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Abstract 

Background The striking increase in COVID-19 severity in older adults provides a clear example of immunesenes-

cence, the age-related remodelling of the immune system. To better characterise the association between convales-

cent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors 

and non-infected controls.

Results We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated 

from 103 COVID-19 survivors 3–5 months post recovery who were classified as having had severe (n = 56; age 

53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease 

and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range 

of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senes-

cence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls includ-

ing: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 

(p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of  CD28−ve 

 CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 express-

ing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells 

(p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of  CD57+ve senescent NK cells. As a result, 

the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences 

were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-exist-

ing variable influencing the IMM-AGE score was South Asian ethnicity ( β = 0.174, p = 0.043), with a major influence 

being disease severity ( β = 0.188, p = 0.01). 

Conclusions Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest 

this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing inter-

ventions for improving clinical outcomes in these patients with severe disease. 
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Background
The pandemic of coronavirus disease 2019 (COVID-19), 

arising from infection with the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), has resulted in 

over 6 million deaths worldwide. SARS-CoV-2-infection 

exhibits a broad spectrum of disease manifestations 

ranging from mild symptoms such as fever, cough and 

fatigue to moderate and severe illness with radiologi-

cal abnormalities detected on chest imaging [1]. Severe, 

life-threatening COVID-19 is further characterised by 

severe pneumonia requiring invasive and non-invasive 

respiratory support in intensive care units. Patients over 

65 had the highest risk of severe disease and death with 

one meta-analysis of 70 studies suggesting the risk of in-

hospital death increased by 5.7% per age year [2]. These 

data are similar to other viral illnesses, such as influenza, 

where older adults are more susceptible and have higher 

mortality [3]. An improved understanding of the impact 

of immune remodelling with age upon the severity of 

infectious disease in older adults may help us to identify 

therapeutic targets and better plan for future pandemics 

and seasonal viral infections. Further, if such remodel-

ling persists beyond the acute infection period this could 

contribute to immune features seen in Long COVID such 

as persistent inflammation [4] and raised serum autoanti-

body levels [5].

The immune system is substantially remodelled with 

advancing age, termed immunesenescence [6], increas-

ing susceptibility to infections, reducing vaccination 

responses and increasing the risk of autoimmunity [7]. 

The hallmarks of immunesenescence include an accumu-

lation of  CD56dim cytotoxic NK cells with reduced cyto-

toxicity [8], thymic atrophy resulting in reduced naïve T 

cell output [9], accumulation of memory, exhausted and 

senescent T cells [10], skewing towards Th17 polarisa-

tion [11] and an expansion of regulatory T cells (  Tregs) 

with an impaired suppressive capacity [12]. Like their 

non-immune counterparts, senescent T cells are pro-

inflammatory with the characteristic senescence-asso-

ciated secretory phenotype (SASP) of cytokines and 

chemokines [13]. Macrophages in older adults also have 

an inflammatory phenotype, producing a range of pro-

inflammatory cytokines in the absence of infection [14]. 

These changes contribute to the pro-inflammatory sta-

tus of older adults, so-called inflammageing. Advancing 

age is also accompanied by reduced B cell  lymphopoie-

sis, resulting in a reduction of naïve and regulatory B 

cells  and an accumulation of  memory B cells [15, 16]. 

Marked elevation of pro-inflammatory cytokines such as 

interleukin (IL)-6, monocyte chemoattractant protein-1 

(MCP-1), macrophage inflammatory protein-1 alpha 

(MIP-α), and tumour necrosis factor (TNF-α) is a key 

feature of severe COVID-19 disease [17], suggestive of a 

dysregulated immune response to infection which could 

include exaggerated immunesenescence.

Adaptive antiviral immunity includes the generation of 

antigen-specific cytotoxic CD8 T cells that effect the kill-

ing of virally infected cells, CD4 helper T cells that sup-

port antibody production by B cells and the generation 

of regulatory cells to ensure resolution of the response. In 

the acute phase of COVID-19, there is T cell lymphope-

nia with CD8 T cells displaying a hyperactivated pheno-

type, followed by the appearance of T cells with features 

of senescence and exhaustion [18]. Furthermore, a shift 

in T cell responses towards a pro-inflammatory Th17 

phenotype [19] and altered composition of regulatory T 

cells [20] results in severe inflammation and respiratory 

system injury in COVID-19, with this Th17/Treg imbal-

ance associated with poor prognosis [21]. The number of 

Natural Killer (NK) cells, which also play a vital role in 

the clearance of viral infections, are reduced in the acute 

phase of COVID-19, and these cells also show features 

of senescence and functional impairment in severe dis-

ease [22]. Alterations have also been observed in B cells, 

including a reduction in naïve B cells and an elevation of 

plasmablasts in SARS-CoV2 infected patients compared 

to healthy controls [23]. Whether these features repre-

sent a state of heightened immunesenescence and may 

persist and underlie the severity of COVID-19 has not 

been established.

The current study aimed at using deep immunophe-

notyping to determine the degree of immunesenes-

cence in convalescent SARS-CoV-2-infected individuals, 

3–5  months after their recovery, comparing them to 

age and sex-matched SARS-CoV-2-unexposed partici-

pants (healthy controls). We measured a broad range of 

immune features in order to assess the impact on indi-

vidual cell types but also to enable the generation of a 

composite score for immunesenescence, IMM-AGE. This 

score has been shown to relate to mortality in a longitu-

dinal study of immune phenotype [24].

Results
Participant demographics and clinical characteristics

One hundred three adults with PCR-confirmed SARS-

CoV-2 infection were recruited 3–5  months post-initial 

diagnosis. Fifty-six adults had COVID-19 classified as 

severe (age 53.12 ± 11.30  years; 31 males, 55%), thirty-

two as moderate (age 52.28 ± 11.43 years; 15 males, 46%) 

and fifteen as mild (age 49.67 ± 7.30 years; 4 males, 26%) 

disease. There was no difference in the average age of the 

different disease severity groups, but males were a higher 

component in the moderate and severe groups compared 

to the mild disease group. There was also the highest fre-

quency of patients from ethnic minority groups (34, 60%) 

in the severe disease group and the prevalence of patients 
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with pre-existing multimorbidity was highest in the 

moderate (46%) and severe (58%) groups, with only one 

patient with multimorbidity in the mild group. Addition-

ally, fifty-nine healthy age and sex-matched uninfected 

healthy controls (age 50.49 ± 10.68 years; 29 males, 47%) 

were recruited into the study (Table 1).

T cell phenotype in convalescent COVID‑19 patients

For the immune phenotyping, we did not have cell 

count data for the mild disease group and so for this 

group only the cell frequencies are available. Firstly, 

we assessed CD4 and CD8 T cell subset distributions 

(Fig.  1A). Total T cell frequency in the PBMC frac-

tion showed no significant differences between healthy 

controls and COVID-19 survivors of different disease 

severity,  F (3,154) = 1.101,  p = 0.35. Cytotoxic CD8 T 

cells play a vital role in immune defence against sev-

eral viral infections, including coronavirus [25]. We 

observed an elevated frequency (Fig.  1B) and abso-

lute numbers (Supplementary Fig.  1A) of CD8 T cells 

in severe COVID-19 convalescent patients in com-

parison with healthy controls, p < 0.0001 and p < 0.01, 

respectively. Within the CD8 T cell pool, the frequency 

(Fig. 1C) and number (Supplementary Fig. 1B) of naïve 

T cells were lower in severe COVID-19 survivors, both 

p < 0.0001. This was accompanied by an increased fre-

quency (p < 0.0001, Fig.  1D) and absolute number, 

p < 0.001 (Supplementary Fig.  1C) of memory CD8 T 

cells in severe COVID-19 infection survivors. Amongst 

the CD8 T cell memory pool, there was an increase in 

frequency (p < 0.001, Fig.  1E) and absolute numbers 

(p < 0.001, Supplementary Fig.  1D) of central memory 

CD8 T cells in severe COVID-19 patients. We did not 

observe an increase in the frequency (p = 0.29, Fig. 1F) 

or absolute numbers (p = 0.65, Supplementary Fig.  1E) 

of effector memory CD8 T cells in severe COVID-19 

patients, but we did see increases in terminally differen-

tiated EMRA CD8 T cells in both moderate (p < 0.0001) 

and severe (p = 0.001) COVID-19 patients (Fig.  1G). 

An expansion of absolute EMRA numbers was only 

observed in the severe disease cohort (p < 0.001, Sup-

plementary Fig. 1F).

In contrast to the CD8 T cell population, we observed 

a lower frequency (p < 0.001, Fig. 2A) and absolute cell 

number, (p < 0.001, Supplementary Fig. 2A) for CD 4 T 

cells in severe COVID-19 patients. Within the CD4 

T cell pool there was a significantly lower frequency 

(p < 0.0001, Fig.  2B) and absolute number (p < 0.0001, 

Supplementary Fig.  2B) of naïve CD4 T cells in the 

severe COVID-19 cohort. This was accompanied by an 

increase in the frequency (p < 0.001, Fig.  2C) but not 

absolute number (p = 0.19, Supplementary Fig.  2C) of 

memory CD4 T cells. Amongst memory CD4 T cells, 

no differences were observed in frequency [p = 0.31, 

Fig.  2D] and absolute numbers (p = 0.42, Supplemen-

tary Fig.  2D) of central memory CD4 T cells. How-

ever, there was an increase in the frequency (p < 0.001, 

Fig.  2E) and absolute numbers (p = 0.001, Supplemen-

tary Fig.  2E) of effector memory and the frequency of 

the EMRA population (p = 0.003, Fig. 2F), but not abso-

lute numbers ( Supplementary Fig. 2F).

Table 1 Participant demographics and clinical parameters

Healthy controls 
(n = 59)

Mild COVID‑19 (n = 15) Moderate COVID‑19 
(n = 32)

Severe COVID‑19 
(n = 56)

p value

Age ( mean ± SD) 50.49 ± 10.68 49.67 ± 7.30 52.28 ± 11.43 53.12 ± 11.30 p = 0.50

Males (%) 28 (47%) 4 (26%) 15 (46%) 31 (55%) p = 0.36

ICU length of stay (days) 0 0 0 19.18 ± 9.35

Ventilator days 0 0 0 13.26 ± 8.66

Hospital length of stay 0 0 10.25 ± 13.46 33.11 ± 13.86 p < .001

Ethnicity (% Caucasian) 18 (30%) 2 (13%) 6 (18%) 34 ( 60%) p = 0.02

Body Mass Index (kg/m2) 31.47 ± 6.7 29.32 ± 5.4 31.83 ± 4.2 27.20 ± 3.2 p = 0.09

Number of co‑morbidities

 n = 0 59 ( 100%) 5 (33%) 10 (31%) 11 (19%)

 n = 1 0 9 (60%) 7 (21%) 12 (21%)

 n = 2 0 1 (7%) 6 (18%) 11 (19%)

 n = 2 + 0 0 9 (28%) 22 (39%)

Smoking status

 Smoker 0 0 2 (6%) 0

 Non‑smoker 58 (98%) 15 ( 100%) 24 (75%) 54 (96%)

 Ex‑smoker 1 (1.6%) 0 6 (18%) 2 (4%)
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COVID‑19 and T cell senescence and exhaustion

T cells can be further subdivided based on the expres-

sion of the co‐stimulatory molecule CD28, which is 

lost as they differentiate to an effector phenotype and 

subsequently gain expression of markers, such as CD57 

[26] and Killer cell lectin-like receptor subfamily G 

member 1 (KLRG1) [27] as they become senescent. 

Severe COVID-19 convalescent patients had a higher 

Fig. 1 CD8 T cell subset distribution post-COVID-19 infection. A Gating strategy used to analyse markers subsets within  CD4+ve and  CD8+ve T cells; 

naïve  (CCR7+veCD45RA+ve); central memory  (CCR7+veCD45RA−ve), effector memory  (CCR7−veCD45RA−ve) and terminal differentiated effector memory 

re-expressing RA, EMRA  (CCR7−veCD45RA+ve) T cells. Comparison of the systemic percentage of: B CD8 T cells; C Naïve CD8 T cells; D Total memory 

CD8 T cells; E Central memory CD8 T cells; F Effector memory CD8 T cells G EMRA CD8 T cells. PBMCs were isolated from convalescent COVID-19 

patients who had mild (n = 15), moderate (n = 29) and severe (n = 55) disease 3–5 months post-infection, and healthy age and sex-matched controls 

(n = 59). Data represent individual values, mean (centre bar). Statistical analysis by two-sided Mann–Whitney nonparametric test
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frequency (p < 0.0001, Fig.  3A) and absolute numbers 

(p < 0.001, Supplementary Fig.  3A) of  CD28−ve  CD57+ve 

CD8 T cells, in comparison with healthy controls and 

mild and moderate convalescent patients. A similar accu-

mulation of  CD28−ve  CD57+ve CD4 T cells was seen in 

severe COVID-19 convalescent patients (Supplemen-

tary Fig.  3B,  C). We saw an expansion in the frequency 

of CD8 T cells also expressing KLRG1 (p = 0.004, Fig. 3B), 

but this did not equate to an increase in absolute num-

bers (Supplementary Fig. 3D). No increase was observed 

in the KLRG1 expressing CD4 T cell pool (Supplemen-

tary Fig.  3E, F). Next, we investigated markers of T cell 

exhaustion, specifically PD-1 expression [28]. We found 

an increase in frequency (p = 0.003, Fig.  3C) and num-

bers [p = 0.02, Fig. 3D) of PD1 expressing CD8 T cells in 

severe COVID-19 convalescent patients. A similar state 

of expansion of exhausted cells was not observed in the 

CD4 T cell pool of severe COVID-19 patients (Supple-

mentary Fig. 3G, H).

COVID‑19 and CD4 helper T cell subset distribution:  Treg 

and Th17 cells

Naïve  CD4+  T cells differentiate into several functional 

types of effector cells with distinct cytokine secre-

tory profiles.  Foxp3+ve CD4 T cells have been classified 

as regulatory T cells,  Treg, that control the magnitude 

of immune responses and suppress excessive inflam-

mation [29] and their numbers increase with age. Here 

we observed a modest expansion in the frequency of 

 Treg cells in the severe COVID-19 convalescent cohort 

[p = 0.05 (Fig. 4A, B). RAR-related orphan receptor (ROR)

γt expressing Th17 cells, produce IL-17A, IL-17F, IL-21 

and IL-22, which play a crucial role in driving inflamma-

tion during the pathogenesis of inflammatory disorders 

[30]. In this study we detected a two-fold expansion in 

the Th17 population in severe COVID-19 convalescent 

patients (p < 0.0001, Fig.  4C,  D). These changes resulted 

in an increased Th17/Treg ratio in severe COVID-19 

patients (p = 0.007, Fig.  4E), indicating a CD4 compart-

ment that is skewed towards a more pro-inflammatory 

phenotype.

COVID‑19 and B cell subset distribution

We also investigated if convalescent individuals who 

have experienced mild, moderate and severe COVID-

19 had perturbed B cell populations (Fig.  5A). Firstly, 

we observed a significantly lower frequency (p < 0.001, 

Fig.  5B) and number (p = 0.002, Fig.  5C) of B cells only 

in severe COVID-19 patients in comparison with healthy 

controls. Within the B cell pool, there was a significant 

expansion in the frequency (p < 0.001, Fig. 5D) of memory 

B cells. There was also an expansion in the frequency of 

Fig. 2 CD4 T cell distribution post-COVID-19 infection. Comparison of the systemic percentage of (A) CD4 T cells; B Naïve CD4 T cells; C Total 

memory CD4 T cells; D Central memory CD4 T cells; E Effector memory CD4 T cells (F) EMRA CD4 T cells. PBMCs were isolated from convalescent 

COVID-19 patients who had mild (n = 15), moderate (n = 29) and severe (n = 55) disease 3–5 months post-infection, and healthy age 

and sex-matched controls (n = 59). Data represent individual values, mean (centre bar). Statistical analysis by two-sided Mann–Whitney 

nonparametric test
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 CD38hi terminally differentiated plasma B cells (p < 0.001, 

Fig.  5E), an essential source of protective antibodies. 

In addition to antibody production,  a subset of B cells, 

known as regulatory B cells (Breg), exhibit immunosup-

pressive functions via the secretion of IL‐10 and tumour 

growth factor‐β (TGF‐β). This population  has recently 

gained attention for their critical role in the maintenance 

of immune homeostasis and ability to suppress Th17 

responses [31]. Similar to regulatory T cells, we observed 

a higher frequency of  CD24hi  CD38hi regulatory B cells 

within the B cell pool (p < 0.001, Fig.  5E). However, the 

absolute numbers of these B cell subsets did not differ 

significantly in the COVID-19 patients compared to the 

controls (Supplementary Fig. 4A-C).

COVID‑19 and NK cell phenotype

Natural killer (NK) cells are innate lymphoid cells 

that play a key role in providing protection from viral 

infections. Their numbers increase with age but their 

cytotoxicity declines. Here we observed a higher fre-

quency (p < 0.0001, Fig.  6A) and absolute number 

(p = 0.001, Fig.  6B) of NK cells in severe COVID-

19 convalescent patients. NK cells can be divided 

into two subsets based of the expression of CD56: 

cytokine-secreting  CD56bright and cytotoxic  CD56dim 

cells [32]. We found that the increase in NK cells with 

severe disease was driven by an accumulation of cyto-

toxic  CD56dim cells (p < 0.0001, Fig. 6C). CD57 expres-

sion defines a functionally discrete sub-population 

of terminally differentiated and functionally senes-

cent NK cells [33].  We detected a higher frequency 

(p < 0.001, Fig. 6D, E) and absolute number (p = 0.004, 

data not shown) of  CD57+ve CD56 dim NK cells in 

severe COVID‐19 convalescent patients compared to 

healthy controls. To characterise NK cell cytotoxic 

potential further we performed intracellular staining 

for the expression of the cytotoxic enzyme granzyme 

B (GzmB) [34]. Surprisingly Granzyme B expression 

in NK cells of COVID-19 patients was significantly 

elevated in moderate (p = 0.02) and severe disease 

cohorts (p = 0.01) in comparison with healthy controls 

(Fig. 6F).

Fig. 3 CD8 T cell senescence and exhaustion post-COVID-19 Comparison of systemic percentage of (A)  CD28−ve  CD57+ve senescent CD8 T 

cells in healthy age and sex-matched controls (n = 59) and mild (n = 15), moderate (n = 29) and severe (n = 55) COVID-19 survivors 3–5 months 

post-infection. B Frequency of  KLRG1+ve senescent CD8 T cells in healthy age and sex-matched controls (n = 51) and mild (n = 15), moderate (n = 24) 

and severe (n = 46) COVID-19 survivors 3–5 months post-infection. C percentage and (D) absolute numbers of  PD1+ve exhausted CD8 T cells 

in healthy age and sex-matched controls (n = 33) and severe (n = 38) COVID-19 survivors 3–5 months post-infection. Statistical analysis by two-sided 

Mann–Whitney non-parametric test. If not indicated p-valueue is not significant
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COVID‑19 and IMM‑AGE scores

IMM-AGE is a recently developed metric, consisting of 

20  T cell subset frequecnies. IMM-AGE describes an 

individual’s cellular immune profile in relation to their 

chronological age and has been recognised as a reliable 

predictor of all-cause mortality in older adults [24]. Here 

we used a modified version that requires only 8  T cell 

subsets (total T cells, naive CD4 T cells, effector memory 

CD4 and CD8 T cells, EMRA CD8 T cells,  CD28−ve CD8 

T cells,  CD57+ve CD8 T cells and regulatory T cells) [35]. 

Compared to healthy controls, we observed a signifi-

cantly higher IMM-AGE score in patients who had had 

severe COVID-19 (p < 0.001, Fig.  7A), the higher scores 

seen in mild and moderate disease did not reach signifi-

cance. To try and understand to what extent the higher 

IMM-AGE scores reflected pre-existing immunesenes-

cence, or were the result of COVID-19, we carried out 

multiple linear regressions considering variables that 

Fig. 4 The impact of COVID-19 on Regulatory T cells and Th17 cells. A Comparison of systemic percentage of  Foxp3+ve CD4 T cells in healthy 

age and sex-matched controls (n = 59) and mild (n = 15), moderate (n = 29) and severe (n = 55) COVID-19 survivors 3 months post-infection. 

B Representative flow cytometry plot showing  Foxp3+ve regulatory T cells in a healthy control and severe convalescent COVID-19 patients. C 

Comparison of systemic percentage of RORγt+ve CD4 T cells in healthy age and sex-matched controls (n = 59) and mild (n = 15), moderate (n = 29) 

and severe (n = 55) COVID-19 survivors 3–5 months post-infection. D Representative flow cytometry plot showing RORγt+ve Th17 cells in a healthy 

control and severe convalescent COVID-19 patient. E Th17/Treg ratio in healthy age and sex-matched controls (n = 59) and mild (n = 15), moderate 

(n = 29) and severe (n = 55) COVID-19 survivors 3–5 months post-infection. Statistical analysis by two-sided Mann–Whitney non-parametric test. If 

not indicated, p value is not significant
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could affect the score namely BMI, multimorbidity, eth-

nicity, smoking status and sex (Table  2). The analysis 

revealed the only pre-existing variable influencing the 

IMM-AGE score was South Asian ethnicity ( β = 0.173, 

p = 0.041), with the major influence being disease severity 

( β = 0.187, p = 0.01).

Transcriptome signature of severe COVID‑19 convalescent 

patients

To elucidate molecular signalling pathways in periph-

eral immune cells that might contribute toward this 

state of enhanced immune ageing in severe COVID-

19 patients we used the Nanostring nCounter gene 

Fig. 5 B cell subset distribution post-COVID-19. A Gating strategy used to analyse subsets within  CD19+ve B cells; naïve  (CD27−ve); memory 

 (CD27+ve), regulatory B cells  (CD38hiCD24hi) and plasma cells  (CD24−veCD38+ve) B cells. B Comparison of systemic percentage of total B cells 

in healthy age and sex-matched controls (n = 59) and mild (n = 15), moderate (n = 29) and severe (n = 55) COVID-19 survivors 3–5 months 

post-infection. C Absolute numbers of B cells in healthy age and sex matched controls (n = 39), moderate (n = 14) and severe (n = 46) COVID-19 

convalescent patients. Comparison of systemic percentage of (D) memory B cells, (E) Plasma cells, (F) regulatory B cells in healthy age 

and sex-matched controls (n = 59) and mild (n = 15), moderate (n = 29) and severe (n = 55) COVID-19 survivors 3–5 months post-infection. Statistical 

analysis by two-sided Mann–Whitney non-parametric test. If not indicated, p-value is not significant
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expression assay. To obtain a homogenous cohort for 

the gene expression analysis all ten participants [5 severe 

COVID-19 survivors and 5 healthy controls] are Cauca-

sian non-smokers with a healthy BMI and no underlying 

co-morbidities. The Healthy control participants have 

been closely age and gender-matched with the COVID-

19 survivors cohort. This allowed for the detection of 

770 genes in PBMCs from five Caucasian convalescent 

severe COVID-19 patients and five healthy controls. 

Atable showing the mean gene expression data (Table 3) 

and a heatmap showing fold change of the 38 differen-

tially expressed genes (Fig.  7B). The analysis confirmed 

the flow cytometry data suggesting a more senescent 

or exhausted phenotype, with a reduction in expression 

of CD28 and CCR7 and an upregulation in the exhaus-

tion marker (LAG3), the transcription factor involved in 

Th17 polarisation (RORA) and cytotoxic Granzymes B 

and H which are upregulated in senescent cells]. On con-

ducting an enrichment analysis of these genes, the most 

enriched pathways included ageing-related pathways 

such as inflammation, cellular senescence, apoptosis and 

autophagy (Fig. 7C). A downregulation of genesinvolved 

in DNA damage repair signalling (eg Ataxia-telangiecta-

sia mutated ATM) [36] also suggests a more aged pheno-

type, though reduced cyclin-dependent kinase inhibitor 

p21 (CDKN1A) would not suggest a fully proliferatively 

senescent phenotype [37, 38]. Autophagy a key cellular 

process of clearance of damaged organelles and mac-

romolecules has been shown to be reduced in T cells 

from aged donors, contributing to immunesenescence 

[39].  Here we found downregulation of five autophagy-

related genes (including Atg7, Atg5) in PBMCs of severe 

COVID-19 convalescent patients. Furthermore, we 

found that significantly expressed genes were involved in 

inflammation (e.g. NF-kB signalling, TNFAIP3 and pro-

inflammatory chemokine CCL5, S100 calcium binding 

protein B (S100B)), anti-fungal immunity (eg CARD-9) 

and B cell development/function (e.g. B-cell lymphocyte 

Fig. 6 NK cells in severe COVID-19 convalescent patients. A Comparison of the systemic percentage of total NK cells in healthy age 

and sex-matched controls (n = 59) and mild (n = 15), moderate (n = 29) and severe (n = 55) COVID-19 survivors 3–5 months post-infection. B Absolute 

numbers of NK cells in healthy age and sex matched controls (n = 39), moderate (n = 14) and severe (n = 46) COVID-19 convalescent patients. C 

Comparison of the systemic percentage of  CD56dim cytotoxic NK cells in healthy age and sex-matched controls (n = 59) and mild (n = 15), moderate 

(n = 29) and severe (n = 55) COVID-19 survivors 3–5 months post-infection. D, E Comparison of the systemic percentage of senescent NK cells 

in CD56 dim NK cell pool healthy age and sex-matched controls (n = 59) and mild (n = 15), moderate (n = 29) and severe (n = 55) COVID-19 survivors 

3–5 months post-infection (F) Granzyme B expression levels in NK cells in healthy age and sex-matched controls (n = 29) and severe (n = 31) 

COVID-19 convalescent patients. Statistical analysis by two-sided Mann–Whitney non-parametric test. If not indicated, p value is not significant



Page 10 of 18Lord et al. Immunity & Ageing            (2024) 21:6 

kinase (Blk) pathways and intrinsic pathways of apoptosis 

(e.g. downregulation of ati-apoptotic bcl2, upregulation 

of pro-apoptotic BID) (Fig. 7B).

Discussion
COVID-19, in common with other severe respiratory 

conditions [2], is associated with greater morbidity and 

Fig. 7 Immunological ageing score (IMM-AGE) and transcriptome signatures in severe COVID-19 convalescent patients. A IMM-AGE scores 

calculated by the pseudotime  algorithm23 in healthy age and sex-matched controls (n = 39) and mild (n = 15), moderate (n = 33) and severe 

(n = 42) COVID-19 survivors 3–5 months post-infection. Statistical analysis by two-sided Mann–Whitney non-parametric test. If not indicated, 

p value is not significant. B (B) A heatmap showing the relative expression levels of a selection of significantly differentially expressed genes 

between the healthy control and severe COVID-19 groups. The gene IDs can be seen on the X axis. The figure legend colour corresponds 

to the relative expression levels of a given gene within a group. C An map plot showing the relationships between the pathways associated 

with the set of significantly differentially expressed genes between healthy control participants and survivors of severe covid-19 infection. Node size 

denotes the number of genes associated with a specific pathway, with increasing size reflecting a greater number, and colour reflects the adjust 

p-valuealue
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mortality in older adults [3]. One of the potential expla-

nations is that the ageing of the immune system makes 

older adults more susceptible to these infections, less 

well able to control them and more prone to harmful 

responses such as hyperinflammation and autoimmun-

ity. Equally likely is the possibility that the infection itself 

would increase features of immunesenescence which may 

be acute or persistent. In the acute phase of infection, 

studies have shown evidence of an exhausted as well as 

an aged immune phenotype in COVID-19 patients, such 

as CD8 T cells and NK cells with reduced IL-2 and IFN-γ 

expression, reduced granzyme expression and degranula-

tion (CD107a) and an increased expression of the inhibi-

tory receptor NKG2A [40, 41]. Moreover, this phenotype 

was more prominent with increasing disease severity 

suggesting that it may have influenced the compromised 

response to infection. Here we have taken these observa-

tions of individual cell phenotype changes forward and 

used a composite score of immune ageing, IMM-AGE 

[24, 35], to determine any association of immunesenes-

cence with COVID-19 disease severity. We also recruited 

patients 3–5 months post-diagnosis to try and eliminate 

the influence of changes to immune cell profile in the 

acute phase. Our data reveal a greater degree of immune 

ageing, demonstrated by a higher IMM-AGE score, 

which was only seen in those with severe disease, though 

a trend to a higher score was also seen with moderate 

disease.

A key question addressed in our study was whether this 

higher degree of immunesenescence was present prior to 

infection, or was driven by the infection. Supporting the 

argument in favour of patients with severe disease poten-

tially having a more aged immune system prior to infec-

tion is a study of participants in UK Biobank. For 347,571 

individuals it was possible to calculate how biologically 

old they were when they enrolled in the study between 

2006 and 2010, as opposed to their chronological age, 

using blood biochemistry data to derive the PhenoAge 

score. The analysis revealed that those participants who 

went on to develop severe COVID-19 were 10–14 years 

older biologically [42]. Crucially, in our study the preva-

lence of patients with pre-existing multimorbidity was 

highest in the moderate (46%) and severe (58%) groups, 

with only one patient with multimorbidity in the mild 

Table 2 Multiple linear regressions of IMM-AGE score with 

participant demographics and clinical parameters

Coefficients Std Error T value Pr ( >|t|)

Ethnicity_Black 0.0829047 0.191 0.8499

Ethnicity_Asian 0.0945755 -2.452 0.0222

Ethnicity_Caucasian 0.0482719 -2.114 0.0456

Age 0.0042638 0.16 0.8745

Gender_male 0.0526779 0.653 0.5205

BMI 0.0036713 -1.601 0.123

Number of co_morbidities 0.0448307 -1.489 0.15

Smoking status_yes 0.1205799 -0.231 0.8194

Smoking status_no 0.0736119 -0.488 0.6301

ICU_Length of stay 0.0046717 -0.542 0.5931

Length of stay 0.0027478 0.837 0.4115

Ventilatory days 0.0025575 1.646 0.1133

Table 3 Mean gene expression levels of differentially expressed 

genes between healthy controls and severe COVID-19 survivors

Gene Healthy Controls COVID‑19 
survivors

p value

BCL2 278.99 67.28 0.03

BCL2L1 276.93 271.94 0.03

BID 29.28 54.7 0.03

BIRC5 21.03 24.69 0.03

BAX 361.4 428.67 0.02

BCL10 637.5 642.26 0.03

ATG10 39.56 25.06 0.02

ATG12 25.81 21.35 0.02

ATG16L1 194.77 178.78 0.02

ATG5 206.18 219.66 0.02

ATG7 211.81 75.37 0.02

BTK 289.14 169.69 0.04

BST1 578.34 395.11 0.03

BST2 208.86 144.52 0.03

BLK 26.86 20 0.03

BLNK 46.15 22.66 0.03

ATM 29.97 20 0.02

BMI1 123.69 134.08 0.03

CARD11 398.91 269.75 0.05

CARD9 107.22 39.17 0.05

ABCB1 158.99 133.05 0.001

ABL1 108.46 108.43 0.001

ADA 251.94 289.47 0.001

NFKBIA 3981.45 8074.45 0.05

TNFAIP3 1438.51 3295.49 0.05

CCL5 776.86 1562.88 0.05

S100B 20 71.49 0.04

DUSP6 1108.61 1723.26 0.04

CCR7 199.46 28.56 0.05

CD28 109.88 58.2 0.05

BTLA 189.81 47.55 0.04

LAG3 54.16 92.48 0.05

CDKN1A 305.75 514.31 0.04

GZMB 1595.35 2154.99 0.03

GZMH 393.31 701.41 0.03

RORA 497.25 645.93 0.05

BCL6 188.63 275.4 0.03
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group. As the IMM-AGE algorithm was developed from 

longitudinal data and mortality [24] we would predict a 

higher score in a group at higher risk of death, i.e. those 

with multimorbidity or a high BMI [43]. However our 

multiple linear regression model revealed that neither 

multimorbidity nor BMI contributed significantly to the 

IMM-AGE score, instead South Asian ethnicity con-

tributed to 17% of the increase in the IMM-AGE score. 

Interestingly we have shown recently that South Asian 

adults develop a broad range of immune-mediated dis-

eases much earlier than white adults, possibly suggest-

ing that their immune systems age more rapidly [44]. 

Our data thus suggest that the SARS-CoV2 infection 

itself increases immune ageing. The antigenic stimula-

tion occurring during viral infections will certainly lead 

to telomere shortening, the appearance of more highly 

differentiated EMRA T cells, as well as exhausted and 

senescent T cells [45]. A similar state of acceleration of 

immune ageing has been observed in our studies in a 

younger cohort of traumatic injury patients [35], sug-

gesting a negative influence of an acute challenge to 

immunesenescence. Our regression analysis revealed that 

the severity of disease made a significant contribution to 

the IMM-AGE score, supporting a major association of 

the SARS-CoV2 infection with immunesenescence.

Whether or not this enhanced immunesenescence is a 

result or consequence of COVID-19, it does suggest that 

these patients will be more vulnerable to future infec-

tions, show compromised vaccine responses and be at 

a higher risk of autoimmune disease. Moreover, as the 

induction of an aged immune system, specifically senes-

cent CD4 T cells, has been shown in mice to be sufficient 

to drive an aged phenotype, including frailty and multi-

morbidity [46], our data may also suggest broader impli-

cations for the health of COVID-19 survivors. Evidence 

from recent studies has suggested the persistence of a 

spectrum of COVID-19 symptoms for up to 12 months 

after diagnosis, termed Long COVID, including persis-

tent fatigue, myalgia and respiratory complications [47, 

48]. Studies of COVID-19 convalescents 3–5  months 

post-infection have revealed maintained high levels of 

IL-6 associated with persistence of symptoms [4] and a 

study of autoantibody levels in serum found a high fre-

quency of antibodies against the skin, skeletal muscle 

and cardiac tissue [5]. The aged immune system may 

thus contribute to both the acute and chronic sequelae of 

COVID-19, but we were unable to collect any informa-

tion on post-acute sequellae of SARS-CoV-2 (PASC) in 

this cohort.

T cell lymphopenia has been widely reported dur-

ing the acute phase of COVID-19 infection [49] and a 

small study investigating the T cell profile in a cohort of 

13 convalescent patients, four weeks post-resolution of 

infection observed a loss of naïve CD4 T cells and accu-

mulation of memory T cells [50]. Here we show that a 

numerical deficit of CD4 T cells persists in severe cases 

several months post-infection, particularly in the naïve T 

cells. Previous studies have reported that infections can 

result in thymic atrophy and changes in thymocyte devel-

opment [51], a potential explanation for the reduction in 

naïve T cells. The potential consequence is a reduced abil-

ity to respond to new pathogens, including substantially 

different SARS-CoV-2 variants and reactivation of latent 

viruses (e.g. EBV and herpes). In contrast, we observed 

an expansion of CD8 T cells with a central memory phe-

notype, which could provide long-term effective memory 

responses. Whilst previous studies in SARS infection 

found that central memory T cell responses persist for 

up to 4  years post infection [52], a recent study of 188 

patients has shown that memory CD4 and CD8 T cell 

numbers decline with a half-life of 3–5 months [53].

In patients who had severe COVID-19 the CD8 T cell 

profile features an increase in cells with a phenotype 

of senescence (defects in proliferation) and functional 

exhaustion, in agreement with previous reports from the 

acute phase [40, 41], suggesting that this is not a tran-

sient phenomenon. This observation not only raises con-

cerns about the cytotoxic function of memory CD8 cells, 

but has broader consequences for health as senescent 

T cells are characterised by the secretion of a range of 

pro-inflammatory cytokines, chemokines, proteases and 

growth factors, termed the senescence-associated secre-

tory phenotype (SASP) [54]. Thus, we hypothesise that 

the expansion of senescent T cells could be contributing 

towards the persistence of a pro-inflammatory environ-

ment in convalescent patients and symptoms such as 

fatigue and myalgia [48]. Another potential contribu-

tor to this inflammatory environment is the Treg/Th17 

imbalance and increase in senescent CD57 expressing 

NK cells that we found also persisted in severe COVID-

19 infection survivors several months post-acute infec-

tion. In support of this proposal, a study comparing the 

circulating immune profile of COVID-19 patients found 

an accumulation of senescent NK cells, Th17 cells and 

senescent T cells to be predictors for residual lung lesions 

[55]. The aged profile in the severe COVID-19 convales-

cent patients might therefore be contributing to impaired 

lung function and pulmonary fibrosis seen in some con-

valescent patients [56].

In addition to T cells, humoral immunity also plays 

a critical role in responding to viral infections and 

immunological B cell memory generated after infec-

tion is fundamentally important for protecting the host 

from severe disease upon re-exposure. In this study, we 

found reduced B cell numbers in convalescent patients 

irrespective of disease severity, but an expansion in the 
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proportion of memory B cells and plasmablasts in severe 

COVID-19 patients. Multiple studies have detected 

virus-specific antibodies several months post-recovery 

from COVID-19, potentially a result of an elevated fre-

quency of antibody-secreting plasmablasts [57, 58]. Fur-

thermore, we observed an expansion of regulatory B cells, 

a subtype that produces IL10, in patients who had severe 

disease, which might be a compensatory mechanism for 

the expansion of pro-inflammatory immune cell subsets. 

These findings agree with another study reporting higher 

levels of  IL10+ve B cells in convalescent patients [59].

Although the detailed mechanisms driving a relation-

ship between an aged immune phenotype and COVID-19 

severity remain poorly understood, our RNA expression 

analysis has identified elevated inflammatory signalling, 

cellular senescence pathways and defects in DNA damage 

repair and autophagy, which are key processes underlying 

immunesenescence [60]. As the clinical consequences of 

immunesenescence include an increased risk of bacte-

rial infections, reactivation of latent viruses, poor vaccine 

responses, increased risk of chronic inflammatory condi-

tions [61, 62] and organ functional decline [63], severe 

COVID-19 survivors can thus be considered as a vul-

nerable population. Finding ways to alleviate immunese-

nescence should therefore be a priority to improve the 

health outcomes of these patients. Focusing on restoring 

thymic function could be considered a potential holistic 

treatment for rejuvenating the adaptive immune system 

and restoring immune homeostasis. The TRIIM (Thymus 

Regeneration Immunorestoration and Insulin Mitiga-

tion) trial has shown it is possible to boost thymic regen-

eration in older males using three agents: metformin, 

growth hormone and dehydroepiandrosterone given for 

12  months [64]. An alternative method using an injec-

tion of Thymosin alpha 1(Tα1), known to support T 

cell generation and survival, reversed T cell exhaustion 

by boosting thymic output and reducing mortality in 

severe COVID-19 patients [65]. Another drug with anti-

immunesenescence properties is metformin [66], which 

has been shown recently to reduce mortality in hospital-

ised COVID-19 patients [67]. Autophagy-boosting thera-

pies, such as spermidine supplementation, have yielded 

promising results in rejuvenating an aged immune sys-

tem in older adults [68]. Exercise has also been shown to 

induce its beneficial effects on body systems via the stim-

ulation of autophagy [69]. Both interventions may there-

fore be useful in COVID-19 convalescent patients.

Our study has some limitations which should be con-

sidered when interpreting the findings. Firstly, we have 

only assessed immunological phenotype in convalescent 

patients and do not have longitudinal data from dur-

ing the acute phase of infection, or prior to infection. 

We cannot therefore determine the degree to which the 

enhanced immune ageing was a cause or consequence of 

infection, though our regression analysis only found one 

pre-existing variable to influence the IMM-AGE score, 

namely South Asian ethnicity. Second, due to the collec-

tion of a limited volume of blood from the participants, 

it has not been possible to assess immune cell function 

in convalescent patients. However, our data does hint 

toward proliferative defects, skewing towards an inflam-

matory phenotype and TCR signalling defects due to 

overexpression of dual-specific phosphatase DUSP6, 

a feature of aged T cells that attenuates ERK signal-

ling after TCR activation [70]. Third, by the very defini-

tion of healthy, our uninfected controls did not have 

any chronic disease and so were not well matched for 

the moderate and severe disease groups which had a 

substantial number of multimorbid patients. However, 

our regression analysis was able to show that the pres-

ence of multimorbidity was not a significant influence 

on immunesenescence. Additionally, there was variation 

in ethnicity amongst our four cohorts and this will have 

affected the data as the regression analysis revealed that 

South Asian ethnicity was an influence on the degree of 

immunesenescence.

Conclusions
In summary, we have demonstrated a state of persistent 

enhanced immune ageing in adults during convales-

cence from severe COVID-19, potentially contributing to 

increased susceptibility to ongoing and future ill health in 

these patients. Our data support the rationale for trials of 

anti-immune ageing interventions for improving clinical 

outcomes in these patients.

Methods
Participants

This observational cohort study recruited adults with 

confirmed SARS-CoV-2 infection who were 3–5 months 

post-infection and age and sex-matched controls who 

had not been infected. Hospitalised patients were strati-

fied into two groups based on their fraction of inspired 

oxygen (FiO2) levels and the need for respiratory support. 

Patients requiring between 28–60% FiO2 were classified 

as ‘moderate’ and those above 60% FiO2, or requiring 

admission to intensive care were classified as ‘severe’. The 

mild patients had polymerase chain reaction (PCR) con-

firmed SARS-CoV-2 infection but were not hospitalised. 

The screening, recruitment, and sampling took place at 

three sites in the UK: the Queen Elizabeth Hospital, Bir-

mingham, University Hospitals of Leicester NHS Trust, 

and the University of Liverpool. Additional clinical meas-

ures, including ventilator days, length of ICU stay, and 

length of hospital stay were also recorded. The age and 

sex-matched healthy controls were students and staff at 
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the University of Birmingham and older adults recruited 

from the community. Healthy or COVID-19 survivors 

were excluded if they had a self-reported infection at the 

time of sampling or a pre-existing immune-mediated 

disease. The severe COVID patients were recruited in 

Birmingham as part of the Coronavirus Immunological 

Analysis study approved by North West Preston Research 

Ethics Committee (20/NW/0240). The moderate disease 

patients were recruited as part of the PHOSP-COVID 

study approved by Leeds West Research Ethics Commit-

tee (20/YH/0225) and the Human Immune Responses to 

Acute Virus Infections study (16/NW/0170) approved by 

North West—Liverpool Central Research Ethics Com-

mittee. The mild disease cohort were recruited as part 

of the COVID in the Community study approved by the 

London Camden & Kings Cross Research Ethics Com-

mittee (20/HRA/1817).

Blood cell isolation

Blood samples were collected by venepuncture into vacu-

tainers containing heparin (Sastedt AG, Germany). Com-

plete blood differential counts were performed in whole 

blood using a haematology analyser (Sysmex XN-1000, 

Sysmex, Germany). Whole blood count data for mild 

COVID-19 infection patients were unavailable as they 

were not hospitalised. Peripheral blood mononuclear 

cells (PBMCs) were isolated by density centrifugation 

using Ficoll-Paque™ PLUS (GE Healthcare, UK) of diluted 

blood (1:1) in RPMI 1640 medium (Sigma Aldrich, Poole, 

UK), and overlayered blood was centrifuged for 30 min at 

400 × g at 20 °C without brake [71]. Isolated PBMCs were 

frozen by resuspending cells in a freezing medium con-

sisting of 10% DMSO (Sigma Aldrich) in heat-inactivated 

fetal calf serum (FCS; Biosera, UK) and stored at -80°C 

until further analysis.

T and B cell phenotyping

Frozen PBMCs were thawed at 37°C and washed in 

RPMI1640 containing 10% FCS prior to resuspension in 

phosphate-buffered saline (PBS) at 1 ×  106 cells/ml. For 

the identification of T cell subsets samples were immu-

nostained for 30  min at 4°C with combinations of the 

following cell-surface marker antibodies: anti-human 

CD3 PE cy7 (clone: UCHT1; Thermo Fischer, UK); anti-

human CD4 Violet (clone: RPA-T4; Thermo Fischer, 

UK); anti-human CD8 PE (clone:UCHT4; Immuno-

tools, Germany); anti-human CCR7 FITC (clone:150503; 

R and D Systems, UK); anti-human CD45RA APC 

(clone: HI100; Biolegend, UK), anti-human CD28 APC 

(clone:CD28.2; BD Biosciences, UK) and anti-human 

CD57 FITC (clone:HCD57; Thermo Fischer, UK). A com-

bination of anti-human CD19 PE (clone: HIB19; Thermo 

Fischer, UK), anti-human CD27 Violet (clone: O323; 

Thermo Fischer, UK), anti-human IgD FITC (clone: 

1A6-2; Thermo Fischer, UK), anti-human CD24 FITC 

(clone:SN3; Thermo Fischer,UK) and anti-human CD38 

PEcy7 (clone: HIT2; Thermo Fischer,UK) were used to 

identify B cell subsets. A viability dye eflour 780 (Thermo 

Fischer, UK) was used to gate out dead cells during flow 

cytometric analysis. Post-staining, cells were washed in 

PBS twice and were analysed using a Miltenyi MACS 

Quant flow cytometer (Miltenyi Biotech, UK). Data anal-

ysis was performed using FlowJo software.

T cells were defined as  CD3+ve cells and 10,000 cells 

were gated and divided into  CD4+ve and  CD8+ve, which 

were further divided into four subsets based on CD45RA 

and CCR7 expression and denoted as naive  (CD45RA+ve 

 CCR7+ve), central memory  (CD45RA−ve  CCR7+ve), effec-

tor memory  (CD45RA−ve  CCR7−ve) and terminally dif-

ferentiated effector memory re-expressing RA, EMRA 

 (CD45RA+ve  CCR7−ve) (gating strategy; Fig. 1A).  CD28−

ve  CD57+ve  CD3+ve cells were denoted as senescent T 

cells.  CD19+ve cells were defined as B cells and 5,000 cells 

were gated and divided into naïve  (CD27−ve), memory 

 (CD27+ve), plasmablasts  (CD38+ve  CD24−ve) and regu-

latory B cells  (CD24hi  CD38hi) (gating strategy Fig.  5A). 

The absolute numbers of immune cells were calculated in 

conjunction with lymphocyte counts for severe and mod-

erate infection patients.

Regulatory T cells and Th17 cells

Thawed PBMCs (1 ×  106 cells/ml) resuspended in 50 µl of 

PBS were stained with anti-human CD3 PEcy7, and anti-

human CD4 Violet for 30  min at 4  °C. Post incubation, 

the cells were washed in PBS twice and fixed with Foxp3 

Fix Perm solution (Thermo Fischer) for 30 min at room 

temperature, followed by a wash and staining with anti-

human Foxp3 PE (clone: PCH101; Thermo Fischer) and 

anti-human RORγt APC (clone: 2A2; Thermo Fischer) 

in diluted permeabilisation buffer (Thermo Fischer) for 

30 min at 4 °C. Regulatory T cells were defined as  CD3+ve 

 CD4+ve  Foxp3+ve cells (gating strategy Fig. 4B) and Th17 

cells as  CD3+ve  CD4+ve RORγt+ve cells (gating strategy 

Fig. 4D).

IMM‑AGE score calculation

Eight immune cell types (total T cells, naive CD4 T cells, 

effector memory CD4 and CD8 T cells, EMRA CD8 T 

cells,  CD28−ve CD8 T cells,  CD57+ve CD8 T cells and reg-

ulatory T cells) were selected to generate the IMM-AGE 

metric, this is a modified profile from the original scor-

ing that had 20 components [24] that we have reported 

recently [35]. Only samples that did not have missing val-

ues that are required for the IMM-AGE flow calculation 

were used.



Page 15 of 18Lord et al. Immunity & Ageing            (2024) 21:6  

RNA isolation and Nanostring nCounter gene expression 

analysis

Total RNA was isolated from 2 ×  106 PBMCs from 

healthy controls and severe COVID-19 convalescent 

patients using the RNeasy Mini isolation kit (Qiagen, 

Germany). RNA concentrations and quality were meas-

ured using the Agilent 2100 BioAnalyzer. Gene expres-

sion analysis was performed using the Pan-Cancer 

Immune Profiling Panel from NanoString technolo-

gies (NanoString, USA). The panel contains probes for 

730 immune-related genes and 40 housekeeping genes, 

representing 24 different immune cell types and com-

mon checkpoint inhibitors, covering both adaptive 

and innate immune responses. For each sample, 80 ng 

of total RNA, with a maximum of 7 μL (> 28.6 ng/μL), 

was used. Hybridisation was performed at 65˚C for 

17 h using a SimpliAmp Thermal Cycler (Applied Bio-

systems, UK). The nCounter Flex system (NanoString, 

USA) was used for sample preparation. Raw gene 

counts were normalised using the most stable house-

keeping genes from the panel. The background thresh-

old was determined as the average count of the negative 

controls + 2 standard deviations. Differential expres-

sion of genes between PBMC from the two cohorts 

was tested with Mann–Whitney U tests and Benjamin-

Hochberg procedures were used to correct for multiple 

testing. Differentially expressed (DE) genes were fur-

ther analysed and all pathway analysis was performed 

within RStudio. Pathway enrichment analysis was per-

formed on a subset of genes differentially expressed 

between the healthy volunteer and severe COVID-19 

groups. This was done using ReactomePA [72]. The BH 

false discovery method was used and a p-value cut-off 

of < 0.05 was set as significant. Entrez gene IDs were 

obtained using the org.Hs.eg.db annotation package 

(http:// bioco nduct or. stati stik. tu- dortm und. de/ packa 

ges/3. 10/ data/ annot ation/ html/ org. Hs. eg. db. html).

Statistical analysis

All statistical analyses were performed using Graph-

Pad Prism software version 9.2.0. Data distribution was 

examined using the Kolmogorov–Smirnov normality 

test. For normally distributed data, a student t-test, or a 

one-way ANOVA with Bonferroni multiple comparison 

post hoc tests were performed where appropriate. Rela-

tionships between categorial variables were assessed 

using a Chi-squared test. Multiple linear regression was 

performed to test for associations between immune 

parameters and other variables. The probability value 

(p-value) of the statistical significance of the test was 

used as p ≤ 0.05.
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Additional file 1: Supplementary Figure 1. The long-term impact of 

COVID-19 on CD8 T cell subset distribution. Comparison of circulating 

numbers of: (A) CD8 T cells; (B) Naïve; (C) Memory; (D) Central memory; 

(E) Effector memory; (F) EMRA CD8 T cells between healthy age and 

sex matched controls (n = 39), moderate (n = 14) and severe (n = 46) 

COVID-19 convalescent patients. If not indicated, p value is not significant. 
Supplementary Figure 2. The long-term impact of COVID-19 on CD4 

T cell subset distribution. Comparison of the systemic numbers of: (A) 

CD4 T cells; (B) Naïve CD4 T cells; (C) Memory CD4 T cells; (D) Central 

memory CD4 T cells; (E) Effector memory CD4 T cells; (F) EMRA CD4 T 

cells in healthy age and sex-matched controls (n = 39), moderate (n = 

14) and severe (n = 46) COVID-19 survivors 3-5 months post-infection. 

Statistical analysis by two-sided Mann–Whitney non-parametric test. If not 

indicated, p-value is not significant. Supplementary Figure 3. CD4 T cell 

senescence and exhaustion post-COVID-19. Comparison of: (A) absolute 

numbers of  CD28-veCD57+ve CD8 T cells in healthy age and sex matched 

controls (n = 39), moderate (n = 14) and severe (n = 46) COVID-19 conva-

lescent patients; (B) percentage of  CD28-veCD57+ve CD4 T cells in (n = 59) 

and mild (n = 15), moderate (n = 29) and severe (n = 55) COVID-19 survi-

vors 3-5 months post-infection; (C) absolute numbers of  CD28-veCD57+ve 

CD4 T cells in healthy age and sex matched controls (n = 39), moderate 

(n = 14) and severe (n = 46) COVID-19 convalescent patients; (D) absolute 

numbers of  KLRG1+ve CD8 T cells in healthy age and sex matched controls 

(n = 39), moderate (n = 14) and severe (n = 46) COVID-19 convalescent 

patients; (E) percentage of  KLRG1+ve CD4 T cells in (n = 59) and mild (n = 

15), moderate (n = 29) and severe (n = 55) COVID-19 survivors 3-5 months 

post-infection; (F) absolute numbers of  KLRG1+ve CD4 T cells in healthy 

age and sex matched controls (n = 39), moderate (n = 14) and severe (n 

= 46) COVID-19 convalescent patients. (G) percentage and (H) absolute 

numbers of  PD1+ve CD4 T cells in healthy age and sex-matched controls 

(n = 21) and severe (n = 18) COVID-19 convalescent patients. Statistical 

analysis by two-sided Mann–Whitney non-parametric test. If not indicated, 

p-value is not significant. Supplementary Figure 4. B cell subsets post-

COVID-19. Absolute numbers of systemic: (A) memory B cells; (B) plasma 

B cells; (C) regulatory B cells in healthy age and sex-matched controls 

(n = 39), moderate (n = 14) and severe (n = 46) COVID-19 convalescent 

patients. Statistical analysis by two-sided Mann–Whitney non-parametric 

test. If not indicated, p-value is not significant.

Additional file 2. 
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