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Social associations among conspecifics are typically non-random, often being a function of relatedness, 16 

familiarity or of spatial distributions. The aim of this study was to combine field observations with 17 

molecular genetic techniques and social network analysis to investigate the predictors of social 18 

associations in free-living monk parakeets Myiopsitta monachus. Monk parakeets are non-territorial 19 

parrots whose nests are often aggregated, with relatives clustered in kin neighbourhoods and within 20 

cooperatively breeding groups. First, we characterised social associations when away from the nest, 21 

showing that individuals typically had a few, strong social ties. Secondly, we investigated whether these 22 

social associations were related to nest proximity or genetic relatedness. Association strength decreased 23 

with increasing inter-nest distance, but there was negligible influence of relatedness on the strength of 24 

associations. These patterns did not differ between same-sex and opposite-sex dyads. Finally, we 25 

investigated whether members of breeding pairs were close social associates, finding that in most cases 26 

an individual’s closest associate was their mate, although social bonds also existed outside of the pair; 27 

members of breeding groups also associated closely when foraging. Social associations are poorly known 28 

in parrots due to methodological challenges, so our results add to the limited knowledge of sociality in 29 

this taxon. 30 

ADDITIONAL KEYWORDS: colony – genetic relatedness – kin structure – kinship – monk parakeet –31 

Myiopsitta monachus – parrots – Psittacidae 32 

 33 

INTRODUCTION 34 

Associations with conspecifics are often non-random in group-living species, with individuals associating 35 

preferentially with certain group members (Whitehead, 2008; Farine et al., 2015). The social 36 

connections between individuals and the resulting network structure can have wide-ranging 37 

implications for a variety of ecological and evolutionary processes (Gokcekus et al., 2021). For example, 38 

social structure can have consequences for sexual selection and mating strategies (Oh & Badyaev, 2010), 39 

influence foraging behaviour (Firth et al., 2015), determine how information spreads through a group or 40 
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population (Firth et al., 2016) and, similarly, can determine the spread of disease or parasites through a 41 

network of individuals (Sah et al., 2018). Thus, variation among individuals in their social associations 42 

can affect fitness (Royle et al., 2012) by impacting survival (Stanton & Mann, 2012; Ellis et al., 2017) or 43 

reproductive success  (Frère et al., 2010; Riehl & Strong, 2018).  44 

Several factors may affect an individual’s choice of social affiliations from among potential 45 

associates. One such factor is kinship, preferential association with kin having been demonstrated in a 46 

wide range of taxa (Fraser et al., 2005; Gaspari et al., 2007; Kurvers et al., 2013). Inclusive fitness theory 47 

predicts that by associating with kin, individuals can accrue indirect fitness benefits if they enhance their 48 

relatives’ fitness (Hamilton, 1964) and such benefits may be accrued in multiple ways (Hatchwell, 2010). 49 

For example, preferential association with kin could allow sharing of ecologically relevant knowledge 50 

leading to reduced foraging interference (Jarman, 1991), increase territory sharing and reduce time for 51 

food patch acquisition (Griffiths & Armstrong, 2002), nepotistic alarm calling (Sherman, 1977), and 52 

assistance in rearing offspring (Hatchwell et al., 2014). However, despite the presence of kin in close 53 

proximity within populations, preferential association with kin within social networks is not universal 54 

(Arnberg et al., 2015; Baden et al., 2020), presumably because direct rather than indirect benefits are 55 

acquired from stable associations with a subset of conspecifics. 56 

Associations within social networks may also be influenced by familiarity. Individuals may 57 

become familiar simply from shared use of space, as in eastern grey kangaroos Macropus giganteus 58 

(Best et al., 2014), or it may refer to association at a specific life history stage, often as juveniles, as in 59 

Trinidadian guppies Poecilia reticulata (Griffiths & Magurran, 1999). Association with familiar individuals 60 

may confer a range of fitness benefits, including increased reproductive coordination and reduced 61 

competition (Riehl & Strong, 2018), and enhanced predator avoidance (Griffiths et al., 2004). However, 62 

the concept of familiarity is a more complex one than is often appreciated and, problematically, 63 

familiarity may co-vary with kinship, making the two hard to disentangle (Leedale et al., 2020), 64 
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especially when multiple drivers of social association act together to determine social structure (Kurvers 65 

et al., 2013).  66 

In this study, we examined the social associations of monk parakeets Myiopsitta monachus and 67 

investigated two potential predictors of their affiliations. Monk parakeets are unique amongst parrots 68 

because they build their own stick nests rather than breeding in natural cavities (Forshaw, 1989; 69 

Eberhard, 1998). Their nests vary in size from single chambers to compound nests with multiple pairs or 70 

groups using separate nest chambers within a shared nest structure. Nests are often aggregated within 71 

a single tree or adjacent trees, forming loose colonies that are occupied throughout the year and may 72 

persist for many years (Bucher et al., 1990; Eberhard, 1998). A previous study revealed that monk 73 

parakeets live in ‘kin neighbourhoods’ with relatives aggregated within both shared compound nests 74 

and nesting trees (Dawson Pell et al., 2021). Monk parakeets are also social away from the nest, foraging 75 

in flocks throughout the year. There is some evidence from unmarked wild flocks and marked captive 76 

individuals that pairs are the fundamental social unit in monk parakeets. Flocks of two individuals are 77 

reportedly the most common both in captivity and in the wild (captive: 25.2-30.4%, wild 32.3% of total 78 

flocks), although flocks of > 60 free-living individuals have been recorded in the wild (Hobson et al., 79 

2014). Captive birds also display a strong preference for associating with certain individuals, forming 80 

strong bonds between pair members as well as between members within a small number of trios 81 

(Hobson et al., 2014). However, there has been no detailed investigation into social associations in 82 

individually marked free-living monk parakeets. More generally, social structure and the drivers of social 83 

associations are poorly known in the Psittacidae due to the methodological challenges of studying most 84 

parrot species in the wild, with many species being canopy-dwelling and not amenable to observation. 85 

The kin neighbourhood social system, aggregated nests and social foraging behaviour of the 86 

monk parakeet make it an ideal species to examine the influence of kinship and familiarity through nest 87 

proximity on the social associations of foraging birds. The aim of this study was to combine molecular 88 

genetic techniques with field observations during the breeding season to first characterise the overall 89 
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pattern of social associations in the monk parakeet. We then investigated whether social associations 90 

reflected either nest proximity or genetic relatedness. Finally, we examined whether members of pairs 91 

and of breeding groups containing 3+ birds were close social associates away from the nest. Through 92 

these investigations we aim to expand our understanding of sociality in this unusual parrot species and 93 

add to the limited knowledge of parrot social systems. 94 

 95 

MATERIAL AND METHODS 96 

STUDY SITE AND SPECIES 97 

The field study was conducted in the city of Barcelona, Spain (41.39°N 2.17°E) on the north-east 98 

coast of the Iberian Peninsula. The metropolitan area of Barcelona is approximately 102 km2 and 99 

consists mainly of highly developed urban environment with numerous parks throughout the city. 100 

The main study site encompassed Ciutadella Park (c. 30 ha), containing both native and exotic 101 

vegetation, and smaller parks and streets with mature trees in the surrounding area up to 102 

approximately 2 km away (for a list of survey locations see Supplementary Material S1). 103 

The monk parakeet is a medium-sized parrot (c. 100-150g) native to South America that has 104 

become an invasive species around the world (Forshaw, 1989; Russello et al., 2008). Monk parakeets 105 

were first reported breeding in Barcelona in 1975 (Batllori & Nos, 1985) and now exist at one of the 106 

highest densities found in Europe, with a population estimate of c. 5000 individuals in 2015 (Molina 107 

et al., 2016; Senar et al., 2017). As a generalist forager, monk parakeets feed in trees and on the 108 

ground (Bucher & Aramburú 2014; Borray-Escalante et al., 2020) where they are readily observed. 109 

Birds were individually marked after trapping them in the nest as nestlings or incubating 110 

adults, or when foraging using a baited food trap or gas-propelled net. Birds have been captured 111 

every year since 2002 in two six-week sampling periods in the winter and summer months (Conroy & 112 

Senar, 2009). Captured birds are ringed with aluminium leg rings and marked with unique, light-113 

weight medals attached to neck collars (Senar et al., 2012), which are visible through binoculars 114 
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from up to 30-40 m. Approximately 62-64% of the study population in Ciutadella Park are marked at 115 

any time, based on the proportion of individuals marked in 10 mature pine trees subjected to 116 

intensive monitoring during the breeding season. For birds first caught as adults, we use the year of 117 

ringing to determine their minimum age. 118 

COMPLIANCE WITH ETHICAL STANDARDS 119 

Birds were handled and blood samples taken with special permission EPI 7/2015 (01529/1498/2015) 120 

from Direcció General del Medi Natural i Biodiversitat, Generalitat de Catalunya, following Catalan 121 

regional ethical guidelines for the handling of birds. JCS received special authorization (001501-122 

0402.2009) for the handling of animals in research from Servei de Protecció de la Fauna, Flora 123 

i Animal de Companyia, according to Decree 214/1997/30.07. Handling times were kept to a 124 

minimum. 125 

IDENTIFYING GROUP MEMBERS 126 

Ciutadella Park and the other parks visited during this study are public access parks and monk 127 

parakeets are habituated to human presence near their nests and during foraging and other 128 

activities. In 2018 and 2019, we recorded groups of individually-marked monk parakeets away from 129 

the nest throughout the breeding season (March-September; Senar et al., 2019) in two contexts. 130 

First, groups of monk parakeets were recorded opportunistically when encountered during surveys 131 

of the field site. Groups were recorded engaging in various activities, often foraging, but also 132 

drinking, bathing and resting. We used the ‘gambit of the group’, which assumes that all individuals 133 

in a spatially and temporally clustered group are associated with one another (Whitehead & Dufault, 134 

1999). Individuals were recorded as being in the same group if they were within c. 5 m of each other 135 

and any individuals that joined the group within approximately 2 minutes of the observer 136 

encountering the group were included as group members. GPS coordinates, date and time of each 137 

group were recorded. Secondly, groups were recorded during observations made at a baited trap 138 

(containing peanuts and sunflower seeds), situated on the roof of the Museu de Ciències Naturals 139 
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within Ciutadella Park. For observations at the trap an observer used binoculars to identify marked 140 

birds in groups at the feeder. These observations were conducted for approximately three hours a 141 

week throughout the breeding season. Marked birds present at the trap were recorded at 10 minute 142 

intervals and, as during surveys of the park, any individuals that joined a group at the trap within 143 

approximately 2 minutes of the observation starting were included in that flock. In both contexts, we 144 

focused on recording marked individuals only because of the difficulty of recording accurately the 145 

number of unmarked birds. 146 

GENOTYPING AND RELATEDNESS 147 

Blood samples (maximum 100 µl) were taken from adults and nestlings for genetic sex-typing (monk 148 

parakeets are sexually monomorphic (Forshaw, 1989)) and to assess genetic relatedness between 149 

individuals. For details of blood sample storage, DNA extraction techniques, marker quality 150 

assessment and PCR protocols see Dawson Pell et al. (2020) and Dawson Pell et al. (2021). Alleles 151 

were scored blind to bird identity and sex and individuals were typed at 21 polymorphic 152 

microsatellite loci: Mmon01, Mmon02, Mmon03, Mmon04, Mmon07, Mmon09, Mmon10, Mmon11, 153 

Mmon13, Mmon14, Mmon15, Mmon16 (Dawson Pell et al., 2020), MmGT060, MmGT046, 154 

MmGT105, MmGT030, MmGT071, MmGT057 (Russello et al., 2007), TG03-002 and TG05-046 155 

(Dawson et al., 2010), and CAM-20 (Dawson et al., 2013). Individuals were sex-typed using the 156 

sexing marker Z002B (Dawson, 2007). A previous estimate of genotyping error, based on the repeat 157 

genotyping of 50 individuals with these markers in this study system is 3.1% (F. S. E. D. P. 158 

unpublished data). We calculated pairwise genetic relatedness between individuals using Queller 159 

and Goodnight’s (1989) coefficient of relatedness (rQG) in SPAGeDi version 1.5 (Hardy & Vekemans, 160 

2002). We used the genotypes of all 142 unique individuals included in our social association dataset 161 

to generate allele frequencies. 162 

NEST LOCATIONS AND INTER-NEST DISTANCES 163 
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The nesting tree location of marked birds was determined in two ways. First, we conducted detailed 164 

behavioural observations at 10 mature pine trees in Ciutadella Park throughout the breeding season 165 

in 2018 (263 hours) and 2019 (124 hours). A total of 113 marked birds were located in these focal 166 

trees in 2018 and 103 in 2019. Birds were never observed to enter a nest chamber they were not 167 

using for breeding or roosting during our period of observation, so we are confident that birds 168 

assigned as nest occupants were residents in that nest and nesting tree. Second, we conducted 169 

surveys in the rest of Ciutadella Park and in likely nesting areas up to 6 km from the park in 2018 and 170 

2019 (total = 380 hours). Once marked birds were assigned to a nest, we recorded the nest’s GPS 171 

coordinates; all birds in the same nesting tree were assigned the same GPS coordinates with a 172 

distance of 0 m between their nests. GPS coordinates were converted to Cartesian coordinates 173 

(UTM) for calculations of inter-nest distance in SPAGeDi version 1.5 (Hardy & Vekemans, 2002). We 174 

calculated inter-nest distances separately for 2018 and 2019. 175 

SOCIAL ASSOCIATIONS 176 

Using flock co-membership, we calculated association indices using the simple ratio index (SRI; 177 

Cairns & Schwager, 1986) in R version 4.1.1 (R Core Team, 2018). The simple ratio index is used to 178 

estimate the strength of a social association between individuals and varies between 0 and 1, with 1 179 

indicating that individuals are always observed together and 0 indicating two individuals have never 180 

been observed associating. The simple ratio index is calculated using the following equation: 181 

SRIAB = x / (x + yAB + yA + yB) 182 

in which the SRI between the individuals A and B is defined as the number of observations in which 183 

the two co-occurred (x), divided by the number of observations in which they both occurred 184 

together or individually, with yAB representing the occasions the individuals were observed 185 

simultaneously but apart and yA indicating occasions that individual A was observed without 186 

individual B and yB indicating the reverse. To reduce bias in association indices caused by limited 187 

sampling, we excluded birds observed on less than five occasions (2018: 171 out of 364 sighted 188 
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individuals excluded; 2019: 131/288 birds excluded). In addition, we excluded birds observed in their 189 

fledging year because they were still fed by their parents and were therefore likely to be associated 190 

with them away from the nest (2018: N = 74 fledglings excluded; 2019: N = 46 excluded).  191 

SOCIAL ASSOCIATIONS, INTER-NEST DISTANCE AND PAIRWISE GENETIC RELATEDNESS 192 

Following recent developments in the field, we used multi-membership models without 193 

permutations for our dyadic analysis (Franks et al., 2021; Hart et al., 2021; Weiss et al. 2021). To 194 

investigate whether social association strengths reflected inter-nest distance or pairwise genetic 195 

relatedness we fitted Bayesian multi-membership regression models in Stan (Stan Development 196 

Team, 2020a) via RStan (Stan Development Team, 2020b) using the brms package (Bürkner, 2017) in 197 

R version 4.1.1. We included the dyads as multi-membership terms to account for undirected 198 

dependencies in allowing the dyad to be a member of both nodes. For this model, we used a 199 

binomial likelihood with association strength (SRI) as the response, and the predictor variables of 200 

pairwise genetic relatedness and inter-nest distance. Both predictor variables were transformed to z 201 

scores before being used in the model. We applied weakly regularizing priors in these models. Our 202 

models were fit over four independent chains with a warmup of 3000 followed by 6000 iterations of 203 

sampling. We ran models separately for the data collected in each of the 2018 and 2019 breeding 204 

seasons.  205 

Some dyads had data for inter-nest distance only, or relatedness only; these birds were 206 

removed before the brms analyses. Using data collected in 2018, including data collected at the food 207 

trap, we checked for any bias in those dyads removed for missing data through data visualisation. 208 

We plotted dyads with only one data point for either relatedness or inter-nest distance against SRI, 209 

and also plotted the full dataset that included no individuals with missing data to determine whether 210 

there was any bias in those removed (Figure S1). We could not visually detect any bias in removed 211 

dyads, indicating that data was missing at random, so we proceeded with the dataset that included 212 

only dyads with complete data. 213 
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Following exclusions, in 2018 we had data on 821 social groups, comprising 110 individuals 214 

(41 females, 69 males, 5995 dyads) with a mean number of observations per bird of 17.0 ± 7.8 SD, 215 

females (13.9 ± 7.0, median = 13) being observed less than males (18.8 ± 7.7, median = 18; Wilcoxon 216 

rank sum test: Z = -3.28, p = 0.001; Figure S2a). This dataset included birds aged from 1-12+ years old 217 

based on year of ringing or fledging date. In 2019, we had data on 753 social groups that included 82 218 

individuals (32 females, 50 males, 3403 dyads) that met the criteria for inclusion with ages ranging 219 

from 1-13+ years old. The mean number of observations per bird in 2019 was 15.9 ± 7.8 SD and 220 

males (18.7 ± 7.4, median = 19) were again observed more than females (11.5 ± 6.4, median 9.5; Z = 221 

- 4.33, P < 0.001; Figure S2c). 222 

We re-ran these analyses using a conservative dataset that excluded data collected at the 223 

baited trap in case this large supplementary food source attracted birds from greater distances or 224 

resulted in atypical aggregations. This smaller dataset included 656 social groups and 98 individuals 225 

(33 females, 65 males) that met the inclusion criteria in 2018, and 680 social groups and 78 226 

individuals (29 females, 49 males) in 2019. Age ranges were the same as above for both years. The 227 

mean number of observations per bird was 12.5 ± 5.5 SD in 2018 and was 15.4 ± 7.4 SD in 2019, with 228 

no difference between the number of observations per female (mean ± SD = 11.5 ± 5.4, median = 11) 229 

and male (13.0 ± 5.5, median = 13; Z = -1.30, P = 0.19; Figure S2b) in 2018, but with males (17.7 ± 230 

6.9, median = 19) observed more than females in 2019 (11.4 ± 6.4, median = 10; Z = - 3.91, P < 0.001; 231 

Figure S2d). 232 

SAME-SEX AND OPPOSITE-SEX ASSOCIATIONS 233 

Using 2018 data and including observations recorded at the food trap, we ran the same model 234 

described above separately for female-female (N = 820 dyads), male-male (N = 2346 dyads), and 235 

opposite-sex (N = 2829) associations to investigate whether the drivers of social associations were 236 

similar for same-sex and opposite-sex dyads. The 2019 dataset had too few female-female dyads to 237 

repeat this analysis. 238 
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ASSOCIATIONS BETWEEN MEMBERS OF SOCIAL PAIRS AND BREEDING GROUPS 239 

We assessed whether members of social pairs were each other’s closest social associates when away 240 

from the nest using the full datasets from 2018 and 2019. In addition, c. 20% of the breeding 241 

attempts made by monk parakeets at our study site involve groups of three or more birds (Dawson 242 

Pell unpublished data), so we also examined whether breeding group members were close 243 

associates when away from the nest. Pairs and groups were identified during 387 hours of 244 

behavioural observations at 10 focal pine trees across the 2018 and 2019 breeding seasons. We 245 

included only those groups in which all members were marked and that met the inclusion criteria 246 

described above. For members of pairs and groups we determined their top 10 social associates, 247 

ranked by social association strength (SRI) to assess whether members of pairs and social groups 248 

preferentially associated with each other away from the nest. 249 

 250 

RESULTS 251 

CHARACTERISTICS OF MONK PARAKEET SOCIAL ASSOCIATIONS 252 

Social association strengths between individuals were relatively sparse and weak in both years 253 

(Figures 1 & 2). Mean SRI ± SD was 0.02 ± 0.04 for 110 birds in 2018 (N = 5995 possible dyads), and 254 

0.02 ± 0.04 for 82 birds in 2019 (N = 3403 possible dyads). In both years, distributions of associations 255 

were right-skewed and included many birds without or with very weak associations (i.e. SRI of zero 256 

or close to zero). However, maximum association strengths were around 0.5 in both years, and the 257 

mean association strength between birds observed together on at least one occasion was 0.05 ± 258 

0.04 in 2018 (N = 2457 associating dyads) and 0.06 ± 0.05 in 2019 (N = 1038 associating dyads).   259 

FIGURE 1 HERE 260 

 261 

EFFECTS OF RELATEDNESS AND INTER-NEST DISTANCES 262 

Inter-nest distances ranged from 0 m (for birds nesting in the same tree) to 745 m (mean ± SD 205 m 263 

± 153 in 2018, 214 m ± 157 in 2019). The mean pairwise coefficient of relatedness (rQG) for dyads was 264 
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-0.005 ± 0.167 (range: -0.478 to 0.718) in 2018 and 0.00 ± 0.163 (range: -0.542 to 0.903) in 2019. 265 

Inter-nest distance was negatively related to the strength of the social association between 266 

individuals in both years (Figure 2a,c), birds nesting closer to each other having stronger social 267 

associations when away from the nest (2018: posterior mean = -0.752, 95% credible intervals (CI) = -268 

0.792 to -0.712; 2019: posterior mean = -1.492, 95% CI = -1.572 to -1.412). In contrast, relatedness 269 

was not a significant predictor of the strength of associations, with credible intervals overlapping 0 in 270 

both years (Figure 2b,d; 2018: posterior mean = 0.023, 95% CI = -0.008 to 0.054; 2019: posterior 271 

mean = 0.040, 95% CI = -0.002 to 0.083). 272 

FIGURE 2 HERE 273 

 274 

We found qualitatively the same results when excluding trap data (Figure S3); inter-nest 275 

distance (2018: posterior mean = -1.151, 95% CI = -1.225 to -1.080; 2019: posterior mean = -1.394, 276 

95% CI = -1.473 to -1.320), but not pairwise relatedness (2018: posterior mean = 0.024, 95% CI = -277 

0.023 to 0.070; 2019: posterior mean = 0.036, 95% CI = -0.008 to 0.079), was significantly related to  278 

the strength of the observed associations in both years. 279 

Kin are clustered within nesting trees in the monk parakeet (Dawson Pell et al., 2021), so we 280 

also examined whether pairwise relatedness of those birds nesting within the same tree predicted 281 

their social association strength when away from the nest (for model details see Supplementary 282 

Material S4). We found the same pattern as that revealed by the full data set, with relatedness 283 

having negligible impact on the strength of social associations (posterior mean = -0.034, 95% CI = -284 

0.098 to 0.029). 285 

When examining same and opposite-sex associations, we found qualitatively similar 286 

patterns. Social association strength decreased with increasing inter-nest distance in female-female 287 

(posterior mean = -0.523, 95% CI = -0.653 to -0.397), male-male (posterior mean = -0.793, 95% CI = -288 

0.849 to -0.736), and opposite-sex dyads (posterior mean = -0.747, 95% CI = -0.808 to -0.686), while 289 
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pairwise relatedness was unrelated to association strength in all cases (females: posterior mean = 290 

0.003, 95% CI = -0.109 to 0.112; males: posterior mean = 0.025, 95% CI = -0.018 to 0.068; opposite-291 

sex: posterior mean = 0.031, 95% CI = -0.015 to 0.078). 292 

ASSOCIATIONS BETWEEN SOCIAL PAIRS AND BREEDING GROUP MEMBERS 293 

Data were available from 28 social pairs in which both sexes were marked (2018: 16 pairs; 2019: 12 294 

pairs; note that three pairs featured in both years, but analyses were conducted on years separately, 295 

so no pairs appear more than once in any analyses). For 15/28 (54%) pairs, partners were each 296 

others’ closest associate, i.e. had the highest association strength. For seven (25%) pairs, one bird’s 297 

closest associate was their social mate whereas for the other member of the pair their social mate 298 

ranged from second closest associate to 18th. Thus, 37/56 (66%) of possible associations were closest 299 

for social pair members when away from the nest. However, this was not always the case and monk 300 

parakeets consistently associated with non-partners. Overall, 51/56 (91%) associations between 301 

social pair members are within their top 10 closest associates (Figure 3a). Only one pair was not 302 

observed together away from the nest despite the pair members being observed with 49 and 28 303 

other individuals respectively.  304 

We observed nine separate breeding groups containing 32 birds (3-5 individuals per group; 305 

mean = 3.6) in which all members of the group were also included in our social network. In 23/86 306 

(27%) possible associations, the group member’s closest social associate was another member of the 307 

same breeding group, with 58/86 (67%) being in each other’s top 10 closest associates (Figure 3b). 308 

These results indicate that members of breeding groups are often close social associates when they 309 

are away from the nest, but relationships with group members have lower precedence than those 310 

between social pair members. 311 

FIGURE 3 HERE 312 

 313 

DISCUSSION 314 
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We combined detailed field observations with molecular genetic techniques to investigate the 315 

influence of inter-nest distance and pairwise genetic relatedness on social associations during the 316 

breeding season in free-living monk parakeets. Overall, social associations away from the nest were 317 

generally weak, with small numbers of stronger associations. Birds that nested closer together 318 

associated more strongly when away from the nest, but pairwise relatedness did not predict social 319 

associations despite the role of kinship in determining nest locations in this species (Dawson Pell et 320 

al., 2021). These results were qualitatively similar in both years of the study, when we repeated 321 

analyses without the data collected at the artificial food source, and when we conducted the 322 

analyses on same-sex and opposite-sex associations separately.  323 

Social association with birds breeding in close proximity could result simply from shared 324 

space use, birds living nearby being more likely to be seen together, without any active affiliation. 325 

Alternatively, there may be a preference for association with familiar individuals. It seems unlikely 326 

that this relationship is driven entirely by space use because monk parakeets are non-territorial and 327 

foragers routinely travel distances that were beyond the inter-nest distances included in this study 328 

so frequent interactions with birds from other nests would be expected. The mean inter-nest 329 

distance of birds included in this study was approximately 200 m (range 0 – 745 m), and it is 330 

estimated that adult monk parakeets regularly travel several hundred meters to forage, with home 331 

ranges of c. 12 ha (Carrillo-Ortiz, 2009; Senar et al. 2021). Thus, despite the very extensive overlap of 332 

home ranges, birds still preferentially associated with individuals from their own, or nearby trees 333 

(Figure 2). Monk parakeets are relatively long-lived (Conroy & Senar, 2009) and exhibit high nest-site 334 

fidelity (Dawson Pell et al., 2021), which may facilitate long-term affiliations between individuals 335 

breeding in close proximity.  This association with familiar individuals could confer multiple fitness 336 

benefits, including foraging benefits (Webster & Hart, 2007), enhanced predator avoidance (Griffiths 337 

et al., 2004), more stable dominance hierarchies (Höjesjö et al., 1998), facilitation of social learning 338 

(Guillette et al., 2016), and reduced reproductive competition or increased reproductive 339 

coordination (Kohn, 2017; Riehl & Strong, 2018). We have no direct evidence on what the benefits of 340 
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associating with familiar individuals might be in monk parakeets, but the fact that social ties are not 341 

exclusive to breeding pairs or groups and do not differ between same-sex and opposite-sex dyads 342 

suggests that any benefits are not exclusively related to reproduction. Research into long-term 343 

associations would be worthwhile to understand the dynamics and potential fitness implications of 344 

social bonds in this species. 345 

In contrast to the relationship with nest proximity, we found that genetic relatedness did not 346 

predict the strength of social associations away from the nest. This result is interesting because 347 

relatives are clustered together in both compound nests and nesting trees (Dawson Pell et al., 2021) 348 

and yet these kin associations did not extend to movements away from the nest. Indeed, the 349 

absence of a relationship between relatedness and foraging associations contrasts with many other 350 

social species in which kinship plays a key role in shaping spatial and social distributions (Drobniak et 351 

al., 2015). Such kin-based groups often live on exclusive territories where social association with kin 352 

is almost inevitable (Gokcekus et al., 2021). By contrast, in non-territorial species, or in group-living 353 

species where interactions with kin and non-kin are frequent, evidence for preferential association 354 

with kin is mixed (Hatchwell, 2010; Hirsch et al., 2012; Arnberg et al., 2015). A negligible relationship 355 

between relatedness and social associations in monk parakeets might be expected given that the 356 

closest social associate of an individual was their social mate in most (66%) cases and inbreeding is 357 

rare or absent in our study population (Dawson Pell et al., 2021). However, other social associations 358 

that were sometimes stronger than that of the pair were observed so relatedness could still be a 359 

predictor of associations if such a preference existed. It should also be noted that this study was 360 

conducted in the breeding season, during which females spend extended periods in the nest 361 

incubating eggs and brooding young chicks. Therefore, pair members may be observed separately 362 

more often at this time and a different pattern may be expected if this study was repeated during 363 

the non-breeding season. This difference in parental roles may also explain why males were 364 

observed significantly more than females. As well as spending more time in the nest incubating and 365 

brooding, incubating females are fed by males so their appearance outside the nest is reduced even 366 
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further (Eberhard, 1998). An alternative explanation is that females were observed less frequently 367 

because they travel further from the nest to forage, but there is no evidence that females have 368 

larger home ranges than males (Senar et al., 2021).  369 

Studies of parrot social structure in the wild are limited, presumably due to the practical 370 

difficulties of observing a largely canopy-dwelling taxon often with high mobility. Our study 371 

therefore adds to a limited but growing number of studies investigating patterns of social 372 

associations in the Psittacidae, a family often discussed in the context of social evolution (Emery, 373 

2006; Hobson et al., 2014). Like other parrot species (Buhrman-Deever et al., 2008), monk parakeets 374 

exhibit short-term fission-fusion social dynamics (Hobson et al., 2014), but this did not mask the 375 

existence of consistent social ties away from the nest. Stable social relationships are present in 376 

another parrot species adapted to living in the urban environment, the sulphur-crested cockatoo, 377 

Cacatua galerita, that also has a fission-fusion social system (Aplin et al., 2020). In the sulphur-378 

crested cockatoo it is mainly roost-site choice that drives social associations (Aplin et al., 2020), a 379 

pattern similar to that revealed here.  380 

The mechanism through which social associations are maintained in the monk parakeet is 381 

unknown, although their individual vocal signatures (Smith-Vidaurre et al., 2020, 2021, 2023; Smeele 382 

et al., 2023), could facilitate interactions with familiar individuals away from the nest through social 383 

learning. Indeed, studies on captive populations indicate that monk parakeets may be able to 384 

discriminate social associates through contact calls (Hobson et al., 2015). However, unlike other 385 

parrot species that have been shown to produce contact calls that are specific to certain roost sites 386 

(Wright, 1996; Wright & Dahlin, 2017), there is no evidence of ‘higher-level’ vocal signatures in monk 387 

parakeets beyond the level of the individual, such as at the level of the nest-site (Smith-Vidaurre et 388 

al., 2020, 2021, 2023), that could facilitate associations between individuals that share a nesting tree 389 

when they are away from the nest. 390 
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 In conclusion, we studied the social structure and the factors underlying social associations 391 

in free-living monk parakeets. This system is highly tractable for assessing social associations as 392 

flocks are often highly visible and the study population has a large number of uniquely identifiable 393 

individuals. We demonstrated that social associations of monk parakeets away from the nest are 394 

relatively weak, although some strong connections between individuals were detected. The strength 395 

of social associations is driven by inter-nest distance rather than kinship. This result may be 396 

explained by preferential association with familiar individuals, perhaps in combination with shared 397 

space use. Our results add to the limited knowledge of affiliative behaviours in the social systems of 398 

parrots and in other taxa with fission-fusion societies.  399 
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 626 

 627 

Figure 1. Example networks using the full dataset from 2018. (a) Edges with association strengths 628 

(SRI) ≥ 0.07 (an arbitrary cut-off) shown with isolated individuals excluded; and (b) edges with 629 

association strengths (SRI) ≥ 0.13 (an arbitrary cut-off) shown, edge thickness weighted by SRI 630 

(range: 0.13 to 0.5) and isolated individuals excluded.  631 

  632 

a) b) 
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 633 

 634 

Figure 2. The relationship between social association indices (SRI) and inter-nest distances (a, c), and 635 

pairwise relatedness (b, d). Number of individuals as follows: 110 individuals in 2018 (a, b) and 82 636 

individuals in 2019 (c, d). Including data collected at a baited food trap. 637 

 638 

  639 
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 640 

 641 

Figure 3. Social association ranks from 1st (closest associate) to 10th between members of: (a) social 642 

pairs (N = 28 pairs, 56 possible social association ranks); and (b) group members (N = 32 individuals, 643 

86 possible social association ranks). Cumulative proportion of the total possible associations are 644 

shown. 645 

 646 
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