are |ΔL|= 2 meson decays, such as K

+
→ π−μ+μ+ and K

+
→ π−μ+e+.

Initial upper bounds on these decays were set in [339] and searches for them have been
carried out at BNL [340, 341] and recently by the NA62 experiment at CERN [342, 343],
yielding the upper limits BR(K+

→ π−μ+μ+ )< 4.2× 10−11 and BR(K+
→ π−μ+e+)

< 4.2× 10−11
(90 % CL). |ΔL|= 2 baryon decays include, e.g. Ξ−

→ pμ−μ−, on which an
initial upper bound was set in [344]. A Fermilab experiment searched for this decay and set
the upper limit BR(Ξ

−
→ pμ−μ−)< 4.0× 10−8

[345] (90% CL). Other decays violating
B and L include B→ LM where B is a baryon, L is a lepton (neutrino or negatively-charged
lepton) and M is a mesonic state. These include n→ μ−π+, p→ νπ+, n→ νρ0, and
p→ e−π+K+.

The strongest bounds on these Δ(B−L)= 2 processes come from searches for nucleon
decay. These are nicely summarized in [13], and some are very strong, of order 1032 years. It
is also the case that all of the strongest bounds on Δ(B−L)= 2 neutron and proton decay
come from twentieth century experiments, including Frejus [346] and IMB [347, 348],
keeping in mind that it is not possible to distinguish a nucleon decay into a neutrino from that
into an antineutrino. The DUNE experiment, thanks to its tracking, calorimetric, and particle-
ID capabilities, is well positioned to be sensitive to Δ(B−L)= 2 with lifetimes that approach
1034 years [57].

2.6. Effective field theory of B violation

The most suitable framework for studying low-energy, below electroweak-scale phenomena
is the low energy effective field theory (LEFT) [349], which differs from the SM with respect
to the internal symmetry as well as the degrees of freedom. In going from the SM to the
LEFT, the heavy degrees of freedom namely, the Higgs boson h, the electroweak gauge
bosons Wm

 and Zμ and the top-quark t are integrated out, whereas the internal symmetry is
spontaneously broken from SU(3)C× SU(2)L×U(1)Y to SU(3)C×U(1)em.

LEFT operators can describe a wide variety of fermion-fermion interactions, also
encompassing the BNV ones. The best examples are operators describing the proton decay
into mesons and leptons or entirely into three charged leptons [350, 351]. In the SM baryon
and lepton number conservation emerge as accidental symmetries. This suggests that the
violation of these symmetries within the LEFT is a sign of BSM physics. The backdrop for
conducting analyses on and to test the veracity of BSM models is the SM effective field
theory (SMEFT) and it also acts as the necessary bridge between the low and the high energy
sectors.
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A complete matching between a BSM model and the LEFT would involve an intricate and
meticulous multi-step procedure of integrating out heavy fields and matching parameters. But
a simpler way to catch a glimpse of possible BSM origins of the rare processes encapsulated
by LEFT operators is to find their embedding within SMEFT operators and then based on
symmetry arguments unfurl them into Feynman diagrams consisting of heavy propaga-
tors [352].

We have highlighted two examples in figure 6, where the first column presents LEFT
contact operators of mass dimension 9 describing proton decay processes (i) p → K+ e+ e− ν

and (ii) p → e+ e+ e− The second column shows the relevant SMEFT operators of the same
or higher mass dimension that describe the same contact interaction as the LEFT ones [352].
Finally, the last column reveals the BSM heavy field propagators that can mediate such
processes.

The ΔB≠ 0 operators of the SMEFT provide a model-independent framework for
exploring B-violation, both for B-violating nucleon decay [53, 294, 295, 353] and for n-n̄
oscillations [287, 304, 306, 307, 354]. The flavor structure of the operators at different
dimensions allows one to establish nucleon decay-mediating processes that can dominate.
This has been explored in further detail in more recent works such as [285, 325, 355–359]. In
SMEFT, ΔB= 1 appears at dimension-6. Any flavor ΔB= 1 term leads to nucleon decay,
including particles heavier than the proton such as charm or the tau lepton that can induce
proton decay through off-shell contributions (see e.g. [360]). These contributions are strongly

Figure 6. The low-energy EFT contact interactions of mass dimension 9 enveloping
two distinct modes of proton decay, the corresponding SMEFT counterparts, and their
realizations in terms of BSM propagators. For the LEFT diagrams,

R Q
f

,C( )
( )y denotes the

light fermions f ä {ν, e, u, d, s, c, b} with RC being the SU(3) representation, and Q is
the electromagnetic charge. For the SMEFT diagrams,

R R Y
f

, ,C L( )
( )y denotes the SM

fermions f ä {q, l, e, d, u} with RL being the SU(2) representation, and Y is the
hypercharge. Φ is the SM Higgs and 〈Φ〉 is its VEU.
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constrained by two-body nucleon decays such as p→ e+π0. At dimension> 6, non-trivial
lepton number ΔL≠ 0 allows to enforce dominance of some operators (e.g. [295]). ΔB and
ΔL are connected through the dimensionful operators (e.g. [307, 357]). Higher dimensional
operators can also often lead to multi-body channels, such as n→ K+μ+e−e− at dimension-9,
or multi-nucleon decays with ΔB> 1 [358]. One can use limits on rates for p→ ℓ

+M and
n Mn̄ , where M denotes a pseudoscalar or vector meson to obtain indirect limits on rates
for p ℓ ℓ ℓ ¢ ¢+ + -, n ℓ ℓn̄ ¢+ -, p ℓ ¯nn + , and n ¯ ¯nnn [361]. Figure 7 displays char-
acteristic examples of processes with distinct ΔB and ΔL structures.

2.7. Discrete symmetries and supersymmetry

B-violation processes appear in many extensions of the SM, a notable example being
supersymmetric (SUSY) theories. Already in the MSSM realization nucleon decay-mediating
dimension-4 operators QLd c and u cd cd c appear, where Q, L are left-chiral quark and lepton
doublets and u c, d c are the u-type, d-type superfields, respectively. To forbid rapid proton
decay through these interactions, models often impose a Z2 symmetry called R-parity (matter
parity) (e.g. [41]). However, at dimension-5, one encounters nucleon decay-mediating QQQL,
which can be forbidden by ‘proton hexality’ Z6 symmetry that contains R-parity as a subgroup
[362]. Since all global symmetries are expected to be violated at some level [363], it is
appealing to consider discrete gauge symmetries. Such symmetries can appear as remnants of
spontaneously broken local U(1) symmetries [364]. Thus, care must be taken to ensure
anomaly cancellation. Favorable discrete symmetries that allow for rich phenomenology,
resolve theoretical puzzles (e.g. μ-problem) and forbid dangerously rapid nucleon decay have
been identified, such as those of [362, 365–368]. Discrete (gauge) symmetries can also be
considered in the context of GUT models.

Figure 7. Process examples with baryon and lepton number violation by ΔB and ΔL
units, respectively. ‘Instanton’ refers to processes that break the same quantum
numbers as non-perturbative electroweak instantons. 0ν2(4)β refers to neutrinoless
double (quadruple) beta decay. The minimal mass dimension d of the underlying
effective operator is shown. Operators also carry flavor. Reproduced from [358].
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Unlike the SM, the baryon and lepton numbers are no longer accidental symmetries of the
classical Lagrangian in the MSSM. In the most general supersymmetric theory, gauge-
invariant terms that violate baryon and lepton numbers are allowed, which are

W L L e L Q d L H , 2L ijk i j k ijk i j k i i u1 ( )l l m= + ¢ + ¢D =

W d d u , 3B ijk i j k1 ( )l= D =

where standard notation of chiral superfields of the MSSM are used and i, j, k are family
indices. The chiral supermultiplets carry baryon (lepton) numbers B=+ 1/3 for Qi and
B=−1/3 for u d, (L=+1 for Li and L=−1 for ei). Subsequently, the terms in equation (2)
violate total lepton number by one unit, and terms in equation (3) violate total baryon number
by one unit. If both l¢ and λ″ are present and are unsuppressed, then the lifetime of the proton
would be extremely short. In the low-energy MSSM model, one forbids these terms by
imposing a new discrete symmetry, known as ‘R-parity’ [369]. One can allow some of the
R-parity-violating (RPV) terms while still avoiding excessively rapid proton decay, and these
could lead to |ΔL|= 2 decays such as K+

→ π−μ+μ+ and K+
→ π−μ+e+; thus upper bounds

on the branching ratios for these decays can be used to obtain upper bounds on the
coefficients of certain RPV terms [341].

Here we consider the possibility of only baryon number violation. Therefore, the only non-
zero term in the above superpotential we allow is d d ui j k. The associated coupling ijkl is

antisymmetric in the first two flavor indices, leading to in total nine couplings , ,dsu dbul l  and
so on. Due to this antisymmetric nature, coupling to three quarks of the first generation is
absent; this is why n n- oscillation is highly suppressed. However, there exist stringent
bounds on these couplings coming from dinucleon decay [370–376]. For example, let us
consider the coupling dsul , which violates baryon number by one unit and strangeness by one
unit; however, it conserves B− S. Hence it is easy to understand that the best bound comes
from dinucleon decay into two mesons of identical strangeness via dimension-9 operators.
Using the current limits of dinucleon decay to two kaons, pp→ K+K+ for instance, Super-K
provides a lower limit of >1.7× 1032 years [377] (for pion final states, limits of similar order
exist from Super-K [378]), and one obtains the following constraint on the RPV,

m
10 , 4dsu

S16
5 2

( )l <
L

- ⎛
⎝

⎞
⎠

where mS represents a common mass scale of SUSY particles and Λ is the hadronic scale.
Dinucleon decays also appear in non-SUSY models, e.g., dinucleon decay to two kaons and
dinucleon decay to leptons occur in a class of models studied in [329].

2.8. Implications of BNV for other BSM physics

2.8.1. Majorana nature of neutrinos. All fermions in the SM are charged, except neutrinos.
Therefore, charged fermions are Dirac particles, whereas the nature of the neutrinos, whether
Dirac or Majorana, is an unresolved question in particle physics. As is well known,
observation of neutrinoless double beta decay would unambiguously establish the Majorana
nature of neutrinos by virtue of the ‘black box theorem’ [379]; for a recent review on the
status and prospects of neutrinoless double beta decay see [380]. However, if neutrinos have
normal mass ordering with non-degenerate eigenvalues, the prospects of observing such
decays are bleak in the near-future experiments. Interestingly, observation of BNV processes
can independently confirm the Majorana nature of neutrinos. This provides additional
motivation for experiments searching for nucleon decays and neutron-antineutron oscillation.

J. Phys. G: Nucl. Part. Phys. 51 (2024) 033001 Topical Review

26



As suggested in [381], baryon number violation in two processes with at least one
obeying the selection rule Δ(B−L)=±2 can infer Majorana nature of neutrinos. As an
example, consider two BNV processes: (i) p→ e+π0 (|ΔB|= 1) and (ii) n n- oscillation
(|ΔB|= 2). The former and the latter processes correspond to Δ(B−L)= 0 and Δ(B

−L)=−2, respectively. Suppose both these BNV processes are observed in the experiments.
In that case, neutrinoless double beta decay is guaranteed to exist just by combining these two
vertices as depicted in figure 8. This would subsequently confirm the Majorana character of
neutrinos. One can get to the same conclusion if instead (i) p→ e+π0 (Δ(B− L)= 0) and (ii)
n→ e

−π+ (Δ(B−L)=−2) processes are considered [381]. In general, this is true for
p→ ℓ

+M0 and n→ ℓ
−M+, with ℓbeing e or μ andM being any light meson. The 0νββ lifetime

arising from these BNV operators can be extremely long:

p e n e

10 yr 10 yr
10 yr, 50

0

34 32
113( ) ( )

( )t
t p t p

<
 

´nbb

+ - +

But the point is that it is finite, provided that p→ e+π0 and n→ e−π+ are observed. It is the
finiteness of τ0νββ that is essential to establish the Majorana nature of the neutrino. Other
contributions to 0νββ generally exist, which would dominate over the nucleon decay
mediated ones. However, these may still be below the experimental sensitivity (e.g. for
normal ordering of neutrino masses), in which case the observation of the BNV processes
mentioned above can be useful to infer the Majorana nature of the neutrinos.

Realistic SO(10) GUT models where both B−L conserving and B−L changing (by two
units) decays of the nucleon are present can be found in [355, 356, 381]. It is also possible to
get good fits to neutrino oscillation data in these models. Since nucleon decay in these well-
motivated GUT models is within reach of ongoing and upcoming experiments, one can hope
to resolve this outstanding puzzle (i.e. Majorana versus Dirac nature of neutrinos) by
observing BNV processes, even if neutrinoless double beta decay is not directly observed
by then.

Figure 8. Neutrinoless double beta decay diagram originating from the BNV processes
of proton decay and n n- oscillation obeying selection rules Δ(B− L) = 0 and Δ

(B− L) =−2, respectively. Observation of the latter two BNV processes would
guarantee the Majorana nature of neutrinos.
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We conclude this subsection by pointing out an interesting connection between BNV and
Majorana neutrino mass via the weak instanton effects. Non-perturbative instanton/sphaleron
configurations of weak interactions that lead to solutions to an effective operator involving
twelve SM doublet fermions can be written as: [uddudd] · [uude] · [νν]. Of this operator, the
first, second, and third pieces correspond to n n- oscillation, proton decay p→ e+π0, and
Majorana neutrino mass, respectively. Therefore, if p→ e+π0 and n n- oscillation are
observed, the sphaleron configuration would imply that neutrinos have Majorana masses; this
non-trivial connection known as the ‘B− L triangle’ [381] is demonstrated in figure 9.

2.8.2. Leptogenesis. In the SM, baryon number and lepton number are accidental
symmetries of the classical Lagrangian. However, B and L are exactly conserved only in
perturbation theory and are not respected by non-perturbative effects. Sphaleron processes
which are effective non-perturbative interactions constructed out of twelve left-handed SM
fermions are the key to leptogenesis [155]. These interactions change baryon number B and
lepton number L by a multiple of three (ΔB=ΔL= 3NCS, where the integer NCS is the
Chern–Simons number characterizing the sphaleron gauge field configuration), but on the
contrary, preserve B−L. Sphaleron processes are in thermal equilibrium in a wide range of
temperatures: TEW∼ 102GeV T Tsph∼ 1012GeV [8]; owing to these interactions, in
Sakharov’s conditions [300] for baryogenesis, lepton number violation can replace baryon
number violation.

The existence of sphaleron processes typically divides models of baryogenesis into three
categories depending on the energy scale when asymmetry is generated: (i) Leptogenesis:
high scale L asymmetry generation after inflation that is converted to B asymmetry through
sphaleron processes [155], (ii) Electroweak baryogenesis: phase transition dynamics at the
electroweak scale coupled with new physics CP-violating sources near the EW scale (for a
recent review see [382]), (iii) Post-sphaleron baryogenesis: new physics B-violating
interactions occurring below the electroweak phase transition scale [311–313, 383]. Here
we briefly discuss leptogenesis scenarios (for reviews on leptogenesis, see, e.g. [384–392])
that are inherently connected to neutrino mass generation via the seesaw mechanism [94–98].

The seesaw mechanism is the most natural candidate to explain tiny neutrino masses
within the GUT framework or BSM frameworks with a local B−L symmetry [310]. In this
scenario, tiny neutrino masses arise due to the heaviness of right-handed partners. The heavy
right handed neutrinos have Majorana masses breaking B−L by two units which then gives a
Majorana masses of light neutrinos. Neutrino mass in type-I seesaw is given by,

m m M m , 6D R D
T1 ( )= -n -

Figure 9. B− L triangle [381] demonstrating how Majorana mass for neutrinos can be
confirmed if BNV processes are observed.
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where, m v Y2D = n with Yν being the Dirac neutrino Yukawa coupling, and MR is the
right-handed neutrino mass. For order one Yukawa coupling for the neutrinos, one then
obtains:

M M m10 GeV , 0.01 eV, 73
15

GUT 3 ( )~ ~  ~n

consistent with neutrino oscillation data. In the vanilla leptogenesis scenario when N1, the
lightest of the right-handed neutrinos, decays into lepton-Higgs pairs, a lepton asymmetry in
these CP-violating out-of-equilibrium decays are generated, which is then partially converted
to baryon asymmetry by the sphaleron processes and the right amount [393] of matter-
antimatter asymmetry of the Universe can be reproduced. Leptogenesis and its connection to
absolute neutrino mass and neutrino mixing parameters in the context of SO(10) GUTs are
studied in [143, 394–396].

The CP-asymmetry from the right-handed neutrino decays can be estimated to be
ò∼mνMR/(16πv

2
). A sufficiently large CP-asymmetry ò 10−7 to generate adequate baryon

asymmetry imposes the so-called Davidson-Ibarra bound MR 109GeV [397]. However, if a
pair of right-handed neutrinos are quasi-degenerate in mass, the CP asymmetry can be
resonantly enhanced [398–400] (see also [399, 401–403]). Subsequently, the lower bound on
MR comes only from the requirement that sufficient baryon asymmetry is induced at T> Tsph.
In this resonant leptogenesis scenario, right-handed neutrinos can have masses as low as sub-
GeV to TeV range and low-scale seesaw models of this type have the virtue of being directly
probed in experiments [390]. For implications of low-scale resonant leptogenesis from GUT,
see e.g. [404].

2.8.3. Baryogenesis. The two leading proton decay modes, p→ e+π0 and p Kn + as
extensively discussed above, both conserve B−L symmetry (i.e. Δ(B−L)= 0). For this
reason, the minimal SU(5) model does not have any way to explain the origin of matter even
though it has both baryon number violation as well as CP violation. Sphaleron processes
would wash out any baryon asymmetry generated in such models. However, going beyond
these d= 6 operators, the next-to-leading BNV operators correspond to d= 7, an explicit
computation of which for a class of SO(10) models is given in [243], which break this
symmetry by Δ(B−L)=−2 and generate nucleon decay modes such as p→ νπ+, n→ e−π+,
n→ e−K+. As mentioned above, spontaneous breaking of B−L in SO(10) GUTs is directly
related to the neutrino mass generation. Intriguingly, in a class of SO(10) GUTs (applicable to
both non-SUSY and SUSY), these d= 7 nucleon decay modes for which the lifetime can be
in the experimentally accessible range are inherently linked [355, 356] to the matter-
antimatter asymmetry in the Universe. Due to their B−L breaking nature, electroweak

Figure 10. Effective B−L violating dimension-7 nucleon decay operators induced by
symmetric Yukawa couplings of 10 and 126 Higgs fields of SO(10).
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sphaleron processes would not wash out such a GUT-scale-induced baryon asymmetry; hence
asymmetry generated would survive down to low temperatures. The VEV of 126 Higgs
breaks the B−L generator of the SO(10) and provides a large Majorana mass for right-handed
neutrinos as well as generates trilinear scalar couplings that induce d= 7 nucleon decay
operators; an example diagram is presented in figure 10. In this figure, a trilinear coupling
ωHρ* is induced via VEV insertion of aΔ(1, 1, 0) scalar that breaks the B−L generator. Here,
the quantum numbers of these fields are: ω(3, 1, − 1/3), H(1, 2, 1/2), ρ(3, 2, 1/6) and this
term originates from a quartic coupling in the scalar potential of the form 1264, which is
gauge invariant. From the left (right) vertex in the Feynman diagram figure 10, it can be
understood that ω (ρ) has B−L=−2/3 (B−L=+ 4/3); this clearly dictates that the
associated trilinear coupling leads to the decay ω→H*ρ which violates B−L by −2. Thus,
when tree as well as loop diagrams for the decay ω→H

*ρ are combined, a net B−L

asymmetry is generated. This GUT-scale-induced baryon asymmetry in ω→H*ρ decay that
has deep correlations with neutrino mass generation and nucleon decay is shown [355, 356] to
correctly reproduce the observed baryon-to-entropy ratio in the Universe.

2.8.4. DM. The natural appearance of DM in SUSY GUTs has already been mentioned.
Here we briefly discuss some DM candidates in non-SUSY GUTs. There are a large number
of DM candidates in the literature, and a comprehensive review of these models is beyond the
scope of this white paper.

It is remarkable that GUTs based on SO(10) gauge symmetry automatically contain
matter parity P 1M

B L3( ) ( )= - - , as a discrete subgroup that can naturally stabilize the DM
without the need for imposing ad hoc symmetries by hand. To be specific, stability of the DM
is guaranteed by the discrete subgroup Z B L

2
3( )- of U(1)B−L⊂ SO(10) [405–408] that typically

arises when the intermediate group Gint breaks to the SM group GSM [409]:

SO G G Z10 . 8int SM 2( ) ( )  ´

The smallest representation in SO(10) that can realize this symmetry breaking pattern (i.e.
with a remnant Z2 symmetry) is 126, which can also be used to generate Majorana masses for
right-handed neutrinos as discussed above.

Under the matter parity, only the 16- and 144-dimensional representations are odd,
whereas the rest of them are even (here, we restrict ourselves to representations not bigger
than 210). Given the fact that the SM Higgs doublet residing in a 10-dimensional
representation is even while a 16-dimensional representation containing fermions of each
generation is odd, the lightest component of an additional even fermion or an odd scalar
multiplet will be stable due to the residual Z2 symmetry [175, 409–414]. However, this

Table 3. Possible DM candidates in SO(10) GUTs. SU(2)L × U(1)Y multiplet that
contains a neutral component is presented in the first column. The second (third)
column lists representations that are even (odd) under PM and contain a DM candidate
are listed in the second (third) column. The triplet candidates with hypercharge ±1 are
shown for completeness; however, they are not viable as a DM candidates.

Fermions Scalars

DM multiplet SU(2)L × U(1)Y Even SO(10) multiplet Odd SO(10) multiplet
10 45, 54, 126, 210 16, 144
2±1/2 10, 120, 126, 210, 210¢ 16, 144
30 45, 54, 210 144

3±1 54, 126 144
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stability will be lost if a Higgs in the 16-dimensional or 144-dimensional representation
acquires a VEV. This leads to the list of possible DM candidates in SO(10) GUTs given in
table 3. DM candidates have also been presented in the context of extra-dimensional models
(e.g. [327, 328].

2.8.5. Flavor violation. It is widely known that low-energy SUSY models with arbitrary
mixings in the soft breaking parameters would lead to unacceptably large flavor-violating
effects (e.g. [415, 416]). It is essential to assume flavor universality in the mechanism that
breaks SUSY to be consistent with experimental observations. Starting with flavor-universal
SUSY breaking boundary conditions at a high scale, running effects of the renormalization
group equations (RGEs) can still induce sizable flavor mixings in soft breaking parameters
that lead to extensive flavor violations at low energies. Many constraining flavor-violating
processes arise in the leptonic sector and are inherently connected to neutrino parameters. In
SO(10) GUTs, Dirac neutrino Yukawa couplings Yν induce observable lepton flavor
violations (LFVs) that put strong constraints on SUSY breaking parameters [417, 418].
Present experimental bounds on some of the most important LFV processes are [13]:

e eeeBR 4.2 10 , BR 1.0 10 , 913 12( ) ( ) ( )m g m < ´  < ´- -

e eeeBR 3.3 10 , BR 2.7 10 , 108 8( ) ( ) ( )t g t < ´  < ´- -

BR 4.4 10 , BR 2.1 10 . 118 8( ) ( ) ( )t mg t mmm < ´  < ´- -

In the RG evolution of the left-handed slepton soft-masses m
L ij
2( ) , flavor violating off-

diagonal entries are induced that are proportional to Y Y †
n n :
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where MRk are the heavy right-handed neutrino masses. Assuming scalar mass universality
and gaugino mass unification as is usually done in cMSSM, there exist only a few parameters
in the SUSY breaking sector: m m A, , , tan , sgn0 1 2 0{ ( )}b m . Here m0 and m1/2 are the
universal SSB scalar and gaugino masses, respectively; A0 is the universal tri-linear coupling
and μ the Higgs mass term, which is determined from EWSB condition. The fit to fermion

Figure 11. Branching ratio of μ→ eγ is presented for SUSY SO(10) × U(1)PQ model
of [150]. The red horizontal dashed line corresponds to the current upper bound BR
(μ→ eγ) < 4.2× 10−13 by the MEG experiment and the gray horizontal dashed line
represents the projected sensitivity BR(μ→ eγ) < 6× 10−14 by the MEG II
experiment [419].
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spectrum in a specific GUT fully determines tanb as well as Yν and the right-handed neutrino
masses MRk. Consequently, one can compute the rates for LFV processes as functions of the
remaining SUSY breaking parameters: {m0, m1/2, A0} (in this way, the gaugino, slepton, and
squark masses are expressed in terms of {m0, m1/2, A0}). Such correlations within a minimal
SO(10) GUTs are presented in figure 11; for details see [150]. Quark flavor violating
processes such as K K0 0- mixing, b→ sγ, etc also put strong constraints on SUSY breaking
parameters. For a systematic study of constraints on Yukawa couplings due to GUT relations
and finding correlations between constraints on flavor violation between the lepton and quark
sectors, see [418].

2.8.6. Gravitational wave production. After the great success of the direct observation of
gravitational waves (GWs) by the LIGO collaboration [420], GW detection has been
considered to be a powerful probe of new physics that complements experiments in particle
physics. BNV effects are usually associated with new symmetries (e.g. those preserving B−L)

at high scales. Spontaneous breaking of these symmetries may generate gravitational radiation
in the early Universe, which appears as cosmic GW background today. The GW exploration
will be very helpful to understand these processes and any new physics behind them. Here we
discuss potential sources of GWs generated from BNV-related physics: GWs via cosmic
strings generated from intermediate symmetry breaking in GUTs and those via first-order
phase transition.

The production of cosmic strings is another important prediction for most GUTs in
addition to proton decay. GUTs beyond SU(5) provide a series of intermediate symmetries
before breaking down to the SM. The spontaneous breaking of the GUT symmetry to the SM
gauge symmetry occurs in several steps, and topological defects are produced accompanied
by the symmetry breaking. Those defects include monopoles, domain walls and cosmic
strings [421]. The former two are problematic as they would come to dominate the energy
density of the Universe. This problem is solved by including a period of inflation after their
production. The production of cosmic strings is usually associated with the breaking of a U(1)
symmetry, which appears as a subgroup of SO(10) or larger groups [422]. These strings, if
produced after inflation, evolve to a network. The network follows a scaling solution during
the Hubble expansion and the energy density does not overclose the Universe [423–425].

Strings in the network intersect to form loops. Cusps and oscillations of loops release
energy via gravitational radiation, which forms a stochastic background today [426–428]. The
GW density parameter ΩGW≡ ρGW/ρc, where ρc is the critical energy density of the
Universe, appears with a characteristic spectrum that drops in the low frequency, peaks in the
middle and flattens in the high frequency [429]. ΩGW is directly determined by the string
tension μ, which represents the energy per unit length of the string. In the high frequency
band, ΩGW follows a simple correlation with the string tension, f GGW

1 2( ) ( )mW µ , where G
is the Newton constant [430]. In the future, a series of undergoing or planned GW
observatories such as LIGO [431], SKA [432], LISA [433], Taiji [434], TianQin [435], BBO
[436], DECIGO [437], Einstein Telescope [438] (ET), Cosmic Explorer [439] (CE), MAGIS
[440], AEDGE [441], and AION [442] have the potential to explore ΩGW in a wide range
∼10−15

−10−7, referring to Gμ∼ 10−19
−10−11 and the new physics scale m~ ~

10 109 13- GeV following the result of Nambu-Goto string simulation [429].
The measurement of the cosmic GW background provides a novel way to probe grand

unification [443, 444]. It is worth mentioning that the new physics scale probed by GW
measurements is usually not the GUT scale MX, but an intermediate scale between MX and the
electroweak scale [445]. This scale is not arbitrary, but correlated with MX via the unification
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of gauge couplings. Measuring proton decay in neutrino experiments can determine both MX

and the intermediate scale as well as Gμ. For example, given the lower bound
τ(p→ π0e+) 1.6× 1034 years from Super-K [446], restrictions on Gμ in the following
typical breaking chains are obtained,
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where D in the upper case refers the left–right matter parity symmetry and the minimal
particle content consistent with the SM and neutrino masses have been considered [447].
Once any proton decay signal is confirmed in next-generation neutrino experiments, GW
measurement provides a good opportunity to study the details of GUT breaking. Note that the
the spontaneous breaking of the lowest intermediate gauge symmetries for all chains in
equation (13) also leads to the UB−L breaking. It provides a window to connect GW signals
with the Majorana nature of neutrinos and to test leptogenesis via seesaw mechanism [448].

For the symmetry breaking scale below 108GeV, a strong first-order phase transition
might provide a compelling source of observable GW signals. During the phase transition,
bubbles of the broken phase nucleate and expand in the Universe. The collision of the bubbles
and the resulting motion of the ambient cosmic fluid provides a source of a stochastic
background of GWs that can be observable at GW observatories [449].

The GW spectrum is in general given by the sum of three contributions: bubble wall
collisions, sound waves and hydrodynamic turbulence (see [449, 450] for recent reviews).
Despite the energy budget, the spectrum has a generic feature: a peak in the middle and
polynomial suppressions in both low and high frequencies. It is distinguishable with that from
cosmic strings as there is no plateau in the high frequency band. The frequency at the peak
depends on the phase transition temperature linearly. In addition to the temperature, two more
parameters are crucial to determine the GW spectrum: α the ratio of the released latent heat
during the phase transition to the total energy density and β/Hå the ratio of the inverse
duration of the phase transition to the Hubble rate. α dominates the GW strength. Enhancing
α by one order of magnitude can enhance the GW strength by several orders of magnitude.
β/Hå influences both the strength and frequency of GW. Faster the phase transition
proceeding, higher frequency of the GW signal is expected. Theoretical efforts have been
made to enhance 0.1( )a   and reduce H 10 102 3( )b  - such that part of the
parameter space of B- or L-violating new physics can be reached by the exploration of next-
generation GW interferometers (see, e.g. discussions in [451–457]).

2.9. Lattice developments

Rates of proton decays and neutron oscillations depend on nucleon and nuclear matrix
elements of effective baryon number-violating operators. Prior to development of lattice QCD
methods, these matrix elements were initially calculated with various nucleon models.
However, eliminating theory uncertainties completely requires ab initio QCD calculations on
a lattice with physical quark parameters. Calculations of proton decay amplitudes have been
pursued since simulating nucleons on a lattice became possible, with methodology gradually
improving over the last three decades. Neutron oscillation amplitudes were studied only
relatively recently, when realistic lattice QCD calculations were already feasible.

Apart from the usual systematic effects inherent in lattice QCD calculations (discretization,
finite volume, etc), calculations of BNV amplitudes are complicated by the need to preserve
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chiral symmetry of the quarks. Since the effective proton decay and neutron oscillation
operators contain chiral quark fields, using a simple fermion discretization such as Wilson
action may lead to undesirable mixing of operators on a lattice. This mixing would complicate
renormalization and introduce additional systematic effects. Fortunately, formidable progress
has been made towards lattice calculations with chiral fermions at the physical point
[458–460].

Amplitudes of p ℓ̄p , p ℓK¯ decays may be computed on a lattice directly as matrix
elements between the proton and a meson. Such calculations have initially been performed in
quenched QCD with Wilson valence quarks [461] and DWF quarks [462], and later in unitary
QCD with Nf= 2+ 1 flavors of DW fermions [463, 464]. All these calculations have been
performed with unphysical masses of light quarks corresponding to pion masses
mπ 300MeV, and required some form of chiral extrapolation to the physical point.
Although these amplitudes did not exhibit strong pion mass dependence, applying chiral
perturbation theory (ChPT) to baryons is often questioned, and proton decay amplitudes have
not been computed in ChPT beyond the leading order. In the framework of the chiral-bag
proton model, it has also been suggested that the proton decay matrix elements may depend
dramatically on the light quark masses [465]. These deficiencies have been addressed in the
recent work [466], in which the proton decay amplitudes have been calculated with 10%–20%
precision using chirally symmetric DW fermions at the physical point, albeit with relatively
coarse lattice spacing a 0.14 fm. The physical-point results are largely in agreement with
previous calculations, and no suppression at light-quark masses has been observed.

The proton-to-meson transition amplitudes can also be ‘indirectly’ estimated from proton-
to-vacuum proton decay constants α, β [467] using the leading-order chiral Lagrangian.
These decay constants have been computed using quenched QCD with Wilson quarks
[468–470] and Domain Wall quarks [462], as well as in unitary QCD with dynamical DW
fermions [464, 466, 471]. The ‘indirect’ estimates of proton decay amplitudes are typically
higher than the ‘direct’ results, which is likely attributable to pion loop effects. A calculation
with next-to-leading order ChPT is highly desirable to understand this discrepancy. The
proton-to-vacuum decay constants are also highly important to analysis of p→ μ−e+e+ and
p→ e−μ+μ+ proton decays.

A particular BSM theory yields predictions for the effective scale of the physics con-
tributing to n-n̄ oscillations and predictions for the coefficients of the various six-quark
operators i contributing to these oscillations. To calculate the expected rate of n-n̄ oscilla-
tions in a given model, one then needs to compute the matrix elements n ni⟨ ¯∣ ∣ ⟩ . These matrix
elements have dimensions of (mass)6, and since at the hadronic level, the only important mass
scale in the problem is ΛQCD; 250MeV, it follows that the matrix elements are QCD

6~L .
Early calculations of the n-n̄ matrix elements were performed using the MIT bag model
[306, 307]. Recently, these matrix elements have been calculated using lattice QCD
[472, 473]. This calculation has been performed on a lattice with chirally symmetric action at
the physical point, and the operators have been renormalized using two-loop perturbative
anomalous dimension [474]. As examples, for one operator, denoted Q5 in [472], the lattice
QCD calculation (normalized at 2 GeV) yielded a value in agreement with the MIT (fit A)

value, while for other operators, the lattice QCD calculation yielded values larger in mag-
nitude by up to an order of magnitude. Since the general amplitude for n–n̄ oscillations has
contributions from several different operators and since the matrix elements of these operators
have different signs, there can be destructive interference, so that one cannot make a statement
about the overall size of the n-n̄ transition amplitude from a knowledge of individual matrix
elements of operators without knowing the details of a given UV model predicting which
operators occur and the values of the coefficients of these operators. Nevertheless, the lattice
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QCD calculations of these matrix elements are valuable inputs for the analysis of the pre-
dictions of a given BSM model for n–n̄ oscillations.

Finally, lattice calculations of proton decay and neutron oscillation amplitudes inside
nuclei may soon become feasible [475, 476]. Although lattice simulation of nuclei requires
substantially more resources due to the sign problem, development of exascale computing
resources over the next decade is expected to make ab initio calculations of nuclear matrix
elements possible.

3. Experimental overview

This section summarizes results and sensitivities for baryon number violation searches for
currently running, planned, and proposed neutrino detectors, as well as some avenues for
potential improvement in nuclear modeling and detection techniques for future detectors. A
comparison of current limits and future sensitivities for important modes are shown in table 1.

3.1. Super-K

The Super-Kamiokande neutrino detection experiment represents the 2nd generation of large
water Cherenkov neutrino and nucleon decay experiments, following Kamiokande and IMB
which ran in the 1980s and 1990s. Super-K (also SK) is currently running and has been in
operation since 1996. The experiment addresses major neutrino topics such as atmospheric
neutrino oscillation, solar neutrino oscillation, gravitational collapse supernova bursts in the
Milky Way galaxy, searching for the diffuse background of supernova neutrinos, and
indirectly searching for DM via annihilation or decay to neutrinos. The SK detector is also the

Figure 12. The search for p→ e+π0 in 450 kton-y of Super-Kamiokande data[55]. The
leftmost panels show the results of simulated proton decay, where the nuclear effects
that degrade the signal for proton decay in 16O are distinct from the low momentum
events from the decay of the free hydrogen nuclei. The center panels show the
predicted background due to atmospheric neutrino interactions. The rightmost panels
show the SK experimental data. The upper row represents the original fiducial volume,
used in the majority of Super-K publications, requiring the interaction vertex to be
200 cm from the PMT plane. The lower row represents the additional fiducial volume
that is between 100 cm and 200 cm from the PMT plane.
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far detector for the T2K long-baseline neutrino oscillation experiment. The interaction target
is 22.5 to 27.2 ktons of ultrapure water in a cylindrical stainless steel tank located 1 km
underground in the Kamioka mine in Japan. The target mass is viewed by 11, 000 50 cm
photomultiplier tubes (PMTs), and is surrounded by an optically isolated active veto of
roughly 2 m of water viewed by 1, 800 PMTs. Since 2020, the detector water system has been
upgraded to allow gadolinium sulfate in solution to enhance the capture and detection of
neutrons [477]. This Super-Kamiokande detector naturally enables the search for a variety of
baryon number violation processes in the same target mass, with only atmospheric neutrinos
as a competing background. Foremost are searches for nucleon decay, often cited as one of
two possible meanings embedded in the Super-Kamiokande name: Nucleon Decay
Experiment.

Unfortunately for fans of new physics, the SK experiment has not detected any signs of
nucleon decay. The extensive exposure, 450 kt-yr in a recent publication, sets a high bar for
future experiments to overcome. For example, the lifetime lower limit for p→ e+π0 is now at
2.4× 1034 years based on a recent analysis that uses several improvements over older pub-
lications [55]. The improvements include: background reduction by tagging events where
neutron capture on hydrogen is detected nearby the interaction, expansion of the fiducial
volume from 22.5 to 27.2 ktons, and dividing the search region into a section where the nearly
background-free decay of the free proton in H2O is accentuated. The simplicity and clarity of
this search is illustrated in the three-panels of figure 12, showing the low background region
at high invariant mass and low net momentum (note the extremely low expected background
of the free proton region), and the absence of any data events in that region.

Overall, the Super-K experiment has published leading limits on 30 BNV processes
including: an extensive survey of antilepton plus meson final states that conserve (B−L),
dinucleon decay modes that violate baryon number by two units, and three-body decay modes
including those with fully leptonic final states. Special attention has been given to decay
channels favored by SUSY, which are distinguished by the presence of a kaon in the final
state. The most recent published limit for the key decay mode p Kn̄ + is 5.9× 1033 years
based on an exposure of 260 kt-yr [478], but a preliminary result of 8× 1033 years has been
reported in conferences. In addition, Super-K holds the leading limit on the interesting ΔB

= 2 process of neutron oscillation into anti-neutron within the oxygen nucleus [332]. This
may be converted to an effective free n n̄- lifetime of 4.7× 108 s, which is comparable to

Table 4. Selected BNV searches by Super-Kamiokande.

Channel Comment Exposure Limit Reference

p→ e+π0 d= 6 operators,
e.g. SU(5)

450 kt·yrs 2.4× 1034 years [55]

p→ μ+π0 flipped SU(5) 450 kt·yrs 1.6× 1034 years [55]
p→ νK+ d= 5 SUSY operators 260 kt·yrs 5.9× 1033 years [478]
p→ μ+

K
0 SUSY SO(10) 173 kt·yrs 1.6× 1033 years [480]

pp→ K+K+ RPV SUSY 92 kt·yrs 1.7× 1032 years [377]
p→ e+e+e− lepton flavor

symmetries
370 kt·yrs 3.4× 1034 years [481]

n n̄ ΔB= 2 370 kt·yrs 3.6× 1032 years [332]
np→ τ+ν extended Higgs sector 273 kt·yrs 2.9× 1031 years [482]
n→ νγ radiative 273 kt·yrs 5.5× 1032 years [482]
p→ e

+νν Pati-Salam 273 kt·yrs 1.7× 1032 years [298]
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(slightly exceeding) the leading free neutron experiment [479]. Table 4 lists a sample of
published limits.

Major improvement in sensitivity to lifetimes much beyond the limits listed here await the
next generation of more massive detectors. Until then, operation of the Super-K experiment
with concomitant data analysis will provide incremental progress but valuable methodological
developments. Ongoing studies of nucleon decay include continued development of recon-
struction techniques, refinement of the intranuclear simulations relevant to both signal and
background, first studies of algorithms for neutron capture on gadolinium, and new searches
for novel modes.

3.2. Neutron-antineutron transformations in NOvA

The NOvA Far Detector is sensitive to the spontaneous conversion of neutrons to anti-
neutrons. Since all neutrons in NOvA are bound in nuclei, the resulting antineutron would
immediately annihilate on a neutron or proton, typically yielding three to six pions. The
experimental signature is therefore a star with approximately zero net momentum and a
visible energy typically between 0.8 and 1.5 GeV, depending on the mode (see figure 13).

Neutron-antineutron oscillations are suppressed in nuclei by a factor R such that
t t Rboundfree = , where tfree is the free neutron oscillation time. The suppression factor varies
by nuclide. About half of the neutrons in NOvA are bound in carbon nuclei, with the majority
of the remainder in chlorine. Although no calculations exist for these elements, one calcul-
ation of R for oxygen gives 0.517× 1023 s−1

[331, 333]. Likely the suppression factor for
carbon is somewhat lower than for the larger oxygen nucleus, so there is a possibility that the
effective suppression for NOvA as a whole is lower than for a water-based detector, allowing
NOvA to set stronger limits on tfree, all other things being equal.

Figure 13. Simulation of neutron-antineutron oscillation in a carbon nucleus in the
NOvA Far Detector, yielding π+π−π0. The purple lines show the true trajectories of the
charged pions.
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NOvA must confront a significant background due to its surface location with only
3.6 meters water-equivalent overburden. Since 2018, NOvA has run a dedicated trigger
searching for neutron-antineutron-like events. By the end of the planned NOvA run in 2026,
112 kt-years of data will have been collected. To reduce background from cosmic rays, the
trigger requires candidates to be contained, to have a similar extent in z as they do in y (unlike
downward-going cosmic rays), to have only short tracks that could be produced by pions of
the expected energy, to have a total physical size and number of hits consistent with a
neutron-antineutron oscillation event, and finally to be symmetric between the xz and yz

views.
Backgrounds to this search include atmospheric neutrinos and cosmic rays. On the surface,

cosmic rays are the more challenging background. We expect that the most difficult to
exclude will be from neutrons and gammas produced in the overburden or rock berms
adjacent the detector. Two approaches are being pursued to study these backgrounds: first, a
data-driven approach using the energy sidebands above and below the expected signal visible
energy, and second, a simulation using CORSIKA [483].

The analysis to search for neutron-antineutron events in triggered data is under develop-
ment. Further information available to an offline event classifier includes more sophisticated
measures of event symmetry, calibrated hit energies, event time duration, and various
reconstructed track variables. Using a convolutional neural network (CNN) to distinguish
between neutron annihilation events and cosmic rays, as is planned for DUNE [484], is also a
possibility. If successful in suppressing cosmic ray backgrounds below the level of atmo-
spheric neutrino backgrounds, NOvA will achieve a sensitivity on the free neutron oscillation
time of somewhat longer than 108 s at 90% C.L.

3.3. MicroBooNE

The MicroBooNE detector is an 89 ton active Liquid Argon Time Projection Chamber
(LArTPC) detector located on-surface and exposed to neutrinos from the Booster Neutrino
Beamline and Neutrinos at Main Injector beamline at Fermilab. The excellent spatial and
calorimetric resolution offered by MicroBooNE’s LArTPC, also shared by the future DUNE,
enables precise measurements of neutrino scattering as well as BSM searches, including
intranuclear neutron-antineutron transitions. In a LArTPC, this process is characterized by a
unique and striking star-like signature containing multiple final-state pions from the anti-
neutron annihilation with a nearby nucleon. The pions are visible as tracks (from charged
pions) or showers (from neutral pion electromagnetic decays) pointing back to the

Table 5. The number of entities for each reconstruction and selection stage. The
numbers are evaluated using a simulation sample that corresponds to roughly 10 times
the MicroBooNE 372 s exposure. The selection efficiency indicates the ratio between
the ‘Events’ and ‘Events (after final-selection)’.

Entities n n̄- Cosmic

Events 1633 525 1618 827
Reconstructed clusters 1684 516 14 857 224
Clusters (after pre-selection) 1455 214 1283 074
Clusters (after final-selection) 1207 153 142
Events (after final-selection) 1202 281 142
Selection efficiency (%) 73.6 8.77× 10−3
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annihilation vertex, with approximately zero net momentum and total energy of about twice
the nucleon mass.

Although MicroBooNE is too small in size and too overwhelmed with cosmogenic
background to perform a competitive search, it aims to perform the first ever search for
neutron-antineutron (n n̄- ) transitions in a LArTPC, which will serve as a proof-of-principle
demonstration of LArTPC capabilities in searching for this process. The analysis Micro-
BooNE has developed [485] makes use of state-of-the-art reconstruction tools, including deep
learning methods developed for LArTPC image data analysis, to look for neutron-antineutron
transition signatures in data collected during neutrino beam-off times. The signal events are
simulated using the GENIE Neutrino MC Generator (GENIE) v.3.00.04 with hA-Local Fermi
Gas (hA-LFG) as a default model, while backgrounds are expected to be contributed by
cosmogenic activity during multiple 2.3 ms intervals of exposure (corresponding to a total of
372 s) and are evaluated using a data-driven approach. The signal interaction is simulated per
one exposure interval of 2.3 ms, which also contains multiple reconstructed clusters of cos-
mogenic activity.

Pre-selection is applied to all clusters reconstructed during 2.3 ms intervals (‘events’)
based on a Boosted Decision Tree (BDT) score, to control the background rate and remove
obvious backgrounds (cosmics). The BDT is trained using only the topological information
derived from the extent of the reconstructed clusters in channel and time space. As shown in
table 5, pre-selection reduces the cosmic background clusters such that the number of n n̄-
clusters and cosmic clusters per 2.3 ms interval become of the same order. The pre-selected
clusters are subsequently used to train a sparse CNN to differentiate signal from background
clusters. For this step, 2D projections of clusters from MicroBooNE’s three planes (U, V, Y)

are formatted in such a way so as to retain only the important pixels, out of the full image, in
the form of a collection of spacepoints containing information of wire position, time-tick and
charge deposition per spacepoint. Considering statistical-only sensitivity as a figure of merit,
an optimized CNN selection provides 73.6± 0.034% signal efficiency and
8.77× 10−3

± 7.4× 10−4% cosmic background efficiency. As shown in table 5, the final
selection highly suppresses the cosmic background clusters while the number of signal
clusters remains high.

The preliminary sensitivity for MicroBooNE’s n n̄- search is calculated assuming 372
seconds of exposure, corresponding to 3.13 neutron·years, and considering statistical uncer-
tainties only, and is shown in table 6. The sensitivity is calculated using the frequentist-based
Rolke method [486]. Although the n n̄- search in MicroBooNE is not competitive compared
to existing limits from SNO or Super-Kamiokande, this analysis serves as a demonstration for
the capability of future, larger and well-shielded LArTPC’s, including the future DUNE, to
perform such searches for baryon number violation with significantly higher exposure and
thus higher sensitivity. The MicroBooNE analysis is ongoing, to incorporate effects of sys-
tematic uncertainties.

Table 6. 90% C.L. sensitivity for argon-bound n n̄- transition lifetime assuming 372 s
of exposure in MicroBooNE, considering only statistical uncertainties.

Source of Uncertainty Sensitivity (Rolke)

Statistical-only 3.09 e+ 25 years
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3.4. Hyper-K

Continuing the neutrino and nucleon decay physics program in Kamioka, Japan, HK is a
third-generation water Cherenkov detector currently under construction roughly 8 km south of
Super-Kamiokande. The detector will use a 187 kton water target, roughly 8 times that of its
predecessor, and will observe natural neutrinos from the Sun, core collapse supernovae, and
atmospheric neutrinos as well as a 1.3 MW neutrino beam from an upgraded J-PARC
accelerator. The experiment is expected to begin operations in spring of 2027 and is expected
to improve on BNV searches at SK (see section 3.1) by an order of magnitude or more using
similar analysis techniques.

Importantly, HK will be instrumented with improved 50 cm PMTs with increased quantum
and collection efficiencies, resulting in twice the photon detection efficiency of the sensors
used in SK. Further, HK’s sensors will have roughly half the timing resolution for single
photoelectron signals. Both of these features positively impact searches for nucleon decays at
HK. Notably, atmospheric neutrino backgrounds can be reduced by 30% relative to SK’s
achievement [55] by the augmented ability to tag the faint light from the 2.2 MeV gamma ray
produced by neutron capture on hydrogen. Focusing specifically on the p Kn̄ + mode, the
improved PMT timing resolution allows HK to better separate light from the below-Cher-
enkov-threshold K+

ʼs decay products and that from photons produced by the recoiling
oxygen nucleus. This improves the detection efficiency of the K+

→ μ+νμ mode from 9.1%
[478] to 12.7% in HK [56]. Altogether HK’s discovery potential after 10 years will exceed 3σ
if the effective lifetime of the proton decay into this channel is less than 2× 1034 years. For
the other ‘flagship’ mode, p→ e+π0, a lifetime less than 6× 1034 years, i.e. slightly more
than twice the current SK limit, will lead to a 3σ detection.

Unified theories predict branching ratios for the various possible proton decay modes,
indicating that observations of multiple channels and therefore comprehensive coverage of the
possibilities is important for determining the symmetries of the underlying model. Table 7
lists HK’s median sensitivity to several of these modes, including some |Δ(B− L)|= 2| and
ΔB= 2 modes. It should be noted that for modes in which the initial state cannot be fully
reconstructed from the decay products, such as p→ e+νν, the search becomes background
limited. In such cases the sensitivity increases with only the root of the exposure, resulting in
only a factor of a few improvement in existing limits. Accordingly, the challenge for HK
going forward is to leverage its improved detector to reduce backgrounds to all modes.
Currently efforts to reduce backgrounds include adoption of improved particle reconstruction
algorithms, improved detector calibration and light collection with additional photosensors,

Table 7. Sensitivities at 90% C.L. to various single nucleon decay modes after 10 years
of Hyper-Kamiokande operations and after 20 years in the case of dinucleon decay
modes.

Mode
Sensitivity (90 % CL)

[years] Mode
Sensitivity (90 % CL)

[years]

p→ e+π0 7.8 × 1034 p Kn + 3.2 × 1034

p→ μ+π0 7.7× 1034 p→ μ+η0 4.9× 1034

p→ e+ρ0 0.63× 1034 p→ μ+ρ0 0.22× 1034

p→ e
+νν 10.2 × 1032 p→ μ+νν 10.7 × 1032

p→ e+ X 31.1 × 1032 p→ μ+X 33.8 × 1032

np→ e+ν 6.2 × 1032 np→ μ+ν 4.2 × 1032

np→ τ+ν 6.0 × 1032 n→ e−K+ 1.0 × 1034
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and introducing enhanced neutron tagging methods, either via algorithms or future gadoli-
nium doping.

3.5. DUNE

The DUNE promises one of the largest highly instrumented fiducial detector masses of any
future large underground facility ([487, 488]). With 40 kt of liquid argon (LAr) some 1500 m
below Lead, South Dakota to shield against cosmic ray backgrounds, DUNE’s immense wire
readout particle ionization charge-collection system across four separate modules (that will
eventually be in operation [489]) forms its three-dimensional LAr time projection chambers,
allowing scientists to exploit bubble-chamber quality images ([490–492]) for world-leading
precision physics studies of the SM and beyond. With potentially MeV-scale
precision ([493]), the ability to distinguish γ and e species ([494]), low cosmic μ back-
grounds, and very low LAr ionization kinetic energy thresholds for even heavy charged
species such as protons (ps) ([57, 488]), the overall physics potential of DUNE goes far
beyond its initial purpose as a ν detector built to better constrain and measure oscillation
parameters such as δCP. Indeed, the bubble-chamber-like capabilities of DUNE allow for
observation of complex event topologies with potentially high multiplicities. Combined with
state of the art detector reconstruction and particle identification (PID) methodologies, as well
as a gargantuan number of intranuclear nucleons, there is great potential for the DUNE far
detector to unlock the secrets behind rare processes.

Sensitivity to several of these processes has been studied [59] using the full DUNE
simulation and reconstruction analysis chain, including the impact of nuclear modeling and
FSIs on a BDT-based selection algorithm. With an expected 30% signal efficiency, including
anticipated reconstruction advances, and an expected background of one event per Mt·yr, a
90% confidence level (CL) lower limit on the proton lifetime in the p Kn̄ + channel of
1.3× 1034 years can be set, assuming no signal is observed for a 400 kt-year exposure.
Another potential mode for a baryon number violation search is the decay of the neutron into
a charged lepton plus meson, i.e., n→ e−K+. The lifetime sensitivity for a 400 kt-year
exposure is estimated to be 1.1× 1034 years. Neutron-antineutron (n n̄ ) oscillation is a
BNV process that has never been observed but is predicted by a number of BSM theories. The
expected limit for the oscillation time of free neutrons for a 400 kt-year exposure is calculated
to be 5.53× 108 s.33

Reconstruction of these events, which have final state particle kinetic energy of order
100MeV, is a significant challenge, made more difficult by FSIs, which generally reduce the
energy of observable particles. The dominant background for these searches is from atmo-
spheric neutrino interactions. For example, a muon from an atmospheric νμn→ μ−p inter-
action may be indistinguishable from a muon from K→ μ→ e decay chain from p Kn̄ +

decay, such that identification of the event relies on the kaon-proton discrimination. Neutron-
antineutron oscillations can be detected via the subsequent antineutron annihilation with a
neutron or a proton. The annihilation event will have a distinct, roughly spherical signature of
a vertex with several emitted light hadrons (a so-called ‘pion star’), with total energy of twice
the nucleon mass and roughly zero net momentum. Reconstructing these hadrons correctly
and measuring their energies is key to identifying the signal event. As with nucleon decay,
nuclear effects and FSIs make the picture more complicated, as FSIs can reduce the multi-
plicity of pions and make the pions less energetic.

33 This analysis used an intranuclear suppression factor for n n̄ in 56Fe [333] with a slightly inflated uncertainty
rather than the suppression factor for 40Ar, which has only recently been calculated [495] and will be applied in future
analyses.
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3.6. JUNO

JUNO is a next-generation liquid scintillator detector under construction in southern China
[60, 496]. It consists of a 20 kton liquid scintillator target inside an acrylic spherical vessel
surrounded by 17, 612 20 inch and 25, 600 3 inch PMTs. Its choice of technology, which
affords it a good timing resolution and a low energy threshold, combined with its large size,
unprecedented for a detector of this type, give it unique capabilities in the search for nucleon
decays.

JUNO will be particularly sensitive to the p Kn̄ + decay channel. The main reason is
that, as highlighted in section 3.7.2, this decay unleashes a three-fold sequence of events, each
of which is detectable in a liquid scintillator detector such as JUNO: a prompt signal from the
K+

ʼs loss of kinetic energy, a short delayed signal (τ= 12.4 ns) from its decay daughter (most
commonly a μ+), and a long delayed signal from the daughter’s decay (most commonly into a
Michel positron with τ= 2.2 μs). This threefold coincidence provides a powerful handle to
suppress backgrounds, which in JUNO are dominated by atmospheric neutrino interactions.

The sensitivity to the p Kn̄ + decay channel has been studied using JUNO’s custom
Monte Carlo simulation framework [497] including a realistic detector performance. A
modified version of the GENIE 3.0 [498] generator that accounts for FSIs and residual
nucleus de-excitations is used to generate p Kn̄ + decays and atmospheric neutrino
backgrounds. The short K+ lifetime causes the energy depositions of the K+ and its sub-
sequent decay daughter to overlap in time. However, the 3 inch PMTs, whose transit time
spread is around 1.5 ns, allow in many cases to disentangle these two signals after the time-of-
flight correction has been applied, as illustrated on the left panel of figure 14. Fitting the two
pulses simultaneously [499], as illustrated on the right panel of figure 14, allows to recon-
struct their time separation and energy deposition. The distribution of the best-fit time
separations is broader for the signal than for the atmospheric neutrino background, allowing
to discriminate between these two with high efficiency [500].

There are additional handles that further enhance the signal-to-background separation.
Among them is the use of a fiducial volume cut, the consideration of a muon veto to suppress
cosmogenic backgrounds, and the consideration of the visible energy of the candidate
signals, among others. A preliminary selection using all these criteria yields an efficiency of
31% to p Kn̄ + decays, with only 0.3 background events in a period of 10 years. A

Figure 14. Left: Example of hit time distribution in JUNO for a p Kn̄ + decay as
seen with the 3-inch PMTs. Despite the proximity between the first two signals, the
threefold coincidence is clearly visible. Right: Example of multi-pulse fitting in a case
where the time separation between the two first pulses is 11 ns. Both images are
obtained from [496].
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Feldman-Cousins [501] estimation of the sensitivity to this decay mode yields a lower limit
for the proton lifetime of 8.34× 1033 years at 90% C.L. with 10 years of data, in absence of a
signal.

It is worth noting that JUNO is also expected to have good sensitivity to other decay
modes, namely p→ μ+μ+μ− and the n→ 3ν invisible mode. JUNO will have an energy
resolution of 3% at 1MeV, which is unprecedented for a liquid scintillator detector. This will
be an important asset in those searches where the signal is a mono-energetic energy
deposition, as explained in section 3.7.3. JUNO’s sensitivity to these modes is still under
evaluation, and the results are expected to be released soon.

3.7. THEIA

THEIA is a detector concept that utilizes advances in photon detection technology (fast
timing, chromatic separation) with water-based liquid scintillator to create a highly scalable
detector (up to the 100 kton scale) with better energy resolution than a pure water detector.
Due to the large mass and presence of scintillation light, THEIA would have sensitivity to
several modes of nucleon decay that is either comparable with or better than next-generation
detectors see figure 15 and table 8. Additional details are available in [502].

3.7.1. p→ e+π0 and related modes. Decay modes which have pions in the final state are
subject to inelastic intranuclear scattering for bound protons, which causes the pion to be
reabsorbed about 60% of the time. This dominates the total efficiency to see this decay mode
in water as well as water-based liquid scintillator. For THEIA the dominant background
comes from atmospheric neutrino interactions, and is independent of depth. Compared with
other water Cherenkov detectors, THEIA would have improved neutron tagging (90%
efficiency), better energy resolution, and sensitivity to below-Cherenkov threshold charged
particles. These features can be all used to better reject atmospheric neutrino backgrounds.

3.7.2. p- �νK and related modes. Kaon decay modes are less affected by intranuclear
effects and produce a three-fold coincidence signal in the detector through the subsequent
decays of their daughter particles [13].

• K+
→ μ+νμ (63.56%)

• K+
→ π+π0 (20.67%)

• K+
→ π+π+π− (5.58%)

• K+
→ π0e+νe (5.07%)

• K+
→ π+π0π0 (1.76%)

In a pure water Cherenkov detector the kaon is below the energy Cherenkov threshold and
does not produce a detectable signal; however, the multiple pions can produce identifiable
multi-ring signals, and the subsequent decays of the pions and muon create a coincidence

Table 8. Detection efficiency and background rates for the three considered modes of
nucleon decay in THEIA.

Signal Efficiency Bkg [/Mton·yr]

p→ e+π0 40% 0.3
p Kn̄ + 55% 2.5

n→ 3ν 44% 95.6
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trigger. In THEIA, the kaon would produce scintillation light as well, though much of the
kaon signal would overlap with it is decay products due to it is 12 ns lifetime [60]. Since these
first two signals would be difficult to distinguish, it is safe to assume that THEIA would
perform no better than JUNO (pure scintillator) in terms of signal efficiency, but could be
built to a much larger scale.

3.7.3. n→ 3ν and related modes. Finally, THEIA would have sensitivity to a class of low-
energy modes known as ‘invisible’ modes, where all of the final state particles cannot produce
light emissions (such as all-neutrino final states). When these occur in a multi-nucleon
nucleus then the nucleus will often be left in an excited state and will release deexcitation γs
and nucleons. In an 16O nucleus this manifests as a 6.18MeV γ with a relatively high
branching ratio (44%). The primary background for this signal comes from solar neutrinos,
internal radioactivity, and cosmogenic activation of oxygen to 16N. THEIA would be the only
large-scale water Cherenkov detector available to look for this decay due to its large mass and
great depth. Leading limits on invisible neutron and dineutron decay are set by KamLAND
[503], and on invisible proton and diproton decay by SNO+ [504].

3.8. Detection techniques in LArTPCs

The search for baryon number violation is a prime goal of particle physics and is being carried
out in large underground detectors. Most of the current lifetime limits are affected by
backgrounds, predominantly from the 100 events per kiloton year which arise from atmo-
spheric neutrino interactions. The current best limits come from water detectors, but a pro-
mising way to reduce backgrounds is with a large liquid argon time projection chamber
(LArTPC), almost all 40Ar. Large LArTPCs provide the capability to image charged particles
with mm-scale resolution and thus explore signatures from particle and nuclear physics at the
same time [505]. The concurrent detection of light in a photo-detector system provides an
opportunity to identify signatures from nucleon decay that are not present in neutrino inter-
actions. Analysis strategies can then be tuned to both reduce background and increase effi-
ciency. A photon-detection system can also measure energy calorimetrically, working as a
crosscheck of the energy measured by the ionizing particles in a TPC and thus improving the
energy resolution when both measurements are used together. There are about one hundred
nucleon decay modes accessible to large underground liquid argon TPCs, similar to the

Figure 15. (Left) Median sensitivity curves for p→ e+π0 and p Kn̄ +, and (Right)
n→ 3ν for the two considered THEIA fiducial volumes.
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DUNE Far Detector [487], or to the considered module of opportunity liquid argon TPCs,
under consideration [506], such as Q-Pix based LArTPC [507]. We see a valuable opportunity
to combine signatures from particle and nuclear physics and take advantage of the fast and
precise timing capabilities of a photon-detection system and the detailed pattern recognition
capabilities of a LArTPC [491, 508] to improve the sensitivity of future nucleon decay
searches. As an example, consider the mode p Kn̄ + [478]. For this mode, one looks for the
K+ signature via a short ionization track, followed primarily by K+

→ μ+νμ decay which
makes an observable μ+ track. The μ+ decays to an observable positron. There are also other
less likely K+ decay modes. The kaon and its decay products can be reconstructed as images
and the decay chain could be tested for kinematic consistency. Three potential backgrounds
include 1) the large number of quasi-elastic atmospheric νμ interactions where the recoil
proton is misidentified as a K+, 2) production of K+ by atmospheric neutrinos, and 3) neutrino
production of KL outside the detector which enter the LArTPC and charge exchange to a K+.

There are several additional signatures of p Kn̄ + decay to investigate, mostly requiring
LArTPC mm-scale resolution and a low-energy charge detection threshold ideally combined
with a fast timing from the photon system:

• The 40Ar could often become an excited state of 39Cl, with emission of de-excitation
gamma rays. This nuclear process needs additional studies since any proton inside the
40Ar can decay. The proton that decays might be deeply bound within the nucleus and the
nucleus would be, at a minimum, left with an excitation energy much higher than the
neutron separation energy and maybe even other separation energies. There is a
possibility of even higher excitation if part of the decay energy is transferred to the

Figure 16. Search for the decay products from nuclear de-excitation of the residual
radioactive daughter nuclei left after the disappearance of proton from 40Ar nucleus.
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nucleus. On the LArTPC response side, the detection of MeV-scale gamma-rays was
demonstrated ([493]) with efficiency of 50% and energy resolution of 24% at 0.5MeV,
and with an efficiency of almost 100% and energy resolution of 14% at 0.8 MeV. If the
gammas from 40Ar→ 39Cl de-excitation are measured by the photon system, in addition
to the TPC charge detection, we would have a new unique time-tag of the proton decay
process, see figure 16.

• The product 39Cl decays with a 56 min half life to 39Ar (feasible to tag in a deep detector).
Then, 39Ar decays 93% of the time to excited states and will give you characteristic
gamma rays, roughly 54% of the time a 1.27MeV gamma, 39% of the time a 1.52MeV
gamma and 46% of the time a 250 keV gamma (this one typically comes with the
1.27MeV gamma).

• The K+ lifetime is 12 ns, and a photon system with good timing could distinguish it from
its decay products, as well as improve the identification of Michel electrons, from the 2 μs
decay of μʼs. In recently published results of the ProtoDUNE-SP liquid argon time
projection chamber performance ([493]), a time resolution of 14 ns was achieved in the
case of a single photon-detector channel. It is expected that photon-detector time
resolution will improve as a square root of the number of independent channels, driving
the resolution well-below the 12 ns lifetime of K+.

• Bound neutron decay to excited states of 39Ar might also make de-excitation gamma.

Our intent is, therefore, to further study these signatures and to examine how the signal
sensitivity will be further enhanced, and how backgrounds could be rejected more efficiently
with additional information from nuclear de-excitations and with precise timing from photon-
detectors in TPCs.

3.9. Effect of different nuclear model configurations on sensitivity to intranuclear neutron-

antineutron transformations

Sensitivity studies for BNV processes are currently relegated to simulations using generated
Monte Carlo (MC) event samples. For example, using the GENIE MC event generator [509]
and DUNE detector simulation and reconstruction software packages such as LArSoft [510],
a first foray into sensitivity investigations for separating intranuclear n n̄ from (pre-
dominately neutral-current) atmospheric neutrino backgrounds in the DUNE far detector was
considered in [336]. However, there remains much work to be done [511]. The dependencies
of CNN’s and other automated (machine learning) methods such as multivariate boosted
decision trees’ (BDTs’) responses to various topological inputs is not entirely clear. The
nature of these algorithms’ responses to underlying choices in what are generally considered
to be broadly consistent nuclear model configurations (NMCs) must be further studied to
assess effective uncertainties, including those originating from disparate models of nuclear
Fermi motion and FSIs from (non)stochastic intranuclear cascades [495, 512]. Given that the
event triggers for n n̄ will likely utilize the signal’s expected region of interest (ROI) as
informed primarily by the MC simulation of the process and its separation from background
via automated methods, such dependencies are highly important, particularly when physical
correlations are being ignored; this is but one important component of the larger, still
developing paradigm, which should include improved reconstruction and PID.

To explain this particular aspect in some detail, let us begin by stating the obvious: there is
actual importance in the maintaining of particularly relevant physical correlations in MC
simulations which act to inform the detection of unknown (rare) processes. To illustrate this,
consider figures 17 [495]. Some correlations which have gone previously unexplored include
the expected position of the intranuclear n̄ annihilation following n n̄ conversion, as
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Figure 18. The final state mesonic/pionic parameter space (total momentum versus
invariant mass) [331] after stochastic intranuclear transport of n̄ annihilation generated
mesons, compared for a few NMCs, not including detector effects. The ROI is
generally considered to the be ‘hot-spot’ in the lower right hand corner, implying the
expected low Fermi momentum and high invariant mass derived from the annihilation
of two nucleons creating a topologically spherical π-star; differences in these may lead
to different detector signal efficiencies via automated methods. Left: an LFG model
with an additional n̄ potential and a full intranuclear cascade [495, 512]. Right:
GENIEv3.0.6 [509] using the default nonlocal BR relativistic Fermi gas and a full
intranuclear cascade via the 2018 hN Intranuke model (hN).

Figure 17. Top Left: Two curves are shown for various generator assumptions. In blue
is the naive intranuclear radial position of n̄ annihilation, a probability distribution
generated by a Woods–Saxon nuclear density as presented in GENIE [509]. In orange
is the modern, quantum-mechanically derived intranuclear radial position of
annihilation probability distribution as developed in ([495]). The vertical scale is
arbitrary. Top Center: The initial (anti)nucleon momentum distributions are shown
using a local Fermi gas (LFG) model with an additional n̄ potential ([495]). Top Right:
The same for the GENIEv3.0.6 [509], showing an LFG model and the default nonlocal
Bodek-Ritchie (BR) model. Bottom Left: A two dimensional plot of intranuclear n̄
momentum-radius correlation is shown using an LFG and the newly-derived
annihilation position distribution [495] (top left, orange). Bottom Center: The same
using GENIEv3.0.6ʼs [509] LFG model of (anti)nucleon momentum and a Woods–
Saxon nuclear density (top left, blue), showing good correlation. Bottom Right: The
same using GENIEv3.0.6ʼs ([509]) nonlocal BR nuclear model of (anti)nucleon
momentum and a Woods–Saxon nuclear density (top left, blue), showing no positional
correlation, and thus over-selecting high momenta.
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shown at top left. Considering the n n,{ ¯} mass splitting which suppresses n n̄ lessens as
one hypothetically decreases the binding energy, a radial dependence is expected in the
transformation probability beyond the simplistic assumption of the assumed Woods–Saxon
nuclear density–indeed, such transformations are expected to occur predominately near the
nuclear surface where n binding is low. Further, and as illustrated in the top central figure,
given the strength of the annihilation cross section, the optical potential describing the Fermi
motion of a previously converted n̄ is expected to be deeper than that of normal nuclear
matter, imbuing the converted n̄ with higher available momentum. Similarly, due to n n̄
occurring predominately on the surface of the nucleus, one may expect a reduction in the
available Fermi motion-derived momentum; thus, simulations which are inherently nonlocal

in their assumptions of Fermi motion (as is the case in the GENIE [509] default nuclear
model) can lead to biases in any particular ROI. The (non)locality of a given nuclear model is
shown by a decrease in (anti)nucleon momentum as one moves further out toward the nuclear
envelope (r→ R), as shown in the bottom figures for two generators; if a hemicircular region
is occupied in this parameter space, then no momentum-radius correlations are preserved.

The investigation in maintaining these physically relevant correlations can go even further,
as one may expect fewer FSIs to be experienced by annihilation-generated mesons due to
reduced views on intranuclear scattering centers near the nuclear periphery. Also, when
evaluating the n n̄ signal’s ROI (before consideration of further skewing due detector
effects), choices across models of these FSIs can have a critical role in determining signal
efficiencies through topological selection of high multiplicity events involving knock-out ps,
which may be overproduced ([495]). When considering outgoing mesons only, the nature of
the ROI can be seen to remain disparate through the comparison of various NMCs across
multiple (and single) generators, as shown in figures 18.

The importance of these correlations goes beyond the signal simulation; indeed, the same
NMCs and correlations should be respected consistently across atmospheric neutrino back-
ground simulations. Iterating across the available NMCs, between and within single gen-
erators (for instance, GENIE [509]), and intermixing these together allows for the evaluation
of uncertainties in a ‘universe’ style approach, though going beyond simple knob turning; a

Figure 19. A reproduction of figure 9 in [312] is shown with sensitivity estimates for
DUNE–assuming a 25% efficiency–and ESS NNBAR–assuming an ILL-like
efficiency [330]–each in a case of zero background compared to the Super-Kamiokande
I–IV limit [332].

J. Phys. G: Nucl. Part. Phys. 51 (2024) 033001 Topical Review

48



project of this scale requires massive automated analysis techniques to be successful, espe-
cially given the nonreweightable nature of some of the more theoretically well-motivated
stochastic FSIs models employed. Such uncertainty evaluations will permit a better under-
standing of the signal to background ratio, informing the final expected sensitivities to n n̄ :
if this ratio remains stable across NMCs, then the minutia of certain physical correlations in
simulation will be shown to be unnecessary; however, the opposite is the more likely case.
One study showed that a change in the NMC reduced the sensitivity by roughly 40% all else
being equal [511]. Thus, this greatly encourages not only the evaluation of dependencies of
automated analyses’ (CNNs, BDTs) responses, but also the necessity of improved recon-
struction. DUNE has had successes in machine learning being applied to PID [59], which was
not included in [336]; implementing a CNN score describing the probability of particular
track’s PID could better discriminate signal from background considering the unique high-
multiplicity π-star expected to emanate from a nucleus after n̄ annihilation.

From these discussions, one may hypothesize as to the regions of nn̄t parameter space
probed by DUNE [59], Super-Kamiokande [332], and ESS NNBAR [309]. In the context of
post-sphaleron baryogenesis [312, 313], one can compare potential lower limits to model
predictions, as shown in figure 19. A spread in the expected values of nn̄t given various
NMCs is concerning, especially as the underlying nuclear physics, though well
constrained [511], is not definitively known.

By considering the above in greater detail into the future, sensitivities to B− L-violating
ΔB= 2 processes such as n n̄ and related dinucleon decay modes are expected to greatly
improve through enhanced physical modeling, reconstruction, and PID. Uncertainties due to
specific NMC choices remain under investigation, potentially lowering the sensitivities
without other improvements. These steps are required in order to pursue truly complementary
physics goals beyond proton decay and neutrino oscillation studies, enabling the broader
particle physics community to fully utilize future large underground detectors to better search
for BSM physics, potentially informing us of our universe’s origins.

3.10. Inclusive nucleon decay searches

As summarized in section 2, B-violating processes are associated with a broad variety of
theories and can manifest through distinct nucleon decay channels. The strongest limits can
be set on particular exclusive nucleon decay processes, motivated by specific theoretical
models. However, as discussed in section 2.5, higher order operators leading to complicated
processes can readily dominate over typical two-body nucleon decay channels. With
increased complexity of interactions, performing exclusive experimental searches for all
specific nucleon decay channels becomes unfeasible beyond the simplest realizations.

These considerations highlight the importance of inclusive nucleon decay searches and set
limits on classes of baryon number-violating processes simultaneously. Such searches can be
classified as follows [358]:

• model-independent and invisible mode searches

model-independent searches probe all nucleon decays simultaneously, unconstrained by
specific final states. These searches also constitute the primary approach for studying
invisible channels such as n→ invisible. Invisible channels such as n→ 3ν could become
significant in models based on extra-dimensions (e.g. [513]). Analysis of p→ invisible

will also serve as a test of charge conservation. Prominent searches of this class include
isotope fission products as well as signatures of nuclear de-excitation, with current limits
being τ 1030 years. The latter method is expected to be a promising target for future
neutrino experiments such as JUNO, HK and DUNE.
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• N→ X+ anything-allowing for model-independence while also taking advantage of
precise particle identification in current and upcoming large neutrino experiments, such as
Super-Kamiokande (see related searches of [482]), motivates N→ X+ anything searches,
where X is a SM particle of unknown energy. These include:
(A) N→ (e±, μ±, π±, K±, ρ±, K*,±

)+ anything: primary decay charged particles are
often directly visible with high efficiency in experimental searches. From electric-charge
conservation any proton decay will eventually result in at least one positron, albeit
potentially space-time-delayed if it is originated from the decay of a heavier charged final-
state particle.
(B) N→ (π0, K0, η, ρ, ω, K*,0

)+ anything: searches involving neutral mesons rely on the
electromagnetically interacting daughter particles for detection (e.g. π0→ γγ).
(C) N→ γ + anything: assuming multi-body nucleon decays, the emission of a photon
will typically be suppressed compared to the same multi-body channel without a photon.
(D) N→ ν + anything: similar to other invisible searches, can also be studied through
neutrino flux measurements from accumulation of nucleon decays inside the Earth.

• ΔB> 1 processes
inclusive searches also offer prospects for ΔB> 1 processes. Note that inclusive ΔB= 1
searches also constrain ΔB> 1. The increased available energy for final state particles in
multi-nucleon decay processes modifies the search compared to single-body decays.

4. Conclusion and outlook

We have discussed the current status and future prospects of baryon number violation
searches with large underground detectors for neutrino experiments. These detectors used for
next-generation neutrino experiments have the capability to improve the existing limits on
nucleon lifetime by up to an order of magnitude. A broad class of GUT models (both non-
supersymmetric and supersymmetric) can be probed. Some of them predict an upper limit on
the nucleon lifetime, which might be fully within reach of the future experiments. Apart from
the |ΔB|= 1 nucleon decay, there exist other interesting BNV observables as well, such as
neutron-antineutron oscillation (|ΔB|= 2) and B→ LM decays (|Δ(B−L)|= 2), which also
have promising prospects for underground detectors to be used in future neutrino experi-
ments. The discovery of baryon number violation will be an unambiguous signal of new
physics, and therefore, it is important to search for as many BNV channels as possible.

For the most crucial proton decay modes (see table 1), the future searches will improve the
existing limits by a factor of few with 10 years of operation and up to an order of magnitude
with 20 years of operation. Implications of these improvements in the measurements on GUT
model building can be profound. The proton decay mode p→ e+π0, mediated by the
superheavy gauge bosons, is the most significant one since it is generically present in GUTs
with or without supersymmetry. The decay channel p Kn +, on the other hand, is the most
promising one in probing supersymmetric GUTs. Well-motivated models, such as minimal
non-supersymmetric SO(10) GUTs with intermediate PS symmetry [168], in their simplest
versions can be ruled out (or discovered!) by only a few years of operations of HK. Moreover,
20 years of operations of HK will probe almost the entire parameter space of minimal non-
supersymmetric SU(5) GUT [82]. Another notable proton decay channel is p→ μ+π0. If such
decays are observed, it can play an important role in selecting the types of GUT models. For
example, non-supersymmetric SU(5) GUT with vectorlike fermions containing minimal
representations predicts [84] that if the proton decay channel p→ e+π0 is not observed, then
the decay mode p→ μ+π0 must be seen by HK in its 20 years of operations. Concerning the
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supersymmetric framework, two of the most attractive scenarios, namely the minimal
superysmmetric SU(5) and SO(10) GUTs, both predict p K 6 10p

34( )t n ´+  years with
sparticle masses 10( ) TeV [110] and 100( ) TeV [149], respectively. Therefore, HK, as
well as THEIA, will thoroughly probe these scenarios within their 20 years of operations. A
discovery of this kind may also suggest somewhat high-SUSY. It is intriguing to note that
such high-scale masses of the supersymmetric partners are far beyond the reach of cur-
rent LHC.

While proton decay remains the poster-child of BNV processes, other BNV processes,
such as dinucleon decays and neutron-antineutron oscillation, are also equally important to
search for. They could give us key insights on the outstanding issues of the SM. For instance,
the next-generation n n̄- experiments could probe a big chunk of the post-sphaleron bar-
yogenesis parameter space [312]. Similarly, a simultaneous observation of B−L conserving
and violating (by two units) decays would necessarily imply the Majorana nature of neu-
trinos [381].

In conclusion, next-generation large-volume neutrino experiments provide an excellent
opportunity for improved the baryon number violation searches—a promising tool for
exploring new physics up to the GUT scale.
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