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Abstract: The dissolution of wool yarns in the ionic liquid 1-ethyl-3-methyl-imidazolium acetate
[C2mim][OAc] has been investigated. Wool yarns were submerged into [C2mim][OAc] and dissolved
for various times and temperatures before coagulating with water. Optical microscopy was used to
track the yarn’s cross-sectional area. We propose that there are two competing dissolution processes,
one rate-limited by disulfide bonds at low temperatures (LTs), and a second by hydrogen bonds at
high temperatures (HTs), with a crossover point between the two regimes at 70 °C. The corresponding
activation energies were ELT = 127 ± 9 kJ/mol and EHT = 34 ± 1 kJ/mol. The remaining area of the
dissolved wool yarn could be shifted via time–temperature superposition to plot a single master
curve of area against time for both regions. Finally, the dissolution could be modelled by a diffusion
process, giving self-diffusion coefficients for the [C2mim][OAc] ions (0.64–15.31 × 10−13 m2/s).
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1. Introduction

Owing to growing global awareness of environmental issues, the utilization of natural
polymers (biopolymers) extracted from renewable biomass sources has become attractive,
as these materials are abundant, renewable, potentially biocompatible, biodegradable,
and eco-friendly, and have relatively high strength and stiffness [1,2]. Some examples of
these biopolymers are proteins (wool, silk, and gelatin) and polysaccharides (cellulose
and starch) [3]. Keratin is a fibrous protein, and it is found in different sources of biomass
such as wool, hair, feathers, hooves, and horns [4,5]. It has been estimated that more than
5 million tons of keratin waste worldwide are produced annually from woolen mills, textile
industry, farms, and feathers [6,7].

Wool contains up to 95% by weight pure keratin protein, and this makes it a valuable
candidate for various keratin-based materials applications, such as composite materials, re-
inforcement, tissue engineering, protein fiber, degradable bioplastic, and drug delivery [8,9].
It is also an extremely durable material, and therefore wool keratin has received much
attention among other keratin sources [10,11]. Wool keratin is a combination of tightly
packed α-helix and β-sheet structures, comprising different types of amino acids forming a
long molecular chain held together by hydrogen bonds, covalent bonds, Coulombic attrac-
tion, hydrophobic forces, and van der Waals interactions to form a stable three-dimensional
conformation [12]. Additionally, wool keratin is high in cysteine content, about 11–17%
of which forms inter- and intramolecular disulfide bonds and makes it insoluble in many
common solvents [13,14]. This high content of cysteine makes it unlike other proteins,
such as elastin and collagen [15]. To recycle wool keratin, the first challenge to be solved
is the development of sustainable and efficient techniques for its dissolution [16]. There
are several methods used to extract keratin; the most common ones are reduction and
oxidation [17]. In the reduction method, reducing agents are used for cleaving the disulfide
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bonds [18]. Although in this method the structure of the keratin is maintained, the process
and the chemicals can be toxic and harmful due to using mercaptoethanol. Furthermore,
oxidation methods have been used for decades for the extraction of keratin from wool and
animal hair, but they are time-consuming and they require high quantities of oxidizing
agents to obtain a reasonable yield [19]. Ionic liquids are a relatively new class of green
solvents and have been employed to dissolve biomass. Ionic liquids are salts found in
the liquid phase at relatively low temperatures, below 100 ◦C [20]. They are composed of
organic cations and organic or inorganic anions. They have some unique physicochemical
properties, such as low vapor pressure, non-flammability, and high chemical and thermal
stability. Due to these properties, ionic liquids are considered to be potential green sol-
vents [21]. They also have an excellent capability to dissolve a broad range of synthetic and
natural compounds and materials [22]. An estimate of 1018 ionic liquids can be designed to
specifically meet the requirements of a certain process due to the large variety of cation and
anion combinations [23]. The first attempt to dissolve wool keratin in ionic liquids was by
Xie et al. [24] (pp. 606–608), after it was reported that [C4mim][Cl] is an excellent solvent
for dissolving biological macromolecules such as cellulose and silk fibroin [25,26].

Ionic liquids should be designed to break at least 65% of the disulfide bonds, so that
keratin-based material can be dissolved [4]. It was found that imidazolium-based ionic
liquids have a high capability to dissolve keratin [4]. Moreover, the ability of [C2mim] +
based ionic liquids to dissolve keratin followed the order of [OAc] > Cl > [DEP] > [DMP]
(high to low). Liu et al. compared the dissolution of wool in different ionic liquids at the
same temperature and concentration and found that [DBNH][DMP] has a higher yield
of regenerated wool than [DBNH][OAc], although [DBNH][DMP] takes a longer time
to dissolve the fibers [27]. The regenerated keratin from [DBNH][DMP] exhibits higher
crystallinity than the regenerated keratin from [DBNH][OAc]. In terms of the recyclability of
ionic liquids, [DBNH][DMP] was able to maintain its structure and dissolution performance
after five successive dissolution runs [27]. Another class of solvents to dissolve keratin being
investigated in the literature is deep eutectic solvents (DESs) such as L-cysteine/lactic acid,
choline chloride/oxalic acid, and choline chloride-urea, which could replace conventional
alkali and acid solvents [9,11,28]. These solvents are considered to be safe and nontoxic,
reusable, and biodegradable, and so can be used in industrial processing for food-related
applications [29,30].

It is of great interest to understand the dissolution of keratin in ionic liquids for
industrial processing methods, and yet only a few studies have focused on this [31]. In
this study, we aimed to gain a better understanding of the dissolution mechanism of wool
yarn keratin-based material in [C2mim][OAc], since it is reported in the literature as a
good solvent for wool keratin [4]. Our group has extensively studied [C2mim][OAc] in
dissolving different natural fibers, and it is relatively easy to handle as it is a liquid at room
temperature [32–34]. In the presented work, our hypothesis is that the dissolution of wool
yarn depends on both temperature and time. The cross-sectional area of the wool yarn was
used as a parameter for tracking the dissolution, and it was found that the system obeyed
time–temperature superpositions. Additionally, this system was interpreted to have a two-
stage dissolution mechanism, and to the best of our knowledge this has not been published
before. A further analysis was conducted on the data by experimentally determining the
thickness loss of the wool yarn upon processing, this giving the self-diffusion coefficient
of the [C2mim][OAc] dissolving the wool yarn. This study could help to give a better
understanding of recycling wool waste textile products and optimizing the dissolution
process.

2. Materials and Methods
2.1. Materials

Undyed natural unprocessed Merino wool was supplied by 80 skeins online yarn shop
in Rugby, United Kingdom, with filament diameter 30 ± 5 µm, yarn diameter 0.62 mm,
and filament count 440. This type of wool was used as a source of keratin protein and was
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kept at room temperature in a dry place. The solvent 1-ethyl-3 methylimidazolium acetate
[C2mim][OAc] (purity ≥ 98%) was purchased from Proionic GmbH, Grambach, Austria.
Throughout the experiments, the water content of [C2mim][OAc] was <0.2%, measured by
a Karl Fischer titration machine (899 Coulometer, Metrohm U.K. Ltd., Runcorn, UK). To
allow a clear image of the wool yarn cross section, a cold-curing epoxy resin (EpoxiCure 2,
Buehler, Coventry, UK) was used.

2.2. Sample Preparation

First, the wool yarn was cut into 8 individual strands, each about 15 cm long, and
then wound around a square poly(tetrafluoroethylene) (Teflon) frame with a dimension
of 8 cm × 8 cm. Next, a Teflon tray was filled with an excess amount of [C2mim][OAc]
(about 60 g), and it was preheated in a vacuum oven (shellab 17L Digital Vacuum Oven
SQ-15VAC-16, Sheldon Manufacturing, Inc., Cornelius, OR, USA) for an hour at the desired
temperature. Imidazolium-based ionic liquids have a high tendency to absorb water from
the atmosphere, and it was found that the water content within ionic liquids affects the
dissolution process, so the dissolution process was conducted under vacuum [35,36].

After preheating the [C2mim][OAc], the frame/wool was submerged in the filled
Teflon tray and left for a certain time, depending on the experiment conditions. After
taking the frame/wool out of the oven, it was immediately soaked in a water bath at room
temperature for two days, changing the water bath twice to wash the [C2mim][OAc] from
the sample. The composites were then dried for two days at room temperature. Lastly, the
partially dissolved composites were removed from the frame, ready for encapsulation in
epoxy resin and characterization; see Figure 1.
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Figure 1. Schematic diagram of the wool sample preparation, from the dissolution process to the
optical microscopy characterization.

2.3. Optical Microscopy

To study the microstructure of the samples (raw and composite), optical microscopy
was employed using an Olympus BH2 microscope (Olympus Corporation, Tokyo, Japan)
in reflection mode coupled with a charge-coupled-device camera, to allow the imaging
of the cross-sectional area of yarn. For this measurement, the samples were prepared as
follows: yarn was fixed vertically in a mold, then a prepared solution of the epoxy resin
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and hardener with a ratio of 4:1 was poured into the mold. The epoxy was cured for two
days at room temperature. The samples were removed from the mold and then the top
surface of each sample was ground and polished to obtain clear images. ImageJ software
(version 1.53s) was employed to accurately measure the cross-sectional area of the yarn.

2.4. Modelling Thickness Loss of Dissolved Wool Yarn

Upon processing, the optical images in Figure 2 show some material loss of the wool
yarn. Therefore, we will represent this by a thickness loss as a function of time xrms(t);
see Figure 3. The thickness loss was calculated with Equation (1), using the measured
cross-sectional area of the remaining wool yarn of the real-time master curve for both the
low- and the high-temperature processes.
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Figure 2. Images showing how the cross-sectional size of the wool yarn reduced as the dissolution
progressed (the blue and red outline the area measured using ImageJ). The top row images are for
yarn dissolved at 65 ◦C for (a) 1 h, (b) 2 h, (c) 3 h, and (d) 4 h. The lower set of images are for yarn
dissolved at 80 ◦C for (e) 1 h, (f) 2 h, (g) 3 h, and (h) 4 h.
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Though the following analysis is presented in terms of the remaining area of the yarn
having a circular cross-section, we are actually determining an effective mean squared
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radius for the irregularly shaped yarn. The thickness loss xrms(t) can then be calculated
using this equation:

xrms(t) = (A(0)/π)1/2 − (A(t)/π)1/2 (1)

where A(t) is the cross-sectional area of the wool yarn at different temperatures and times.

3. Results and Discussion
3.1. Optical Microscopy

The raw wool yarn consists of multiple filaments, with an inner space between each
filament; see Figure S1. After the dissolution, it was notable that all the dissolved wool yarn
became tightly packed together, and as the time and temperature of the processing were
increased, the cross-sectional sizes of the wool yarn were reduced; see Figure 2. This means
that the dissolution mechanism of wool yarn is different from the dissolution mechanism
of some cellulose-based materials, such as cotton and flax, previously reported by our
group [36,37]. In these studies, after dissolution, two regions were seen, an undissolved
core region surrounded by a ring of dissolved and coagulated cellulose [36,37]. One
possible reason for the lack of an outer ring of dissolved and coagulated keratin could be
a lower molecular weight in comparison to that of cellulose. In the partially dissolved
keratin yarn, the dissolved material diffuses into the excess [C2mim][OAc] during the
dissolution/coagulation process, leaving behind only the undissolved material, which
reduces in size with time and temperature. Scanning electron microscopy images (see
Supporting Information Figure S2) show that the individual keratin fibers on the outside
of the partially dissolved yarn have the same structure as the raw undissolved filaments.
The reduction in the cross-sectional area of the wool yarn was measured using ImageJ
software by drawing a line around the yarn including all the parts of the fiber, as not all
the cross sections of the processed wool yarn are uniform, especially those processed at
low temperatures (55, 60, and 65 ◦C). The cross-sectional area was used as a marker of
dissolution to eventually calculate the dissolution activation energy.

The data in Figure 4a illustrates the changes in the cross-sectional area of the wool
yarn upon processing, and they clearly show how the cross-sectional area decreases as the
dissolution temperature and time increase. The collected data cover a range of temperatures
(55, 60, 65, 70, 80, 90, 100, and 110 ◦C) for different dissolution times. Six yarn images were
analyzed for each time and temperature, and from this the standard error was calculated.
The fiber dissolved very quickly at high temperatures (>90 ◦C), so to have enough data
shorter dissolution times were chosen (15, 30, 45, and 60 min). The time–temperature
superposition principle was employed; it is often used as a method to investigate the
rheological properties of a material [38]. A similar approach was used recently by this group
to study the dissolution of different types of natural fibers (plant- and animal-based) such
as flax, cotton, and silk [36,37,39]. In this study, to create a master curve of cross-sectional
area versus time, one should choose a reference temperature and independently shift each
set of the data at each temperature horizontally in ln time (ln t′T) to that temperature, so
that they overlap, by scaling the time tT with a scaling factor (aT). The shifted time (t′T)
can be calculated by knowing the dissolution time (tT) and the shift factor (ln aT) using the
following relations:

t′T = tTaT (2)

ln t′T = ln tT + ln aT (3)
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In Figure 4c the master curve was constructed by choosing the reference temperature
to be 70 ◦C. This means that for 70 ◦C the shift factor a70 = 1. Then, the master curve was
fitted to a polynomial function for a visual guide, making it easier to shift the rest of the
data sets at other temperatures. The data were shifted horizontally along the logarithmic
dissolution time axis to the reference set at 70 ◦C by finding a shift factor (ln aT) for each set
of the data. Moreover, the shift factors were varied until the best possible overlap of all the
data was achieved, and this is when the regression coefficient (R2) has its maximum value;
in other words, the curve has its best fit. All of this is illustrated in Figure 4.

After plotting the relation between the shift factors ln aT against the inverse of tem-
perature, as illustrated in Figure 4d, a non-linear Arrhenius behavior was observed, with
a relatively sharp transition at approximately 70 ◦C. We interpret this as there being two
competing reactions, where one dominates at low temperatures and the other dominates at
high temperatures. Each process obeys an Arrhenius behavior and can be fitted independently,
linearly, giving two activation energies of dissolution, calculated using Equation (5) [40]:

aT = A exp(−Ea/RT) (4)

ln aT = ln A − Ea/RT (5)

where Ea is the Arrhenius activation energy, A is the Arrhenius pre-exponential factor, R is
the gas constant, and T is the temperature in Kelvin. As mentioned above, the reference
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temperature was chosen to be 70 ◦C. This is because the resulting Arrhenius graph with
the two fitted lines of the low- and the high-temperature regions had their best fit with the
highest regression coefficient (R2) compared to when other reference temperatures were
used; see Figure 4 and Table 1. To confirm, we analyzed the data using other reference
temperatures, such as 65, 80, and 90 ◦C. First, three master curves were created following
the same steps above, and then each corresponding Arrhenius plot was fitted with two
straight lines, hence the low- and high-temperature regions. The average value (R2) of the
two linear fits at each crossover temperatures (65, 80, and 90 ◦C) was found to be less than
the one calculated at 70 ◦C. The quoted values of (R2) in Table 1 are the average values of
the regression coefficients of the two linear fits for the low- and high-temperature processes,
calculated for each crossover temperature.

Table 1. Two-process fitting results for wool yarn dissolution.

T Crossover (◦C) ELT (KJ/mol) EHT (KJ/mol) Regression
Coefficient R2

65 128 ± 20 41 ± 4 0.9741
70 127 ± 9 34 ± 1 0.9946
80 143 ± 16 39 ± 1 0.9569
90 139 ± 14 37 ± 7 0.9137

Based on this, two dissolution activation energies of the wool yarn in [C2mim][OAc]
were calculated, ELT = 127 ± 9 kJ/mol (low-temperature process that includes the tem-
peratures 55, 60, 65, and 70 ◦C), and EHT = 34 ± 1 kJ/mol (high-temperature process for
temperatures 70, 80, 90, 100, and 110 ◦C) using Equation (5). We suggested that the rate-
limiting factor of dissolution is determined by the slowest factor at any given temperature.
It is then that factor that determines the activation energy. So, in this system our proposal
is that at low temperature the limiting factor of the reaction could be the disulfide bond,
which has a higher activation energy, and at high-temperature processing the limiting
factor is the hydrogen bond, which has a lower activation energy; see Figure 5. This is
based on the values of the strength of the hydrogen bond and the disulfide bond in the
literature, which are usually ranged between 10–65 kJ/mol for the hydrogen bond and
typically between 250–300 kJ/mol for the disulfide bond [41–44]. As a confirmation that
we have two separate processes, in the next sections the low-temperature process that
included the temperatures 55, 60, 65, and 70 ◦C and the high-temperature process (70, 80,
90, 100, and 110 ◦C) are analyzed separately, and are found to have two independent linear
Arrhenius plots.
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Figure 5. Schematic diagram of the rate of reaction vs. temperature of the interpretation of the
dissolution activation energy of wool yarn in [C2mim][OAc].

3.2. Time–Temperature Superposition Method Applied to Low-Temperature Process

To further investigate these two regions, we next analyzed the proposed low-temperature
and high-temperature regions independently by using a reference temperature in the middle
of each temperature range, rather than the single reference temperature at the crossover as
described in the previous section. First, only the low-temperature set of data (55, 60, 65,
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and 70 ◦C) was analyzed, using the time–temperature superposition procedure as explained
previously. This was to prove whether the same activation energy was reproduced for this
system as we calculated when the two systems were analyzed together. Here, 65 ◦C (below
crossover) was used as the reference temperature, and other data sets at each temperature
within this system were scaled horizontally using (aT) to overlap with the 65 ◦C data points
until the regression coefficient of the master curve maximum value was reached (Figure 6b).
The resulting shift factor was plotted versus the inverse of their respective absolute temper-
ature, and found to obey a linear Arrhenius behavior, which emphasizes a single process;
see Figure 6d. The activation energy was calculated to be 127 ± 8 kJ/mol using Equation (5).
Interestingly, this value is the same as the activation energy obtained by the data all in one
master curve. This confirmed that the activation energy is the same when it is calculated using
either analysis.
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Figure 6. (a) The cross-sectional area of the processed wool yarn being dissolved in [C2mim][OAc] at
the low-temperature region. (b) The time–temperature superposition plot after being shifted to 65 ◦C.
(c) The real dissolution time master curve at 65 ◦C. (d) A linear relation ln aT as a function of inverse
temperature showing Arrhenius-like behavior. All the errors were calculated but in some cases these
are smaller than the point size.

3.3. Time–Temperature Superposition Method Applied to High-Temperature Process

Next, the analysis was performed on only the high-temperature process, which in-
cluded the temperatures 70, 80, 90, 100, and 110 ◦C. The same data analysis method was
applied to this data set using Equations (2)–(5) as previously performed. Figure 7b presents
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the time–temperature superposition, which was used again to construct the master curve
at the middle temperature (90 ◦C) using the same method as introduced above. The time–
temperature superposition in a linear time scale is shown in Figure 7c. The shift factor
results from creating the master curve were plotted versus the inverse of the temperature
to calculate the corresponding activation energy. The shift factor follows a linear Arrhenius
relation, and the activation energy was calculated to be 34 ± 2 kJ/mol, which has the
same value as when the low- and high-temperature processes were treated together; see
Figure 7d. In future, we are planning to use a reducing agent to cleave the disulfide bonds
in keratin and then measure the dissolution activation energy of wool yarn to examine if
this affects the low-temperature regime, where we believe that the disulfide bonds are the
limiting factor.
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Figure 7. (a) Cross-sectional area changes of each processed wool yarn at the high-temperature region.
(b) Master curves of shifted cross-sectional area in ln space using 90 ◦C as a reference temperature.
(c) Linear time scale of the master curve. (d) Arrhenius plot for the set of the data at the high-
temperature region. All the errors were calculated but in some cases these are smaller than the point
size.

3.4. Method to Calculate the Self-Diffusion Coefficient through the Thickness Loss of the Wool Yarn

Separate time–temperature superposition analyses were performed on the low- and
high-temperature regimes, using the same approach explained above with additional
analysis. For example, the low-temperature regime includes four temperatures, 55, 60, 65,
and 70 ◦C; by choosing in each analysis different reference temperatures within the system,
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accordingly, four master curves were constructed, see Figure 6c the linear time scale of
the master curve at 65 ◦C. At each reference temperature, the thickness loss xrms(t) was
calculated using Equation (1). Figure 8a shows the relation between xrms(t) and the square
root of time of the master curve using the reference temperature 65 ◦C. This relation was
found to be linear, which indicates that the system is diffusion-limited. The mean square
displacement of a particle in one dimension can be approximately related to the thickness
loss xrms(t) as follows:

x2
rms = 2Dt (6)

xrms = (2D)1/2t1/2 (7)

where D is the self-diffusion coefficient and t is time. Moreover, from the linear fit of each
graph (Figures 8, S3 and S4), the slope was used to calculate the self-diffusion coefficient
using Equation (7). The obtained self-diffusion coefficients of the low-temperature regime
at each temperature are summarized in Table 2. The same analysis was repeated using
the high-temperature data at 80, 90, 100, and 110 ◦C. Figure 8b illustrates the thickness
loss at the reference temperature 90 ◦C obtained using Figure 7c and Equation (1). In
the high-temperature process, the self-diffusion coefficient D of the [C2mim][OAc] was
calculated at each temperature used within the system by choosing a different reference
temperature each time; Table 3.
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Table 2. Self-diffusion coefficient for the low-temperature regime at different reference tempera-
tures; Figure S3. 

Reference Temperature (°C) D[C2mim][OAc] (10−13m2s−1) 
55 0.64 
60 1.27 
65 2.90 
70 4.74 

Figure 8. Thickness loss xrms of the processed wool yarn vs. the square root of time. (a) The low-
temperature process at reference temperature 65 ◦C with the D value. (b) The high-temperature
process at reference temperature 90 ◦C with the D value. All the errors were calculated but in some
cases these are smaller than the point size.

Table 2. Self-diffusion coefficient for the low-temperature regime at different reference temperatures;
Figure S3.

Reference Temperature (◦C) D[C2mim][OAc] (10−13m2s−1)

55 0.64
60 1.27
65 2.90
70 4.74
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Table 3. Self-diffusion coefficient for the high-temperature regime at different reference temperatures;
Figure S4.

Reference Temperature (◦C) D[C2mim][OAc] (10−13m2s−1)

80 6.33
90 8.84

100 11.50
110 15.31

The data in Tables 2 and 3 were used to plot the relation between the ln D against
inverse temperature. The data follow an Arrhenius plot type, with two distinct regions
for the low- and high-temperature regimes. As with the activation energies of dissolution
above, the gradients from each linear fit of ln D versus inverse temperature as shown in
Figure 9 was used to determine the activation energies for each process using the following
equation:

ln D = ln Do − Ea,D/RT (8)

where D0 represents the pre-exponential factor and Ea,D represents the activation energy of
diffusion. Interestingly, the calculated activation energies of the diffusion using Equation (8)
were very close to those of the dissolution found earlier in this work Sections 3.1–3.3, with
values of ELT,D = 128 ± 8 kJ/mol and EHT,D = 33 ± 1 kJ/mol for the low- and high-
temperatures regimes, respectively.
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Figure 9. The natural log of the self-diffusion coefficients of the [C2mim][OAc] in wool yarn as a
function of 1000/T, which have Arrhenius behavior for each regime where the crossover temperature
is at 70 ◦C. All the errors were calculated but in some cases these are smaller than the point size.

In previous work, the self-diffusion coefficient of pure [C2mim][OAc] at 20 ◦C was
measured using 1H nuclear magnetic resonance. The cation and the anion were measured
independently and found to be D[C2mim] = 9.6 ± 0.2 × 10−12m2/s and D[OAc] = 7.7 ±
0.4 × 10−12m2/s [32]. These values compare well with those found here. The self-diffusion
coefficient of the [C2mim][OAc] is, as expected, lower than the D of pure [C2mim][OAc],
due to the presence of the dissolved keratin. Additionally, in the high-temperature process
the self-diffusion coefficient is larger than that in the low-temperature process, which is as
expected because D increases with temperature.
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4. Conclusions

The dissolution dynamics of wool yarn in [C2mim][OAc] have been investigated
at different dissolving times and temperatures. Optical microscopy was used to take
images of the cross-sectional areas of the processed yarn, which allowed us to follow
the dissolution through the cross-sectional area reduction of the yarn as the dissolution
progressed. The size of the yarn decreased rapidly as the temperature of the dissolution
increased. The data were analyzed using time–temperature superposition, and we have
shown evidence for Arrhenius behavior consisting of two distinct regimes. We were able
to identify two processes, the low-temperature and high-temperature regimes, with a
crossover temperature at 70 ◦C where both processes have the same rate of dissolution;
Figure 4d. The two dissolution activation energies obtained for the wool yarn system were
ELT = 127 ± 9 kJ/mol and EHT = 34 ± 1 kJ/mol for the low- and high-temperature regimes,
respectively. The former energy value is close to the dissociation energy of the disulfide
bonds, whereas the latter is close to the hydrogen bonds. Moreover, the two regimes were
reanalyzed separately using only data from the corresponding temperature region, and
it was found that each regime has an Arrhenius-like behavior. The calculated activation
energy for each regime was found to be similar to the ones calculated by analyzing the
dissolution system with all the data together. Additional analysis of the data enabled us to
identify the self-diffusion of [C2mim][OAc] for each system by modelling the thickness loss
of the keratin dissolved in the [C2mim][OAc] and found that the thickness loss increased
with the square root of time.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17010244/s1, Figure S1. Microscopy cross-sectional image
of raw wool yarn, where the inner spaces between filaments are clearly seen; Figure S2. Scanning
electron microscopy images of (a) raw merino wool yarn and (b) dissolved wool yarn at 70 ◦C for
(b1) 1 h, (b2) 2 h, (b3) 3 h, and (b4) 4 h; Figure S3. (a–c): The thickness loss of wool yarn analyzed at
different reference temperatures of the low-temperature process with a linear fit; the self-diffusion
coefficient, and the Treference is on each plot; Figure S4. (a–c): The thickness loss of wool yarn analyzed
at different reference temperatures of the high-temperature process fitted to a linear equation; the
self-diffusion coefficient and the Treference is on each plot.
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