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Abstract 
 

Quiescence, a reversible state of cell-cycle arrest, is an important state during both 

normal development and cancer progression. For example, in glioblastoma (GBM) 

quiescent glioblastoma stem cells (GSCs) play an important role in re-establishing the 

tumour, leading to relapse. While most studies have focused on identifying 

differentially expressed genes between proliferative and quiescent cells as potential 

drivers of this transition, recent studies have shown the importance of protein 

oscillations in controlling the exit from quiescence of neural stem cells. Here, we have 

undertaken a genome-wide bioinformatic inference approach to identify genes whose 

expression oscillates and which may be good candidates for controlling the transition 

to and from the quiescent cell state in GBM. Our analysis identified, among others, a 

list of important transcription regulators as potential oscillators, including the stemness 

gene SOX2, which we verified to oscillate in quiescent GSCs. These findings expand 

on the way we think about gene regulation and introduce new candidate genes as key 

regulators of quiescence.   
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Introduction  
 
Quiescence is a state of cell-cycle arrest which, unlike senescence or terminal 

differentiation, is reversible upon receiving appropriate signals from the environment 

1. Quiescence is thought to be a property commonly found in stem cells and it is 

important for homeostasis and regeneration by maintaining a pool of cells from which 

new cells can be produced, upon exit from quiescence, to replenish cells depleted 

through ageing or injury 2. Quiescence is also important in a cancer context; here, it is 

thought that transition of cancer stem cells to a quiescent state creates a population 

with the potential to enter the cell cycle at a later time point, thus, contributing to 

reactivation of a tumour and clinical relapse 3,4. The magnitude of this problem is 

underscored by recent studies suggesting that cancer treatment may push some 

surviving cancer cells into quiescence from where they can be reactivated 5,6. 

 

Reactivation from quiescence may be problematic for any cancer, but it may be 

particularly an issue for cancers with a high rate of relapse such as glioblastoma. 

Glioblastoma, also historically referred to as glioblastoma multiforme (GBM), is the 

most common and most deadly adult primary brain cancer, comprising more than half 

of all gliomas 7. Despite decades of dedicated research and numerous clinical trials 

collectively covering a range of often innovative treatment modalities, tragically, there 

remains no cure and relapse is often inevitable 8. Thus, there is a great need for 

innovative scientific approaches to better understand the basic biology of this cancer 

and in particular, to understand the mechanisms by which cells enter and exit 

quiescence.  

 

Efforts to identify molecular drivers of quiescence often focus on differential gene 

expression between normally dividing cells and their dormant counterparts 1. However, 

even with state-of-the-art molecular methods, such differential gene expression, that 

is causally related to the acquisition of the quiescent state, has proved elusive to 

define. Thus, some recent studies have focused on epigenetic changes. Indeed, it was 

shown that in GBMs there is a failure to lock cells into a differentiated state 9, creating 

a state of increased plasticity whereby cells can transition into undesirable states.  
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In our own recent work, we have provided evidence for a dynamic conceptual 

framework of controlling the transition to and from quiescence 10. Working with normal, 

i.e. non-cancerous neural stem cells, we have discovered that protein expression 

oscillations of the mammalian Hairy and Enhancer of Split 1 (HES1) transcription 

factor (TF), are needed for cells to be able to exit the quiescent state 10. Such 

oscillations have a periodicity, which is typically shorter than the well-known circadian 

periodicity, and are increasingly recognised as playing an important role in cell-state 

transitions in normal development, in a number of different models and contexts e.g. 

11-13.  

 

There is emerging evidence that oscillations are also important in a cancer context. 

Specifically, HES1 has been shown to oscillate in a breast cancer model 14, and so 

have p53 15 and p21 16 . In breast cancer cells, HES1 oscillations are important for 

efficient proliferation 14, while p53 oscillations determine the response to radiotherapy 

17,18. These findings present a new way of understanding cell-state transitions, based 

on dynamic gene expression that includes entry to and exit from quiescence. But how 

common are oscillations and which genes are likely to oscillate? Our previous work 

has shown that the network motif that commonly underlies oscillatory gene expression 

(autoregulation and microRNA interaction) is very widespread among mammalian TFs 

19. However, because the presence of oscillations is context specific, we argued that 

a more direct approach was needed for GBM.  

 

Thus, to answer this question, we leveraged two recent developments. First, we took 

advantage of a recently developed bioinformatic pipeline, which is designed to uncover 

oscillatory gene expression in single-cell RNA-seq (scRNA-seq) data, irrespective of 

their periodicity 20.  This pipeline was developed by Leng et al. 20, and optimised by us 

21 to improve on the statistical robustness and sensitivity of the method. Second, we 

took advantage of the availability of a plethora of scRNA-seq data from different human 

GBM tumours 22.  

 

By applying this bioinformatic methodology we uncovered up to 3K genes with the 

potential to oscillate in GBM. We also found that oscillators that are shared across 

GBM tumours associate with processes that contribute to cancer pathogenesis, 

highlighting a potential functional role. To validate our findings, we created an 
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endogenous reporter knock-in GBM line for SOX2 and we optimised a GBM 

quiescence protocol. We report that SOX2 oscillates in both proliferative and quiescent 

stem cells, with a period of 17h. 

 

Our findings provide a global view of oscillatory gene expression in GBM, which shows 

that it is more common than previously appreciated. They also uncover a previously 

unknown level of SOX2 regulation, which may be important for regulating the transition 

to quiescence.  

 

 

 

Results 

 

Inference of oscillatory gene expression in GBM tumours  

 

To identify putative oscillators in GBM we interrogated publicly available scRNA-seq 

data from the Neftel et al. 2019 study, an in-depth transcriptomic study of GBM 

tumours 22. Five tumours (MGH124, MGH125, MGH102, MGH143, MGH115), 

representing the most common subtypes of GBM tumours in patients, were selected 

for inference analysis of oscillators. The tumours correspond to neural-progenitor-like 

(NPC-like) (MGH124, MGH125, MGH102), astrocyte-like (AC-like) (MGH143) and a 

mixture of astrocyte-like (AC-like) and mesenchymal-like (MES-like) (MGH115) 

subtypes according to the classification described in Neftel et al. 22. To specifically 

identify important oscillators for tumour formation and progression, we sought first to 

determine the neoplastic (tumour cell) compartment of each tumour by using the 

“Label Transfer” method 23. (Fig. 1A). “Label Transfer” is a reference-based integrative 

analysis approach used to transfer previously identified cell identities onto a query 

dataset 23. In our case, we treated the scRNA-seq data from the 5 tumours as the 

query dataset and used as a reference dataset the cell identities of neoplastic and 

non-neoplastic (immune, oligodendrocyte precursors cell (OPC), vascular, neuronal, 

oligodendrocyte and astrocyte) cells in GBM, as previously described in Darmanis et 

al., 2017 24, to separate the groups of cells with tumour-cell characteristics from their 

more differentiated or immune infiltrating counterparts (Fig. 1A).  
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Oscillatory genes are expected to have variable levels between cells thus, we wanted 

to ensure that we minimise false positive results due to variability in gene expression 

originating from the mixing of different cell types or states within each neoplastic 

population. Therefore, additional clustering was performed to identify more 

homogeneous neoplastic subclusters based on differential gene expression (Fig. 1B). 

These subclusters revealed appreciable differences in terms of their enrichment for 

the Human Molecular Signature Database (MSigDB) Hallmark gene sets 

(Supplementary Table S1). 

 

To infer oscillatory gene expression in the neoplastic populations we used the OscoNet 

computational algorithm 21, an optimised version of a previously described gene 

oscillatory inference pipeline 20. OscoNet capitalises on the fact that within an 

unsynchronised but homogeneous population, genes which are dynamically 

expressed are expected to have variable levels that follow a sinusoidal process. To 

distinguish from noisy expression, and acknowledging that the expression values of 

genes oscillating with similar frequencies would form an ellipse on a scatter plot 

(independently of cell order), the algorithm searches for pairs of genes whose 

expression best fits a two-dimensional sinusoidal function, to uncover genes that 

oscillate with similar frequencies but possibly different phases 20.  

 

OscoNet was applied in each of the neoplastic subclusters separately (Fig. 1B), using 

the following two filtering criteria. First, for a gene to be considered for OscoNet 

analysis it had to be expressed in at least 80% of the cells within each subcluster 

(zero-filtering criterion), as an in-silico exploration determined that the presence of 

zero expression values affects negatively the performance of the algorithm 

(Supplementary Methods). Second, genes that had passed the zero-filtering were 

further filtered based on gene expression variance (variance-filtering criterion), such 

that only genes whose expression variance was higher than the mean variance of all 

genes were chosen as an input for the OscoNet pipeline (Fig. 1C). Our analysis 

revealed that out of all genes that are expressed across each subcluster in ³ 80% of 

cells (average of 930 genes), approximately 45% them were found to be highly 

variable (average of 418 genes) with the majority (87%) of these subsequently inferred 

to be oscillators (average of 361 genes) (Fig. 1D). Considering that only a handful of 
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genes in the literature have been shown to oscillate to date, this in-silico study 

suggests that a considerably large number of genes, at least in the setting of GBM, 

oscillate.  

 

 

OscoNet identifies potential oscillators in GBM  

 

The OscoNet inference pipeline identified 361 genes on average to oscillate per 

neoplastic subcluster per GBM tumour (Fig. 1D), whereas all inferred oscillators 

across all neoplastic subclusters in all tumours were found to be 3422 (named “All 

Oscillators”) (Supplementary Table S2). Amongst these, there were known genes that 

have been previously shown to exhibit oscillatory expression at an ultradian scale (i.e. 

oscillate with a period less than 24h) and be important for normal neural development. 

Such genes were HES1, HES4, HES6, Ascl1 and Olig2 (Supplementary Table S2) 

11,25,26. In addition, we found that cell cycle regulators (GO_0007049, selected those 

expressed in ³ 80% of cells in at least one neoplastic subcluster) (Supplementary 

Table S3), whose expression may oscillate during the cell cycle 27, were significantly 

enriched in our predicted list of oscillators across all tumours (Fig. 2A). These findings 

suggest that the OscoNet pipeline can successfully identify known oscillators.  

To independently verify our predictions, we cross-referenced our findings with that of 

an alternative bioinformatic screen for genes capable of dynamic gene expression, 

including oscillations. We have previously found that transcription regulators with the 

potential to autoregulate (i.e. bind to their own promoter) and which are involved in 

dual feedback interactions with a miRNA are very common in mammalian TFs 19. In 

particular, in humans, we identified 582 TFs to potentially autoregulate and be in a 

feedback loop with a miRNA (we call this a “dynamic gene network motif”) 19 

(Supplementary Table S4). Thus, we sought to identify if any of these genes have been 

predicted to oscillate by OscoNet in GBM.  

We focused on comparing genes with TF activity as the information about genes 

involved in dynamic gene networks is available only for transcription regulators.  We 

hypothesised that TFs that were inferred to oscillate in GBM were more likely to be 

involved in such a network as opposed to “Non-oscillators”. In this case, “Non-

oscillators” were defined as genes that were expressed in at least one tumour (i.e. 
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passed zero-filtering) but had not been found to oscillate in any of the tumours (643 

genes) (named “Non-oscillators”) (Supplementary Table S5). We also hypothesised, 

that TFs involved in dynamic gene networks would be more prevalent amongst 

inferred oscillatory TFs that were shared across the 5 tumours, as they were always 

predicted to oscillate. For the latter, we intersected the oscillators from all neoplastic 

subclusters per tumour and found a total of 117 oscillatory genes in common (named 

“Shared oscillators”) (Supplementary Table S6) (Fig. 2B). We then selected only the 

TFs from each of “All oscillators” (3422), “Shared oscillators” (117) and “Non-

oscillators” (643) lists by cross-referencing them against the list of all human TFs as 

described by Lambert et al., 28 (Supplementary Table S7). From these TFs we further 

selected only those for which it was feasible to assess their involvement in a dynamic 

gene network motif (i.e. availability of information on autoregulation) and compared 

them against all TFs that belonged in a dynamic gene network motif (582 genes) 

(Supplementary Table S4). Importantly, we found that all TFs in the “Shared oscillators” 

(100%) were involved in network motifs predicted to oscillate as opposed to 64.8% 

and 50% in the lists of “All oscillators” and “Non-oscillators” respectively (Fig. 2C). 

These findings lend further support to our method for identifying putative oscillators 

and suggest that genes predicted to oscillate in every GBM tumour are potentially the 

highest confidence candidate genes to have dynamic behaviour.   

 

 

Oscillatory genes in GBM tumours associate with processes that contribute to 

cancer pathogenesis 

 

Next, we aimed to gain some insights into the type of genes we have identified that 

may oscillate in the GBM tumours. As previously mentioned, we considered the 

“Shared oscillators” to be high confidence oscillators and potentially functionally 

important. Gene ontology analysis on the “Shared oscillators” revealed that the most 

enriched molecular and cellular functions were related to cell proliferation and 

development, cell death and survival, and cell movement, which align with the 

cancerous profile of the neoplastic population (Fig. 3A). On the contrary, the “Non-

oscillators” had lower enrichment scores overall and associated mainly with processes 

such as protein/molecule trafficking, cell function and maintenance and cellular 

assembly and organisation (Fig. 3B). 
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Accordingly, the top enriched canonical pathways in the “Shared oscillators” 

associated with oxidative stress, mitochondrial dysfunction and remodelling of 

epithelial adherens junctions, all known to associate with cancer 29,30 (Fig. 3C), 

whereas “Non-oscillators” enriched for core cell processes such as translation and 

rRNA processing (Fig. 3D).    

  

“Shared oscillators” were also enriched for Hallmark gene sets that are included in 

MSigDB 31. Amongst the most enriched were gene sets that associate with apoptosis, 

hypoxia and the reactive oxygen species pathway, which all constitute hallmark 

pathways of cancer 32 (Fig. 3E). Conversely, “Non-oscillators” did not enrich for any of 

the Hallmark gene sets. These findings consistently reveal that oscillators appear 

enriched in known gene pathways and processes that contribute to cancer 

pathogenicity whereas “Non-oscillators” tend to associate with more house-keeping 

processes.   

 

 

Oscillatory genes in quiescent/low-cycling GBM tumour cells 

 

Considering that the inevitable tumour relapse is one of the main reasons GBM is 

practically an incurable disease, we next sought to identify oscillators that are 

potentially important for driving this process. Recent evidence suggest that the main 

cause of relapse is the activation of quiescent GBM stem cells (GSCs) that are left 

behind after surgery, are refractory to chemotherapy and radiotherapy and are able to 

re-initiate tumour formation 33. To this end, we decided to look at oscillators that 

specifically overlap with a quiescent gene signature or are expressed in the 

quiescent/low cell-cycling population of the neoplastic cells.  

To address this, we interrogated the list of “Shared oscillators” (which we found to be 

our highest confidence candidates) and particularly the TFs in this list as we argued 

that an oscillator is more likely to drive cell-state transitions (e.g. exit from quiescence) 

if they control the expression of downstream genes. We therefore intersected the 

inferred oscillatory TFs that are shared across the tumours, with a list of GBM 

neoplastic cell-specific Neural G0 marker genes 34 (Supplementary Table S8) (Fig. 

4A). The latter had been previously derived by applying a cell-cycle classifier to identify 

a putative quiescent-like state in gliomas along with the pathways that associate with 
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it 34. The overlap of all these lists provided us with a short list of 6 genes (SOX2, JUNB, 

FOS, NFIB, TCF4, TSC22D1) which are predicted to oscillate, regulate transcription 

and associate with a quiescent phenotype (Fig. 4A). 

As an independent way to identify oscillators that potentially control the quiescent state 

of GBM, we looked at oscillators that were specifically expressed in the low-cell cycling 

neoplastic subclusters of these tumours, defined as those enriched for Hallmark gene 

sets associated with the downregulation of cell cycle genes. This analysis identified a 

list of 99 oscillators shared across the low-cycling neoplastic subclusters in the 5 

tumours (Supplementary Table S9) out of which only 6 were found to be putative TFs 

(Fig. 4B). Interestingly, 4 out those 6 genes (SOX2, JUNB, FOS, TSC22D1) were also 

identified by our previous analysis on the Neural G0 signature-associated oscillators 

(Fig. 4A) revealing a core of 4 TFs that oscillate and are potentially important for 

regulating the quiescent state (Fig. 4C).    

 

 

Establishing an in vitro system to study oscillatory gene expression in 

quiescence 

 

Having identified a core list of candidate oscillators in low-cycling neoplastic cells, our 

next objective was to establish a GBM in vitro system to verify protein expression 

oscillations in a quiescent state.  Our oscillator inference analysis was based on 5 

tumours represented primarily by the NPC-like and MES-like subtypes (proneural and 

mesenchymal subtype respectively according to Verhaak classification 35), with the 

majority belonging to the NPC-like subtype 22. We therefore chose the previously 

characterised GBM1 patient-derived GSC line as our experimental model, which was 

found to primarily enrich for a proneural transcriptional signature 36,37.  

 

Next, we used the GBM1 cells to induce a quiescent state in vitro by replacing the 

EGF and FGF mitogens in the culture with BMP4. Previous studies have shown that 

GSCs undergo cell-cycle arrest in response to BMP4, and although they exhibit 

astrocyte differentiation 9,37,38 they subsequently fail to permanently exit the cell cycle 

and remain susceptible to re-entry 9. Accordingly, live image-based confluency 

analysis of GBM1 cells over a period of 14 days showed that cells amplify over time in 

the presence of mitogens but they stop within 48h of BMP4 administration and remain 
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cytostatic for as long as they are treated with BMP4 (up to 7 days) (Fig. 5A). 

Importantly, upon withdrawal of BMP4 and re-introduction of FGF and EGF mitogens 

in the culture, GBM1 cells were able to re-enter the cell cycle (Fig. 5A). These results 

suggest that administration and subsequent removal of BMP4 facilitates a reversible 

cell-cycle arrest suggesting that addition of BMP4 induces a quiescent state. 

Immunostaining of the cells for the Ki67 proliferation marker in proliferative, quiescent 

and re-activation conditions confirmed the loss of Ki67 in the presence of BMP4 and 

re-expression of the marker following re-activation (Fig. 5B-C). Altogether these 

findings suggest that the GBM1 cell line is a suitable experimental model to study 

oscillatory expression in a quiescent state.  

 

 

The stemness gene SOX2 oscillates in proliferative and quiescent GSCs 

 

From the core list of 4 candidate genes (SOX2, JUNB, FOS, TSC22D1) that have 

been predicted to oscillate and regulate the quiescent state (Fig. 4C), the stemness 

gene SOX2 is of particular interest. A large number of studies in the literature have 

highlighted the important role of SOX2 in promoting GBM malignancy 39,40 and the 

association of high SOX2 levels with tumour aggressiveness and poor clinical outcome 

41-43. We therefore chose SOX2 as our prime candidate to verify whether its protein 

expression oscillates in GSCs. To assess this we generated a SOX2-mKate2 fusion 

knock-in line, using CRISPR/Cas9, to mark the endogenous SOX2 expression in 

GBM1 cells. In particular, we inserted a linker, followed by the mKate2 fluorophore and 

a P2A-Neomycin cassette, at the C-terminus of the SOX2 protein (Fig. 6A). This direct 

fusion enabled us to follow the kinetics of the endogenous SOX2 protein while 

maintaining the SOX2 protein intact. We generated 3 clonal SOX2-mKate2 GBM1 

lines which were all heterozygotes for SOX2-mKate2.  

Next, we performed single-cell live fluorescence imaging in proliferative (Fig. 6B) and 

quiescent conditions (Fig. 6C), in GBM1 SOX2-mKate2 cells. Tracking of the SOX2-

mKate2 protein expression in single cells for approximately 50-70 hrs, revealed that 

SOX2 is dynamically expressed, showing peaks and troughs in intensity over time in 

single nuclei, where SOX2 is expressed  (Fig. 6B-C). As a negative control, we tracked 

expression of the GFP fluorophore driven by the UbC promoter in the same cells, 

which had been previously transduced in the GBM1 cell line. Conversely to SOX2-
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mKate2, GFP expression showed no apparent or regular dynamicity, with GFP 

intensity forming a flat line over time denoting steady expression (Fig. 6B-C). To 

determine whether the SOX2-mKate2 protein expression oscillates,  we performed 

periodicity analysis on multiple single cell intensity tracks using the Lomb-Scargle 

periodogram (LSP) 44 (Fig. 6D). Our analysis showed that the SOX2-mKate2 cell 

traces, in both proliferative and quiescent conditions, had a higher dominant power in 

the power spectrum compared to GFP traces, suggesting a stronger periodic signal 

(Fig. 6D). Further comparison of the SOX2-mKate2 dominant power between the 

proliferative and quiescent conditions revealed a significant increase in quiescent 

condition indicating that SOX2 oscillations are of better quality in the quiescent state 

(Fig. 6E). The average period of SOX2-mKate2 expression was calculated to be ~17h 

in both proliferative and quiescent conditions (Fig. 6F), while the overall SOX2 levels 

(but not GFP (Supplementary Fig. S1)) were significantly increased by 1.6x fold in 

quiescence (Fig. 6G).  

Overall, our findings show that SOX2 oscillates with the same period in both 

proliferative and quiescent conditions, suggesting that although the cells have entered 

quiescence, gene expression dynamics are maintained. 

 

 

 
Discussion  

 

Gene oscillations are emerging as a powerful, yet largely unexplored, way to regulate 

gene expression and dictate cell-state transitions 10,12,13,45,46. In this paper, we have 

used a tailored bioinformatic pipeline 21 to identify genes that are expressed in an 

oscillatory manner in human GBM tumour samples. Based on our previous work, we 

have reasoned that such dynamically expressed genes are likely to be important for 

the transition of cells between states, such as a proliferative and a quiescent state 10.  

Here, we have identified a list of oscillators that are likely to control cancer progression 

in GBM and we have experimentally verified the stemness gene SOX2 to oscillate in 

both proliferative and quiescent GSCs in vitro.  

 

Genes expressed in an oscillatory manner are difficult to identify in static scRNA-seq 

data with most commonly used current bioinformatic methods. Time-series scRNA-
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seq or pseudotime inference methods fail to detect ultradian oscillations, which unlike 

circadian oscillations, tend to be out of phase between cells and therefore are very 

difficult to distinguish from expression noise. To get around this limitation, the approach 

that we used is based on pairwise gene comparisons, which looks at the co-expression 

relationship within each cell and across all cells and how well that fits a sinusoidal 

process, irrespective of real time information and accounting for a phase shift 20,21. 

However, two caveats remain: First, the absence of real time information precludes 

any direct estimation of periodicity. Second, our method detects potential oscillations 

at the mRNA level, which would be translated to protein expression oscillations only in 

appropriate production/degradation parameters 47. Indeed, in some cases mRNA 

oscillations were translated in a stepwise accumulation of the protein 48. Therefore, 

further experimental validation of the potential oscillations is needed, ideally by tagging 

the endogenous protein, as we have done for the case of SOX2 here.  

 

In this work, several steps have been taken to increase confidence in detecting 

potential oscillations. First, we verified that the inference pipeline can detect known 

oscillators such as HES1, Olig2 and ASCL1 11 and cell cycle genes 27. Second, we 

chose genes that were consistently predicted to oscillate in each of the 5 tumour 

samples analysed (“Shared oscillators”) thus, less likely to be false positives. Third, 

we found that all shared oscillatory TFs (100%) were involved in gene network motifs 

capable of driving dynamic expression 19. Collectively these steps suggested that 

genes that were predicted to oscillate in our pipeline were high confidence candidates. 

 

Our analysis predicted that approximately ~3K genes (excluding cell cycle regulators) 

are likely to oscillate at the transcriptional (mRNA) level across all the tumours. Given 

that the number of genes previously shown to oscillate at the protein level across 

biological contexts is in the tens for the ultradian scale 45,49,50 and in the hundreds for 

the circadian scale (GO_0007623), rather than the thousands, this is a significant 

increase, suggesting that oscillations are a more widespread form of gene regulation 

that one might anticipate.  

 

Interestingly, the “Shared oscillators” were enriched for functions that contribute to 

cancer pathogenesis, as opposed to “Non-oscillators”, which associated primarily with 

cell maintenance processes. In that regard, we hypothesise that oscillations are likely 
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to enable cancer cells to develop adaptative strategies to survive and grow. Such 

examples we find in bacteria where studies have shown that microbial cells are known 

to use pulsatile expression to create a range of phenotypes that help them adapt a 

bet-hedging strategy to respond to environmental changes 51.   Thus, our inference 

analysis can potentially help us identify key regulators that control cell-state 

transitions.   

 

In GBM, quiescent GSCs have been found to be resistant to chemotherapy and 

radiotherapy 52 and responsible for re-initiating tumour growth following treatment 33. 

We have therefore looked specifically for oscillators that may control the quiescent 

state and identified a core list of 4 genes. From those, we selected the SOX2 gene for 

further experimental validation. SOX2 is well known for its role in maintaining 

pluripotency 53. In the context of GBM, SOX2 has been implicated in promoting GBM 

malignancy 39,43,54,55. In addition, it was found that chromatin regions enriched for SOX 

binding motifs fail to reconfigure in response to BMP4, suggesting that the levels 

and/or activity of SOX proteins may impede the exit from self-renewal 9.  

 

By generating an endogenous knock-in reporter we have found that SOX2 oscillations 

are detected at the protein level in both proliferative and quiescent GBMs with a 

periodicity of 17hrs. This is a novel aspect of SOX2 expression that provides new 

insights into the way it may regulate downstream targets, whereby not just the 

presence or absence of SOX2 protein, but also its pattern of expression may dictate 

diverse cell-fate decisions.  

 

Our findings are significant because dynamic gene expression in general, and 

ultradian oscillations in particular, have been linked to the ability of the cell to make 

cell-state transitions 10,11,13,14,45,46. SOX2 protein oscillations in GBM quiescent cells 

are indeed reminiscent of HES1 oscillations in quiescent neural stem cells. In the case 

of HES1, we and others have shown, that oscillations enable the exit from quiescence 

10,12. It remains to be seen whether inhibiting SOX2 oscillations, but not affecting its 

overall expression, will prevent exit from quiescence of GBM cells. Locking cells in 

quiescence is an important therapeutic avenue to explore in addition to tumour 

resection and chemotherapy/radiotherapy. Alternative therapy strategies, such as 

promoting BMP4-induced tumour differentiation have been proven challenging with 
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several barriers to implementation 56, as tumour cells fail to commit to differentiation 

and are susceptible to de-differentiation 9. On the other hand, silencing of SOX2 

showed promising results on reducing tumorigenicity 57,58, however abolishing SOX2 

expression may have potential consequences in the normal brain, which is not a 

desirable outcome. Thus, understanding how SOX2 oscillations regulate the GBM 

quiescent state would be of great putative translational potential.   

 

In summary, we have shown that oscillatory gene expression is prevalent in GBM 

neoplastic cells and characterises genes that are likely to play key roles in cell-state 

transitions. Deciphering this type of gene regulation, could have important therapeutic 

implications.  
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Methods 
 

 

Identification of the neoplastic population 

Single-cell sequencing data from 5 tumours (MGH 124, MGH 125, MGH 143, MGH 

102 and MGH 115) in GEO GSE131928 (sample GSM3828673) 22 were used. All 

selected tumours were IDH-wild-type. Quality control checks and TPM (transcripts per 

million) calculations had already been undertaken by the study’s authors. For the 

identification of the neoplastic population, the integration method “Label Transfer” was 

used 23. The neuronal, vascular, glial, immune (GSE67835 59) and neoplastic 

(GSE84465 24) labels were used as a reference dataset and the number of anchors 

was set at 100. This method relies on similarities in gene expression programs 

between a reference and query dataset. The algorithm uses canonical correlation 

analysis and projects the datasets into a shared subspace defined by their correlation 

structure. The algorithm then identifies pairs of mutual nearest neighbours within the 

query and reference cells and these cells are used as “anchors” between reference 

and query datasets. This approach allows the labelling of overlapping cell types 

between reference and query dataset as well as the identification of unique cell types. 

In order to attain more homogenous subclusters of neoplastic cells, clustering was 

repeated on only the neoplastic population of each tumour using the Seurat (4.0.3.) 

package 60 with default parameters. These neoplastic subclusters were used as input 

for the OscoNet pipeline.  

 

 

Identification of low-cycling neoplastic subclusters 

The ‘FindAllMarkers’ Seurat function 60 was used to determine differentially expressed 

genes (DEG) for each neoplastic subcluster in every tumour, with parameters 

‘min.pct’= 0.25 and ‘logfc.threshold’ = 0.25. Only DEGs with an adjusted p value < 0.05 

were further selected for Gene Set Enrichment Analysis (GSEA). GSEA was 

performed using the clusterProfiler package in R 61. The ‘msigdbr’ function was used 

to extract the human Hallmark gene sets from the MSigDB 31, the ‘pvalueCutoff’ was 

set at 0.1 and the ‘set.seed’ function was set at an arbitrary value of 1234. The results 

of this analysis are summarised in Supplementary Table S1. Clusters where one or 

more of cell-cycle related Hallmark gene sets (E2F Targets, G2M Checkpoint, Mitotic 
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Spindle) were within the top 3 significantly enriched and downregulated gene sets 

were classed as ‘low-cycling’. 

 

 

Inference of oscillatory expression using OscoNet  

Identification of oscillatory gene expression was performed for each neoplastic 

subcluster separately, using a modified version of the computational algorithm 

OscoNet 21. Briefly, for each neoplastic subcluster per tumour, we selected only genes 

that were expressed in at least 80% of the cells in each subcluster, and were highly 

variable (i.e. gene variance higher than the gene mean variance of the population). 

The algorithm then detected all potential pairs of co-oscillating genes and clustered 

them in communities with similar frequencies.  Communities with just a single gene 

were excluded whereas all genes in the rest of the communities (regardless of the 

community significance score and linearity prediction status) were considered to be 

the inferred oscillators.  

 

 

Enrichment analysis 

Data were analysed using the Qiagen Ingenuity Pathway Analysis 28 (QIAGEN Inc., 

https://digitalinsights.qiagen.com/IPA) 62 to assess enrichment for biological and 

molecular functions. The ShinyGO 0.77 tool (http://bioinformatics.sdstate.edu/go/) 63 

was used with default package parameters to estimate enrichment for MSigDB gene 

sets in Fig. 3. As background list we used the list of all expressed genes (i.e. all genes 

passed zero-filtering per neoplastic subcluster per tumour) (Supplementary Table 

S10).  

 

 

Dynamic gene network motif analysis 

We employed a previously published bioinformatic screen to identify TFs involved in 

dynamic gene networks, which consist of an autoregulatory TF that co-regulates a 

miRNA 19. The screen was performed by integrating published TF binding site (TFBS) 

from the ReMap 2022 database 64 and miRNA target data from miRbase (Release 

22.1) 65 and miRTarBase (release 9.0) 66 into a single network. This network was then 

analysed to reveal genes involved in dynamic gene network motifs. For this work, the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.12.566579doi: bioRxiv preprint 



 18 

original network was re-built and modified to include the latest available TFBS in 

ReMap and miRNA databases.  

 

 

Cell Culture 

The GBM1 cell line was derived from IDH-wild-type primary GBM tumours as 

previously described 36 and was kindly donated by the Wurdak Lab (Stem Cell and 

Brain Tumour Group, University of Leeds). The line had been further modified to carry 

a UbC promoter driven GFP fluorophore reporter (GenTarget Inc, LVP1229), via viral 

transduction as previously described 37. Puromycin (2 μg/ml) was used to select for 

positive cells for UbC-GFP expression. Cells were cultured on L-Laminin and Poly-L 

ornithine pre-coated flasks/plates in the presence of Neurobasal Medium (Gibco, Cat# 

21103-049) supplemented with 0.5% N2 (100x) Supplement (Life Tech, Cat# 

17502048), 1% B27 (50x) Supplement (Life Tech, Cat# 17504044), FGF (40 ng/ml) 

(PeproTech, Cat# 100-18B) and EGF (40 ng/ml) (PeproTech, Cat# 315-09) 

(proliferating media). For coating, any flasks/plates were first coated with Poly-L 

ornithine (Gibco, Cat# P3655) at 5 μg/ml in water for 1 h at 37oC, followed by 1x wash 

with water and coated subsequently with L-Laminin (Sigma-Aldrich, Cat# L2020) at 2 

μg/ml in PBS overnight at RT, followed by 1x wash with PBS before cell seeding. For 

induction of quiescence, the FGF and EGF mitogens in the media were replaced by 

100 ng/ml of BMP4 (Recombinant human BMP-4, PeproTech, Cat# AF-120-05ET) 

(quiescence media). To reactivate cells from quiescence, quiescence media was 

replaced by proliferating media after a gentle 2x wash with PBS.  

 

 

Generation of SOX2-mkate2 fusion cell line  

We used CRISPR/Cas9 to generate a C-terminally endogenously tagged SOX2-

mKate2 protein fusion in the GBM1 cell line. The donor template for Homologous 

Directed Repair (HDR) containing the Glycine-Alanine linker-mKate2 fluorophore-

P2A-neomycin resistance (NeoR) cassette was PCR-amplified from the eFlut Plasmid 

1A collection for C-terminus fluorescence tagging, kindly donated by the Lahav Lab 16. 

The primers used to amplify the HDR template had 40bp homology to the SOX2 gene 

and 20 bp homology to the template and are listed in Supplementary Table S11. Guide 

RNAs (gRNAs) targeting the human SOX2 stop codon sequence were designed using 
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the CRISPR Finder tool on the Wellcome Sanger Institute Genome Editing (WGE) 

website (https://wge.stemcell.sanger.ac.uk// , 2021) and are listed in Supplementary 

Table S11.  gRNAs were obtained as crRNAs and were mixed with tracrRNA in equal 

ratios of 45 μM in IDT duplex buffer (IDT, Cat# 1072570), heated at 95oC for 5 minutes 

and then cooled slowly to RT. The Cas9 was delivered in the form of Ribonucleoprotein 

(RNP) complex, where the annealed gRNA-tracrRNA were complexed with the Cas9 

protein (Alt-RTM S.p. HiFi Cas9 Nuclease V3, IDT, Cat# 1081061) in IDT duplex buffer 

at RT for 10 minutes before adding 1ug of the donor template (final concentrations: 

each gRNA 20.4 μM, Cas9 protein 11.09 μM, donor 9 ng/μl). The RNP complex was 

mixed with 8 x 10e5 GBM1 cells resuspended in 100 μl of SG solution from the SG 

Cell Line 4D-NucleofectorTM X Kit (Lonza, Cat# V4XC-3024). This entire mix was then 

placed in a NucleocuvetteTM and was nucleofected using a Lonza Amaxa 4D-

Nucleofector TM and the EN138 nucleofection programme. Following nucleofection, 

cells were further cultured in the presence of 200-400 μg/ml Neomycin (G418 Sulfate, 

ThermoFisher Scientific, Cat# 11811023) to select for genetically modified cells. 

Antibiotic resistant cells were then subjected to single-cell FACS for mKate2 and GFP 

expression (double positive) using a BD Influx sorter and plated onto pre-coated glass 

(Greiner BIO-ONE SensoplateTM glass bottom, Cat# 655892) or plastic (Merk 

Corning© TC-Treated Microplates, Cat# CLS3997) bottom 96 well plates. An average 

number of 7 clones per 96-well plate grew into clonal lines and where further 

expanded. 10 clonal lines in total were screened by PCR for incorporation of the donor 

sequence and 9 were found to be positive. The genotyping primers used are listed in 

Supplementary Table S11. All positive clones were HET for the knock-in fusion. 6 

clonal lines were further submitted for Sanger sequencing which verified that 5 out of 

6 clonal lines had an intact wild type allele and they had correctly integrated the donor 

sequence. 3 out of those 5 clonal lines were further selected for experimentation.   

   

 

Immunostaining 

GBM1 cells were cultured in Poly-L ornithine and L-Laminin pre-coated coverslips in 

either proliferating media, quiescent media (for 6 days) or in proliferating media after 

reactivation from quiescence (that is 6 days in quiescent media followed by 5 days in 

proliferation media). Immunostaining was performed as previously described 10. 

Primary antibody was mouse anti-Ki67 (1:200, BD Biosciences, Cat #550609) and 
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secondary antibody was anti-mouse 568 (1:500, Thermo Fisher Scientific, Cat#A-

11004). Coverslips were mounted with ProLong Gold Antifade mountant with DAPI 

(Invitrogen, Cat#P36935).    

  

 

Image and time-lapse movie analysis  

Confluency analysis of GBM1 UbC-GFP cells was performed using the ZOOM 

Incucyte Live-Cell imaging platform (Sartorius). 8K cells per square centimetre per well 

were plated in 6-well plates and whole-well imaging was performed in 120-minute 

intervals using a Nikon 4x objective. Cells were cultured continuously either in 

proliferative or quiescence media. For reactivation, quiescence media was replaced 

by proliferative media after 7 days in quiescence. Images were processed using the 

IncuCyte® ZOOM 2018A software to determine cell confluency over time.  

Immunofluorescence images were captured using a Nikon Eclipse 80i with a Plan 

Fluor 20x / 0.5 DIC N2 objective and a 1280 x 1024 format. Image processing of 

Ki67/DAPI staining, to quantify number of Ki67 positive nuclei, was performed on 

ImageJ 2.1.0/1.53c using automated tools for detection of fluorescence expression. 

Immunostaining images with just the secondary antibody were used as controls to 

determine the expression detection threshold.  

For dual fluorescence imaging of GFP and mKate2, GBM1 SOX2-mKate2 clonal cells 

carrying the UbC-GFP reporter, were plated in a 4-compartment pre-coated glass 

bottom 35 mm dish (Greiner BIO-ONE, Cat# 627870). 22K cells per square centimetre 

were plated in one compartment and imaged after being kept in proliferating media for 

7 days and 44K cells per square centimetre were plated in another compartment and 

imaged at the same time after being kept in quiescence media for 6 days (proliferation 

media was replaced by quiescence media 1 day post cell seeding). Time-lapse 

imaging was performed for a total of 70-90 h using a Zeiss LSM 880 Inverted Airyscan 

with a Plan-Apochromat 20x / 0.8 M27 and a 1536 x 1536 or 1536 x 1024 format.  

Images were acquired every 20 min with z-stacking covering a 35.2 um depth. The 

fluorescent signals were collected on different tracks. For detection of GFP and 

mKate2 a 488 nm and a 594 nm laser were used for excitation and the emitted 

fluorescence was collected between 490-552 nm and 597-695 nm respectively. The 

fluorescent images were analysed using the Imaris imaging software (Bitplane) and 
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individual cells were tracked using the Imaris “Spot” function to quantify the mKate2 

and GFP fluorescence intensity signal over time.  

 

 

Periodicity analysis  

To estimate periodicity of the traces of SOX2-mKate2 expression we developed a 

MATLAB pipeline which made use of the Lomb-Scargle periodogram. This is an 

algorithm for detecting and characterizing periodic signals in unevenly sampled data 

44. 

The steps used to develop our estimates were as follows: firstly, we detected a trend 

in each trace via a Gaussian-weighted average filter with a 24 hr moving window, as 

we were focusing on fluctuations that have less than 24 hr periodicity. We then 

subtracted this trend line from the raw data to obtain a new detrended trace, which 

was then fed into the “plomb” function that outputs the Lomb-Scargle power spectral 

density (PSD) estimate, sampled at the instants specified in an associated frequency 

vector.  

The position of a spike in the X direction of this PSD estimate corresponds to the 

dominant frequency (1/period) at which the detrended data trace is oscillating. 

Conversely, more low and shallow outputs in the PSD suggests a lack of oscillatory 

behaviour in the trace. To provide an average periodicity estimate we used the 

“interp1” function to interpolate the different traces, such that time points within each 

trace were consistent and therefore comparable. This allowed for a mean 

PSD/frequency plot to be developed for both the proliferative and quiescent conditions. 

This was also done on GFP traces as a control. Cell traces with time duration shorter 

than 25 h and expression variance higher than 5 x standard deviations from the mean 

were excluded. The excluded data accounted for 4% of overall data acquired in 

proliferation and less than 2% in quiescence conditions.  

 

 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism 10.0.3. A Shapiro-Wilk 

normality test was undertaken to determine whether a parametric or non-parametric 

statistical test should be used. When sample size was too small (i.e. n=3), the 

distribution was judged based on the Normal QQ plots. The alpha level was set to .05. 
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The statistical tests undertaken, the number of biological replicates, the sample size 

and p-values are reported in the relevant figure legends.  

 
 
 

Data availability 

Raw imaging data and processed datasets have been deposited at Figshare and will 

be made publicly available upon publication. Any data reported in the current study 

that are not present in the public repository, are available from the corresponding 

author on reasonable request.  
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Figure Legends 

 

Figure 1: Applying the OscoNet algorithm to identify oscillatory genes in GBM 

tumours 

(A) Example UMAP (Uniform Manifold Approximation and Projection) plot 

representing all single cells in tumour MGH124. Cells belonging to different clusters 

(neoplastic and non-neoplastic) are identified by different colours (B) Example UMAP 

plot of the neoplastic population of tumour MGH124 showing the clustering of the cells 

into 7 neoplastic subclusters based on differential gene expression. Different clusters 

are identified by different colours. (C) Diagram showing the sequential steps followed 

to process the tumour scRNA-seq data prior to subjecting them to inference analysis 

for oscillatory gene expression using OscoNet. (D) Bar graph showing the average 

number of genes across all neoplastic subclusters across all tumours for each of the 

pre-processing steps prior to inference analysis for oscillatory gene expression and 

following inference analysis with OscoNet. Error bars represent standard deviation.  

 

 

Figure 2: Inferred oscillators enrich for cell cycle genes and are involved in 

dynamic gene network motifs  

(A) Venn diagram showing the overlap of “All oscillators” from all 5 tumours (3422 

genes) with cell cycle regulators (expressed in at least one tumour) (446 genes). The 

hypergeometric probability was estimated to be 0.047. (B) Venn diagram showing the 

overlap of all predicted oscillators in each tumour and across all 5 tumours. Table 

shows the names of 117 oscillators identified to be shared across all tumours. (C) Bar 

graph showing the percentage of TFs in the “Non-oscillators”, “All oscillators” and 

“Shared oscillators” lists that are involved in a dynamic gene network motif.  

 

 

Figure 3: Shared oscillators across the GBM tumours enrich for processes that 

contribute to cancer pathogenesis 

(A-B) Bar graphs showing significantly enriched molecular and cellular functions in the 

lists of "Shared oscillators” (117 genes) (A) and “Non-oscillators” (643 genes) (B). (C-

D) Bar graphs showing significantly enriched canonical pathways in the lists of “Shared 

oscillators” (C) and “Non-oscillators” (D). (E) Table showing the fold enrichment and 
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FDR enrichment of “Shared oscillators” for MSigDB Hallmark gene sets. Fold 

enrichment refers to the percentage of genes in the “Shared oscillators” list that belong 

in each gene set, divided by the corresponding percentage in the background list. The 

FDR enrichment reports the hypergeometric test value.  

 

 

Figure 4: Identification of oscillatory TFs in quiescent/low-cycling GBM tumour 

cells 

(A) Venn diagram showing the overlap of “Shared oscillators” (117 genes) with the list 

of all human TFs (1639 genes) and with the Neural G0 Signature list (553 genes). 6 

genes (shown in the table) where identified as common across all three lists. (B) Venn 

diagram showing the overlap of “Shared oscillators” in low-cycling neoplastic 

subclusters (99 genes) with the list of all human TFs (1639 genes). 6 genes (shown in 

the table) where identified as common between the two lists. (C) Venn diagram 

showing the overlap of the shared oscillatory TFs in Neural G0 signature with the 

shared oscillatory TFs in low-cycling neoplastic subclusters. 

 

 

Figure 5: Inducing quiescence in GSCs 

(A) Cell confluency analysis of GBM1 cells over a period of 14 days under 3 different 

conditions: Proliferation (cells cultured in proliferative media for 14 days), quiescence 

(cells cultured in quiescent media for 14 days) and reactivation (cells cultured in 

quiescent media for 7 days and then replaced by proliferative media for another 7 

days). Vertical dotted line shows the time of media change for each condition with their 

respective media. (B) Immunofluorescence staining images of GBM1 cells for the 

proliferation marker Ki67 under 3 different conditions: proliferation (cells cultured in 

proliferative media for 6 days), quiescence (cells cultured in quiescent media for 6 

days) and reactivation (cells were cultured in quiescent media for 6 days replaced by 

proliferative media for 5 days). Cells were also counterstained for DAPI (scale bar = 

50 μm). (C) Bar graph showing the mean percentage of Ki67 positive cells under 

proliferative, quiescent and reactivated conditions (error bars represent standard 

deviation, n=3 biological experiments, total number of cells counted per condition 

Proliferation= 5448 cells, Quiescence= 3038 cells, Reactivation= 5828 cells, One-way 
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ANOVA with Tukey’s multiple comparison test, proliferation vs quiescence **p=0.008, 

quiescence vs reactivation *p=0.021, proliferation vs reactivation ns= not significant).  

 

 

Figure 6: SOX2 oscillates in proliferative and quiescent GSCs  

(A) Schematic representation of the SOX2 locus following genome editing with 

CRISPR/Cas9. A DNA sequence encoding for a linker protein, the mKate2 

fluorescence protein followed by a P2A sequence and the neomycin resistance gene, 

has been inserted downstream of the SOX2 exon and upstream of the 3’UTR. (B-C) 

Example snapshot images of SOX2-mKate2 expression in GBM1 cells in proliferative 

(B) and quiescent (C) conditions (top panels). Warm colours represent high expression 

and cold colours represent low expression (scale bar = 3 μm). Example cell traces 

showing SOX2-mKate2 and UbC-GFP expression over time in the same cell in GBM1 

SOX2-mKate2 cells carrying a UbC-GFP reporter (A.U. = arbitrary units) (bottom 

panels). Numbers in Cell 1 in each condition indicate the timepoints that correspond 

to the images in the top panels.  (D) Lomb-scargle periodogram (LSP) showing peaks 

in the power spectrum from SOX2-mKate2 and UbC-GFP expression in proliferative 

and quiescent conditions in GBM1 cells (averaged across all cell traces per protein 

expression per condition). SOX2-mKate2 expression shows a stronger peak in both 

proliferative and quiescent conditions compared to UbC-GFP (E-G) Graphs showing 

the dominant power (E) and dominant period (F) (as determined by LSP), and the 

mean protein expression levels for SOX2-mKate2 in proliferative and quiescent 

conditions (in (E) and (F) black horizontal lines represent mean, Mann-Whitney test, 

two-tailed, p****<0.0001, ns=not significant, in (G) dots represent mean levels per 

experiment, paired t-test, two-tailed, p*=0.012, n= 3 biological experiments, total 

number of cells tracked: Proliferative = 119, Quiescent = 112 ) 
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