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Stefan Goetze, Anton Ragni
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ABSTRACT

Neural networks have been successfully used for non-intrusive

speech intelligibility prediction. Recently, the use of feature rep-

resentations sourced from intermediate layers of pre-trained self-

supervised and weakly-supervised models has been found to be

particularly useful for this task. This work combines the use of

Whisper ASR decoder layer representations as neural network in-

put features with an exemplar-based, psychologically motivated

model of human memory to predict human intelligibility ratings for

hearing-aid users. Substantial performance improvement over an

established intrusive HASPI baseline system is found, including on

enhancement systems and listeners unseen in the training data, with

a root mean squared error of 25.3 compared with the baseline of

28.7.

Index Terms— speech recognition, intelligibility prediction,

hearing impairment

1. INTRODUCTION

Hearing loss is a widespread problem that affects approximately

466 million people worldwide (around 6% of the world population),

though this problem is only expected to grow; by 2030 it is predicted

to impact 630 million people worldwide [1]. Age correlates with the

chance that a person will be affected by hearing impairment [2], and

the population is expected to age. From 2015 to 2050, the proportion

of the population aged over 60 is expected to almost double, rising

from 12% to 22% [3]. As hearing impairment typically worsens in

an individual, their ability to make intelligible the speech that they

hear decreases.

Successful development of hearing aid (HA) technology [4, 5]

requires assessment, which is expensive and time-consuming when

conducted by human listeners [6, 7]. Automated intelligibility met-

rics, which are designed to mimic human assessment, are more cost-

effective and can also be used as training objectives [8, 9]. Develop-

ing and improving estimators for such metrics is therefore essential.

The Clarity Prediction Challenge 2 (CPC2) [10] builds on the

prior Clarity Prediction Challenge 1 (CPC1) [11]. It provides a com-

paratively large dataset of noisy audio processed by hearing aid sys-

tems, each with an associated intelligibility score obtained from lis-

tening tests with hearing-impaired human listeners.

The challenge task is to predict the intelligibility score of

hearing-impaired listeners given the audio and some additional

information such as a representation of the hearing loss of the lis-

tener. The challenge has both a non-intrusive track, where only
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the noisy signal processed by the hearing aid can be used, and an

intrusive track, where a clean version of the input audio can also be

used.

In this work, an intelligibility estimator for the non-intrusive

challenge task is proposed, which makes use of a feature transfor-

mation of the audio signal, derived from intermediate representations

of a pre-trained automatic speech recognition (ASR) model (cf. Sec-

tion 3.1). This is combined with a model of human memory, which

has its origins in the field of human psychology, to predict the intel-

ligibility score of hearing aid output audio (cf. Section 3.2.2).

The remainder of this work is organised as follows: Section 2

briefly describes the CPC2, including the dataset and baseline model.

Section 3 covers the proposed features and model architecture. Re-

sults are presented in Section 4 and Section 5 concludes the paper.

2. CLARITY PREDICTION CHALLENGE 2

The Clarity Project runs two challenges in sequence with the aim

of improving HA technology: the Clarity Enhancement Challenge

(CEC) and the Clarity Prediction Challenge (CPC). The CEC ob-

jective is to design systems to enhance noisy signals for hearing-

impaired listeners. The CPC objective is to assess the intelligibility

of the CEC systems.

2.1. Challenge data

The CPC2 data consists of tuples of a speech signal ŝ[n] and its

corresponding correctness value i, obtained from listening tests with

hearing-impaired listeners.

The signal ŝ[n] is the enhanced outputs of hearing aid systems

with binaural input x[n], being an artificially corrupted version of

clean reference audio s[n] with additive noise v[n]. The correctness

value i is the percentage of words which a hearing-impaired listener

was able to correctly reproduce from the speech signal ŝ[n] they

listened to. The challenge data also contains additional information

such as left/right ear’s representations of the listeners’ hearing loss

as audiograms al and ar . All audio signals are stereo with a left and

right channel.

The resulting data is partitioned into three train sets, each paired

with a disjoint evaluation set. Each evaluation set covers listeners

and hearing aid enhancement systems which are unseen in its corre-

sponding training set, meaning that prediction models need to gener-

alise to unseen listeners and systems. Set 1 has a training set of size

8599 and an evaluation set of size 305 audio samples. Set 2 has a

training set of size 8135 and an evaluation set of size 294. Set 3 has

a training set of size 7896 and an evaluation set of size 298. There

are around 40 hours of audio in total. Audio with very low intelligi-

bility (correctness 0) and very high intelligibility (correctness 100)

are over-represented, as shown in Figure 1.
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Fig. 1. Distribution of true correctness values in the training data.

2.2. Prior approaches

A number of different approaches were taken in the first iteration of

the challenge in CPC1 [11]. The best performing non-intrusive ap-

proach [12] uses an uncertainty measure derived from state-of-the-

art ASR systems as a proxy for human intelligibility, finding a strong

correlation between the two measures. Other successful approaches

[13, 14] make use of powerful feature representations derived from

self-supervised speech representations (SSSRs) as inputs to neural

speech intelligibility prediction models, while others use neural net-

work structures which have been shown to be useful in the related

task of human speech quality rating prediction [15].

CPC2 differs from CPC1 in that its evaluation sets are disjoint

in terms of listener and hearing aid system relative to its training

sets. This means that some of the better-performing approaches to

CPC1, which operated effectively as predictors of the hearing aid

system, were not at all useful in CPC2, which was discovered in

early experiments for this work with the CPC2 data. As such, our

proposed system for CPC2 builds on the best-performing approaches

to CPC1, while ensuring that it can generalise to unseen data.

2.3. Challenge baseline

The baseline system provided by the challenge organisers [10]

makes use of the Hearing-Aid Speech Perception Index (HASPI),

version 2 [16]. This is an intrusive system that makes use of both

the enhanced noisy signal ŝ[n] and the clean speech signal s[n]. A

HASPI score is computed for both the left and right ear signals and

logistic regression is used to predict the correctness scores from the

higher HASPI score.

3. SYSTEM ARCHITECTURE

This section describes the proposed approach to the CPC2 task. The

approach consists of neural networks which take a recent ASR de-

rived representation of the hearing aid output signal ŝ[n] as input and

return a prediction î of the correctness value.

3.1. Features

The Whisper model [17] is an ASR model pre-trained on 680, 000
hours of multi-lingual data for tasks including English and non-

English speech transcription and voice activity detection. The

model architecture is an encoder-decoder transformer [18], with 12
encoder layers and 12 decoder layers for the small Whisper model1

used in this work.

1https://huggingface.co/openai/whisper-small
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Fig. 2. Model architecture of proposed SI prediction.

Given the enhanced speech signal ŝ[n], with corresponding

spectrogram representation Ŝ, the input to the proposed intelligi-

bility prediction model is the output of the 12 decoder layers of

the Whisper model. The Whisper decoder layers output represents

word-level features, with dimension W × 768 × 12, where W is

the predicted number of words in the utterance, 768 is the feature

dimension of each decoder layer for the small Whisper model, and

12 is the number of decoder layers. Note that while W varies from

utterance to utterance, for a given utterance it will remain fixed

through the decoder layers. The parameters of the Whisper model

are frozen during training of the metric prediction model described

below, i.e., the Whisper model is used as a feature transform.

3.2. Model structure

An ensemble of two models for speech intelligibility (SI) prediction

is used, as shown in Figure 2, and the results of these two models are

combined by averaging.

A model structure following work on the CPC1 in [14] is chosen

for the primary SI prediction network (cf. Section 3.2.1), depicted to

the right in Figure 2. This model structure has previously been suc-

cessfully applied to the task of human quality label prediction [19]

using pre-trained SSSR representations as its input feature. This ap-

proach was also found to be useful for the CPC1 task [14], however

generalization to unseen hearing aid systems was poor.

The secondary SI prediction network incorporates an exemplar-

informed module based on a simplified theory of human memory

[20] (cf. Section 3.2.2), and is shown in the middle-right of Figure 2.

Humans are believed to make use of specific examples, or exemplars,

for memory-based tasks [21, 22, 23, 24]. Humans are also able to

non-intrusively assess speech signals, i.e., without direct reference.

Since the challenge objective is to predict human responses, incor-

porating an exemplar-informed component may provide benefits or

insight.

The output of the ensemble î for a given input signal ŝ[n] is the

mean of the outputs of the primary îp and secondary systems îs.



3.2.1. Primary SI prediction model

The model structure uses a learnable weighted sum of the Whis-

per representations, implemented as a learnable linear layer with

12 parameters, all initialised to 1, followed by a softmax to ensure

that the layer weights sum to 1. This representation of dimension

W × 768 is then processed by 2 bidirectional long short-term mem-

ory (BLSTM) layers with an input size of 768 and a hidden layer

size of 384. Finally, an attention pooling feed-forward layer with

sigmoid activation outputs to a single neuron which represents the

primary predicted correctness value ip normalized between 0 and 1.

The primary model has approximately 8.3 M parameters.

3.2.2. Secondary SI prediction model: exemplar-informed

The secondary model differs from the primary model in that the

attention-pooling output feeds into an exemplar-informed module

based on a simplified theory of human memory [20]. The exemplar-

informed module incorporates a memory set of D exemplars, which

are speech signals ŝ∗1[n], ..., ŝ
∗

D[n] drawn from the training data,

with corresponding correctness values i∗1, ..., i
∗

D . The exemplars can

be changed during training and for inference. Let y be the output of

the attention pooling for input ŝ[n] (see Figure 2). The exemplars,

ŝ∗1[n], ..., ŝ
∗

D[n], are processed in the same way as the input, pro-

ducing exemplar outputs from the attention pooling y∗

1 , ...,y
∗

D . The

output, r, of the exemplar module is given by

a =
D∑

d=1

f(y) · g(y∗

d)

||f(y)|| ||g(y∗

d)||
i
∗

d (1)

r = h(a) (2)

The functions f : R768 → R
768, g : R768 → R

768 and h : R → R

are all learned affine transformations. The value a is a combination

of the exemplar labels, weighted by their similarity to the input. This

passes through a single linear neuron to produce r, and then through

a sigmoid activation, which yields the secondary model’s prediction,

îs, normalised to fall between 0 and 1. The exemplar model has

approximately 10 M parameters.

3.3. Experimental setup

All audio used as input to Whisper is re-sampled to 16kHz and

padded/truncated to be 30 seconds long. In the case of the CPC2

data, all recordings were shorter than 30 seconds, so were padded,

and downsampled from 32kHz to 16kHz. From this time-domain

signal, the 80 channel log magnitude Mel spectrogram is computed,

using a window of 25ms and a stride of 10ms. During training, both

left and right ear signals are used as independent samples with the

same correctness label. During inference, the signal that produces

the highest correctness value is used to account for the better-ear

effect [25].

For each of the three splits, two listeners and two systems were

randomly selected to form a disjoint validation set. All data with

these listeners and systems were removed from the training set. A

randomly selected non-disjoint validation set consisting of 10% of

the remaining training data was also formed. The majority of model

selection and hyperparameter tuning was performed using these vali-

dation sets, to test generalisation to unseen listeners and systems. For

the final models, the disjoint validation set and all listeners/systems

associated with it were merged back into the training data to make

the best use of resources.

The primary and secondary models are trained separately with

mean squared error loss. The primary model is trained for 25 epochs

with batch size 8, learning rate 10−5 and weight decay 10−4. The

secondary model is trained for 50 epochs with learning rate 2×10−6

and weight decay 10−4. During training and validation, D = 8 ex-

emplars are chosen randomly from the training data for each mini-

batch.

4. RESULTS AND DISCUSSION

Table 1 shows the results for the primary, secondary and ensemble

models on each of the data splits, as well as the overall result for the

CPC2 baseline. The validation sets contain enhancement systems

and listeners seen in the corresponding training data. The evaluation

sets are disjoint, containing only unseen enhancement systems and

listeners. The primary, secondary and ensemble prediction networks

all beat the baseline on all evaluation sets.

Table 1. Validation and evaluation set results.

Model

RMSE

validation split evaluation split

1 2 3 all 1 2 3 all

CPC2 baseline 28.7

Primary 21.6 23.5 22.8 22.7 28.2 23.8 23.3 25.3

Secondary 21.7 23.5 22.7 22.7 29.1 24.5 23.4 25.8

Ensemble 21.6 23.4 22.7 22.5 28.6 23.9 23.2 25.3

4.1. Primary and secondary models

The primary and secondary systems show similar performance on

the validation sets, with the ensemble of the two outperforming ei-

ther. This is not replicated on the evaluation set, where the primary

model outperforms the secondary model, and performs equivalently

to the ensemble.

4.2. Performance by intelligibility
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Fig. 3. Model performance by true correctness.

Figure 3 shows the performance of the ensemble model for dif-

ferent correctness values. The model performs well for very low

intelligibility (0 correctness) and for very high intelligibility (100

correctness) but performs less well between the two extremes. This

corresponds with the distribution of true correctness scores in the

training data (see Figure 1), in which 0 and 100 correctness are over-

represented.

4.3. Model performance on unseen enhancement systems

All the models show lower performance on Evaluation Set 1. This

appears to stem from the presence of audio enhanced by enhance-
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Fig. 4. Model performance by mean hearing aid system correctness.

ment system E001 (the baseline in Clarity Enhancement Challenge

2) in this evaluation set. Audio enhanced by this system has an av-

erage correctness value of 28.7%, which is significantly lower than

the average of the other two enhancement systems in Evaluation Set

1, E022 and E031, which have average correctness values of 73.0%
and 84.3%, respectively.

Although the proposed model can generalise to unseen enhance-

ment systems, it predicts correctness less accurately on enhancement

systems with lower performance. Figure 4 shows the proposed

model’s performance by enhancement system correctness across all

enhancement systems. There is a clear trend, with the proposed sys-

tem more accurately predicting the correctness for better-performing

enhancement systems which produce outputs with high correctness

ratings. Conversely, the proposed system less accurately predicts

outputs from poorly-performing enhancement systems which pro-

duce outputs with low correctness ratings. Figure 5 shows the

predicted (left) and true (right) correctness across all enhancement

systems, showing the proposed model overestimates the correct-

ness of the two worst-performing enhancement systems, E001 and

E038, while generally slightly underestimating the correctness of

the better-performing enhancement systems.
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4.4. Whisper layer weights

The learned weights for the Whisper decoder layers from the primary

model are shown in Figure 6. These show how the model used the

information to weigh each decoder layer feature, and therefore the

higher the value the more useful the model finds the layer to be.

The weights are shown for each of the three models trained on the

different training splits.

The general pattern for the different training splits is similar,

with layers 7 and 8 having the highest weights across all splits. This

suggests that layers 7 and 8 contain the most relevant information

for intelligibility. Interestingly, the model trained on Split 3 learns

weights that emphasise layers 7 and 8 more strongly.
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Fig. 6. Learned weights for the primary model Whisper decoder

layers.

4.5. Performance comparison

Figure 7 shows the performance of the proposed model (P002) com-

pared to all other challenge entries, as well as the challenge HASPI

baseline. Prior is a system which always predicts the average of

the intelligibility over the training set, regardless of the input. The

proposed system is outperformed by only one other system, P011,

which also utilises Whisper-derived features. The difference in per-

formance is very slight, with P011 achieving an RMSE score of 25.1,

while our system achieves 25.3.
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Fig. 7. Comparison of performance of CPC2 entries. A * denotes an

intrusive system.

5. CONCLUSIONS

We show that Whisper decoder layers are a useful feature represen-

tation for speech intelligibility prediction, with layers 7 and 8 ap-

pearing to be the most relevant.

Our proposed system performs substantially better than the

HASPI regression baseline and all but one of the other challenge

approaches, even outperforming intrusive systems which had ac-

cess to the clean reference signal. It is able to generalise to unseen

enhancement systems and listeners.



6. REFERENCES

[1] World Health Organization, “Addressing the Rising Prevalence

of Hearing Loss,” 2018, ISBN: 9789241550260.

[2] J. Rennies, S. Goetze, and J.-E. Appell, “Personalized Acous-

tic Interfaces for Human-Computer Interaction,” in Human-

Centered Design of E-Health Technologies: Concepts, Meth-

ods and Applications, M. Ziefle and C.Röcker, Eds., chapter 8,
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