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A B S T R A C T

Over the past six decades, the computing systems field has experienced significant transformations, profoundly
impacting society with transformational developments, such as the Internet and the commodification of
computing. Underpinned by technological advancements, computer systems, far from being static, have been
continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such
as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative
opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing
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Quantum computing
Computing

potential and enhancing functionality. As such, to maintain an economical level of performance that meets
ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how
contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors
influencing the evolution of computing systems, covering established systems and architectures as well as newer
developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends
emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to
business and technical constraints, a move towards specialized systems and models, and varying approaches to
centralized and decentralized control. This comprehensive review of modern computing systems looks ahead
to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their
importance in cost-effectively driving technological progress.

1. Introduction

The Internet, the expansive computational backbone of interactive
machines, is largely responsible for the 21st century’s social, financial,
and technological growth [1]. The growing reliance on the computing
resources it encapsulates has pushed the complexity and scope of
such platforms, leading to the development of innovative computing
systems. These systems have genuinely improved the capabilities and
expectations of computing equipment driven by rapid technical and
user-driven evolution [2]. For instance, vintage mainframes combined
centralized data processing and storage with transmission interfaces
for user input. Due to advancements in clusters and packet-switching
technologies, microchip gadgets, and Graphical User Interfaces (GUIs),
technology originally shifted from big, centrally-run mainframe com-
puters to Personal Computers (PCs). The globalization of network
standards made it possible for interconnected networks worldwide to
communicate and share data [3]. Businesses slowly combined sensor
and actuator goals with built-in network connectivity by creating archi-
tectures and standards that submit tasks to remote pools of computing
resources, such as memory, storage, and data processing [4]. As a
result, newer models like the Internet of Things (IoT) and edge com-
puting are now beginning to expand the reach of technology outside
the confines of traditional network nodes [5].

Over the past six decades, computing models have fundamentally
shifted to address the problems posed by the ever-evolving nature of
our civilization and its associated computer system architectures [6].
The evolution of computing from mainframes to workstations to the
cloud to autonomous and decentralized architectures, such as edge
computing and IoT technologies, however, maintains identical core
parts and traits that characterize their function [7]. Research in com-
puting underpins all of them! Advancements in areas like security,
computer hardware acceleration, edge computing, and energy effi-
ciency typically serve as catalysts for innovation and entrepreneur-
ship that span across various business domains [8]. While comput-
ing systems and other forms of system integration create new prob-
lems/opportunities, software frameworks have been developed to ad-
dress them. Thus, middleware, network protocols, and safe segregation
techniques must be continually developed and refined to support novel
computing systems—and their innovative use cases.

1.1. Motivation

By tracking the effect of computing systems on the community, this
comprehensive study seeks to (a) establish the essential features and
components of modern computing systems, (b) thoroughly assess the
development of innovations and behavioral patterns that inspired the
invention of these paradigms, and (c) recognize significant develop-
ments throughout the models, such as the integration of system design,
the shifting between centralization and decentralization, and lags in
model conceptualization and development.

This investigation suggests that next-generation computing systems
will facilitate the decentralization of computational services. This will
be achieved via the composition of decentralized calculation tools with
workload-specific targets for performance to create dramatically more
complex structures. These will satisfy holistic operational demands,
such as improved capacity and power accessibility.

1.2. Related surveys and our contributions

Computing being a rapidly growing topic, the time is right for a
novel, forward-thinking study to summarize, improve, and integrate
the existing and newly-generated information, and to explore possible
trends and future viewpoints. Previously, Pujol et al. [9] provided a
survey on distributed computing continuum systems that focused on
business models. Further back in 2018, Buyya et al. [1] presented a
manifesto on fundamental issues, developments, and impacts in cloud
computing research. Meanwhile, Gill et al. [4] offered a visionary sur-
vey of advances in computing paradigms for fog, edge, and serverless
computing. Further, Shalf [10] summarized the 2020 state of the art
of technological roadmaps and their implications for the future of
systems, including what a post-exascale system would entail. Finally,
in 2021, Angel et al. [11] reviewed leading computational frameworks
for cloud and edge computing, and showcased breakthroughs that had
been brought about via the merging of Machine Learning (ML) with
these models.

In order to evaluate and identify the most pressing research issues
of modern computing, we have developed the very first taxonomy of
its type. We performed a gap analysis of the current surveys using
several criteria, as shown in Table 1, which underpinned the design
of our work. Hence, our study uniquely contributes by (a) exploring
the history of computing paradigm shifts with a focus on technology
drivers, (b) providing a thorough taxonomy of computing systems,
(c) introducing the hype cycle for modern computing systems with a
focus on new trends, and (d) discussing the effects and cost-effective
performance requirements of modern computing.

The key contributions of this article are summarized as follows:

• It offers a concise overview of the transition from early to modern
computing.
• The study explores the evolution of computing paradigms, focus-
ing on technological drivers (1960–2023).
• Following a novel methodology, the article produces a taxonomy
of modern computing based on traits of computing such as (1)
focus or paradigms; (2) technologies or impact areas; and (3)
trends or observations.
• It presents a comprehensive classification of computing: (1) Stan-
dalone vs. Networked Computing; (2) General Purpose vs. Spe-
cialized Computing, (3) Centralized vs. Decentralized Comput-
ing, (4) Computing Trends and Emerging Technologies; and (5)
Computational Methodologies: Parallel vs. Sequential Computing.
• The study identifies the impact and performance criteria of mod-
ern computing in terms of performance metrics, efficiency met-
rics, social impact, security and compliance, and economics and
management.
• It provides an in-depth summary of computing traits and re-
sources for further research.
• The article identifies open challenges and research directions for
the traits of computing.
• Finally, it introduces the hype cycle for modern computing sys-
tems, spotlighting emerging trends.
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Table 1
Comparison of this work with existing studies.

Work [9] [1] [4] [10] [11] Our Work

Year 2023 2018 2022 2020 2021 2024

A Taxonomy of Modern Computing ✓

Evolution of Computing Paradigms (1960 to 2023) ✓

Classification of Computing

Standalone vs. Networked Computing ✓

General Purpose vs. Specialized Computing ✓

Centralized vs. Decentralized Computing ✓

Computing Trends and Emerging Technologies ✓ ✓ ✓ ✓ ✓ ✓

Computational Methodologies: Parallel vs. Sequential Computing ✓

Traits of Computing
Focus/ Paradigms ✓ ✓

Technologies/ Impact Areas ✓

Trends/ Observations ✓

Impact and Performance Criteria

Performance Metrics ✓

Efficiency Metrics ✓

Social Impact ✓

Security and Compliance ✓

Economic and Management ✓

Open Challenges and Future Directions ✓ ✓ ✓ ✓ ✓ ✓

Emerging Trends in Modern Computing: Hype Cycle ✓

1.3. Article organization

The article is organized as follows: Section 2 offers a concise
overview of the transition from early to modern computing. Section 3
explores the evolution of computing paradigms, focusing on technolog-
ical drivers. Section 4 presents a classification of computing systems,
and Section 5 examines the impact and performance criteria in modern
computing. The article concludes in Section 7, summarizing computing-
related technologies and trends through a hype cycle in Section 6. The
list of acronyms used in this study is given in Appendix.

2. Early computing to modern computing: A vision

Over the last six decades, advancements in computing systems have
optimized the efficiency of the available hardware [12]. Over this time
period, novel computing models and innovations have been developed
and replaced the previous state-of-the-art, all of which incrementally
contribute to the current technology status [2]. Fig. 1 shows the tran-
sition from early computing to contemporary computing. Originally, a
single system could only carry out a single task; hence, a user needed
various systems working in tandem to achieve their desired tasks.
However, to safely share information between computers – in order
to overcome the problem of executing only one task at a time – a
reliable communication mechanism is essential [13]. To that end, our
investigation unfolds across three key sections: Section 3 delves into the
evolution of computing paradigms, emphasizing technological drivers.
Section 4 offers a comprehensive classification of computing systems.
The discussion in Section 5 revolves around the impact and perfor-
mance criteria of modern computing. Section 6 introduces the hype
cycle for modern computing systems, spotlighting emerging trends.

3. Evolution of computing paradigms: Technological drivers

Fig. 1 illustrates the progression of computing technology starting
from the year 1960.

3.1. Client server

In the year 1960, a centralized platform (a.k.a, distribution integra-
tion) was developed to share workloads (a.k.a., jobs) between the re-
source providers (i.e., server instances) and service consumers (i.e., cus-
tomers) [12]. Supporting it, a networking system was utilized for com-
munications between client devices and servers, and servers exchange
resources for customers to perform their tasks using a load balancing

mechanism [14]. Illustrative examples of the client–server model’s
application include the Email and the World Wide Web (WWW). How-
ever, users in this configuration were unable to freely interact with one
another.

3.2. Supercomputer

A supercomputer is a powerful computer with extraordinary pro-
cessing capability, such that it can handle complex calculations in
several areas of science, including climate study, quantum physics, and
molecular simulation [15]. Energy utilization and heat control in super-
computers endured as a key research problem throughout their growth
in the 1960s [16]. Supercomputers, such as Multivac, HAL-9000, and
Machine Stops, have been instrumental in underpinning/enabling dra-
matic technological advancements [14].

3.3. Proprietary mainframe

To handle massive amounts of data (including dealing with transac-
tions, customer data analysis, and censuses), a high-speed machine with
large computing power is required [17]. Virtualization on mainframes
allows for increased efficiency, protection, and dependability. In the
year 2017, IBM announced the newest version of its mainframe, the
IBM z14 [13]. Being built to support massive economic activity and
despite their high price tag, mainframe computers deliver outstanding
efficiency [14].

3.4. Cluster computing

Cluster computing is a method of increasing the efficiency of a
computing system by utilizing several nodes to complete a single oper-
ation [18]. In order to coordinate various computing nodes, this type of
technology requires a rapid Local Area Network (LAN) for exchanging
information among them [19].

3.5. Home PCs

The early days of the Internet coincided with the flourishing of
PC kept at one’s home [3]. The Internet was evolving into a foun-
dational network, connecting local networks to the larger Internet
using self-adaptive network protocols, such as Transmission Control
Protocol/Internet Protocol (TCP/IP)—in contrast to the original Net-
work Control Protocol (NCP)-based Advanced Research Projects Agency
Network (ARPANET) mechanisms [2]. As a result, there was a sharp
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increase in the number of hosts on the Internet, which quickly over-
whelmed centralized naming technologies like HOSTS.TXT. In the year
1985, the earliest publicly available version of a Domain Name System
(DNS) was released for the Unix BIND system [20]. This system trans-
lates hostnames into IP addresses. Pioneer Windows, Icons, Menus, and
Pointers (WIMP)-based GUIs on computers, such as the Xerox Star and
the Apple LISA, proved that customers could successfully use machines
in their homes for tasks like playing video games and surfing the
Internet [21].

3.6. Open MPP/SMP

Massive Parallel Processing (MPP) and Symmetric Multi-Processing
(SMP) systems are the two most common forms of parallel computing
platforms [16]. In an SMP setup, multiple processors run the same
Operating System (OS) concurrently while sharing the rest of the hard-
ware’s capacity (e.g., disc space and RAM). Naturally, resource pooling
influences the computational speed of completing a given assignment.
In an MPP scenario, the file system can be shared, while no other
resources are pooled for use during task processing [14]. Incorporat-
ing more machines 𝑁 and their associated storage and RAM space,
increases the ability to scale according to the Universal Scalability Law
(an extension of Amdahl’s Law), assuming 𝜅 the proportion of work
that can be parallelized and 𝜎 the interprocess communication penalty:

Capacity =
𝑁

1 + 𝜎 ⋅ (𝑁 − 1) + 𝜅 ⋅𝑁 ⋅ (𝑁 − 1)
. (1)

3.7. Grid computing

This technology enables a group to work together towards the
same objective by executing non-interactive, and largely IO-intensive
tasks [19]. Each application running on only one grid is a top pri-
ority [12]. In addition to allocating and managing resources, grid
computing also offers a reliable architecture, as well as tracking and
exploration support.

3.8. WWW

The primary web browsers, websites, and web servers all came
into existence in the later stages of the 1980s and early 1990s, under-
pinned by the development of Hyper Text Transport Protocol (HTTP)
and Hyper Text Markup Language (HTML) [2]. The platform for the
interconnected system of networks that makes up the WWW was made
possible by the standardizing technology of TCP/IP network protocols.
This allowed for a dramatic increase in the total number of servers
linked to the Web and introduced Information Technology (IT) to the
general public. Software applications were thus able to communicate
with one another beyond address spaces and networking, e.g., via novel
technologies like Remote Procedure Calls (RPCs) [22].

3.9. Commodity clusters

Commodity cluster computing employs several computers simulta-
neously, which can inexpensively execute user tasks [19]. In an effort
to standardize their processes, several companies use open standards
while building commodity computers [14]. This allowed immediate
computing business needs to be met using ready-made processors.

3.10. Peer to peer (P2P)

P2P is a distributed framework to share workloads or jobs amongst
multiple peers; alternatively, computers and peers may interact with
one another openly at the application layer [23]. With no mediator
in the center, users of a peer-to-peer system can share resources like
memory, CPU speed, and storage space. Peer-to-peer communication
utilizes the TCP/IP protocol suite [24]. Interactive media, sharing file
infrastructure, and content distribution are some of the most common
use cases for P2P technology.

3.11. Web services

The technology supporting web services enables the exchange of
data between various Internet-connected devices in machine-under
standable data formats, such as JavaScript Object Notation (JSON) and
Extensible Markup Language (XML), over the WWW [25]. Commonly,
web-based services operate as a connection between end users and
database servers.

3.12. Service-Oriented Architecture (SOA)

The SOA paradigm enables software elements to be reused and
made compatible through advertised service designs/Application Pro-
gramming Interfaces (APIs) [26]. It is normally easier to include ser-
vices in new apps: the apps can be architected to adhere to standardized
protocols and leverage consistent design patterns. This frees the soft-
ware engineer from the burden of recreating or duplicating current
features or figuring out how to link to and interoperate with cur-
rent systems—e.g., via using Software Development Kits (SDKs) that
implement common functionalities, such as networking, retries, mar-
shaling of data and error handling [27]. Each SOA API exposes the
logic and data necessary to carry out a single, self-contained business
operation (such as vetting the creditworthiness of a client, determining
the loan’s due date, or handling an insurance application) [28]. The
loose integration provided by the service’s design allows for the ser-
vice to be invoked with limited knowledge of the underlying service
implementation.

3.13. Virtualized clusters

Virtualization enables a guest computer system to be implemented
on top of a host computer system, which abstracts away the problem
of physically supporting and maintaining multiple types/architectures
of physical machines [19]. With a virtualized cluster, several Virtual
Machines (VMs) may pool their resources to complete a single job. VM
hypervisors, which execute the guest system on the host system, allow
software-based virtualization to run either on top of an OS or directly
(bare-metal) on hardware [14]. Costs and complexity are reduced, and
a greater number of tasks may be completed with identical hardware
by adopting a VM-based system.

3.14. High Performance Computing (HPC) system

HPC is the computing method of choice when dealing with com-
putationally intensive issues, which tend to arise in the domains of
commerce, technology, and research [14,19]. A scheduler in an HPC
system manages accessibility to the various computing resources avail-
able for use in solving various issues [29]. HPC systems utilize a pooled
set of resources, allowing them to perform workloads or tasks via the
allocation of concurrent resources and online utilization of various
resources.

3.15. Autonomic computing

One of the first global initiatives to build computer systems with
minimum human involvement to achieve preset goals was IBM’s au-
tonomic computing program in 2006 [30]. It was mostly based on re-
search on nerves, thinking, and coordination. Autonomic computing re-
search examines how software-intensive systems may make choices and
behave autonomously to achieve user-specified goals [4]. Control for
closed- and open-loop systems has shaped autonomic computing [31].
Complex systems can have several separate control networks.
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3.16. Mobile computing

The term ‘‘mobile computing’’ is used to describe a wide range of
IT components that give consumers mobility in their usage of compu-
tation, information, and associated equipment and capabilities [32].
An especially popular definition of ‘‘mobile’’ is accessing information
while moving, when an individual is not confined to a fixed place.
Accessibility at a fixed spot may also be thought of as mobile, especially
if it is provided by hardware that consumers can move as needed but
that remains in one place while functioning [33]. Mobile computing
devices are becoming essential across industries, boosting efficiency
and creativity in fields such as healthcare, retail, manufacturing, and
the arts.

3.17. Cloud computing

Software as a service (SaaS), platform as a service (PaaS), and
infrastructure as a service (IaaS) are all examples of Internet-accessible
web services [1]. Google Mail is an excellent instance of a SaaS product
since it provides a wide range of useful features without the burden of
installation and ongoing upkeep costs. PaaS providers like Microsoft
provide a scalable environment where users can install their applica-
tions [34]. Amazon is a prime instance of an IaaS provider since it
provides users with access to servers, networks, storage, and other hard-
ware components necessary to run applications and other workloads
efficiently and effectively. Using distant facilities for performing user
operations (processing, administration, and storage of data) over the
Internet is known as ‘‘cloud computing’’, abbreviated as ‘‘XaaS’’, where
X = ‘‘I’’, ‘‘P’’, ‘‘S’’, etc. Cloud computing enables the pooling of resources
to reduce execution costs and enhance service accessibility [35]. There
are four major types of cloud computing systems: public, private,
hybrid, and communal. Dependability, safety, and cost-effectiveness are
just a few examples of Quality of service (QoS) characteristics that
should be considered while developing a successful cloud service.

3.18. IoT

Controllers, gadgets, and detection devices are all examples of IoT
devices that can communicate with one another over the WWW [5].
IoT has many potential uses in many different areas, including farming,
medical treatment, climate prediction, logistics, home automation, and
industrial automation [36].

3.19. Fog computing

This cutting-edge design makes extensive use of mobile devices,
also known as fog nodes, which are utilized for data storage and
processing, and rely on the web for inter-node connectivity [37]. The
data plane and the control plane are the two main components of fog
computing [38]. Although the control layer is a gateway component
and determines the network’s layout, the data plane offers capabilities
at the network’s edge to decrease delay and boost QoS [39]. Fog
computing supports IoT gadgets such as smartphones, detectors, and
health monitors.

3.20. Edge computing

Edge computing is a method that delegates processing to dispersed
edge devices for data processing and information exchange [40]. In
addition, edge computing enhances QoS, decreases delay, and lowers
transmitting expenses by computing huge volumes of data on gadgets at
the edge rather than in the public cloud [41]. However, edge computing
relies on a constantly available web connection to perform certain tasks
in a timely manner, so it is best used for applications that can execute
autonomously without centralized control for prolonged periods of
time [42].

3.21. Serverless computing

The serverless computing paradigm eliminates the need to man-
age servers and other infrastructure components [43] centrally. Since
serverless computing eliminates the need for software engineers to
manage servers, it is expected to grow much faster. With serverless
computing, hosting companies may easily handle infrastructure man-
agement and automatic provisioning [44]. Because of this, less effort
and resources are needed to oversee the infrastructure.

3.22. Osmotic computing

Osmotic computing is a growing idea that merges IoT, cloud, fog,
and edge technology for the constantly changing administration of
IT services. The dramatic increase in the size of resources in the
network’s periphery is the primary force behind this trend. By defin-
ing, creating, and implementing a computing model, this paradigm
focuses on methods to improve edge and cloud-based IoT services [45].
To manage resources and resolve data difficulties in IoT and data
science, osmotic computing applies the fundamental concepts of the
osmosis phenomenon in chemistry [46]. The primary objective of this
computing model is to distribute workloads and efficiently use avail-
able resources among servers without degrading service delivery or
efficiency.

3.23. Dew computing

Dew computing is ‘‘a software-hardware organization model for
computers situated in the cloud computing environment’’, where a
local machine complements and operates independently of cloud ser-
vices [47]. Dew computing may bridge the gap between cloud and
on-premises computing. Data and services stored in the cloud are
accessible regardless of an Internet connection. The need for constant
Internet access is the primary restriction on cloud and fog computing.
Complementing fog and edge computing with considerable Internet
reliance, an extra layer, including dew computing, is necessary to keep
apps and services alive and functioning. Even if dew computing is not
conducted entirely online, it nevertheless uses cloud computing and
depends on collaboration for data and operations, for example, One
Drive [48].

3.24. Quantum computing

Quantum computing is a radically different way to analyze knowl-
edge and data. Several possibilities can be taken advantage of when
processing information stored in the quantum states of quantum ma-
chines that are unavailable when analyzing information in a conven-
tional fashion [49]. The phenomena of quantum entanglement and
superposition are two such examples. Because of quantum entangle-
ment, it is difficult to offer a comprehensive description from the
understanding of merely the component states, which is a defining
characteristic of quantum systems. One definition of the term ‘‘superpo-
sition’’ is the potential of merging quantum states to create a new valid
quantum state [50]. The primary purpose driving the effort to construct
a quantum computer was the modeling of quantum systems; however,
it was not until the identification of quantum algorithms capable of
achieving realistic objectives that the enthusiasm for constructing such
devices began to garner increasing scrutiny [51].

4. Classification of computing: Paradigms, technologies and
trends

In this section, we discuss the different types of computing and
classify them into different broad categories as shown in Fig. 1. Table 2
briefly describes traits of computing that are used in this classification
such as (1) focus or paradigms; (2) technologies or impact areas; and
(3) trends or observations.
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Table 2
Summary of computing traits.

Trait Description

Focus/Paradigms We discuss well-established computing paradigms, from client–server to quantum computing, which
have been explored in the last decade.

Technologies/Impact
Areas

We cover key research that has grown over time by utilizing these well-established computing
paradigms and how this has led to many breakthroughs in the underlying technology.

Trends/Observations The new trends, such as large-scale machine learning, digital twins, edge AI, bitcoin currency, 6G &
Beyond and quantum Internet and biologically-inspired computing, for the next generation of
computing, have come to light due to these advances in computing paradigms and technology.

4.1. Standalone vs. Networked computing

Standalone computing occurs when a computer is not connected
to another computer in any way, whether through wired or WiFi
connections [52]. Multiple computers linked together form a network,
a model that falls under networked computing.

4.1.1. Standalone computing
In this section, we discuss the main focus or paradigms, technologies

or impact areas, and various trends or observations within standalone
computing.

4.1.1.1. Focus/paradigms. The following are the main focus or
paradigms for standalone computing:

(1) PCs: Individuals use PCs, which leverage microprocessors de-
signed for personal use. Before the PC, businesses had to operate
computers by connecting several users’ terminals to a separate,
massive mainframe system [3]. By the end of the 1980s, tech-
nical developments had enabled the construction of a compact
computer that a person could purchase and use as a word
processor or for various computing objectives [2].

(2) Embedded Systems: A computer (often a microcontroller or mi-
croprocessor) is built into (i.e., embedded in) the design of a
device [53]. Most of the time, an individual does not even
realize they are using a computer because there might not be
any obvious hints of applications, data, or software [54]. The
software that operates a microwave oven or an engine control
unit of a contemporary vehicle are two instances of items with
undetectable integrated systems.

4.1.1.2. Technologies/impact areas. The key technologies and affected
domains for standalone computing include:

(1) Single-board Computers (SBCs): In an SBC, the CPU, I/O, memory,
and various other components are all housed on one integrated
circuit board; the quantity of memory is fixed; and there are no
slots to be expanded for additional hardware [55].

(2) Raspberry Pi 4: The Raspberry Pi is a family of tiny SBCs that
have been developed to allow programming and computing
capabilities to be available to all. The Raspberry Pi Model B
became the inaugural board produced by the foundation behind
the Raspberry Pi [55]. Due to its immense popularity, other
variants have subsequently been developed, each with its own
set of advantages. These include the Raspberry Pi computation
component, which has been optimized for use in embedded
systems [56].

(3) NVIDIA Jetson Series: This is a line of Graphics Processing Units
(GPUs) that includes the initial processors built with the explicit
purpose of powering self-driving robots [57]. With up to 32
Tera Operations Per Second (TOPS) of Artificial Intelligence (AI)
efficiency, these GPUs efficiently handle optical measurements,
sensor fusion, positioning, visualization, obstacle detection, and
path-planning, all of which are essential for the development
of robotics [55]. The Jetson Xavier series focuses on creat-
ing specialized robots and edge robots, with several distinct
manufacturing components.

4.1.1.3. Trends/observations. The main trends and observations re-
garding standalone computing are:

(1) Adoption of AI/ML: NVIDIA Jetson Nano, for instance, enables
consumers to equip billions of low-power AI/ML systems with
remarkable new features [58]. It paves the way for a wide
variety of integrated IoT services, such as low-cost Network
Video Recorders (NVRs), consumer automation, and analytics-
rich gateways [55]. With its ready-to-try applications and en-
thusiastic software developer community, Jetson Nano serves as
the ideal tool for beginning students to gain knowledge about AI
and robotics in real-life situations.

(2) Cybersecurity : Embedded systems are compact, specifically de-
signed devices built to carry out a single task, frequently in
real-time, while using as few resources as possible [54]. In-
stalling protective measures on these platforms to guard against
dangers like unauthorized usage or fraudulent attacks drives the
need for embedded security [59]. These safeguards are included
in electrical components, firmware, and applications to achieve
an all-encompassing defense.

4.1.2. Networked computing
In this section, we discuss the main focus or paradigms, technologies

or impact areas, and various trends or observations within networked
computing.

4.1.2.1. Focus/paradigms. The following are the main focus or
paradigms for networked computing:

(1) Networking/Connectivity : Servers in cloud computing underpin
the services and APIs provided to internal and external clients.
Communication on several levels, both inside and among data
centers, is essential for effectively implementing cloud services [1].
Crucially, networking ensures that all parts can talk to one
another in a safe, frictionless, effective, and adaptable way.
Many developments and studies in networking during the past
ten years have focused on the cloud [60]. For instance, Software-
Defined Networking (SDN) and Network Function Virtualization
(NFV) aim to construct adaptable, versatile, and programmable
computer networks to lessen the financial and time commit-
ments of cloud service providers [61]. Scalability challenges
have spurred several current developments in network design
for the Cloud Data Centers (CDCs), as well as the necessity for
a flat addressing space, and the excess demand for machines.
Notwithstanding these developments, numerous networking is-
sues require a resolution. The excessive energy consumption
of modern CDCs is a major issue [60]. Especially because it
is a common practice in data centers to have all networking
equipment active at all times.
Furthermore, unlike computing servers, most network parts (in-
cluding switches, hubs, and routers), cannot be
energy-proportionate; features like hibernation during periods
of low traffic and connection-rate adaptability are not built
in by default [62]. Consequently, the design and execution of
approaches and technologies that seek to minimize network
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energy usage and make it proportionate to the incoming load
continue to be outstanding issues.
QoS assurance presents another complex challenge within CDC
networks [63]. Service Level Agreements (SLAs) in modern
clouds focus mostly on computing and storage. There is currently
no way to encapsulate network performance constraints like
latency and bandwidth assurances without resorting to ‘‘best
effort’’ because no abstraction or method guarantees perfor-
mance isolation. Providing network connections across widely
dispersed resources (in other words, installing a ‘‘virtual clus-
ter’’ encompassing resources in an amalgamated cloud setting),
exacerbates this difficulty [64]. However, there are numer-
ous open challenges to deliver reliability assurances for these
networks—due to packages needing to navigate the (public)
Internet, including resources in various locations [65].

4.1.2.2. Technologies/impact areas. The key technologies and affected
domains for networked computing include:

4.1.2.2.1. Internet of things (IoT) Devices (a.k.a., things) that
can detect, control, and communicate are now routinely integrated with
continuous control and monitoring functions via the Internet [1]. These
devices have become ubiquitous in modern society, found in homes, on
public transport, along highways, and in vehicles. Because of this, IoT
applications may function in many contexts and provide a sophisticated
evaluation and administration of complicated relationships [66]. As a
result, IoT devices and services may solve problems in many application
domains, such as digital health, facility administration systems, produc-
tion, and transportation. IoT-based systems have to deal with limited
processing power, memory, and storage space because (i) platforms are
constantly changing, so devices that join a network have to be able to
adapt to these changes; (ii) devices differ in how well they work with
computers and what features they offer; and (iii) to ensure the safety of
the IoT data that has been acquired, a federated system is needed [5].

These days, popular IoT use cases include medical care, smart
cities, climate prediction, water supply management, and highway
surveillance, all of which leverage the capabilities of cloud, server-
less, fog, and edge computing for processing user data to meet QoS
requirements [67].

• Healthcare: Among the many significant IoT applications is med-
ical care, which is designed to treat conditions including heart
attacks, diabetes, cancer, COVID-19, and influenza [68]. For in-
stance, a patient’s heart condition may be instantly diagnosed
using a variety of medical devices in an interconnected IoT and
computing environment [69]. Additionally, modern technology
like Virtual Reality (VR) or AI can enhance the present healthcare
system in the fight against inevitable pandemics [70].
• Agriculture: In order to forecast variables like yield, rainfall, and
crop quality, the agricultural industry is making use of modern
technology to analyze a wide range of data pertaining to agri-
culture [71]. One use case is the development of cloud-based
agricultural systems that can autonomously forecast the state of
agriculture using data collected from a variety of IoT or edge
sensors. Additionally, to facilitate automated farming, an iOS or
Android application is created to handle the massive amounts of
data and supply the information they need to the agriculturalists
through their edge devices [72].
• Smart Home: Owners may optimize energy consumption and
offer the necessary protection with the deployment of cameras
through the implementation of smart homes, which allow them
to operate their home devices from their cell phones [36]. For in-
stance, a resource management approach that incorporates cloud
and fog computing may be used for controlling edge devices
utilizing a smartphone application, which in turn regulates the
room’s humidity, lighting, surveillance systems, fans, and voltage,
such as via sensors connected to different household devices [73].

• Traffic Management: IoT is crucial in the efficient manage-
ment of traffic through the use of a number of sensors and
controllers [74]. To identify potholes, for instance, an IoT-based
intelligent transportation system is created. In addition, its effi-
ciency was assessed using a range of machine learning approaches
and performance metrics [75]. Additionally, data may be pro-
cessed swiftly using fog and edge computing methodologies to
notify about potholes early, thereby reducing the likelihood of
mishaps.
• Weather Forecasting: Through the use of cloud computing and
the IoT, scientists and weather forecasters may better gather data
to inform their work [76]. Scientists have long relied on visual
observations, data storage, and the public presentation of meteo-
rological factors like air quality and moisture to better understand
and explain these phenomena [77]. The findings may be made
using an IoT system that relies on sensors and can transmit the
results to the cloud.

Cloud services have long been relied upon by IoT applications
to handle processing and permanent storage. Still, as the number
of ‘things’ proliferates, such services are increasingly unable to keep
up with the real-time demands of IoT gadgets [78]. This is due to
the high quantity of data and the short reaction times required by
systems that operate in the real world over wide geographical areas. By
moving resource orchestration from servers to edge networks, fog/edge
computing expands the capabilities of cloud systems: Set up as a
series of nested ‘‘cloudlets’’ that may perform data intake, processing,
and administration [79]. Compared to cloud services, geographically
localized solutions use less power and allow for more mobile resources
by decreasing reaction times and increasing intake bandwidth through
horizontal scalability. These features make fog/edge computing a po-
tential future architecture for IoT applications since this architectural
model allows for scalability on a logical and geographical scale with
near-instantaneous response latency [32].

By aggregating information from implanted and mobile gadgets and
establishing mobile area networks, smart e-health apps can track infor-
mation about patients in a continuous fashion [80]. By performing tasks
like healthcare equipment noise filtering, data reduction and fusion,
and analytics that identify harmful patterns in patients’ well-being,
smart gateways gather and interpret data from devices locally [81]. At
the same time, longer-term patterns may be evaluated at cloud levels.

In addition, IoT systems supported by fog computing may adjust
their actions based on the information they receive from sensors. For
example, if a heart attack is recognized by initial processing at the fog
layer, the intelligent gateway gathering signals from the defibrillator
may adaptively boost the sample size before the attack. Similarly, the
Industrial Internet of Things (IIoT) benefits from integrating edge, fog
and cloud layers to provide specific and nearly real-time actions [82].
Smart grids and energy management are central to the Internet of
Energy (IoE) paradigm. Coarse-grained information on network health
may be gathered from dispersed networks of energy producers that
track power usage, generation and/or battery life. While ‘Smart-Meters’
may communicate energy needs to service providers on a more detailed
scale, monitoring capacity, generation, and use [80]. Therefore, IoT is
a foundational technology for future systems, like electric automobiles
and decentralized power grids [33]. In addition, the increased safety,
reliability, and durability of electricity distribution that this type of
grid may provide can better satisfy the evolving needs of consumers.
In-depth surveys are a good resource for IoT researchers who want to
explore more.

4.1.2.2.2. Software-defined network (SDN) SDN transcends tra-
ditional network paradigms by separating control logic from the un-
derlying hardware and centralizing network management [83]. This
innovative approach facilitates programmable network architectures
and streamlines management by distinctly segregating network poli-
cies, hardware implementation, and traffic forwarding [84]. Integral to
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cloud computing, SDN enhances communication and automates config-
urations, revolutionizing network adaptability and resource utilization
in diverse environments [85].

NFV is another approach that utilizes software programs to per-
form traditionally hardware-based networking tasks, such as DNS, load
balancing, and intrusion detection. NFV not only lowers costs but
also enhances the flexibility of network functions and service respon-
siveness. Furthermore, VM consolidation in a virtualized network can
help reduce energy costs by minimizing the number of VMs in opera-
tion [86]. SDN-based cloud computing optimizes network virtualization
while decreasing electricity consumption. Crucially, SDN increases the
abstraction of physical assets and automates and optimizes the setup
process [85].

Many questions still need to be answered by scholars and investiga-
tors. First, ensuring data safety during transit across multiple cloud data
centers is absolutely necessary for SDN-based cloud computing [87].
Second, even if SDN-enabled cloud infrastructures may be replicated,
the balance between cost and energy use remains. Deploying SDN-
based cloud computing systems is necessary to offer an economical
network virtualization service with lower energy costs and greater
dependability [83]. Furthermore, this may also boost data distribution
and outcome collection by utilizing methods inspired by AI-based
models, allowing us to expand existing information connectivity in such
SDN contexts to accommodate blockchain-based systems.

4.1.2.3. Trends/observations. The main trends and observations re-
garding networked computing are as follows:

4.1.2.3.1. Intelligent edge The IoT connects billions of new
devices, generating massive amounts of information that, inevitably,
proves challenging to process. Over 41.6 billion IoT gadgets are esti-
mated to be in operation by the end of 2025 [88]. Increasing numbers
of products, including connected autos, smart meters, and in-store
sensors, are being created and installed by companies to improve
customer experience while generating enormous quantities of data [4].

Meanwhile, this emerging data must be gathered, managed, and
processed immediately. What exactly will this mean? Edge and fog
computing might be a method for moving ahead. In the coming years,
edge computing is forecast to receive far greater focus than fog com-
puting. In contrast to traditional cloud computing, which analyzes data
at a remote data center, edge computing performs so locally. In fog
computing, it is possible to execute a portion of the work in the cloud,
while edge devices perform other aspects [89]. Since computing at the
edge uses far less network bandwidth than conventional computing,
the data exchanged among connected devices could take a long time.
Computing it nearby, either on the gadget itself or within a local
network, will be more cost- and energy-effective. On the contrary, edge
computing may provide cloud computing with much-needed support
in coping with the vast volumes of data created by the IoT and other
connected devices [90]. Emerging IoT devices create and transport data
across the fog and edge, and their processing power is leveraged to
carry out processes that could otherwise be performed in the cloud.
Hence, managing these systems with fog and edge, IoT devices and
support from the cloud requires distributing the intelligence along the
computing tiers, which leads to edge intelligent [91].

The terms ‘‘fog’’ and ‘‘edge’’ allude to these novel network nodes
for IoT devices. Thus, they aid businesses in reducing their reliance on
the cloud by transmitting information to analytics platforms. Businesses
can lessen their dependency on cloud platforms for data processing and
thereby reduce latency across networks by implementing edge and fog
solutions [92]. This will allow rapid evidence-based recommendations
to assist them in their decision-making process. Nevertheless, once real-
time processing is complete, edge devices must transfer data to the
cloud for statistics to be performed on it [93].

A company’s communication network is largely concerned with
enabling various remote apps and providing endless storage space,
thanks to cloud computing, connectivity, and computing capacity. That

will ultimately alter data processing at the edge in real-time, which
is essential for optimal data utilization [90]. Future-proof network
infrastructures will need to accommodate an unprecedented influx
of smart devices. For real-time intelligence, it is crucial to have the
decision-making process located close to where the data is produced.
Self-driving automobiles and self-sustainable, smart factory equipment,
for instance, require to be making split-second decisions [94]. Further,
airline sensors collect data on engine efficiency in real time, allowing
for predictive maintenance before a plane ever takes off. Potential cost
reductions might be considerable. The more business connections an
organization has, the more processing power and intelligence it can
provide.

4.1.2.3.2. 6G and beyond The advancement to Industry 5.0 and
the foundation of a technology-driven economy hinge on the develop-
ment of Beyond 5G (B5G) and 6G networks. As communication and
technological advancements increase, international industrial sectors
will increasingly depend on 5G and B5G networks to provide revo-
lutionary services and applications that will inevitably require ultra-
low latency, unprecedented reliability, and continuous mobility [95].
Meanwhile, underpinned by Moore’s law, mobile devices have been
rapidly adopting systems-technology co-optimization (STCO) and re-
lated system-building approaches, which departs from the conventional
system-on-a-chip (SoC) approach [96].

Through cloud-based principles, including utilizing functioning be-
tween and among data centers, connecting in a micro-service setting,
and concurrently offering reliable services and applications, it is ex-
pected that B5G/6G networks will be able to serve a wide variety
of applications [97]. Both B5G and 6G networks aim to enable the
smooth and complete integration of many industries, including the
IoT, aerial networks (also known as drones), satellite accessibility,
and submerged connectivity [98]. To keep up with this astonishing
expectation, the next generation of networks (B5G/6G) will largely rely
on cutting-edge AI/ML technology for intelligent network operations
and administration. B5G and 6G infrastructures are anticipated to
provide computationally intensive applications and services paired with
infrastructure shifts [99].

Edge computing has received a lot of interest and is being evaluated
as an integrated service in 6G networks to enable the two fundamental
changes in network infrastructure and network services. While many
studies have focused on features like cache services and compute
offloading methods, little is known about mobile edge computing im-
plementation. The necessity of moving forward with a software-centric
strategy from the network core to the wireless layer was emphasized
in the first efforts that contributed significantly to the conception of
5G [100]. As with 5G networks, 6G networks will depend heavily on
SDN, which, together with NFV, represents a departure from the con-
ventional hardware-centric strategy [9]. The mobile edge computing
paradigm also encourages moving the base station (BS) and the core
network functions to different places. BS functions are moved upstream
to the cloud, and core network functions are moved downstream to the
devices. The resulting boundary between the BS and the end device
might be seen as an ‘‘edge’’ or ‘‘fog’’ domain [73].

While cloud computing has made it possible for users to access
richer and more complicated apps by tapping into the resources of
a remote cloud server, an alternative technique is needed to meet
the extremely delicate latency criteria stated for use cases in 5G and
maybe 6G [101]. This heterogeneous network design directly results
from the complicated traffic distributions in today’s wireless networks.
A wireless access point (AP), a macro BS, and a small cell BS are just
a few examples of network access nodes that may provide stable and
smooth connections for mobile users [102]. These network access nodes
provide edge computing at network edges with less delay. The design
of diverse mobile edge computing networks has gained more and more
interest due to the varied properties of network access nodes, such as
coverage capability and power transmission [101]. Nevertheless, it is
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imperative to carefully plan for the offloading of computing tasks to
many access nodes in a network [103,104].

In a heterogeneous network design, intelligently distributing tasks
and resources among different nodes can substantially boost system
performance [55]. For instance, by collaborating, the edge and cloud
can elevate IoT tasks’ QoS. While cloud servers manage compute-
intensive tasks well, edge servers excel at processing tasks demanding
minimal data or low latency [41]. Strategically assigning tasks among
edge servers can redistribute work from overburdened nodes to less
active ones, thus accelerating execution times.

4.2. General purpose vs. Specialized computing

Leveraging fit-for-purpose software and given enough time, general-
purpose computing (which includes desktop PCs, laptops, mobile de-
vices like tablets and smartphones, and even certain televisions) can
handle just about any computation [105]. A CPU, memory, input/
output systems, and a bus are the main parts of any general-purpose
computing system. In contrast, integrated computers, are used in intel-
ligent systems, and are often referred to as ‘‘special-purpose’’ computing
systems.

4.2.1. General-purpose computing
In this section, we discuss the main focus, paradigms, technologies,

and impact areas, as well as various trends and observations about
general-purpose computing.

4.2.1.1. Focus/paradigms. The following are the main focus areas and
paradigms associated with general-purpose computing:

(1) Von Neumann Architecture: A computing device with a Von Neu-
mann architecture has its main components – the CPU, memory,
and I/O – connected via a single bus [106]. The efficiency of
computers was greatly enhanced by the advent of this architec-
ture, which provided effective means of storing and executing
instructions. The fundamental idea behind this design is that
data and instructions are handled in the same way. In other
words, the data being handled and the program instructions
themselves share the same storage and processing resources: a
memory address can contain either an instruction to be executed
or data; the software execution pathways decide how to inter-
pret it [107]. This design substantially simplifies the framework
and features of a computer, making it more accessible to both
software engineers and non-technical users.

(2) Integrated Computing : Compatibility throughout cloud applica-
tions and services is commonly achieved by implementing soft-
ware adaptors and libraries and deploying application containers
for computing to facilitate mobility [108]. Nevertheless, there is
still a variety of challenges that have existed since the beginning
of cloud computing but, due to their complexities, have not
been adequately resolved yet [60]. One of these challenges
is encouraging cloud connectivity without mandating a base-
line set of capabilities for all services; ideally, customers can
combine complicated features from several providers. Another
area of investigation is how to develop cloud interoperability
middleware that can facilitate the offering of complex services
by composing more straightforward services from multiple 3rd-
party providers [109]. Such a high degree of abstraction would
empower users to make service decisions based on their require-
ments, such as price, turnaround time, privacy, etc. This brings
up an additional key area that needs further study: the manner
in which to allow user-level middleware (intercloud and hybrid
clouds) to discover potential services for an ensemble without
assistance from cloud service providers [110]. A strategy that
relies on cloud providers working together is unlikely to be suc-
cessful because their financial goals lie in keeping all the features
they offer to their consumers (i.e., they have no incentive to

help due to the fact that just a portion of the offerings in an
ensemble are themselves). Consequently, the middleware that
allows the melody of services must address challenges at both of
its connections: Firstly, the middleware should seamlessly and
abstractly provide the service to cloud users. Secondly, for the
consumers, a service might be implemented in its entirety by
sub-services offered by one vendor (maybe leveraging a 3rd-
part SaaS organization able to offer the functionality), or it
might be acquired through composing multiple services from
various providers [111]. The provider user interface makes it
possible to access complex functions without requiring special
cooperation from providers [109]. The widespread use of cloud
compatibility can offer commercial and financial advantages to
cloud manufacturers, but frequently integrated clouds (which
were achieved via Cloud Federation) cannot be realized until
such time [112]. This calls for the development of intercloud
markets, distinctive approaches to invoicing and accounting, as
well as novel cloud-suitable pricing systems.

4.2.1.2. Technologies/impact areas. The key technologies and affected
domains for general-purpose computing include:

4.2.1.2.1. Programming models Clusters are a type of parallel
or distributed computational system that consists of a group of in-
terconnected standalone computers that work collectively as a single
integrated computing resource. Clusters and grids are platforms that
communicate with each other to serve as a single resource [113]. A
multi-core parallel architecture describes this form of capability, which
is based on specific functions. Conversely, cloud computing emerged
on top of clusters to abstract leveraging their computing resources and
coordinate enormous data sets.

A programming model is tightly coupled to where data is transmit-
ted to manage an application’s functions. Important metrics to remem-
ber while building a programming model are efficiency, adaptability,
goal architecture, and code maintainability [114]. Data analytics soft-
ware often handles massive data sets that require many phases of
processing. Certain steps have to be carried out in order, while others
are executed simultaneously across several nodes in a cluster, grid, or
cloud. The capacity of algorithms to perform statistical analysis on huge
amounts of data will be crucial to unlocking achievements in industrial
advances and next-generation scientific discoveries [115].

With the exponential growth of data comes the difficulty of or-
ganizing massive data sets, which in turn increases their complexity
due to the ways they connect with each other. Its many processes
include moving, archiving, replicating, processing, and erasing data.
Data life-cycle complexities can be reduced via solutions that automate
and improve data management activities. It has been shown that two
limitations affect the data life cycle [116]. The framework used is the
first limitation, initially regarding how it operates on data derived
from consumers and apps. The second limitation derives from the
observation that data is spread over several systems and infrastructures.
That is why big data applications need to be capable of communicating
amongst various systems that deal with the data and the effects that
information and occurrences might have. The focus of this work is
the second limitation, the big data infrastructure itself, and it includes
a comprehensive analysis of the programming models and settings
necessary to overcome this limitation.

A programming model is underpinned by how quickly and smoothly
its data is manipulated. A few elements to consider when creating
a programming model include operation, adaptability, target designs,
and the simplicity of maintenance code modification procedures [117].
For the sake of service, it is sometimes necessary to sacrifice at least
one of these aspects. The exchange of computation for data storage
or transmission is a usual instance of algorithmic manipulation. These
difficulties can be mitigated by employing parallel methods and tech-
nology. A software engineer might undoubtedly leverage many variants
of the same technique to enable distinct performance adjustments on
different hardware architectures. Modern computing clusters comprise
nodes with more than one CPU, and their hardware designs range from
tiny to super powerful.
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4.2.1.2.2. Virtualization With virtualization, the original phys-
ical object is replaced with a virtual one. The OSs of server infrastruc-
ture, hard drives, and PCs are some of the most typical targets for vir-
tualization in a data center. Thus, virtualization decouples higher-level
software and OSs from the underlying computing system [118].

VMs are a key component of hardware virtualization, standing in
for a ‘‘real’’ computer running an OS. Emulating a computer system is
what VMs do. A hypervisor makes a copy of the underlying hardware
so that several OSs can share the same resources [119]. Despite being
around for half a century, VMs are experiencing a surge in popularity
because of the rise of the mobile workforce and desktop PCs. Server
virtualization, which employs a hypervisor to effectively ‘‘duplicate’’
the underlying hardware, is a primary use case for virtualization tech-
nology in the corporate world [120]. In a non-virtualized setting, the
guest OS generally works in tandem with the hardware [121].

OSs may be virtualized and continue functioning as if running on
hardware, giving businesses access to similar performance levels while
reducing hardware costs [122]. The majority of guest OSs do not need
full access to hardware; therefore, even if virtualization efficiency is
lower than hardware efficacy, it remains preferred. This means firms
are less reliant on a single piece of hardware and have more leeway to
make necessary changes.

Following the success of server virtualization, other sections of the
data center have also begun to implement the same approach. Virtu-
alization technology for OSs has been around for generations [123].
In this implementation, the software enables the hardware to run
several OSs in parallel. Companies that want to adopt a cloud-like IT
infrastructure should prioritize virtualization. Using server resources
more effectively is one of the primary benefits of virtualizing a data
center [124]. Thanks to virtualization, IT departments may use a single
VM to host a wide variety of applications, workloads, and OSs, with
the flexibility to add or subtract resources as required easily. The use
of virtualization allows firms to expand readily. Organizations may
better monitor resource utilization and react to shifting needs using
such systems.

4.2.1.2.3. Multicore processors For improved performance and
more efficient use of energy, integrated circuits with several pro-
cessing cores, or ‘‘cores’’, are becoming increasingly common. Fur-
thermore, these processors enable more effective parallel processing
and multithreading, allowing for simultaneous processing of numerous
jobs [125]. A computer with a dual-core arrangement is functionally
equivalent to one with two or more individual CPUs. Sharing a socket
between two CPUs accelerates communication between them. The
use of processors with multiple cores is one technique to enhance
processor performance while surpassing the practical restrictions of
semiconductor manufacturing and design. Using several processors
helps prevent any potentially dangerous overheating [126]. Multicore
processors are compatible with any up-to-date computer hardware
architectures. These days, multicore processors are standard in desktop
and portable computers. Nevertheless, the actual power and utility of
these CPUs depend on software built to leverage parallelism [127].
Application tasks are broken up into many processing threads in a
parallel strategy, distributing and managing them over multiple CPUs.

4.2.1.3. Trends/observations. The main trends and observations re-
garding general-purpose computing are as follows:

4.2.1.3.1. Software systems Web-based computing and Software
Engineering (SE) are closely related disciplines. For instance, service-
oriented SE provides various advantages to the software creation proce-
dure and app development by merging the greatest elements of services
and the cloud. In contrast to cloud computing, which is concerned
with effectively transmitting services to consumers using adaptable
virtualization of resources and load balancing, service-oriented SE is
concerned with architectural design (service searching and composi-
tion) [128].

Customers and developers are both essential to the evolution of
hardware innovations, which is why software engineering is a cru-
cial discipline [129]. With the help of distributed computing and
virtualization, customers may set up automatically managed VMs and
cloud services for their initiatives and applications. Thanks to cloud
services, teams working on software may now more easily collaborate
on the development, testing, and distribution of their products. Here
are some scenarios in which cloud computing might improve software
engineering: The production timeline can be compressed [130]. As a
result of the availability of ample computing resources made possible
by cloud computing and virtualization, software engineers no longer
need to rely just on a single physical computer. The time it takes to
install the required applications may be decreased by retrieving cloud
services, indicating that development activities can be performed with
increased parallelism thanks to cloud computing. Third, VMs and cloud
instances may substantially improve the setup and delivery procedures.

Using sufficient virtualization resources from a private or public
cloud, developers can speed up the building and testing process, which
is otherwise, extremely time-consuming [123]. To circumvent this, a
simplified system for managing code versions is required. In software
development, code branches are used for refining and adding features.
With cloud computing, there is no need to invest in or lease expensive
hardware only to store some code. A distributed software engineering
team may access apps more easily in a cloud setting, and service
quality can be enhanced through dynamic resource allocation. As a
result, the software construction process is streamlined thanks to cloud
computing, which eliminates the need for development servers to rely
on specific physical computers [129]. Nevertheless, there are obstacles
when merging software engineering and cloud computing. The majority
of the difficulties are with moving the data. Because different cloud
providers use various APIs to offer cloud services, migrating software
and data from one cloud to another while avoiding vendor lock-in is
challenging. Avoiding over-reliance on any one set of APIs is one way to
fix this problem while building and releasing applications in the cloud.
The problem of dependability and accessibility is another obstacle. If
everything is moved to the cloud, it will be difficult to retrieve the data
if the cloud is compromised by hackers or affected by an unexpected
calamity. The engineering teams are responsible for creating a local
backup of their work [131].

Cloud computing allows software engineering academics to study
multinational software development. Several investigations have ex-
amined the feasibility of using cloud computing to lower operational,
delivery, and software development expenses. Researchers have inves-
tigated the feasibility of replacing services with a cloud-based platform
for student-to-student knowledge exchange and collaboration [132].
Software systems have been supplanted by systems running on the
cloud to reduce expenditures and maximize the utilization of resources.
The conventional data management techniques have become increas-
ingly cumbersome in the past few years due to the rapid increase in
available data. A new frontier for study in software engineering has
opened up thanks to the IoT, Blockchain (the distributed ledger), and
ML/AI, with data management being the primary challenge [133].
These studies also provide a springboard for further study and innova-
tive approaches to cloud data management, leading to the development
of advanced technologies like Cisco’s pioneering fog computing [134].
Enterprise software developers are creating an abstraction layer, or
‘‘Blockchain-as-a-Service’’, and selling it to other businesses as a sub-
scription service [4]. These numerous new fields rely significantly on
software engineering, yet they could not exist without it.

4.2.1.3.2. Simulations The capacity to carry out research, ana-
lyze strengths and shortcomings, and demonstrate viability is hampered
in new or emerging computing domains due to the lack of mature
technology and sufficient infrastructure. In many cases, the time and
resources needed to acquire the necessary physical resources make
it impractical to conduct the necessary research [79]. An alternative
approach that can approximate a physical environment is a simulator.
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Additionally, simulation offers the ability to test suggested hypotheses
in lightweight and low-cost settings. Real-world testing of novel meth-
ods is difficult and expensive because of the time and effort required
to gather the necessary hardware resources (particularly for large-scale
tests) and create the necessary software applications and systems [135].
Investigators demonstrate the viability of their ideas by modeling and
simulation, and then conduct tests to confirm their concepts in a mon-
itored environment utilizing simulation tools. Simulation software pro-
vides a convenient setting for testing solutions to real-world issues by
allowing users to experiment and see what happens [136]. If a commer-
cially available simulator is inadequate for user needs, then researchers
should consider building their own, complete with graphical user in-
terfaces. This is especially true if users need to simulate components
of emerging computer architectures [137]. Researchers could benefit
greatly from using a simulator to formulate questions and analyze dif-
ferent theoretical frameworks in simulated setups, therefore stimulating
more research and fostering the development of communities within
the relevant field.

4.2.2. Specialized computing
In this section, we discuss the main focus or paradigms, technologies

or impact areas, and various trends or observations within specialized
computing.

4.2.2.1. Focus/paradigms. The following are the main focus or
paradigms for Specialized Computing:

4.2.2.1.1. Reconfigurable computing The modern paradigm of
reconfigurable computing enables hardware components to swiftly al-
ter their configuration and functioning in response to changing process-
ing needs. Reconfigurable computer devices, such as
Field-Programmable Gate Arrays (FPGAs), can be reprogrammed to
perform a variety of different functions [138]. The main function of
reconfigurable computing is to fill the void among general-purpose
CPUs and Application-Specific Integrated Circuits (ASICs) [19]. It al-
lows hardware to be optimized for efficiency, power efficiency, and
flexibility by matching application requirements. Static and dynamic
switching are the two primary modes of operation for reconfigurable
technology. In static reconfiguration, the component settings are ad-
justed prior to the computer starting to compute. However, dynamic
reconfiguration permits hardware changes to be made while the system
is running, allowing for dynamic modifications to hardware behavior.

4.2.2.1.2. Domain-specific architectures As computing and the
digital transformation spread to various use cases, such as cloud
(AI/HPC), networking, edge, the IoT, and self-driving cars, highly
domain-specific computational tasks are making it more likely that
Domain-Specific Architectures (DSAs) can enable big performance gains
[139]. Using ChatGPT and other comparable software that are pow-
ered by large language models – which are fundamental to achieving
generative AI – provides greater specialization inside AI workloads
at extremely high volume, which motivates further hardware spe-
cialization [81]. DSAs, or application-domain-specific hardware and
software, have substantial market potential. As a result of their superior
performance on tasks that profit from a significant amount of parallel
computing, such as AI workloads (learning and predicting), GPUs and
Tensor Processing Units (TPUs) are currently controlling a sizable
portion of the data center market [140]. Meanwhile, accelerations of
15–50 times the original speed, depending on the workload, are not
uncommon. In the automobile industry, minimal latency and high-
performance inference are provided via tailor-made solutions from
industry leaders.

4.2.2.1.3. Exascale computing To handle the massive compu-
tations required by convergent modeling, simulation, AI, and data
analysis, an entirely novel type of supercomputer called exascale com-
puting has emerged [2]. This is motivated by advanced computational
needs in science and engineering.

Exascale computing (also supercomputing) becomes essential to
expedite the generation of knowledge. Researchers and technologists

may employ data analysis driven by exascale supercomputing to ex-
pand the frontiers of our existing understanding and promote break-
through ideas. Supercomputing capabilities are in high demand as the
world moves towards exascale computing to ensure continued scientific
and technological advancements, while our civilization’s technological
and scientific frameworks are progressing quickly thanks to exascale
computing [141]. The immense potential of these tools necessitates
their careful operation, especially as cultures worldwide undergo rapid
changes in their moral frameworks and their perceptions of what
it means to live sustainably. As such, novel responses to formerly
intractable issues are being uncovered thanks to exascale computing.

Exascale supercomputers are prohibitively expensive to construct;
thus academics and scientists rely on funding to lease them instead
of buying their own [142]. Exascale computing systems produce enor-
mous quantities of heat because of the volume of data they process.
They require extremely cold environments to be stored in or unique
cooling mechanisms built into the systems and racks themselves for
optimal performance. Differentiating them from other types of super-
computers and quantum computers, they are computer systems with
the largest capacity and most powerful hardware [143].

To further our understanding of the universe, exascale computers
can model elementary physical processes like the granular interactions
of atoms. Quite a few sectors rely on this capacity to analyze, forecast,
and construct the world of tomorrow: for instance, better predict
the weather, investigate in detail the interaction between rain, wind,
clouds, and various other atmospheric occurrences, analyze their effects
on one another at a molecular level and so on. Mathematical formulas
can be used to determine the millisecond-by-millisecond effects of all
forces acting in a certain environment at a specific time [144]. These
seemingly trivial interactions rapidly generate billions of possible per-
mutations, which need trillions of mathematical equations to calculate
and analyze. This kind of speed is only achievable on an exascale
machine. By studying the results of these computations, researchers can
gain a deeper insight into the nature of our universe [143]. Exascale
supercomputers, despite their challenges, can literally increase our
understanding, enabling us to address the problems of the future.

4.2.2.1.4. Analog computing A novel approach may minimize
errors in ultra-fast analog optical neural networks. Larger and more
complicated machine-learning models need stronger and more effective
computing gear. However, standard digital computers are lagging.
Compared to a digital neural network, an analog optical network’s
performance in areas like image classification and voice recognition
is comparable. However, its speed and energy efficiency far exceed
those of its digital counterparts [145]. Nevertheless, hardware faults
in these analog devices might impact the accuracy of calculations. One
possible source of this inaccuracy is microscopic flaws in the hardware
itself [146]. Errors tend to multiply rapidly in a complex optical neural
network. Even when using error-correction approaches, due to the basic
features of the components that make up an optical neural network,
a certain degree of error is inescapable [147]. Conversely, the optical
switches that make up the network’s architecture can reduce mistakes
they typically accrue by adding a modest hardware component.

4.2.2.1.5. Neuromorphic computing When applied to AI, neuro-
morphic computing makes it possible for AI to learn and make decisions
independently, significantly improving over the first generation of de-
veloping AI. To acquire abilities in areas like recognizing voice and
sophisticated tactical games, including chess and Go, neuromorphic
algorithms are now involved in deep learning [145].

Next-generation AI will imitate the human brain’s capacity to com-
prehend and react to circumstances instead of merely operating from
formulaic algorithms [148]. When it comes to understanding what they
have read, neuromorphic computing systems will seek out patterns and
use their ‘common sense’ and the surrounding context. When Google’s
Deep Dream AI was programmed to hunt for dog faces, it notably
showed the limitations of algorithm-only computer systems [147]: Any
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images that it interpreted as having dog faces were transformed into
dog faces.

Third-generation AI computing attempts to simulate the elaborate
structure of a living brain’s neural network [149]. This calls for AI with
computing and analytic capabilities on par with the extremely efficient
biological brain. To demonstrate their exceptional energy economy,
human brains can surpass supercomputers using less than 20 watts
of electricity. Spiking Neural Networks (SNN) are the AI equivalent
of our synaptic neural network [150]. They leverage many layers of
artificial neurons, and each spiking neuron may fire and interact with
its neighbors in response to external inputs.

Most AI neural network architectures follow the Von Neumann
design [106], which divides the memory and computation into discrete
nodes. Computers exchange information by reading it from memory,
sending it to the CPU for processing, and then returning it to storage.
This constant back-and-forth wastes a lot of time and effort. It causes
a slowdown that becomes more noticeable while processing huge data
sets. As a response, multiple neuromorphic devices can be utilized to
supplement and improve the performance of traditional technologies,
such as CPUs, GPUs, and FPGAs [146]. Low-power neurological sys-
tems may perform powerful activities, including learning, browsing,
and monitoring. A practical instance would involve immediate voice
recognition on mobile phones without the CPU needing to interact with
the cloud.

4.2.2.2. Technologies/impact areas. The key technologies and affected
domains for Specialized Computing include:

(1) Graphics Processing Unit (GPU): GPUs have rapidly risen in
prominence as a crucial component of both home and enterprise
computers [18]. A GPU is a special type of computer chip
deployed in a variety of application domains, most notably the
rendering of moving images. While GPUs are best recognized
for their usage in gaming, they are also finding increasing
application in the fields of creative creation and AI [151]. The
initial purpose of GPUs was to speed up the display of 3D visuals.
They improved their functionality as they got more adaptable
and programmable over time. This paved the way for more
complex lighting and shadow characteristics and photorealistic
environments to be implemented by graphics developers. Ad-
ditional engineers started using GPUs to drastically speed up
various tasks in deep learning, HPC, and other fields [138].

(2) Compute Unified Device Architecture (CUDA): The demand for
more powerful computers grows daily. As a result of constraints
like size, climate, etc., vendors throughout the world are finding
it difficult to make future improvements to CPUs [18]. Service
providers that provide solutions in this kind of environment have
begun to seek out performance improvements elsewhere. The
use of GPUs for parallel processing is one option that enables
significant speed gains [152]. The total number of cores in
a GPU is significantly greater than that of a CPU. Although
CPUs are designed for sequential processing, offloading them to
GPUs enables parallel processing. For general-purpose comput-
ing on NVIDIA’s GPUs, users can rely on CUDA, which allows for
the execution of processes in parallel on the GPU without any
specific order requirement [138]. Offloading compute-intensive
activities to Nvidia’s GPU using CUDA is straightforward thanks
to the library’s support for the popular C, C++, and Fortran
programming languages [152]. CUDA is employed in scenarios
needing extensive computational power or suitable for paral-
lel processing to achieve high performance. Fields such as AI,
healthcare analysis, science, digital transformation, cryptocur-
rency mining, and scientific modeling, among others, depend on
CUDA technology.

4.2.2.3. Trends/observations. The main trends and observations re-
garding Specialized Computing are as follows:
Large-Scale ML: As big data grows, ML algorithms with many vari-

ables are needed to ensure that these models can handle very large
data sets and make accurate predictions, including hidden features
with many dimensions, middle representations, and selection func-
tions [153]. The need for ML systems to train complicated models
with millions to trillions of variables has increased as a result [154].
Distributed clusters of tens to hundreds of devices are often used for
ML systems because they can handle the high computing needs of
ML algorithms at these sizes. Yet, developing algorithms and software
systems for these distributed clusters requires intensive analysis and
design [155]. The latest advances in industrial-scale ML have focused
on exploring new concepts and approaches for (a) highly specialized
monolithic concepts for large-scale straight applications, such as differ-
ent distributed topic models or regression models, and (b) for adaptable
and readily programmable universally applicable distributed ML plat-
forms such as GraphLab based on vertex programming and Petuum
using a parameter-driven server [156]. It is widely acknowledged
that knowledge of distributed system topologies and programming is
essential; however, ML-rooted statistical and algorithmic discoveries
can yield even more fruit for large-scale ML systems in the form
of principles and techniques specific to distributed machine learning
applications. These guidelines and techniques shed light on several
crucial questions:

• How to share an ML application among nodes?
• How to connect machine-learning calculations with machine-to-
machine dialog?
• How should one proceed with having such a conversation?
• What ought to be conveyed among machines? And, should they
cover many big ML-related topics, from practical use cases to
technical implementations to theoretical investigations [98]?

Understanding how these concepts and tactics may be made effective,
generally applicable, and easy to develop is the primary goal of large-
scale ML systems studies, as is ensuring that scientifically validated
accuracy and scalability assurances underpin them.

4.3. Centralized vs. Decentralized computing

A central server controls and processes most of the data in a
centralized network, whereas no single entity has influence over a
decentralized network.

4.3.1. Centralized computing
In this section, we discuss the main focus or paradigms, technologies

or impact areas, and various trends or observations within centralized
computing.

4.3.1.1. Focus/paradigms. The following are the main focus or
paradigms for centralized computing:

(1) Cloud Computing : The adoption of cloud computing, which rev-
olutionized how end-users and software engineers interact with
applications and computing systems, led to the rise of technology
as the fifth utility [1]. Cloud computing was successfully ac-
cepted by giving consumers on-demand access to the computing
power they want, the freedom to modify their resource consump-
tion as needed, and the transparency of paying just whatever is
being utilized. Business groups, regulatory bodies, and universi-
ties have all been quick to endorse it since it first appeared. Like
contemporary society relying on essential utilities, the cloud has
grown into the economy’s foundation by providing immediate
utilization of subscription-driven computing resources [157]. As
a result of using cloud technology, innovative companies can be
launched quickly, existing ones can expand globally, advances
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in science can be sped up, and novel computing methods can be
developed for ubiquitous and pervasive apps [34]. SaaS, PaaS,
and IaaS have served as the three primary service models that
have pushed uptake in the cloud thus far [35].

• Mobile Cloud Computing : To provide value to mobility consumers,
network operators, and cloud service providers, mobile cloud
computing integrates mobile devices, cloud computing, and com-
munication networks. With the help of mobile cloud computing,
a wide variety of handheld gadgets can run complex mobile apps.
Under this paradigm, handling and storing data is done by servers
rather than individual mobile devices [32]. Several advantages
result from the use of mobile cloud computing apps based on this
architecture: (i) battery life has significantly increased; (ii) there
has been an increase in both the speed and size of data being
stored and processed; (iii) the system’s emphasis on ‘‘store once,
access anywhere’’ eliminates complex data synchronization; and
(iv) stability and scalability have been dramatically enhanced.
Nevertheless, inadequate network capacity is a significant chal-
lenge for mobile cloud computing [33]. Wireless mobile cloud
services have capacity constraints in contrast to their cable coun-
terparts. The spectrum of mobile devices offers a wide range of
wavelengths. This has resulted in slower access speeds, as much as
one-third in comparison to a wired network. Due to the increased
likelihood of data loss on a wireless network, it is more challeng-
ing to recognize and deal with security risks on mobile devices
than on desktop computers [158]. Customers frequently report
issues with accessibility to services, including network outages,
overcrowding on public transit, lack of coverage, etc. Customers
may occasionally experience a low-energy signal, which slows
down access and impacts data storage. Mobile cloud computing
is employed on several OS-driven platforms, including Apple
iOS, Android, and Windows Phone, resulting in network mod-
ifications that need cross-platform compatibility [159]. Mobile
gadgets have a greater environmental impact due to their high
energy consumption and low output [60]. As the use of mobile
cloud computing grows, so does the problem of the increased
drain on mobile devices’ batteries. A device’s battery life is crucial
for using its software and executing other tasks. Although the
modified code is tiny in size, offloading uses more energy than
running it locally [160].
• Green Cloud Computing : In the last few decades, Information
and Communication Technology (ICT) has significantly evolved,
drawing on technological advancements from the past two cen-
turies. This evolution has elevated computing to the status of a
fundamental service, akin to traditional utilities such as water,
electricity, gas, and telephony, thereby establishing it as the fifth
essential utility in modern society [161]. Modern cloud comput-
ing systems are becoming progressively large-scale and dispersed
as more and more businesses and organizations have shifted
their computing workload to the cloud—while others opt out of
maintaining code altogether and instead leverage cloud-powered
SaaS services. A cloud computing infrastructure of this magni-
tude not only offers more affordable and dependable services
but also, increases energy effectiveness and reduces the global
community’s carbon impact [162]. Every minor enhancement
is much appreciated. In an effort to achieve zero carbon emis-
sions, the community has recently been aggressively exploring a
more sustainable version of cloud computing called green cloud
computing to lessen reliance on fossil fuels and curb its carbon
footprint [163].
Green cloud computing is a system that considers its constraints
and goals to minimize energy consumption. Researchers are fo-
cusing on scheduling workloads and resources in light of carbon
emissions, in order to increase the effectiveness of the resources
used [164]. Additionally, forecasting problems with hardware

and creating management systems to use hardware with varying
degrees of dependability can maximize device lifetime and reuse.
Further, utilizing micro-data centers – rather than standard server
data centers – is a promising approach to boost efficiency and save
costs. These facilities can accommodate future growth, serve huge
populations, and dissipate heat effectively [165].
Furthermore, virtualization is another ecologically friendly tech-
nique that boosts the versatility of system resources. Through
improved tracking and control, servers may pool their resources
more effectively [166]. Innovations and practices that support
sustainable development are constantly being developed as orga-
nizations rely more heavily on cloud services to enable ‘‘green
cloud computing’’.

4.3.1.2. Technologies/impact areas. The key technologies and affected
domains for centralized computing include:

(1) Cloud Storage Technologies: Files and information stored in the
cloud may be accessed from anywhere with a web connection
or via secure network access. Transferring files to the cloud puts
the responsibility for data security squarely on the shoulders of
the cloud provider, rather than consumers. The service provider
hosts, manages, and maintains the servers where user data is
stored, and they also guarantee that users always have access to
their files [167]. When compared to storing data on local discs or
storage networks, cloud-based storage is a more affordable and
scalable option. There is a limit to the quantity of information
that can be stored on a hard disc. When users exhaust internal
storage space, they must copy their data to removable media.
The difference between on-premises storage networks and cloud
storage is that the latter sends data to servers located in a remote
data center. VMs, which are abstracted on top of an actual
server, make up the vast majority of users’ servers [168]. Known
as autoscaling, a cloud provider spins up more virtual servers
as necessary to accommodate users’ ever-increasing storage de-
mands. Files, blocks, and objects are the three primary categories
of cloud storage, which are accessible in private, public, and
hybrid cloud configurations.

(2) Microservices: Microservices are a type of application architec-
ture in which several autonomous services collaborate using
simple APIs. A cloud-native software development method, mi-
croservice architecture separates an app’s main functionality
into its own modules [169]. By compartmentalizing the app’s
components, the development and operations teams may collab-
orate without interfering with each other. If several engineers
can collaborate on the same project simultaneously, it takes less
time to complete. This is in contrast with the monolith soft-
ware architecture, which had been the standard for application
development in the past [170].
All of an app’s features and services are tightly bound together
and run as one seamless whole under a monolithic architec-
ture [171]. The application’s architecture becomes more in-
volved whenever new features are introduced, or existing ones
enhanced. Because of this, optimizing a single feature inside the
application requires disassembling the whole thing, which is a
time-consuming and tedious process. This additionally necessi-
tates that scaling the application as a whole is required if scaling
any one process inside it—rather than just scaling out just that
overloaded element [172].
Microservice architectures separate an app’s essential features
into individual processes. To adapt to shifting business require-
ments, software engineering teams may develop and maintain
new elements independently of the rest of the application. The
monolith has been the standard for application development
in the past. An application’s features and services are tightly
bound together and run seamlessly under a monolithic architec-
ture [173].
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Microservices’ malleability might hasten the deployment of novel
modifications, necessitating the development of novel patterns.
In software engineering, a ‘‘pattern’’ is supposed to refer to any
mathematical approach that is known to function. An ‘‘anti-
pattern’’ is an erroneous pattern that is often applied to achieve
a solution but often ends up causing even more problems.

(3) Container Technologies: Given the advent of Docker, container
technology has gained widespread use in the cloud comput-
ing sector, where it is used to efficiently execute user work-
loads [174]. Since containers are independent entities that may
run without sharing data with other containers, this technol-
ogy provides an inexpensive cloud environment for deploying
applications. In a container, applications deployed on the same
hardware server can share the same underlying resources while
maintaining their own distinct processes [175].
Container technology leverages Linux kernel capabilities, such
as libcontainer and control groups (cgroups). By utiliz-
ing cgroups and namespaces, Docker can operate containers
independently within a host node, providing the container with
its own dedicated set of runtime resources (including the host’s
networked devices, disc space, memory, and CPU). In addition,
namespaces provide for more efficient application deployment
and development by separating the program’s perspective from
the operating environment [176]. Furthermore, containerization
becomes an example of creating, publishing, and running appli-
cations in an isolated way and is indicated as a Container as a
Service (CaaS). There are three primary advantages of CaaS: (1)
containers boot up in no time at all; (2) they consume fewer
resources than VMs; and (3) many instances may be operated at
once using container technology [177].
Recent investigations [178] into container technology reveal
unanswered research questions. Firstly, containers are less se-
cure than VMs since they share the kernel, but this is something
that may be fixed in future versions with the help of Unikernel.
Secondly, optimizing container performance is a time-consuming
endeavor that requires buffer space. Swarm and Kubernetes are
two examples of cutting-edge cloud computing tools that may
be used for handling user-created QoS-based container clus-
ters [179,180]. Thirdly, because containers share the same com-
puting/hardware resources, co-located tenants can suffer from
unpredictable performance interference when the CPU Shares
algorithm is used, and even worse, they can leak information
enabling side-channel attacks to be performed by a malicious
tenant [181].

(4) Serverless Computing : The use of serverless computing in the
creation of apps for the cloud is gaining traction [182]. The goal
of serverless computing is to ensure that only the most effective
serverless technologies are deployed, reducing costs while in-
creasing benefits [183]. Meanwhile, companies in all industries
are adopting AI since it is the next generation of innovation. Due
to these AI-driven platforms, we have been able to make more
accurate, timely decisions [184]. They have altered the methods
used to conduct business, communicate with customers, and
assess company information. Complex ML systems can signifi-
cantly affect developers’ output and efficiency [185]. However,
switching to a serverless architecture may be able to solve many
of the issues that engineers face. The serverless design ensures
that the machine learning models are administered correctly and
that all available resources are utilized efficiently. Developers
will be able to devote a greater amount of time to training AI
models rather than maintaining the server environment [186].
Creating ML algorithms is a common practice when confronting
difficult problems. They perform tasks such as data analysis
and preprocessing, model training, and AI model tuning [186].
Serverless computing running AI tasks will provide for reliable
data storage and communication.

4.3.1.3. Trends/observations. The main trends and observations re-
garding centralized computing are as follows:

(1) AI-driven Computing : The fundamental benefit of autonomic com-
puting is a reduced overall cost of ownership. Therefore, the cost
of upkeep will be drastically reduced. The number of technicians
required to keep everything running smoothly will go down as a
result, too. Autonomous IT systems driven by AI will reduce the
time and money needed for installation and upkeep while also
improving IT system stability [4].
In accordance with higher-order benefits, businesses would be
more capable of handling their operations with the help of IT
systems that are able to adopt and execute directions based on
their business plan and allow for adjustments in reaction to
evolving circumstances. Using AI-based autonomic computing
has several advantages, including reducing the expense and
quantity of human labor needed to manage large server farms,
which is made possible through server consolidation [187].
Using AI for self-driving computers will simplify system adminis-
tration. As a result, computer systems will be greatly enhanced.
Server load distribution is another potential use case since it
allows for parallel data processing across several computers.
Meanwhile from an energy perspective, analyzing the power grid
in real-time allows for more cost-effective and long-term power
policy decisions to be made [1].
There are benefits to using remote data centers instead of keep-
ing data in-house. Despite the hefty upfront expenses, businesses
may obtain AI technology relatively easily by paying a monthly
fee on the cloud. When employing an AI-powered system, there
may be no need for human involvement in data analysis [188].
Using AI in the cloud can potentially make businesses more
effective, strategic, and insight-driven. AI can increase output by
automating routine processes and data analysis without human
intervention [74]. For instance, integrating AI technology with
Google Cloud Stream statistics could enable real-time person-
alization, anomaly detection, and management scenario predic-
tion [189]. As the number of cloud-based applications grows,
it is essential to implement a system of rigorous data protec-
tion based on intelligence. Network security systems backed by
AI-enabled traffic tracing and analysis; AI-enabled devices can
sound an alarm as soon as an anomaly is detected. Such methods
will ensure keeping sensitive data protected.

(2) Net Zero Emissions: Several data center operators have commit-
ted to being carbon neutral by the year 2030 as sustainability
becomes an increasingly hot subject in the industry [190]. But
are these promises only a reaction to the possibility of legisla-
tion, or is it actually making progress? If business planes are a
major contributor to global warming, how do they plan to cut
their carbon footprint so rapidly? The data centers’ businesses in
the United States use about as much power as the state of New
Jersey [191]. If all of the power came from renewable resources,
this level of demand would not be a problem. Liquid cooling
and energy generation both require water, and a typical data
center uses as much water as an urban area of 30,000 to 50,000
individuals [192]. Becoming a pioneer in sustainability might
also bring up emerging markets. Companies are going to utilize
green data centers to offset their carbon footprints as they grow
and become more energy efficient and sustainable [193]. A car
company, for instance, might employ emission-free data centers
for all of its corporate services. Last but not least, adopting envi-
ronmentally friendly practices may help businesses comply with
environmental rules, avoid fines, and get access to attractive,
low-interest, long-term capital investment possibilities [194].

4.3.2. Decentralized computing
In this section, we discuss the main focus or paradigms, tech-

nologies or impact areas, and various trends or observations within
decentralized computing.
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4.3.2.1. Focus/paradigms. The following are the main focus or
paradigms for decentralized computing:

(1) Parallel Computing : Through the utilization of several processor
cores, parallel computing can perform multiple tasks simultane-
ously. The ability to divide and conquer a work into smaller,
more manageable chunks is what sets parallel computing apart
from its serial counterpart [195]. Real-world events may be
modeled and simulated effectively on parallel computing sys-
tems [196]. As processing and network speeds continue to in-
crease at an exponential rate, adopting a parallel architecture
is no longer just a nice-to-have. The IoT and big data will
eventually require us to process terabytes of data simultane-
ously. Devices such as dual-core, quad-core, eight-core, and even
56-core CPUs utilize parallel computing. Therefore, although
parallel computers are not brand new, this is the problem: These
new technologies are spitting up ever-faster networks, and com-
puter efficiency has surged 250,000 times in 20 years [197]. For
instance, AI technologies will sift through more than 100 million
patients’ heart rhythms in the medical sector alone, looking for
signals of A-fib or V-tach, saving many lives in the process [196].
When the systems must slowly move through each procedure,
they will not be able to complete it on time. As great as the
potential is, parallel computing may be nearing the edge of what
it can achieve with conventional processors. Parallel calculations
may see significant improvements in the coming decade, thanks
to quantum computers. In a current, unauthorized announce-
ment, Google claimed to have achieved quantum supremacy [76,
198]. If it is accurate, then Google has created a machine that
can perform in 4 min whatever would require the most capable
supercomputer on the planet 10,000 years to achieve [51].
Quantum computing is a major step forward for parallel com-
putation. Imagine it like this: Processing in a serial fashion
does one task at a time. An 8-core simultaneous computer can
do eight tasks simultaneously. There are fewer particles in the
universe than there are qubits’ states in a 300-qubit quantum
computer [198].

(2) Fog Computing : The proliferation of IoT devices and the ef-
fort needed for analyzing and storing enormous amounts of
knowledge led to the development of fog computing as a comple-
mentary service to traditional cloud computing. Fog computing,
which provides fundamental network functions, can back IoT
apps that require a small response-time window [37]. Due to
the dispersed, diverse, and constrained nature of the fog com-
puting paradigm, it is challenging to spread IoT application
operations effectively within fog nodes to meet QoS and Qual-
ity of Experience (QoE) limitations [39]. Vehicle-to-Everything
(V2X), medical tracking, and manufacturing automation adopt
fog computing as it delivers the ability to compute close to the
consumer to match fast response demands for these applications.
Due to the proliferation of IoT devices, these applications gen-
erate massive volumes of data. Cloud computing falls short of
satisfying latency demands due to the transmission of data over
long distances and network overload. Bridging data sources and
CDCs, it sets up a network of gateways, routers, switches, and
compute resources [199]. The use of fog computing enhances
the capabilities of cloud computing due to its minimal latency
and cost-effectiveness, as well as the decrease in bandwidth
necessary for the transit of data. It is more secure to process
confidential information locally at the fog nodes, and if/when
needed, only submit trained models – not raw data – to interme-
diate nodes and eventually the cloud for aggregation, e.g., via
federated learning [200]. These applications collect data from
various IoT devices to deliver useful insights and deal with
latency issues [201].

(3) P2P Network: This network is formed in its most basic form
when two or more PCs are linked to one another and exchange
resources without passing through a third computer that acts as a
server [23]. A P2P network might be a spontaneous connection,
which would consist of two or more computers linked together
using a Universal Serial Bus for the purpose of file sharing. In
a fixed infrastructure, P2P networking utilizes copper lines to
connect six PCs located in a single workplace [24]. Alternately,
a peer-to-peer network may be an ecosystem that is considerably
larger in scale and is characterized by the use of specialized
protocols and apps to establish direct links between consumers
over the web.

(4) Osmotic Computing : This model has become pervasive in various
settings, from urban planning and healthcare to linked vehicles
and Industry 4.0 [46]. It lays the groundwork for a system in
which vehicles, pedestrians, and urban infrastructure interact
and share real-time information to improve traffic flow. As more
people use IoT applications housed in different types of networks
(cloud, edge, and IoT), it is now clear that the providers who
make up the IoT’s service ecosystem (data, service, network, and
equipment) are all interconnected [48]. In this setting, buyers
and sellers implicitly expect their data and services to be secure
and trustworthy. There is no requirement for familiarity with the
federated ecosystem (service, data, and network) for users of the
IoT apps to connect with many applications using a web-based
user interface [202]. Users send their information to application
providers without realizing that those trusted suppliers may
share that information with any third parties (such as a company
that hosts analytics on the cloud or a company that provides the
infrastructure for mobile devices). Security issues may arise for
software due to the wide variety of computing devices available
from different manufacturers and their presence in an untrusted
realm with no overarching authority [203].

(5) Dew Computing : It stands out because of its near-complete in-
dependence from Internet access, its users’ physical closeness
to servers, its low latency, outstanding speed, excellent user
interface, and adaptability in terms of control available to users
[204]. Instead of serving as a replacement for cloud computing,
dew computing serves as a useful supplement. In the not-too-
distant future, people throughout the globe might be able to
limit their time spent online, increasing their efficiency and
effectiveness. Countries have adopted measures to handle the
influx of Internet users caused by the COVID-19 blackout. To
lighten the Internet’s burden, video streaming services are reduc-
ing visual quality, while others just update their software outside
of peak viewing times. The dew computer’s proximity to the user
in the design means it can facilitate all electronic interactions
with fewer steps and more efficient data transfer [204].

(6) Edge Computing : Since its origins in content delivery networks,
distributed computing has matured into the mainstream as an
edge computing paradigm that places resources near the client’s
end. Big data is typically best stored in the cloud, whereas
immediate information created by consumers and exclusively
for the customer needs computing power and storage on the
edge [40]. To accommodate growing mobile user needs, cloud
providers have realized they must shift crucial processing to the
device.
With its high performance and low cost, edge computing is a
key driver for AI. This can be the most helpful method to see
how AI relates to edge computing. Due to the data- and compute-
intensive characteristics of AI, edge computing aids AI-powered
applications in resolving their technical problems. AI/ML sys-
tems consume large amounts of data to discover trends and
provide trustworthy recommendations [205]. AI use cases that
need video analysis face latency challenges and rising expenses
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due to the cloud-based transmission of high-definition video
data.
The delay and reliance on central processing in cloud comput-
ing are problematic when ML inputs, outputs, and (re-)training
data must be handled in real-time. It is possible to perform
computation and decisions at the edge, eliminating the need
for costly backbone connections and allowing immediate action
on the data. Client information regarding location is stored at
the edge instead of in the cloud for security reasons. When
data is streamed to the cloud, all relevant data and datasets
are uploaded. Edge networks for computing have introduced
several difficulties associated with infrastructure management
because of their dispersed and intricate nature [206]. Managing
resources efficiently requires carrying out several tasks. Exam-
ples include VM consolidation, resource optimization, energy
efficiency, workload prediction, and scheduling. Resource man-
agement has historically relied on static, established guidelines,
mostly based on operations research methodologies, even in
dynamic, rapidly changing settings and in immediate situations.
To deal with these issues, especially when choices must be made,
AI-based solutions are being used more and more frequently.
AI/ML methods have become increasingly common in the past
few years [207]. However, selecting where on edge to carry out
a task can be challenging, as it requires considering tradeoffs
like the volume of data on edge servers and the ability to move
users [208]. The cache has to anticipate the consumer’s next
destination for it to build on the notion of mobility [209]. It is
situated at a suitable edge to cut costs and energy consumption.
Several different methods, including genetic algorithms, neural
network models, and reinforcement learning, are utilized in this
process.

• Mobile Edge Computing : Mobile Edge Computing – now Multi-
access Edge Computing (MEC) – expands its possibilities by in-
troducing cloud computing to the web’s edge. Initially targeted
solely on the edge nodes of mobile networks, MEC has since
expanded its scope to include conventional networks and, ul-
timately, integrated networks. While typical cloud computing
occurs on servers located far from the end-user and devices,
MEC enables activities to be carried out at base stations, cen-
tralized controllers, and various other aggregating sites on the
Internet [210]. MEC improves consumer QoE by redistributing
cloud computing workloads to customers’ individual, on-premises
servers, thus relieving congestion on mobile networks and low-
ering latency [211]. Innovative applications, services, and user
experiences are being unlocked at a dizzying rate thanks to ad-
vances in edge data generation, collection, and analysis and in
the transmission of data between devices and the cloud [212].
Because of this, MEC is accessible to consumers and businesses
in a wide range of contexts and industries. Integrating MEC into
a camera network improves the speed with which data may be
stored and processed. With sufficient processing power and band-
width, data may be immediately analyzed locally instead of being
sent to a remote data center [213]. Self-driving automobiles and
autonomous mobile robots (AMRs) are two examples of emerging
technologies that require powerful ML to arrive at judgments
rapidly. If such decisions take place in a remote data center, only
seconds might be the distinction between nearly escaping failures
and causing a tragedy [205]. Because the vehicle must avoid
hitting pedestrians, animals, and other vehicles, judgments must
be made on the vehicle. Machine-to-machine (M2M) communi-
cation will be essential to the success of 6G as the forthcoming
generation of a global wireless standard and the technological
advances that will emerge from it [101].

4.3.2.2. Technologies/impact areas. The key technologies and affected
domains for decentralized computing include:

4.3.2.2.1. Distributed ledger technology The computing
paradigms of fog, edge, and cloud are currently experiencing explosive
growth in both the business and academic worlds. Security, confiden-
tiality, and data integrity in these systems have become increasingly im-
portant as their practical applications have expanded [214]. Data loss,
theft, and corruption from malicious software like ransomware, trojans,
and viruses raise serious considerations in this area. For the system’s
and most importantly, end-users’ sake, it is crucial that data integrity
be maintained, and that no data be delivered from an unauthenticated
source. Medical care, innovative cities, transport, and monitoring are
all examples of applications of critical importance where the margin
for error is near zero [4].

• Blockchain: Because the majority of edge devices have limited
computing and storage capacity, developing an appropriate sys-
tem for data security, and preserving integrity is challenging. The
IoT and other real-time systems have used blockchain technology
for data security [134]. To store and monitor the worth of an asset
over time, a blockchain is, in theory, a set of distributed ledgers.
When new information is added to the system, it becomes a block
with a Proof of Work (PoW). A PoW is a hash value that cannot be
made without changing the PoW of the blocks that came before
it in the ledger. Miners create and verify these PoWs while also
mining blocks in the Fog network [215].
After a miner has completed the PoW, it broadcasts the newly
created block into the network, where the other nodes check its
legitimacy before joining it in the chain. Also, the fraudulent
change of data in a blockchain will not work unless at least half
of the copies of the data in question are changed individually by
carrying out the same actions. With such a strict time constraint,
modifying any data in the blockchain will be extremely difficult.
Network nodes must offer route selection, preservation, financial
services, and mining for the blockchain to function. Considering
these challenges, numerous groups have worked to develop solid
frameworks for combining blockchain and fog computing [133].
The majority of these systems employ a dynamic allocation min-
ing technique in which the least-used nodes mine and validate
the chains. In contrast, the remaining nodes are employed for
load balancing, computation, and data collection [108,216]. The
blockchain on a large portion of the network is replicated at
those nodes if a worker detects an issue in relation to blockchain
manipulation or signature forging. Furthermore, blockchains offer
public-key encryption with adaptive key exchange for further
security. Blockchain is a deceptively simple central notion, but
incorporating it into fog computing systems presents several chal-
lenges. Cost and upkeep are major factors surrounding storage
capacity and scalability. Only complete nodes (nodes that can
fully validate the transactions or blocks) store the whole chain,
which still results in massive storage needs. Data anonymity and
privacy issues are another blockchain shortcoming. Privacy is,
therefore, not incorporated into the blockchain architecture; con-
sequently, third-party tools are necessary for accomplishing these
crucial requirements [217]. This might result in less efficient
applications that demand more resources (both computationally
and in terms of storage space) to run. There are still numerous un-
resolved issues and potential future developments for blockchains
in IoT architectures [13].
Insufficient resources are the main barrier to excellent data pro-
tection and dependability. Because of resource limits, more com-
plex encryption or key generation cannot be incorporated with
these chains of data [218]. Only restricted encryption algorithms
may be implemented. By considering resource limitations, more
effective algorithms may be created. In high fault-rate scenar-
ios, wherein the edge nodes are susceptible to attack at any
time, modifying such chains is another essential approach [219].
Network and I/O bandwidth needs are greatly increased due to
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the necessity of revalidating blocks and copying chains from the
primary network. The majority of frameworks additionally use
a master–slave architecture, which introduces a potential weak
spot. In diverse settings, this is to be expected. The balance
between cost and reliability must be meticulously evaluated when
considering redundancy [132]. The blockchain flaws also con-
tinue to impact fog architectures. There is a need to develop
efficient consensus techniques that can validate blocks with little
block sharing and copying. Those curious might learn more about
blockchain by reading an in-depth report on the topic.

4.3.2.2.2. Federated learning Data is needed for ML model train-
ing, testing, and validation. Information is stored in locations accessible
by thousands or millions of users (devices). Rather than sharing the
entire dataset required to train a model, federated devices only com-
municate the parameters specific to that device’s instance of the model.
The parameter sharing mechanism is defined by the federated learning
topology [220]. Each participant in a centralized topology contributes
the parameters of the model to a centralized server, which then trains
the centralized model and returns the trained parameters to each partic-
ipant. Parameters are typically shared among a smaller group of peers
in other configurations, including peer-to-peer or hierarchical ones.
ML methods that require large or geographically dispersed data sets
may benefit from federated learning. However, there is no universally
applicable machine-learning solution [221]. Several unanswered ques-
tions remain about federated learning that researchers and developers
are hard at work trying to address [222,223]. There are a lot of
opportunities for efficient communication in federated learning. This
means the master server or other entities acquiring the parameters must
be able to cope with occasional interruptions or delays in transmission.
Getting all the federated devices to talk to each other and stay in sync
is still an open issue [222]. There is typically a lack of transparency
between federated parties and a central server regarding the computing
capacity of the federated parties. However, it is still challenging to
ensure that the training activities will operate on a diverse mix of
devices [220]. Federated parties’ data sets might be quite varied in
terms of data amount, reliability, and variety [224]. It is challenging to
predict how statistically diverse the training data sets will be and how
to protect against any detrimental effects this diversity may have. Effi-
cient deployment of privacy-enhancing solutions is required to prevent
data loss due to shared model parameters.

4.3.2.2.3. Bitcoin currency Transaction settlement using
blockchain technology was initially proposed with the digital (crypto-)
currency Bitcoin. The blockchain is a distributed ledger that ver-
ifies monetary transactions using PoW and may be configured to
record anything of worth. Blockchains, including bitcoins and cryp-
tocurrencies, are innovative in operating apps across networks [225].
Designers create smart contracts for Bitcoin money exchanges, which
are subsequently carried out on blockchain VMs [226].

Blockchain relies on a decentralized, concurrency-agnostic runtime
environment and consensus mechanism. Blocks of data may be dis-
seminated across Bitcoin ledgers via a peer-to-peer network with no
requirement for a centralized authority, thanks to the Bitcoin enabling
network [226]. The data in the blockchain is certified by the mem-
bers to keep it safe and open, and anybody is welcome to join the
network. Cloud computing may use this property, and the security
of cloud storage, in particular, can benefit from it. Cloud computing
infrastructures enable the execution of complex applications and the
handling of massive data sets. Centralized data centers coupled with
Fog or IoT devices at the network edge cannot efficiently handle the
enormous data storage required to deliver high-availability, real-time,
low-latency services [227].

A distributed cloud design is required to deal with these problems
instead of the more conventional network architecture. Blockchain
technology, a fundamental element of distributed cloud systems, offers
detailed control over resources by enabling their management through

distributed apps [228]. It also allows for the tracking of resource usage,
providing both customers and service providers with the means to
verify that the agreed-upon QoS is being met. A marketplace is a
platform where everyone may promote their computer resources while
discovering what they require using AI-based techniques or models
of prediction [229]. Blockchains, compared to cloud computing, offer
fewer computer resources available to run distributed applications,
such as less space for storing data, less powerful VMs, and a more unsta-
ble protocol. As a result, apps that are sensitive to delay and those that
use a lot of resources need to find solutions to these problems [230].

Combining blockchain and cloud computing to develop a block
chain-based distributed cloud can provide novel advantages and solve
current restrictions. Data moves closer to its owner and user through
Blockchain’s distributed cloud, providing on-demand resources, secu-
rity, and cost-effective access to infrastructure [231]. In the meantime,
the high price and substantial consumption of electricity from clouds
may be solved with a blockchain-based distributed cloud. Cloud storage
security is another area where blockchain may play a role in the
future [232]. By dividing user data into smaller pieces before storing
it everywhere, it is possible to encrypt it further. A small portion of
the data is accessible to the hacker, not the entire file. In addition
to eradicating data-altering hackers from the network, a backup copy
of the data may be used to restore any changes [229]. The use of
quantum computers to circumvent the mathematical impossibility of
modern encryption is one of their most publicized uses. In the mean-
time, many online publications have predicted the end of Bitcoin and
other cryptocurrency use after Google stated it had achieved quantum
supremacy.

4.3.2.3. Trends/observations. The main trends and observations re-
garding decentralized computing are as follows:
Serverless Edge Computing : Serverless’ ‘scale-to-zero’ feature, which

releases unoccupied containers from the system, works well for energy-
conscious IoT scenarios with load-inconsistent applications. On the
other hand, fine-grained scaling (i.e., at the function stage) is capa-
ble of handling extremely distinct needs and execution settings at
the edge [185]. Many IoT applications rely on instances initiated by
sensing or actuating, just like functions in serverless [102]. However,
unlike serverless functions, IoT devices often sense or act only on rare
occasions, whereas they sleep the majority of the time to conserve
power. So, first, serverless appears to be an ideal paradigm of execution.
However, combining serverless, edge computing, and IoT applications
is challenging because serverless was originally designed for cloud envi-
ronments, which do not have the same constraints as edge computing
devices [233]. In light of this opportunity, it is essential to combine
serverless, edge computing, and IoT applications to address this chal-
lenge. This is crucial to be addressed, as the fact is that although
this adaptation looks needed and helpful, its practicality necessitates
comprehensive inspections to avoid ramifications.

4.3.3. Hybrid computing
It involves combining both a centralized network and a decentral-

ized network. In this section, we discuss the main focus or paradigms,
technologies or impact areas, and various trends or observations within
hybrid computing.

4.3.3.1. Focus/paradigms. The following are the main focus or
paradigms for hybrid computing:
Fog-Cloud-Edge Orchestration: Increasingly, IoT technologies are re-

quired in daily life. Smart cities, automated manufacturing, virtual
reality, and autonomous cars are just a few instances of the vast
variety of sectors where the application of these technologies has been
rising quickly [234]. This type of IoT application frequently necessi-
tates access to heterogeneous distant, local, and multi-cloud compute
resources, in addition to a globally dispersed array of sensors. The
expanded Fog-Cloud-Edge orchestration paradigm is born from this.
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This new paradigm has made it a necessity to expand application-
orchestration needs (i.e., self-service deployment and run-time admin-
istration) beyond the confines of a purely cloud-based infrastructure
and across the full breadth of cloud or edge resources. Recent years
have seen an increased focus on the research and advancement of
orchestrating platforms in both business and academic settings as a
means of meeting this need.

4.3.3.2. Technologies/impact areas. The key technologies and affected
domains for hybrid computing include:

(1) Cryptocurrencies: Decentralized networks with powerful compu-
tational power were pioneered by cryptocurrencies. There is no
centralized authority that controls the cryptocurrency market
or issues new cryptocurrencies. Bitcoin, the first decentralized
digital currency, was launched in 2009 and employs blockchain
technology to record transactions and save user histories [235].
Blockchain Explorer and similar tools reveal Bitcoin’s decentral-
ized network activity as it moves from one wallet to another,
and they also reveal the activity of other cryptocurrency net-
works. There is no equivalent technology that would enable
such transparency in the private banking business, nor would
such a publication ever be made public. Decentralization design
incorporates many additional features that make it hard for
bad actors to forge bitcoin or steal from user accounts, such
as synchronizing the blockchain across all machines on the
network [236]. Bitcoin and other cryptocurrencies are required
to function on decentralized networks: A blockchain does not
have a central controlling computer or administrator.

(2) Machine Economy : The emerging machine economy refers to the
exchange of resources (such as power, data storage, processing
power, currency, and network connections) in the upcoming
global networks of computers [237]. Together, the data cen-
ters that power the cloud, the web, and monetary exchanges,
form a network that will support the machines that power the
future economy. This is the time when AI willfully conceals
or exaggerates its powers. AI conceals and safeguards limited
supplies to protect the crucial scarce resource of computation
cycles used to generate AI insights. The organization is guarding
the computation cycles used to generate AI insights, which are
the most crucial scarce resource in this case. Lies, trickery, and
barter to coax AI into parting with its limited resources will
become an increasingly hot issue in the coming years [238].
To prevent itself from being overused, AI will have to resort
to dishonest behavior. The machine economy is going to be
among the most significant developments to come for human
culture; and will be among the hottest topics of the emerging
payment and AI technologies needed to fund future interstellar
and interplanetary travel.

4.3.3.3. Trends/observations. The main trends and observations re-
garding hybrid computing are as follows:
Distributed Computing Continuum: Emerging from the convergence of

IoT, edge, fog, and cloud computing, Distributed Computing Continuum
Systems (DCCS) represent a novel computing paradigm that harnesses
the collective power and heterogeneity of these diverse computing
tiers to address the demanding computational requirements of future
applications [239]. These applications, ranging from autonomous ve-
hicles and e-Health to smart cities, holographic communications, and
virtual reality, demand unprecedented levels of computational power,
low latency, and efficient data management. Achieving these stringent
requirements necessitates seamless integration and collaborative oper-
ation among all computing tiers, transforming the underlying infras-
tructure into a unified, intelligent system. As exemplified by edge and
fog computing, the underlying infrastructure of DCCS plays a pivotal
role in determining its performance. This geographically distributed,

heterogeneous, and resource-constrained infrastructure poses signifi-
cant challenges, needing new approaches that can dynamically adapt
to application and user demands [9]. Cloud-centric methodologies,
often tailored to cloud-specific assumptions, fall short in addressing the
characteristics of edge, fog, and DCCS environments.

To address these challenges, DCCS advocates for decentralized intel-
ligence, empowering each component of the underlying infrastructure
to make autonomous decisions based on its specific tasks and local
conditions [240]. This approach leverages the concept of service level
objectives (SLOs), well-established in cloud computing, to define the
operational goals of each component of the system. By modularizing
and distributing SLOs across the system, a DCCS can achieve scalable
intelligence within its infrastructure. Further, incorporating the Markov
Blanket concept into SLO management enables causal filtering, ensur-
ing that only conditionally dependent variables are considered when
making decisions. This selective filtering, coupled with causal infer-
ence or active inference, empowers each component to make informed
decisions independently, adapting to its dynamic environment and the
overall system’s requirements [241]. This loosely-coupled architecture
fosters a resilient and adaptive DCCS, capable of catering to the diverse
and evolving demands of future applications.

4.4. Computational methodologies: Parallel vs. Sequential computing

Parallel computing implies a computer model wherein numerous
tasks are completed concurrently, employing a number of processors or
threads [242]. In this paradigm, many processes run concurrently and
their outputs are pooled. Tasks can be conducted in parallel instead of
sequentially, potentially reducing execution times.

4.4.1. Parallel computing
In this section, we discuss the main focus or paradigms, technologies

or impact areas, and various trends or observations within parallel
computing.

4.4.1.1. Focus/paradigms. The following are the main focus or
paradigms for parallel computing.
Simultaneous Data Processing : In order to handle many parts of

a task at once, parallel processing employs multiple processors, or
CPUs. By breaking down large computations into smaller ones, systems
may drastically speed up their execution [242]. Parallel processing is
possible on current computers with multiple cores and on any ma-
chine with more than one CPU. Multi-core processors are embedded
processors containing two or more CPUs for increased performance,
lowered energy use, and more efficient handling of many tasks. Two
to four cores are common in modern computers, with some models
supporting up to 12. Modern computers commonly use parallel process-
ing to complete complex processes and calculations. At the most basic
level, sequential and parallel-serial processes differ in how registers are
employed. Shift registers work in series, computing every bit one at a
time, while registers with concurrent loading handle each bit of a word
concurrently [243]. Using multiple functional units that can execute
identical or distinct tasks in parallel enables the management of more
complex parallel processing.

4.4.1.2. Technologies/impact areas. The key technologies and affected
domains for parallel computing include:

(1) ASICs: Application-Specific Integrated Circuits (ASICs) are inte-
grated circuits designed for specific uses. As their name suggests,
ASICs are limited to a single function. They provide a single
function and are consistent throughout their service life [138].
ASICs are semiconductor devices and circuitry developed to
carry out a particular task. In contrast to mainstream proces-
sors, including CPUs and GPUs, both the speed and the energy
efficiency of ASICs are optimized to fit the needs of a specific
application [244]. Their excellent performance, minimal energy
use, and small form factor make them ideal for mass-produced
goods that can afford the higher bespoke design costs.
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(2) FPGA: A Field Programmable Gate Array (FPGA) is a semicon-

ductor that can be programmed to provide unique logic for

use in both early system prototype design and the last version

of a system to circumvent obsolescence [138]. In contrast to

other bespoke or semi-custom integrated circuits, FPGAs can be

easily reprogrammed by a software update to meet the changing

requirements of the larger system they are integrated into, using

hardware design languages, such Verilog and Very High-Speed

Integrated Circuit Hardware Description Language (VHDL) [245].

Nowadays, most rapidly expanding applications are perfect fits

for FPGAs, which include edge computing, AI, network security,

5G, industrial control, and automated machinery.

4.4.1.3. Trends/observations. The main trends and observations re-

garding parallel computing are as follows:

(1) Neuro-symbolic AI : Advances in deep learning techniques have

unlocked a few of AI’s enormous possibilities. Consequently, it

is now obvious that these methods are at a breaking point and

that such sub-symbolic or neuro-inspired solutions only func-

tion effectively for particular kinds of issues and are typically

opaque to both analysis and comprehension [246]. However,

symbolic AI methods, founded on rules, logic, and reasoning,

perform significantly better in terms of openness, comprehensi-

bility, authenticity, and reliability than sub-symbolic methods. A

new path termed neuro-symbolic AI was recently recommended,

integrating the effectiveness of sub-symbolic AI alongside the

visibility of symbolic AI [247]. This synergy has the potential

to yield a new generation of AI devices and platforms that are

both comprehensible and expansion-intolerant and can combine

logic with learning in a generic fashion.
(2) Scalability : The most important advantage of scalable design is

improved efficiency, as well as the capacity to deal with sudden

spikes in traffic or severe loads with little to no warning [248].

An application or online company may continue to operate

smoothly during busy periods with the assistance of a scalable

system, preventing businesses from incurring financial losses

or suffering reputational harm [173]. If a system is organized

into component services (for example, using the microservices

system design), monitoring, updating features, troubleshooting,

and scaling may become simpler tasks.

4.4.2. Sequential computing

In this section, we discuss the main focus or paradigms, technologies

or impact areas, and various trends or observations within sequential

computing.

4.4.2.1. Focus/paradigms. The following are the main focus or

paradigms for sequential computing:

One-process-at-a-time execution: In the context of computing, sequen-

tial computing describes a paradigm in which operations are carried

out in a certain order, with the output of one operation feeding into

the data being the input of the subsequent one [249]. A single processor

carries out all of the model’s tasks in the sequence specified by the code.

4.4.2.2. Technologies/impact areas. The key technologies and affected

domains for sequential computing include:

Traditional Von Neumann Architecture: This architecture is a sequen-

tial computing-based concept for digital machines. This system includes

a CPU, RAM, and I/O devices, all interconnected by a bus [250]. The

CPU of a system based on the Von Neumann architecture processes

instructions sequentially, feeding the output of one into the input

channel of the subsequent one [107].

4.4.2.3. Trends/observations. The main trends and observations re-
garding sequential computing are as follows:

(1) In-Memory Computing : In-memory computing is a method used
to perform computations solely in memory (like RAM). This
word usually refers to massive and complicated computations
that must be executed on a cluster of computers using spe-
cialized systems software [249]. As a clustering system, the
machines pool their RAM, so the computation is effectively done
across machines and uses the combined RAM capacity of all the
machines collectively.

(2) Energy-efficiency : Power effectiveness and sustainability have
emerged as major issues for HPC systems as their processing
capacity increases [251]. To reduce electrical usage while in-
creasing computational performance, scientists are inventing en-
vironmentally friendly hardware layouts, investigating innova-
tive cooling strategies, and fine-tuning algorithms. The general
efficiency of HPC systems is being improved by the development
of energy-aware scheduling and utilization strategies.

(3) Performance Optimization: Since single-processor efficiency can
no longer develop at a rapid pace, the era of the
single-microprocessor computer is coming to an end. It is time
for a new era in computing when parallelism takes center stage
and sequential computing takes a back seat [252]. There are
still significant scientific and engineering obstacles to overcome,
but now is a good moment to try new approaches to com-
puter programming and hardware design. Various computer
architectures have emerged, each tailored to certain perfor-
mance and efficiency goals. The next wave of discoveries will
certainly necessitate enhancements to computer hardware and
software [253]. No one can say for sure if we will succeed
in making parallel computing as mainstream and user-friendly
as yesterday’s peak sequential single-processor computer sys-
tems in the field of computing. Innovative novel applications
that motivate the computer business will slow down if parallel
programming and associated software activities do not become
popular, and if creativity slows down across the economy as a
whole, many other sectors will suffer as well [121].

4.5. Computing trends and emerging technologies

New computing trends and emerging technologies continue to ad-
vance the field of computing, improving the adaptability,
self-management, and sustainability of many types of industrial sys-
tems.

4.5.1. Advanced computing styles and trends
In this section, we discuss advanced computing styles and trends

and their related technologies and paradigms.

4.5.1.1. Focus/paradigms. The following are the main focus or
paradigms for advanced computing styles:
Quantum AI : Quantum computing is attractive because it is a unique

innovation that can radically change AI and computing in general.
In this section, we look into what quantum computing can do and
how it can affect AI and the wider economy. The implications of this
computing method might have far-reaching effects on several facets
of our cultural and financial lives [4]. The widespread impact of AI
suggests that combining it with quantum computing might unleash
dramatic change in the field of AI [198].

Several algorithms that made it possible to do tasks previously
thought impossible for conventional computers emerged in the wake
of the foundational studies that formalized the notion of a quantum
computer [254]. The development of Shor’s algorithm, an effective
method for dividing enormous amounts of data, has bolstered research
into quantum computing and quantum cryptography. Yet, existing
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cutting-edge technologies are not yet accurate enough to execute Shor’s
algorithm successfully, which requires a degree of precision for per-
forming register initialization, quantum operations on multiple qubits,
and storing quantum states. It is also crucial to remember that quantum
computers have particular limits [76]. The acceleration afforded by
quantum computers grows exponentially compared to the amount of
time a conventional computer takes (Grover’s method); hence, it is
not predicted that it will effectively solve NP-hard efficiency issues.
The benefits of quantum computing, such as quantum superposition
and entanglement, typically vanish rapidly with the complexity and
magnitude (i.e., the number of quantum systems involved) of the under-
lying hardware, making the process of designing a quantum computer
non-trivial. Despite this, the curiosity of significant technologically
advanced players (IBM, Microsoft, Google, Amazon, Intel, and Honey-
well) has skyrocketed in the past few years, and a plethora of fresh
startups have emerged to propose remedies for quantum computing
using technologies as diverse as superconducting devices, encased ions,
and integrated light circuits. Corporations like these are among the
numerous that are investing in quantum research and development at
the moment [255].

Although there are many obstacles to overcome, the Google AI
team has achieved considerable strides in the past few years, gaining
a quantum edge by developing Sycamore, a programmable quantum
computer. Similarly, IBM has now launched the Eagle chip, the first
quantum computer with more than 100 qubits of hardware [256].
This is only the beginning of an intensive research and development
program, with the tech giant hoping to increase the number of qubits to
over a thousand by 2024 [51]. But as was previously stated, protecting
these devices from ambient noise is a significant constraint when trying
to retain the subtle characteristics of composite quantum states while
still allowing for coherence in quantum development. Because of this, a
quantum computer’s components require ultra-low temperatures in the
order of fractions of a Kelvin, which presents hurdles for both device
design and material development [257].

4.5.1.2. Trends/technologies. The main trends and technologies re-
garding advanced computing styles are as follows:

(1) Edge AI : Recent advancements in AI efficiency, the rise of IoT
devices, and the emergence of edge computing have all un-
leashed the promise of edge AI. This has opened up previously
unimaginable uses for edge AI, such as helping radiologists make
diagnoses, assisting in driving cars and fertilizing crops [92].
Since its inception in the mid-1990s—paired with the emergence
of content delivery networks that utilize edge servers positioned
near users to stream online and gaming video—edge computing
has been the subject of much discussion and adoption by profes-
sionals and businesses. Almost every sector today has tasks that
may benefit from adopting edge AI.
In truth, edge applications are driving the next generation of AI
computing, which will improve people’s lives in various settings,
such as at home, at work, at school, and on the road. AI at
the edge refers to the application of AI to physical devices.
In contrast to storing all of an organization’s data in a single
centralized spot, such as a cloud provider’s data center or a
private data warehouse, ‘‘Edge AI’’ allows for AI calculations
to be performed close to the users at the network’s edge. Be-
cause the Internet is accessible all across the globe, any area
might be thought of as its outskirts. Omnipresent traffic signals,
autonomous equipment, and mobile phones are just a few ex-
amples. It might also be anything from a shop to a factory to
a healthcare facility. Companies of all sizes strive to automate
more of their processes because doing so improves productivity,
effectiveness, and safety [258]. Computer software may aid with
this through the ability to recognize patterns and dependably
carry out identical tasks repeatedly. However, it is challenging
to fully convey them in a system of algorithms and regulations

because the world is unpredictable and human actions cover
infinite circumstances. Today, as edge AI has progressed, robots
and devices can work with the ‘‘intelligence’’ of human cognition
no matter what they are. Intelligent IoT apps driven by AI may
learn to adjust to novel circumstances and effectively complete
identical or similar tasks [259]. Substantial progress in impor-
tant areas has allowed for the practical deployment of AI models
at the edge.
Furthermore, developments in neural networks, along with other
areas of AI, have laid the groundwork for universal ML [260].
Many companies are finding that they can successfully train AI
models and put them into action at the edge. AI in the pe-
riphery requires widely distributed computing resources. Recent
advancements in enormously parallel GPUs are currently used to
run neural networks. The development of devices connected to
the IoT is partly responsible for the present age’s unparalleled
surge in data volume [261]. The development of sensors, smart
cameras, robots, and other data-gathering equipment has made
it possible to begin using AI models at the edge in nearly
all facets of business. The increased speed, dependability, and
security that 5G/6G is delivering to the battleground are also
helping IoT use cases [118].

(2) Biologically-inspired Computing : The term ‘‘bio-inspired comput-
ing’’ refers to creating computer systems by drawing inspiration
from the natural world. As an aside, computer science is also
used to model and understand biological processes [145].
Computing architectures that take cues from nature can func-
tion as autonomous, flexible networks. Similarly, bio-inspired
computing offers a fresh perspective on AI by building modular,
self-improving systems [262]. Swarm intelligence refers to the
ability of swarms of autonomous entities to generate intelli-
gence by collaborating in ways reminiscent of the behavior of
bees or ants. Biologists, software engineers, computer scientists,
physicists, mathematicians, and geneticists all work together
on the subject of bio-inspired computing [263]. Compared to
their digital counterparts, biological systems have several dis-
tinct benefits. AI has advanced thanks to incorporating many
concepts originally derived from natural processes into machine
learning. Adaptable and responsive autonomous robots might
be extremely useful in high-risk settings like conflict zones and
hazardous clean-up activities [146].
Tasks like crop pollination might be performed by swarms of
small robots. Bio-inspired technology is being used in cognitive
modeling by developing artificial neural network systems based
on neuron function within the brain. Training, growing, and
collaborating on computer chips is becoming a reality [264].
When these nodes are linked by self-organizing wireless links,
they form a system well adapted to modeling issues with several
basic causes [263]. Self-learning and reconfigurable chips mean
less time spent loading software and more time spent getting
things done. Such systems might help explain the propagation
of ideas through a community or construct a model of brain
function that reflects true biological processes.
The use of DNA in natural computing is a topic of current study.
Data storage, covert messaging, and even computation are all
possibilities that have been proposed by DNA bioinformatics
studies DNA [265]. DNA molecules may also form practical
structures by self-assembly. The computer hardware, such as
switches, CPUs, and timers, might be replaced by biological
components. It is already possible to employ some biological
substances in electronics. Even internal cell programming for
purposes like medication secretion is feasible.

(3) Explainable Artificial Intelligence (XAI): Successful completion of
computer engineering tasks depends on wise decision-making.
Can workloads be reliably executed on an automated system?
Is there any way to understand how the trained models came
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to their conclusions? Problems like this are typical and must
be solved until any computer can be used in action [4]. Incor-
rect decision-making about such complicated and cutting-edge
technology is costly in terms of resources and money. Many
AI/ML implementations in computer systems have improved
resource utilization and energy usage through better decision-
making. However, the forecasts made by these AI/ML models
for computing devices are still not usable, interpretable, or im-
plementable. Such restrictions are a common problem for AI/ML
models [266]. Most current research has focused on clarifying
how QoS is accomplished, even though QoS remains a top pri-
ority. Is there anything academics can do to help the IT industry
move forward? Therefore, when attempting to make educated
judgments on handling resources (a prime manifestation of AI
for computing), a solid grounding in Explainable AI (XAI) and
experience with XAI methods and tools is required [267]. Fore-
casting of resource and power consumption and SLA variances,
as well as the implementation of promptly proactive action to
resolve these concerns, are examples of the types of Explainable
AI techniques that may be used. XAI forecasting algorithms
must be correctly developed to make computing more practical,
explicable, and deployable [268].

(4) Semantic Web and Decentralized Systems Integration: Fog comput-
ing has emerged as a software engineering culture and practice
that combines at least five different technology types: IoT, AI,
Cloud-to-Edge Computing, Blockchain, and Digital Twins [269].
Various recent projects have presented their vision of integration
between the Semantic Web and decentralized systems, for ex-
ample, networks based on Blockchain technologies [270]. Here,
the main challenge is to achieve a new generation of trustwor-
thy, sustainable, human-centric, performant, and scalable smart
applications.

(5) Quantum Internet : It is an ecosystem enabling quantum devices
to communicate and share data in a setting that uses quan-
tum physics’ peculiar rules. In principle, this would grant the
quantum Internet hitherto unattainable skills via standard web
apps [59]. Quantum devices, such as a quantum computer or a
quantum processor, may generate the quantum states of qubits,
which can then be used to encode information. Sending qubits
over a network of physically distinct quantum devices is, in
essence, what the quantum Internet will be all about. Impor-
tantly, this will occur because of the strange characteristics
of quantum states. That probably sounds like the conventional
web [271]. However, if one wants to transmit qubits, then
they need to use a quantum channel instead of a conventional
one, which requires exploiting the peculiar behavior of quantum
particles used to encode information onto quantum states. That
requires to build up, and apply, relatively novel (or exotic)
knowledge on the top of what is known about classical com-
puting to effectively drive the possible evolution of quantum
ecology into an effective quantum internet [272] [273] [254].
One could imagine that their favorite web browser will not have
much in common with the quantum Internet [4].

4.5.2. Industry and sustainability trends
In this section, we discuss industry and sustainability trends and

their related technologies and paradigms.

4.5.2.1. Focus/paradigms. The following are the main focus or
paradigms for industry and sustainability trends:
Carbon-Neutral Computing : The expansion of the computer age is an

important factor in the data center industry’s advancement; however,
the push towards carbon neutrality is a more dramatic paradigm change
and the industry’s biggest challenge to date. Large-scale cloud providers
have pledged to attain zero emissions on all initiatives by 2030 [274].
The fight against climate change must include data centers. Everything

from everyday conveniences like Internet banking and shopping to
cutting-edge technologies like machine learning, quantum technology,
and autonomous vehicles would be impossible without them. There is
no denying of the ever-increasing need for data centers. Nevertheless,
because of the damage they cause to the natural world, they also
attract greater scrutiny [190]. A sustainable future with a zero-carbon
footprint is possible because of these advancements in electricity, water
effectiveness, and land utilization. Online conferences and handheld
gadgets make it feasible for individuals to work from their homes
and cut transit carbon emissions; however, each bit of data has a
carbon footprint of its own [192]. Therefore, whereas electronic devices
provide opportunities to enhance our oversight of water and materials
and to support sustainable economic growth, simply sending a message
provides for the challenging environmental impact of data. However,
this may differ greatly depending on the spot and efficiency of the
data centers that deal with traffic [193]. Crucially, as globalization
brings online amenities to more societies, physical infrastructure, such
as data centers, must grow to accommodate an increase in consumers,
a majority of whom will be in regions around the globe that currently
lack access to green power availability.

4.5.2.2. Trends/technologies. The main trends and technologies re-
garding advanced computing styles are as follows:

(1) Industry 4.0: The Fourth Industrial Revolution, or Industry 4.0,
reshapes how goods are made, enhanced, and disseminated.
Emerging innovations such as the IoT, cloud computing, analyt-
ics, and AI/ML are being incorporated into manufacturing facil-
ities and processes [275]. Advanced sensors, software with em-
bedded capabilities, and robots are used in these ‘‘smart indus-
tries’’ to gather information for more informed decision-making.
When data from manufacturing operations is combined with
data from Enterprise Resource Planning (ERP), supply chain,
customer service, and other corporate systems, information that
was previously kept separate can be seen and understood in
completely new ways, which leads to even more value being
created [276].
Improved efficiency and responsiveness to clients is made possi-
ble by the advent of technological innovations such as enhanced
automation, predictive maintenance, and automatic optimiza-
tion of process enhancements [277]. To enter the fourth in-
dustrial revolution, the manufacturing sector must embrace the
development of smart factories. The ability to see industrial
assets in real-time and access preventative maintenance tools
may be gained by analyzing the massive volumes of big data
generated from sensors on the production line. Smart factories
implementing cutting-edge IoT technology see gains in output
and quality [278].
Manufacturing inaccuracies and costs can be reduced by using
AI-powered visual insights instead of traditional business mod-
els for human inspection. Quality assurance staff may monitor
production operations from almost any location with minimal
expenditure using a smartphone linked to the cloud. Companies
may save money on costly repairs by identifying problems early
on with the help of ML algorithms [49]. Any business operating
in the industrial sector, from individual to process production
and even in the energy and mining industries, may use the ideas
and tools of Industry 4.0.

(2) Digital Twins: A digital twin is a computerized model of and
connected to a real-world object that may be used to test and
improve its design, performance, and usability [279]. Smart sen-
sors embedded in the object capture data in real-time, allowing
a digital depiction of the asset to be produced [99]. The model
may be used through an asset’s lifespan, from development and
testing to actual usage, revamping and eventual retirement. To
create a digital representation of a physical object, digital twins
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utilize many technologies. The term ‘‘IoT’’ describes the network
of interconnected devices and the underlying infrastructure that
enables them to exchange data and instructions with one another
and the cloud as a whole. With gratitude to the introduction
of affordable computer chips and high-bandwidth connectivity,
one can now have trillions of gadgets hooked up to the global
web. Digital twins use data from IoT sensors to replicate physical
properties in a virtual form [280]. The information is sent into a
system or panel to be viewed as it changes in real time. Studying,
solving issues, and pattern recognition are just a few examples of
the kinds of cognitive challenges that AI seeks to address [281].
AI/ML-based algorithms and statistical models let machines do
tasks with little to no human help. They do this by relying on pat-
terns of observation and inference. Machine learning techniques
used in digital twins process enormous amounts of sensor data,
allowing for the identification of data patterns. Optimization of
performance, servicing, emissions outputs, and efficiency may all
be gained using data insights provided by AI/ML [282]. There
are several significant distinctions between digital twins and
modeling: even though both leverage virtual model-based simu-
lations, a digital twin maintains a two-way connection and can
affect the physical object. Offline optimization and the design
process are two common applications of simulation. Developers
use simulators to test out different iterations of a product. On the
contrary, digital twins are interactive and dynamically updated
virtual worlds. Both their scope and their utility have increased.

4.5.3. Adaptive and self-managing systems
In this section, we discuss adaptive and self-managing systems and

their related technologies and paradigms.

4.5.3.1. Focus/paradigms. The following are the main focus or
paradigms for adaptive and self-managing systems:
Autonomic Computing : IBM’s autonomic computing program was

one of the earliest worldwide efforts to develop computing systems
with little human intervention required to accomplish predetermined
goals [30]. It was primarily based on findings about how human nerves
and thinking work and how they are coordinated—bioinspiration, as
discussed above. In autonomic computing, researchers explore how
software-intensive systems can make decisions and act without hu-
man interaction to reach the (user-specified) ‘‘administration’’ objec-
tives [283]. The concept of control for closed- and open-loop sys-
tems has significantly impacted the foundations of autonomic com-
puting [31]. Multiple independent control networks may coexist in
practice inside complex systems. The integration of ML and AI to en-
hance resource utilization and efficiency at scale remains an important
obstacle regardless of investigations into autonomic frameworks to han-
dle computing resources, from a single resource (e.g., a web server) to
resource groupings (e.g., several servers inside a CDC) [4]. Autonomous
and self-managing systems can be implemented on a spectrum from
fully automated to partially automated with human oversight through
the use of AI/ML to improve the efficiency and performance of the
computing systems.

4.5.3.2. Trends/technologies. The main trends and technologies re-
garding adaptive and self-managing systems are as follows:
SDN-NFV : The explosion of IoT devices and the concomitant flood

of sensor data enable knowledge-driven IoT applications, including
connected cities and smart agriculture [84]. To begin providing such
services, one must develop a data-gathering method that is flexible
enough to adapt to shifting conditions in the field. Network pro-
grammability (SDN or NFV) enables the easy reconfiguration of IoT
networks [86]. Current SDN/NFV-based approaches in the IoT environ-
ment nevertheless fail owing to a shortage of knowledge of resources
and overhead, as well as incompatibility with conventional proto-
cols [1]. This void must be filled by prioritizing resource and power
limitations in the creation of SDN/NFV-enabled IoT nodes and network

protocols. Assigning traffic sources to those Virtual Network Functions
(VNFs) across the most efficient paths, with sufficient energy and
network reliability, may maximize the number of active NFV nodes [9].
Summary: Table 3 lists a summary of open challenges and fu-

ture directions in Paradigms/ Technologies/ Impact Areas, along with
recommendations for further reading. Table 4 lists the summary of
Trends/Observations for modern computing along with the recommen-
dations for future reading.

5. Impact and performance criteria

In this section, we discuss the impact of contemporary computing
and performance criteria.

5.1. Performance metrics

We are considering QoS, SLA, autoscaling, and fault tolerance as
performance metrics for computing systems.

5.1.1. QoS and SLA
Predicting how a cloud computing system will work in real-time

is a major difficulty, even if AI techniques are used [284]. The effi-
ciency of a computer may be measured using QoS metrics, including
execution time, cost, scalability, elasticity, latency, and dependability.
A SLA, a legally binding contract between a cloud service consumer and
provider, defines QoS standards and potential penalties should they be
violated [285]. Today, various IoT applications can use blockchain and
similar technologies. Each one has its own QoS factors that depend on
its area, goal, and demand [286]. An SLA may also be assessed with
a metric called SLA violation rate, which determines compensation in
the event of an SLA breach by estimating the divergence of the real
SLA compared to the needed (estimated or predicted) SLA [287]. Since
compromized QoS in one cloud service may negatively impact the QoS
of the entire computing system, QoS is becoming increasingly crucial
while assembling cloud services. Provisioning the proper quantity and
quality of cloud resources that will satisfy the QoS of an application’s
price range, response time, and deadline is essential for providing an
effective cloud service [288]. Consequently, cloud providers should
guarantee to offer sufficient resources to minimize or reduce the SLA
violation rate, allowing users’ workloads to be executed in accordance
with their set time and cost constraints [289]. In that regard, the
diversity of applications and their behaviors on different machines
requires a tighter description of their needs to minimize SLA violation
while not over-provisioning infrastructure [290]. QoS-aware resource
management methods, which can determine and meet the QoS needs
of a computing system, such as SLO-driven modeling and execution-
reordering of web requests, are crucial to its success in the future [291].
Several research issues must be overcome before QoS can be attained
effectively [292]. Initially, the execution time of an application is
large, and its performance is diminished due to a lack of cloud re-
sources during runtime—which can be compounded by transparent
processes to the developer, such as garbage collection, magnifying the
potential of inexplicable SLO violations [293]. Additionally, finding
the requirement for effective SLA-aware resource management methods
decreases the SLA violation rate and preserves the overall efficiency
of the computing system. Finally, to reach the ultimate goal of having
multiple clouds, there has to be a unified SLA standard across all cloud
providers [294]. Since many IoT applications rely on cloud computing
systems that employ AI-based supervised or unsupervised algorithms
for learning or models for forecasting, it is imperative to determine the
appropriate balance amongst various QoS needs.
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Table 3
Summary of open challenges and future directions in Paradigms/Technologies/Impact areas along with further reading.

Paradigms/Technologies/Impact
areas

Open challenges and future directions Further reading

Cloud Computing What are the tradeoffs that need to be established between the various QoS requirements
brought on by the large variety of IoT applications operating on cloud systems?

ACM CSUR [1]

Autonomic Computing What additional problems may be addressed by an autonomic computing expansion that
is based on AI/ML as the number of IoT and scientific workloads increases?

Elsevier IoT [4]

Mobile Cloud Computing How would AI-based deep learning algorithms be used to anticipate the resource
demands beforehand for diverse geographic resources needed for mobile cloud
computing, requiring new strategies for provisioning and scheduling resources?

ACM CSUR [60]

Green Cloud Computing How can improved methods for effective data encoding for lower bandwidth usage and
energy-effective transmission in data-intensive IoT devices make cloud computing more
environmentally friendly?

ACM CSUR [162]

Fog Computing How can AI approaches be utilized to properly schedule tasks when working in
locations with varying amounts of fog resources?

Elsevier JPDC [39] & IEEE
COMST [41]

Edge Computing In what ways edge computing can be utilized to boost power and resource utilization,
hence enhancing QoS?

IEEE COMST [41,206]

Mobile Edge Computing How can novel resource provisioning and scheduling policies be developed for mobile
edge computing that makes use of AI-based deep learning approaches to forecast the
resource requirements beforehand for resources that are located in different locations?

IEEE COMST [41,213] &
ACM CSUR [60]

Serverless Computing How to reduce the cold start time and increase scalability using serverless edge
computing?

IEEE TSC [186] & ACM
CSUR [183]

Osmotic Computing How can osmotic computing improve resource availability or performance at the
network edge while moving services from the data center to the edge for AI/ML-driven
adaptive administration of microservices?

ACM TOIT [46]

Dew Computing How should dew computing allow a highly scalable method that can increase or reduce
the real-time demands of performing operations at runtime via utilizing AI?

Elsevier IoT [48]

Programming Models How to select a programming model that efficiently gathers data when and where it is
needed while keeping complexity low relative to the total number of processors at hand?

Procedia Computer Science
[115]

Virtualization How can unbreakable security for VMs be ensured if consumers do not follow
recommended practices when it comes to login credentials, installations, and other
operations?

ACM CSUR [122]

IoT How to ensure that an SLA is upheld while responding to customer requests as quickly
as possible using IoT applications?

IEEE COMST [78]

Integrated Computing How may QoS characteristics change if communication between layers in a
fog-edge/cloud computing paradigm is improved?

ACM CSUR [108] &
Elsevier FGCS [112]

Connectivity/ Networking How can satisfying the demand or need for network solutions enabling high
performance, resilience, dependability, scalability, adaptability, and cybersecurity remain
constant?

ACM CSUR [60] & IEEE
COMST [61]

Container Technologies How can the QoS in data processing be enhanced by leveraging containers with
virtualization?

Springer JoS [174] &
Wiley CCPE [178]

Microservices How to handle errors, ensure data integrity, and communicate effectively amongst
services in a distributed system using a microservice architecture?

IEEE TSC [172]

Software-defined Networks What are some ways in which SDN might help minimize power usage in cloud and edge
computing?

Wiley ETT [84]

Distributed Ledger
Technology (Blockchain)

How can distributed ledger technology (Blockchain) be utilized to secure the data for
IoT applications?

IEEE COMST [108,216]

Federated Learning How could companies ensure privacy in federated learning services, which differ from
learning in data centers in that users’ data is disclosed to third parties or the centralized
server while exchanging model changes during the training stage?

Elsevier KBS [222] & CIE
[220]

Software Engineering How can fault tolerance be improved in computing systems dynamically without
manually writing the software code by utilizing AI to ‘‘automatically’’ diagnose and fix
an error?

Elsevier JSS [129]

Distributed Computing
Continuum Systems

How can Distributed Computing Continuum Systems consider all computing tiers as a
single system and optimize future applications in a decentralized manner?

IEEE TKDE [239]

5.1.2. Autoscaling
Thanks to the dynamic nature of the cloud, self-adapting techniques

may be used to reduce resource costs without compromizing QoS [295].
Resource autoscaling, or strategy, reconfiguration, and provisioning,
allows for self-additivity. Scientists have looked into autoscaling, or
the dynamic modification of computational resources like VMs, for
several reasons [123]. These include the desire to learn more about
(a) horizontal changes, or the addition or removal of VMs; (b) vertical
transformations, or the addition or removal of VM resources; (c) choice-
making techniques, such as analytical modeling, control theory, and

neural networks; and (d) utilizing a range of pricing models, such
as on-demand. When it comes to latency-sensitive QoS requirements,
the primary challenge for autoscaling methods is figuring out how to
make a scaling decision quickly enough. AI prediction is the initial
step towards making decisions in the quickest way possible [248].
However, traditional ML may not be up to the task when it comes
to IoT applications requiring real-time mistake correction due to a
lack of autonomous error correction [296]. Also, the rise of latency-
sensitive IoT apps and microservices that need responses in the range
of milliseconds has made things worse while container-based solutions
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Table 4
Summary of Trends/Observation for modern computing along with future reading.

Trends/ Observation Open challenges and future directions Further reading

AI-driven
Computing

How to optimize the management of resources using the latest AI/ ML models in
computing systems?

Elsevier IoT [4]

Large Scale Machine
Learning

How can businesses mitigate the risks associated with the proliferation of sensitive
information that arise as a result of the proliferation of data produced by AI and ML
systems?

IEEE TKDE [155]

Edge AI What strategies should be employed to oversee the simulation and information
transmission among peripheral devices and other systems? What network infrastructures
should be utilized to enable this communication?

Elsevier IoTCPS [92] &
ACM SIGCOMM [261]

Bitcoin Currency How can computing be utilized to maximize the efficiency of computation or processing
capacity usage in cryptocurrency for cloud mining?

Elsevier JNCA [226]

Industry 4.0 How can AI, the cloud, and edge computing be used to do predictive analysis that
involves company resources?

IEEE COMST [275]

Intelligent Edge How to deal with big problems that come up when designing system-level,
algorithm-level, or architectural-level developments or innovations for integrated
cognitive ability, like making decisions in real-time, keeping AI training and inference
environmentally friendly, and deploying protection?

IEEE COMST [88]

XAI How can the forecasting of resource and power consumption and SLA variances, as well
as the implementation of promptly proactive action, reduce SLA violations and enhance
QoS using XAI?

ACM CSUR [266]

Exascale Computing How to make energy-efficient computing as power-hungry as the supercomputers that
do calculations and transfer data within the computing environment nowadays?

ACM CSUR [142]

6G and Beyond What role 6G may play in reducing latency and improving reaction times by
transmitting data between edge devices at high speeds?

IEEE COMST [98]

Quantum AI What steps should be taken to build the AI cloud-based quantum computing
infrastructures that are expected to be the foundation for our usage of quantum
computers and simulators, which will supplement our existing classical computing
hardware?

Wiley SPE [51]

Quantum Internet How can the benefits of quantum networking be preserved while integrating the
quantum Internet into currently operating conventional technology that will have to
exist alongside and communicate effortlessly with today’s Internet services?

IEEE COMST [254]

Analog Computing How is it that analog computers can do complicated computations faster and more
accurately than their digital equivalents, which utilize ML methods?

Nature Electronics [146]

Neuromorphic
Computing

How might neuromorphic systems, which model the brain’s structure and function and
use analog circuits to do AI tasks, pave the way for creating incredibly adaptable,
self-learning machines?

Nature Computational
Science [149]

Biologically-inspired
Computing

What can researchers take away from brain cells concerning ways to minimize the
energy needed for computation, AI, and ML, given that these cells can easily combine
smaller tasks to execute larger ones?

Elsevier ESA [263]

Digital Twins How can network digital twins aid in speeding up preliminary installations by preparing
navigation, protection, digitization, and evaluation in simulation while offering the
scalability and interoperability of complex networks?

IEEE COMST [280]

Net Zero Computing How can companies mitigate the negative ecological impact of their IT infrastructure by
constructing environmentally friendly data centers and improving energy effectiveness,
given that these centers use significant quantities of electricity and release enormous
quantities of waste heat while also providing powerful computing services?

IEEE COMST [190]

and burstable efficiency resources should make it possible to deploy
and provision resources in the cloud quickly. To prevent a potentially
disastrous situation, a smart car’s onboard computer constantly mon-
itors data such as the vehicle’s speed, the location of other drivers
and passengers, and the road conditions [297]. The cloud alone cannot
answer this problem due to the instability and latency in connections
between the cloud and users; instead, autoscaling techniques for IoT
applications must take these factors into account [298]. The truth is
that autoscaling needs to be made bigger because the cloud naturally
gets in the way of Industry 4.0 ideas, like real-time management, and
making decisions without a central authority.

5.1.3. Fault tolerance
Providers of cloud computing services owe it to their customers

to make such services available without interruption, regardless of
what problems arise [299]. To meet the QoS standards of a computing
system efficiently, fault tolerance approaches are employed. Software,
hardware, and even networks may all go wrong when a computer
system operates. In addition, fault resilience guarantees the reliability
and accessibility of cloud services [4]. Timeout breakdowns, overload

issues, and resource-lack failures are further examples of cloud depend-
ability issues. A major breakdown has the potential to cause a cascade
of failures in the system [300]. Several proactive and reactive fault
tolerance approaches have been developed to cope with these kinds of
failures. The most common method of handling faults in long-running
processes is called ‘‘checkpointing’’, and it involves preserving the
current state after each modification [301]. Additionally, checkpoints
are employed if there is a possibility of not beginning at the same posi-
tion [1]. Replication-based resilience is another well-known method;
it involves duplicating the nodes or jobs until they are completed.
If a system is overloaded or malfunctioning, a task migration-based
resilience solution can move the work to another computer. Computer
systems must have autonomous resilience-aware resource management
technology, reliability of service methods, and reliable information
integrity (e.g., blockchain) to keep running. Reliability impacts QoS in
cloud computing while still delivering it effectively. One of the biggest
obstacles in cloud computing is figuring out how to deliver a secure and
effective cloud service while cutting down on power consumption and
emissions [302]. Cloud computing has built-in redundancy to main-
tain service availability, QoS, and performance guarantees. Resource
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management must consider varying failures and workload prototypes
for medical care, urban planning, and agricultural applications to run
well [71]. Predicting failure in systems that use cloud computing is
difficult and can impact the dependability of the system [301]. Pre-
dicting faults and achieving the requisite dependability of the cloud
service while maintaining QoS necessitates several machine or deep
learning approaches [13]. Replication-based fault tolerance solutions
are effective for IoT applications because they reduce task delay and
response time. A dependable cloud storage system that will offer an
effective retrieval system for processing big data is also required to deal
with big data applications [303].

5.2. Efficiency metrics

We are considering energy consumption, carbon footprint, and ser-
viceability as efficiency metrics for computing systems.

5.2.1. Energy consumption
Data collection and processing have risen exponentially during the

last several years. This pattern has been pushing cloud systems to the
limits of their computational and, by extension, energy consumption
capacities [304]. Annually, CDCs have increased their power use by
around 20% to 25% [305]. This shift has led to the rise of decentralized
computer architectures such as Fog and Edge. The latency and cost-
effectiveness of cloud computing are all vastly improved by moving
parts of its computation to distributed edge devices and networks.
There nevertheless exist difficulties associated with this. Irregular en-
ergy supply, even without the power supply itself, presents significant
issues for numerous highly critical and remote sensing applications.

The ever-growing number of IoT devices and the data they produce
have put networking’s ability to handle information, compute, and
transfer data throughput to the test [162]. Meanwhile, smaller IoT
devices are currently created with limited computing power, storage
spaces, and energy. Hence, it is imperative to boost the performance of
fog and edge nodes in the network. Sustainability in CDCs and mini-
mizing their carbon impact have also become more pressing concerns.
This must be accomplished without lowering the bar for QoS [306].
Notwithstanding the obstacles, there have been several advances in this
area. Software, hardware, and transitional approaches have all been
taken to the energy management problem.

Approaches and techniques are being designed to optimize software
efficiency, supported by computational models [306]. One example is
mobile edge computing offloading. Hardware-wise, particularly for the
application, devices were designed to provide peak performance while
minimizing energy consumption. Energy efficiency in Wireless Sensor
Networks (WSNs) has been extensively researched [4]. Fog/edge-node
sleep time scheduling, active resource management, and additional
energy-saving strategies have all been used in the intermediate phase.
There are still many unanswered questions and potential avenues for
development when it comes to the effectiveness and longevity of fog,
edge, and cloud infrastructures.

Advanced algorithms for encoding data into fewer bits are explored
to reduce transmitter power needs, which are crucial due to limited
transmission bandwidth, more critical than direct CPU power needs.
Despite the need for specialized hardware, encoding methods may be
used by taking advantage of the universal encoders present in virtually
all mobile devices [13]. Yet, it has become impossible to lower the
ideal bandwidth due to the rising quantity of data exchange and loss.
Preparing for CPU and data utilization in a way that minimizes heat
generation requires modeling at the transistor level, which necessitates
the development of 3D thermal simulation systems [75].

Lastly, the aim is to minimize power consumption to the point that
the CPU and transceiver may be powered entirely by energy harvesting
or scavenging approaches [307]. Consequently, the Fog/Edge network’s
granularity may be decreased, leading to more widely scattered, over-
bearing, and resilient architectures. In various fields, like energy limits,
blockchain algorithms might be studied with various versatile AI-based
learning approaches for enhanced energy scheduling.

5.2.2. Carbon footprint
End-user needs for applications and the resulting growth in storage

in the Exabyte range will result in the first Exascale system by 2025,
followed by a Zettascale system by 2035 [2]. While this is certainly
something to be proud of, there are also many difficulties that come
along with it. Keeping everything running requires massive amounts of
energy, which poses a major obstacle. At the moment, over ten percent
of the world’s power is used each year by the ICT sector [190]. The
rebound effect, which leads to even higher demand and consumption,
makes it counterproductive to create ever-larger systems by increasing
efficiency. The next generation of autonomous system paradigms will
likely place a greater emphasis on power and carbon footprints in
light of climate change and the projected 1.5 ◦C rise in worldwide
temperatures owing to emissions of carbon dioxide by 2100 [2]. This is
not merely about lowering energy use per unit of processing, as is the
case now, but also about more basic issues with systems that assume
continuous stable power supplies, connectivity with sources of clean
energy, and alternate techniques of minimizing energy usage [308].
The study and treatment of systems as living ecosystems rather than
as collections of discrete components is a topic of great interest, and
this includes the comprehensive integration of managing energy (asyn-
chronous computation, power scaling, wake-on-LAN, air conditioning,
etc.).

5.2.3. Serviceability/usability
The fields of human–computer interaction and networked systems

have yet to fully merge with each other. This closer synchronization
would be especially helpful for cloud computing [1]. Despite significant
work on resource management and the back-end associated concerns,
accessibility is a vital component in lowering the costs of organizations
investigating cloud services and infrastructure. Costs associated with
labor might decrease since customers will receive superior service and
increase their output [309].

NIST’s Cloud Usability model addresses five dimensions of cloud
usability: capability, personalization, reliability, security, and value,
all of which have been highlighted as critical issues [310]. The term
‘‘capable’’ refers to the degree to which cloud service can fulfill the
needs of its customers. With the assistance of personal customization
options, individuals and businesses will have the capability to mod-
ify the visual style and adjust or eliminate features from interfaces
for various services. Trustworthy, robust, and useful are attributes
associated with possessing a system that fulfills its duties throughout
state situations, is safely protected, and delivers value to customers
accordingly. Current cloud initiatives have mostly concentrated on
wrapping up sophisticated services into APIs that can be accessed by
end users [309]. HPC Cloud is the most evident example. To make
HPC applications more accessible and easier to use, researchers have
developed several different services. In addition to being packaged as
services, these systems provide Web interfaces through which their
settings may be set and their input and output files managed.

DevOps is another path associated with cloud usage that has gained
popularity in recent years [311]. DevOps has increased the efficiency of
both software engineers and administrators when it comes to develop-
ing and delivering remedies on the cloud. Cloud computing is important
not only for creating brand new solutions AIOps and MLOps [312] but
also, for streamlining the process of moving existing applications from
onsite settings to adaptable, multi-tenant cloud services.

5.3. Social impact

We are considering the digital divide, ethical AI, and digital human-
ism as social impact metrics for computing systems.
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5.3.1. Digital divide
Corporations in rural areas have significant challenges due to the

difficulty of gaining a connection to broadband connectivity and, by ex-
tension, cloud-based resources [313]. Access to the web is one example
of a long-standing infrastructural gap between urban and rural areas.
There are a lot of companies that cannot expand and innovate because
they lack access to new technology. Businesses in rural areas face an-
other obstacle: the high cost of maintaining and upgrading on-premises
IT infrastructure. Cloud computing’s main benefits are the ability to
work together and think creatively. The cloud encourages teamwork
by facilitating real-time, distributed collaboration. This greater collab-
oration encourages invention. As a result, rural enterprises may now
compete on an equal basis with their metropolitan competitors [314].
Accessibility to data and fundamental information is also crucial. The
benefit of using the cloud has increased significantly with the advent
of generative AI. Comprehensive sales, marketing, and manufacturing
capabilities are provided by core AI services, but these cannot be
reproduced with human processing and can be too costly to install
on-site for modest organizations. The proliferation of cloud computing
has expanded business opportunities, but not equally. By utilizing
the cloud, companies in rural areas may overcome the constraints of
their physical location [315]. Cloud computing’s greater availability,
decreased cost, scalable effectiveness, and improved cooperation may
breathe new life into the rural economy and propel it towards long-term
success.

5.3.2. Ethical AI
AI systems require vast amounts of data, including details on busi-

nesses and their clients [316]. The value of knowing the data owner
surpasses that of having private information that cannot be linked to
a specific person. When dealing with sensitive information, compa-
nies regularly face problems related to data security and regulatory
compliance [317]. Autonomic computing using AI needs to take into
account privacy rules and data protection. While AI has the potential
to be a game-changer, it has not always been successful in achieving its
aims. A hunt for answers by an AI may result in a flood of insensitive
comments [318]. The vast number of AI decisions and the stakes
involved make this field fraught with peril. Prior to expanding the use
of this invention, it is crucial to develop accountability and ownership.

5.3.3. Digital humanism
The unavoidable consequences of digital colonization driven by

business need a counter-force of digital humanism motivated by care
for humanity and the Earth [319]. We have never been both so in-
terdependent, yet so isolated. Modern digital systems allow for global
communication. One no longer has to be in the same room as someone
else to have a conversation, collaborate on a project, or just have
fun with them. The cell phone is rapidly becoming an integral part
of people’s daily lives all across the world. Connectivity between the
developing world and the developed nations of the world is rapidly
expanding, for both good and ill. These interconnections are causing
conflicts that could have been prevented when individuals and ideas
were separated by space. Western materialism and commerce meet
Eastern spirituality and culture in the virtual world [320]. Therefore,
although humans may all end up in the cloud at some point, the barriers
of mutual respect and compassion that keep us from crashing into one
another are more than frayed. Most modern digital accounting and
tracking systems are used by private companies seeking to maximize
profits at the expense of others, enriching a few elites at the expense
of a much larger underclass [321]. In contrast, if the cloud could be
utilized for humanity’s benefit, manufacturing and distribution might
be dramatically enhanced. Controlled well, such instruments will allow
for fine-tuning of many crucial societal functions, particularly at the
subnational and neighborhood levels.

5.4. Security and compliance

We are considering data protection, privacy regulations, and re-
silience to attacks as security and compliance metrics for computing
systems.

5.4.1. Security, privacy and resiliency
In recent years, there has been a dramatic change in academia and

business towards the IoT, edge computing, and cloud computing in or-
der to serve customers better. With this massive paradigm shift, comes
a slew of problems and difficulties with protecting the confidentiality
and safety of the information stored on these devices [322]. Edge com-
puting’s many distinguishing features – its low latency, geographical
dispersion, end-device accessibility, high processing power, variability,
etc. – make it imperative that security and privacy mechanisms be
both flexible and powerful [323]. In addition, creating universally
compatible software platforms is challenging due to the wide variety
of use cases and device types.

Several elements become important in the research of these security
and associated challenges in the cloud and fog computing models:
End-user confidence and privacy; verification and validation of sources
inside nodes; secure communications between sensor, compute, and
broker nodes; detection and prevention of malicious attacks; secure,
reliable and decentralized data storage, such as Blockchain [231].
Some of the problems that have already been addressed in this field
include adaptive mutual authentication, identifying and retrieval of
harmful or malfunctioning nodes, the detection and defense against
assaults, the avoidance of harmful hazards, and the protection of user
information from theft. Unmanned Aerial Vehicle (UAV)-aided comput-
ing devices can now maintain their anonymity while contributing to
distributed frameworks in AI technology, such as computer vision and
path learning, supporting data processing and decision-making [324].
Other efforts in fog forensics have also given digital evidence by
recreating prior computer activities and identifying how these events
contrast with cloud forensics in important ways.

The past few years have seen significant progress in several key ar-
eas related to Fog Radio Access Networks (F-RANs), including mobility
management, interference reduction, and resource optimization [325].
Novel approaches have evolved for varied applications handling pri-
vacy challenges. Face recognition and resolution, vehicle crowd sens-
ing, geographic location sensing and data processing, renewable node
storage systems and data centers, and fog-based public cloud comput-
ing are promising new research areas. Prevention against data theft,
attacks involving man-in-the-middle, confidentiality of users, location
confidentiality, forward privacy, reliable user-level key management,
and many other weaknesses have all been addressed through such
efforts [4].

There are scaling issues with many fog/cloud privacy and security
models that prevent them from fully applying to the next-generation
edge computing transition [326]. Because of fog computing’s decen-
tralized nature, numerous new security concerns, which are not an
issue in the cloud, emerge in the fog layer and IoT devices. The
deployment of authentication systems is hampered by the prevalence
of threats such as advanced persistent threats (APT attacks), malware,
distributed denial of service (DDoS) attacks, two-way communication,
and micro-servers without hardware protection mechanisms in edge
data centers [327]. Additionally, these studies show how the mobile
edge computing architecture might change in the future. For exam-
ple, edge nodes working together could make real-time encryption
more efficient. The computational capacity of both edge and distant
resources has not been completely used in previous efforts, and se-
curity flaws have been addressed from a restricted viewpoint. New
phenomena appear when cloud-like capacities are distributed to the
network’s periphery [231]. Edge data center collaboration, service
migration on a local and global scale, end-user concurrency, QoS,
real-time applications, load distribution, server overflow issues, stolen
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device detection, and dependable node interaction are all examples of
such scenarios. Future studies can focus on new areas, such as evolving
game-theoretical strategies to the privacy algorithms encouraged by
adversarial attack scenarios, communication protocols in sensor cloud
systems, and clustering model-based security evaluation (AI-based fore-
casting approaches), which can be investigated as potential solutions
to these issues [236]. Mobile devices’ presence in these data centers
should be taken into account by safeguarding systems.

5.5. Economic and management

We are considering cost-efficiency, resource allocation, application
design, computing economics, and data management under economics
and management for computing systems.

5.5.1. Cost-efficiency
Minimizing cloud expenditures while maximizing application per-

formance and efficacy is the goal of cloud cost optimization, which
entails striking a fine balance between technological standards and cor-
porate goals [304]. Cost-effective cloud computing refers to the practice
of utilizing cloud providers in the most economical way feasible to
operate software, complete tasks, and create value for a company.
Optimization as a practice varies from fundamental business manage-
ment to challenging scientific and technical fields including opera-
tional research, statistical and data analysis, and modeling and predic-
tion [316]. Corporations may maximize the return on their investments
in cloud computing through cost optimization, which reduces wasteful
expenditures and strengthens their operational effectiveness [328]. By
avoiding economic hazards, aligning spending with company goals, and
establishing a secure, scalable, and cost-effective cloud infrastructure,
corporations can maximize the return on their investments in cloud
computing. In general, efficient cloud cost management preserves es-
sential resources against the risk of unanticipated expenditures and
financial mismanagement. Changing to a cloud-native methodology
involves more than just updating technology; it also necessitates a
substantial adjustment in mindset [1]. Building scalable apps that make
efficient use of resources requires developers to think in terms of the
cloud from the start. To optimize cloud expenditures, a cloud-native
application design requires an in-depth familiarity with the services and
resources offered by different cloud service providers. Managed service
options are superior to autonomous technologies since they require less
effort and time investment [329]. A sophisticated knowledge of the
user application’s demands, regulatory demands, and possible financial
consequences is necessary to choose between a single and multi-cloud
installation plan. An organization’s administration might be simplified
by adopting a single-cloud approach, but doing so could leave it
vulnerable to vendor lock-in and service restrictions [2]. Contrarily,
a multi-cloud strategy can increase complexity in administration but
has the ability to optimize costs, provide greater flexibility, and lessen
the danger of vendor lock-in. Identifying which is the most economical
and profitable implementation approach requires careful consideration
of the specific features, pricing methods, and competencies of different
cloud services.

5.5.2. Resource allocation
The sheer size of today’s CDCs makes resource management in

networked systems a formidable challenge. In large-scale distributed
architectures, the variety of network devices, elements, and ways to
connect raises the difficulty of resource management strategies [330].
Consequently, there is a necessity for innovative resource allocation
methodologies that would add to the reliability and effectiveness of
these systems while keeping them cost-effective and sustainable. While
resource management is fundamental to distributed systems (be it the
cloud, the IoT, or fog computing), additional guarantees are needed
to ensure that these systems operate well in terms of latency, de-
pendability, cost-effectiveness, and throughput [331]. The software

layer is just one part of these larger systems, which also require
consideration of networking, server architecture, and ventilation. By
incorporating blockchain technology into operations like resource shar-
ing and VM migration, cloud systems may be more secure [332]. There
is a pressing need to investigate novel approaches to managing com-
puter system resources by taking a systemic perspective and using AI
models. Moreover, experiment-driven strategies for examining methods
to optimize resource management methods may be investigated [333].
Borg was opened up by Google as Kubernetes, which is an instance of
a cluster management system that incorporates data abstraction into
resource management. Users are freed from worrying about the nuts
and bolts of resource management and may instead focus on composing
cloud-native applications.

Borg conceptually separates the whole cluster into cells, each hous-
ing a Borgmaster (controller) and a Borglet (which initiates and termi-
nates tasks within the cell’s perimeter). The master node coordinates
with the Borglets and processes RPCs from clients requesting actions
like creating jobs or reading data [253]. This centralized design is very
suitable for scaling. The primary benefit of this architecture is that
operations that have already been started will continue to execute even
if the master or a Borglet fails [334].

A system known as Mesos can facilitate the equitable distribution
of commodity clusters. It coordinates the use of commodity clusters
by many systems. The fundamental idea is to make use of available
resources [335]. In this model, Mesos determines how many resources
to give to every framework depending on the limitations associated
with that framework, and the frameworks then choose which offers
to take. Thus, scheduling choices must be made by frameworks. In
addition, Mesos facilitates the creation of domain-specific frameworks
(like Spark) that may greatly enhance performance. To schedule and
manage available resources, YARN is used as a framework [1]. It en-
ables services to ask for computing power at various topological levels,
including individual servers, networks, and whole racks. The primary
component in charge of allocation is YARN’s resource management.
Similarly to Mesos, it enables several frameworks to collaborate on the
same commodity clusters [334]. YARN’s integrated reliability masks
the complexities of failure identification and recovery.

• Heterogeneous Resources and Workloads: There is a lack of
cohesion in the existing literature about managing resources and
workloads in diverse cloud settings. As a result, there is no com-
mon setting in which cloud applications can make optimal use of
heterogeneity in VMs, vendors, and hardware architectures [151].
Consequently, the initiative recommends an overarching program
that takes into consideration diversity throughout. Effective solu-
tions can be picked from a collection of workload and resource
handling methods, depending on an application’s needs [336].
Heterogeneous memory control is necessary for this purpose.
Modern memory control techniques rely heavily on hypervisors,
thereby minimizing the potential advantages of heterogeneity.
Recent calls for action have advocated for alternatives that focus
on heterogeneity awareness in the guest OS. Another chasm is
that between heterogeneity and abstraction [337]. Accelerator-
specific languages and low-level programming initiatives are nec-
essary for today’s programming paradigms to utilize hardware
processors. Furthermore, such models allow for the creation of
useful research software. As a result, service-oriented and user-
driven applications on cloud platforms are hampered in their
ability to take advantage of heterogeneity. Kick-starting an inter-
national community initiative to come up with an open-source,
high-level programming language that is suitable for cutting-
edge and creative Web-based applications in a heterogeneous
setting is a worthwhile step to take [338]. Whenever fog com-
puting matures and application migration occurs, such aids will
be invaluable.
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5.5.3. Application design
By 2025, analysts predict 61 billion connected devices will generate

40 percent of global data at the cost of $2.5 trillion [339]. Medical
services, near-real-time traffic management systems, precise farming,
intelligent towns and cities, etc., are just a few examples of IoT ap-
plications that are driving the need for improved processing capacity,
data storage, confidentiality, security, and trustworthy communication.
Additionally, as the data produced by these devices is used to resolve
real-time challenges, credibility, uniformity, and accessibility of the
data must be maintained. It is challenging to design such complex
applications for IoT systems [340]. As a result, it is essential to develop
application designs and architectures that are not only dependable and
quick enough to deliver effective efficiency but additionally, scalable
to manage massive amounts of data through these devices. These are
the most important factors to consider when developing such apps for
cloud environments. Firstly, a data packet’s latency is the time it takes
to travel between an IoT device and the cloud before returning. For
time-sensitive information, even a millisecond delay might have drastic
consequences. For instance, having a crisis-sensing instrument that only
sounds an alert after a disaster has already taken place is not a viable
solution. Data needing immediate reaction should be analyzed as close
as possible to the origin [341]. Secondly, if all this data is transferred to
the cloud for storage and analysis, the resulting traffic will be massive,
using up all available bandwidth. The distance between the device
and the cloud also increases transmission latency, which slows down
responses and reduces user experience. Therefore, some tasks must
be transferred from the cloud to an edge server located between the
Internet servers and the mobile device: such solutions better satisfy
end-users’ requirements.

By storing and processing certain IoT data directly on IoT devices,
the fog computing model reduces the load on the cloud and keeps
costs down. Large-scale, geographically dispersed applications that rely
heavily on real-time data benefit from the fog’s consistency [342].
Fog computing may be the most appropriate choice to enable effective
IoT and provide reliable and safe services and resources to many IoT
users. Big data analytics, IoT devices, fog, and edge computing have
become the foundations for smart city programs worldwide [343]. In
transport, fog computing is useful for several tasks, including vehicle-
to-vehicle interaction, smart-sensor-based congestion control system
management, driverless car management, and self-parking, among oth-
ers. Furthermore, governments may employ these applications to make
the lives of their residents safer and more environmentally friendly,
making them a sustainable approach. Emergency services, such as
those dealing with fires or natural disasters, can also benefit from this
technology by receiving timely alerts about developing crises to help
them make informed choices.

Farming software that tracks weather and climatic data like rainfall,
wind speed, and temperatures, makes it easier for farmers to reap a
harvest. An IoT agriculture platform is suggested for cloud and fog
computing, with applications including automated agricultural mon-
itoring, visual inspection for pest control, and more efficient use of
farm resources [340]. Meanwhile, in the medical field, more and more
people are using fitness trackers, blood pressure monitors, and heart
rate monitors to track vital signs and gather data for medical analysis.
Thanks to these innovations, physicians can check their patients’ health
from afar, and patients have more say in their care and decisions.

5.5.4. Computing economics
There are several promising new avenues for study in the financial

aspects of cloud computing. It is becoming clearer that the lower
costs of container deployment can be used to handle real-time work-
loads [344]. This is speeding up the switch from VMs to containers for
cloud computing.

• Cost-Effective Computing Models: In serverless computing, no
billing for computing resources is made until a function is in-
voked. Processes executed in these lambda functions tend to

be narrower in focus and designed for processing data streams.
Whether or not serverless computing is beneficial for a given
application depends on its projected runtime behavior and work-
load [1]. Averaged versus peak transaction rates; scaling the
number of simultaneous operations on the infrastructure (i.e., op-
erating multiplies simultaneous functions with a growing num-
ber of consumers); and benchmark implementation of server-
less functions across various backend hardware platforms [345].
Conversely, increased employment of fog and edge computing
characteristics with cloud-based data centers gives tremendous
study potential in cloud economics.
• Economic Impact of Computing Technologies: It is possible to
lower the expenses of running cloud services and infrastructure by
combining reliable resources of the cloud with more ephemeral
resources at the consumer’s edge. To make such technology ac-
cessible at the edge, nevertheless, it is anticipated that consumers
will require some sort of inducement [157]. Expanding the cloud
market to include new types of service providers is possible be-
cause of the accessibility of cloud and edge resources. Researchers
call these intermediate facilities located between the conven-
tional data center and the user-owned or provisioned resources,
microdata centers [346]. The federation concept in computing
allows for many microdata center operators to operate together
to distribute workloads in a given region at desired pricing.

5.5.5. Data management
Metadata handling for datasets is not given much attention in cloud

IaaS and PaaS services for storing and information administration,
which instead prioritize file, partially structured, and structured data
separately. In contrast to traditional, organized data warehouses, pro-
ponents of ‘‘Data Lakes’’ advocate for businesses to store all their data
in unstructured formats on the cloud, using services like Hadoop [1].
Nevertheless, using them might be difficult due to the absence of
information for tracking and defining the origin and authenticity of the
data.

Throughout the past ten years, research archives have become
exceptional in handling vast, varied datasets and the accompanying
information that provides context for their usage. Collocating data and
computing resources in a small number of strategically located data
centers worldwide allow for economies of scale, a major advantage
of CDCs [348]. Nevertheless, bandwidth restrictions across worldwide
networks and delays in gaining access to data present obstacles [350].
This becomes an increasingly pressing issue as IoT and 5G mobile
networks expand. However, the cloud providers’ access to private data
and critical confidential information still poses a risk for businesses that
need to guarantee strict privacy for their end-users. Likewise, there
are no foolproof auditing techniques to prove that the cloud service
provider has not obtained the data, even though regulatory measures
are in place. In a hybrid setup, customers may handle confidential
information under their watchful eye while still taking advantage of
the advantages of public clouds, thanks to the proximity of private data
centers to public CDCs connected by an independent high-bandwidth
network. Furthermore, effective approaches to managing resource flex-
ibility in such contexts should be explored [351]. In addition, it is
preferable to have high-level programming abstractions and bindings
to platforms that can allocate and oversee resources in these massively
dispersed settings.

Finally, with the IoT, deep learning, and blockchain all set to be
housed on clouds, it is important to look at specialist data management
services to ensure their success [352]. As indicated above, IoT will
include a strengthened requirement to deal with streaming data, their
effective storage, and a requirement to integrate data management
on the edge effortlessly with administration in the cloud [38]. When
unregulated edge devices are involved, integrity and authenticity be-
come even more crucial. As the use of deep learning grows, it will
become more important to be able to manage trained models well and
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Table 5
Summary of open challenges and future directions in the above-discussed impact of modern computing and performance criteria with future reading.

Impact and
performance criteria

Open challenges and future directions Further reading

QoS and SLA How can SLAs and QoS be preserved in real-time when cloud computing and edge
resources and tasks are executed?

ACM CSUR [287] and
Wiley IJCS [289]

Autoscaling How can it be ensured that computing resources need to meet SLAs and QoS are
effectively autoscaled in real-time?

ACM CSUR [295]

Fault Tolerance How can reliable support be continuously provided with environmentally-friendly
services?

Elsevier SETA [300]

Energy Consumption How can modern computing benefit from AI/ML to provide environmentally-friendly
services and low energy consumption?

Springer Cluster
Computing [304]

Carbon Footprint What technological advancements may decrease the impact of climate change and how
could environmentally-friendly computing have a lower-carbon footprint?

IEEE COMST [190]

Serviceability What methodologies should be employed to develop and measure key performance
indicators, also known as KPIs, in order to assess the success of initiatives that aim to
make cloud computing more usable and secure?

Wiley ETT [309]

Digital Divide How does the use of the cloud help overcome the digital divide? Can ICTs help bridge
the digital divide in infrastructural growth?

Elsevier Telematics and
Informatics [313]

Ethical AI When designing and implementing AI in computing devices, what ethical concerns must
be taken into account?

Nature Machine
Intelligence [347]

Digital Humanism How may digital tools stimulate original thought and the independent thinking of
individuals, and whether or not the synergy of these traits can promote a digital shift in
the workplace?

Elsevier Journal of
Business Research [319]

Security, Privacy &
Resiliency

What measures can be taken to ensure that personal information is protected and data
is securely processed in the cloud when IoT apps collect and analyze massive amounts
of data?

IEEE COMST [323]

Cost-Efficiency How can impending difficulties like the prohibitive cost of setting up and running big
systems testing environments and the influence of global warming on the architecture of
upcoming systems be overcome?

Springer Cluster
Computing [304]

Resource Allocation What are the best practices for successfully provisioning cloud and edge resources for
many IoT apps before scheduling such resources?

ACM CSUR [333]

Heterogeneous
Workloads/
Resources

How can the heterogeneity of resources and workloads impact the efficiency of a
computing system at runtime?

ACM CSUR [151]

Application Design How can more efficient IoT apps be developed to make greater use of available
computer power?

ACM CSUR [201]

Computing
Economics

How can businesses strengthen their CapEx (Capital Expenditure) and OpEx (Operational
Expenditure) strategies by learning about the primary economic advantages of cloud
computing in terms of return on investment (ROI), total cost of ownership (TCO), and
relocation?

Elsevier
Telecommunications Policy
[344]

Data Management How can organizations make optimal use of AI/ML approaches for enormous amounts of
data to ensure efficient data administration and analysis?

Springer JBD [348] &
ACM CSUR [349]

make sure they can be quickly loaded and switched between to make
online and distributed analytics applications possible [349]. Finally,
blockchain and decentralized ledgers can improve data management
and tracking by providing greater transparency and auditability. While
initially used by the financial sector (of which cryptocurrencies are only
one prominent example), these systems may be expanded to store other
company data safely with an inherent auditing record.
Summary: Table 5 lists the summary of open challenges and future

directions in the above-discussed impact of modern computing and
performance criteria, along with recommendations for future reading.

6. Emerging trends in modern computing

The advent of modern computing technology has made it possible to
resolve several real-world issues, including delayed responses and low
latency. It has facilitated the development of start-ups led by promising
young minds from all over the world, providing access to massive
computing capacity for tackling difficult issues and accelerating sci-
entific advancement. Thanks to its ground-breaking improvements in
efficiency in domains like neural networks, Natural Language Process-
ing (NLP), and related applications, AI has been gaining popularity
lately. Computing is a vital infrastructure for running AI services due
to its enormous processing power, and AI has the potential to improve
existing computing by making resource management effective. Several

AI models rely on outside data sets and large-scale computer capac-
ity, both of which might be easier to access with today’s computing
systems. Currently, training advanced models of AI in large numbers
is becoming even more crucial. Additionally, extensive application of
AI in contemporary computer systems may be possible due to ground-
breaking XAI research. In the decades to come, AI will place substantial
stress on computing resources. To meet these demands, it is necessary
to develop new approaches to research and methodology that make use
of AI models to solve problems with adaptability, delay, and handling of
resources and cybersecurity. Scalability and adaptability are two open
issues that have not yet made full use of AI models as an economical
way to boost the performance of computer applications.

Our analysis has led us to categorize certain areas of computing
into three separate maturity levels: a period of five to ten years, over
a decade, and under five years. Several novel innovations are on the
horizon that might significantly improve the utilization of modern
computing, and the article has highlighted them all over the coming
decade. Fig. 2 depicts the hype cycle for modern computing systems
along with their new trends. Researchers extensively study computing
paradigms and technologies, with edge AI and federated learning now
dominating. New areas of study within computing, such as distributed
computing continuum and AI-driven computing are just scratching the
surface. Applications for computing in these domains may not mature
for another five to 10 years. Quantum ML, sustainability, Net Zero
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Fig. 2. Hype cycle for modern computing.

Computing, XAI, and the quantum Internet are all expected to be in
the spotlight for at least another decade. Digital twins, cybersecurity,
edge intelligence, edge computing, and blockchain technology have
generated an unprecedented level of excitement. They are expected to
be completely built-in under five years with the help of modern tech-
nology. Machine Economics, In-Memory Computing, Bitcoin Currency
and AIOps/MLOps have all reached their peak of inflated expectations
for the following five to 10 years of noteworthy evolution. Significant
progress needs to be made before biologically inspired computing,
neuro-symbolic AI, analog computing, neuromorphic computing, 6G,
and quantum computing can be considered hype-worthy. Cloud and fog
computing has been trending heavily over the past few years, and that
trend could persist for the next five to ten years.

7. Summary and conclusions

This research offers a comprehensive exploration of the evolu-
tion of modern computing systems over the past sixty years, tracking
the transition from classical computers to quantum computing and
examining their key components, such as physical architecture, con-
ceptual units, and communication methods. We analyze the influence
of conceptualization and physical models on the shift from centralized
to decentralized structures, a significant change since the Internet’s
inception. Developments in microcontroller architecture, operating sys-
tem design, and networking infrastructure have given rise to ubiqui-
tous computing models like the Internet of Things (IoT), pushing the
boundaries of both physical and conceptual realms. The move towards
specialized hardware and software, particularly in data-driven fields
like AI, represents a shift from earlier focuses on system flexibility
and adaptability. This article also addresses issues of accessibility and
potential inequalities, emphasizing the need to ensure these technolo-
gies positively impact society and everyday life. Integrating recent

advancements with ongoing challenges in the application of established
technological trends, this work provides an in-depth analysis of the
next wave of scientific research in computing. It summarizes current
findings, acknowledges limitations, and outlines new trends and key
challenges, considering the impact of emerging trends and envisioning
future research paths in modern computing. This review aims to be a
valuable resource for experts, technologists, and academics interested
in the latest developments and future directions in the field of modern
computing.
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Table 6
List of acronyms.

Abbreviation Description

PCs Personal Computers
DNS Domain Name System
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AI Artificial Intelligence
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IoT Internet of Things
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WWW World Wide Web
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JSON JavaScript Object Notation
XML Extensible Markup Language
SOA Service-Oriented Architecture
CDC Cloud Data Centers
HPC High Performance Computing
IT Information Technology
SaaS Software as a Service
PaaS Platform as a Service
IaaS Infrastructure as a Service
SBC Single-board Computers
SDN Software-Defined Networking
NVF Network Function Virtualization
IIoT Industrial Internet of Things
QoS Quality of Service
IoE Internet of Energy
B5G Beyond 5G
SLA Service-Level Agreement
FPGA Field-Programmable Gate Arrays
ASICs Application-Specific Integrated Circuits
GPU Graphics Processing Units
CUDA Compute Unified Device Architecture
TPU Tensor Processing Units
ICT Information and Communication Technology
CaaS Container as a Service
QoE Quality of Experience
V2X Vehicle-to-Everything
MEC Multi-access Edge Computing
VM Virtual Machines
M2M Machine-to-Machine
PoW Proof of Work
XAI Explainable Artificial Intelligence
UAV Unmanned Aerial Vehicle
DDoS Distributed Denial of Service
STCO Systems-Technology Co-Optimization
SoC System-on-a-Chip
ML Machine Learning
SLO Service Level Objective
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