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 Abstract— Due to iterative matrix multiplications or gradient 

computations, machine learning modules often require a large 

amount of processing power and memory.  As a result, they are 

often not feasible for use in wearable devices, which have limited 

processing power and memory. In this study, we propose an ultra-

low-power and real-time machine learning- based motion artefact 

detection module for functional Near-Infrared Spectroscopy 

fNIRS systems. We achieved a high classification accuracy of 

97.42%, low FPGA resource utilization of 38,354 look-up tables 

and 6024 flip-flops, as well as low power consumption of 0.021 W 

in dynamic power. These results outperform conventional CPU 

SVM methods and other state-of-the-art SVM implementations. 

This study has demonstrated that an FPGA-based fNIRS motion 

artefact classifier can be exploited whilst meeting low power and 

resource constraints, which are crucial in embedded hardware 

systems while keeping high classification accuracy. 

 
Index Terms— Field-programmable gate array (FPGA), fNIRS, 

low power, machine learning, motion artefact detection, real-time, 

support vector machines (SVM) 

 

I. INTRODUCTION 

UNCTIONAL Near-Infrared Spectroscopy (fNIRS) is 

an emerging modality that aims to characterize cortical 

hemoglobin fluctuations through intensity 

measurements of diffusely scattered near-infrared light [1,2]. It 

can help neuroscientists to determine which brain regions are 

activated during specific actions. However, pre-processing is 

essential for fNIRS data which can be noisy. Due to the 

participant’s motion, non-evoked systemic signal components 

in recorded fNIRS signals pose a challenge. This challenge is 

one of the main issues affecting fNIRS applications, as it results 

in motion artefacts, causing an erroneous detection of 

functional cortical activity [1]. 

Conventional motion detection is processed offline using 

benchtop computers, and these methods are based on peaks or 

shifts in time-series signals, including spline interpolation, 
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wavelet filtering, and principal component analysis [3–5]. 

However, the performance of these methods largely depends on 

a set of assumptions to describe motion artefacts and the 

subjective selection of signals with associated tuning of 

parameters. Hence, the need for a method that eliminates the 

subjective fine-tuning of parameters and avoids relying on 

stringent assumptions becomes crucial. To date, the common 

machine learning method employed for automatically learning 

with the fine-tuning of parameters is based on a denoised 

autoencoder architecture which requires the use of high-power 

graphics processing units (GPU), such as a Titian Xp GPU card 

[3]. Implementations using GPUs can achieve high 

classification accuracies, with [3] quoting a 100% success rate 

in removing motion artefacts. However, GPU card is not 

suitable for integration into wearable devices. Moreover, GPUs 

are not appropriate to power-constrained applications. In the 

execution of SVM algorithms, FPGAs are quoted to consume 

over an order of magnitude less power as compared to GPUs. 

This makes FPGA feasible to carry out machine learning 

algorithms in low-power applications.  

In this work we deploy support vector machines (SVM) as a 

machine learning method instead of neural network implements 

to consider the hardware constraints for standalone devices for 

fNIRS motion artefact detection. Efficient SVM hardware 

implementations can be achieved by considering various 

techniques and optimizations. One approach is to use reduced 

precision arithmetic, such as fixed-point or low-precision 

floating-point formats, to perform computations with lower 

energy consumption [6]. Alternatively, parallel processing units 

can speed up SVM computations and reduce power 

consumption or optimize memory access patterns and utilize 

on-chip memory resources efficiently. This reduces data 

transfer and storage requirements, leading to reduced power 

consumption [7]. However, past attempts have several critical 

limitations. Several simplification methods were applied when 

reducing the hardware complexity, consequently sacrificing 
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classification accuracy. Past architectures also lack flexibility 

and scalability and have exceptionally high power consumption 

usage; this is problematic due to the challenge of achieving a 

low-power hardware system [8]. Similar problem also occurs 

when leveraging field-programmable gate arrays (FPGAs) to 

achieve a high classification accuracy. Although FPGA have 

flexible digital circuital design and extensive parallel 

computation capabilities, the power consumption is still very 

high [7]. Overall, past implementations of SVMs struggle to 

meet important constraints imposed by the FPGAs, such as high 

classification accuracy, real-time processing, minimal resource 

utilization and low-power usage [8]. 

Therefore, the main contribution of this paper is the 

development of an online machine learning-based motion 

detection HLS (High-Level synthesis) Simulink model and 

subsequent generation of a model at RTL (Register Transfer 

Level) level for online motion artefact detection for an fNIRS 

system with ultra-low-power. Our machine learning module 

uses exponential approximation and overcomes the impact of 

accuracy degradation when reducing power consumption using 

a serial channeling method. This method overcomes resource 

constraints and introduces an online processing technique that 

can be miniaturized and seamlessly integrated as a standalone 

device. Additionally, we conducted a systematic power 

comparison, which demonstrates the novelty of the proposed 

approach and leads to a practical design solution for a fast 

FPGA-based prototype. A system development flowchart of 

this study is shown in Fig. 1.  

II. DIGITAL ARCHITECTURE DESIGN AND SIMULATION 

In this section, we present a detailed design of the ultra-low-

power, real-time implementation for detecting motion artefacts 

in fNIRS. We utilized the Gaussian Radial Basis Function 

(RBF) kernel, widely recognized as a powerful and popular 

choice for handling non-linear data [9]. We employed a 

software and hardware co-development method. The pre-

processing and motion detection integration stages were 

implemented using MATLAB and Simulink. Subsequent 

models were then validated through a set of datasets with an in-

built Simulink testbench. The testbench enabled the calculation 

of all miss-classification errors, providing a reliable 

measurement of the classification rate for each architecture. By 

adopting a high-level simulation approach early in the design 

cycle, we facilitated the rapid prototyping of designs. Each 

solution can be evaluated for its speed, complexity, and 

accuracy, allowing for a thorough assessment of its 

performance characteristics. 

A. The fNIRS Dataset 

Raw fNIRS data were obtained from a study wherein subjects 

wearing the fNIRS device were given tasks including “seated-

texting” and “walking-texting”. The data was passed through an 

fNIRS-specific data processing toolbox called Homer3 [10] and 

a function called hmrMotionArtefact to determine periods of 

motion artefact [10]. The purpose of finding these periods of 

motion artefacts was to train the SVM model using labelled data 

where the classifications have already been identified. Training 

datasets were created through the down sampling and balancing 

of a larger dataset with 99087 instances and two features. 

Balanced and unbalanced datasets were used when testing 

the architectural and HLS generated RTL SVM designs. The 

tests used balanced datasets so that many segments of data with 

motion artefacts could be tested. Unbalanced datasets were used 

to test the SVM model on signals that mimic a naturalistic 

scenario. 

B. Training the SVM model 

The full development cycle of the proposed SVM motion 

artefact classifier starts by training a model offline in software 

[9]. The model was trained in Python, and cross-validation was 

applied with a grid search to find the best cost parameter and 

kernel coefficient. An exhaustive search over various SVM 

parameters was conducted to fine-tune the model. The cross-

validation revealed that the best parameters for the model were 𝛤𝛤 = 1 and regularization 𝜆𝜆 = 10. Here 𝛤𝛤 =  
1𝜎𝜎, where σ is the 

variance and 𝛤𝛤 represents how much impact one training point 

has on its surrounding data points. The regularization term λ 

was used to prevent overfitting. The support vectors were 

extracted upon constructing the finished model, of which 55 

were generated, and the associated Lagrange multiplier 

coefficients and bias value were obtained. 

C. Digital Architecture Design of Pre-processing 

The RBF kernel in the SVM algorithm assumes that 

incoming data has been centered and scaled. Therefore, the 

incoming fNIRS signals need to be pre-processed for 

normalization purpose. This required each feature to have its 

mean value equal to zero and its standard deviation equal to one. 

To achieve real-time preprocessing, we calculated an 

exponentially weighted running mean and standard deviation. 

In the time-domain the exponentially weighted running mean is 

a statistic calculation that would consume a large number of 

FPGA hardware resources, hence the frequency-domain 

representation which is a first-order infinite impulse response 

filter (IIR) consisting of a real pole was applied. This is simple 

 
Fig. 1. Co-Design workflow for machine learning deployment in fNIRS 

Applications: integrating Scikit-Learn, MATLAB/Simulink, and Vivado 

for FPGA-based high-performance computing. 
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to implement in the time domain and uses far fewer hardware 

resources. We then created an IIR filter circuit, following a z 

transform, we find the transfer function:  𝐻𝐻(𝑧𝑧) =  
𝑎𝑎

1 − (1 − 𝑎𝑎)𝑧𝑧−1                           (1) 

Herein,  0 < 𝑎𝑎 < 1 is a constant that determines the effective 

length of the running average. To go to the continuous domain, 

we make the substitution 𝑧𝑧 =  𝑒𝑒𝑠𝑠𝑠𝑠 , where T is the sample time. 

After solving 1 − (1 − 𝑎𝑎)𝑒𝑒−𝑠𝑠𝑠𝑠 = 0, the continuous system has 

a pole at 𝑠𝑠 =  
1𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑎𝑎), where we set 𝑎𝑎 as 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 (

2∙𝜋𝜋∙𝑠𝑠𝜏𝜏 ), 𝜏𝜏  is the averaging time constant. The best value of 𝜏𝜏  and 

subsequently 𝑎𝑎 was found through a comprehensive brute force 

search that evaluates classification accuracy as a result; the final 

value taken forward was 𝑎𝑎 = 0.01 . Given that the transfer 

function (1) calculates the exponentially weighted running 

mean, the variance and the standard deviation can be efficiently 

computed. The Simulink architecture used to process a single 

feature of the input fNIRS signal is shown in Fig. 2. 

D. Digital Architecture of SVM inference 

The underlying theory of the SVM architecture builds a 

streaming architecture model based on the functional 

decomposition of the SVM kernel [9]. The fundamental 

arithmetic operations of the Gaussian radial basis function 

kernel 𝐾𝐾(𝑒⃗𝑒𝑖𝑖, 𝑒⃗𝑒) =  𝑒𝑒− 
‖𝑥𝑥��⃗ 𝑖𝑖 ,𝑥𝑥��⃗ ‖2𝜎𝜎   

were directly mapped to Simulink 

arithmetic blocks, where 𝑒⃗𝑒𝑖𝑖, 𝑒⃗𝑒  are two input test points and 

Gamma Γ = 
1𝜎𝜎  is defined as a new variable as a metric for how 

much impact one training point has on its surrounding data 

points. The proposed SVM hardware design was segmented 

into three principal blocks: a kernel realization (A), inner-

product addition with an adder tree (B), and a threshold 

comparison (C) [11]. The support vector values, and Lagrange 

multiplier coefficients were taken from the trained Python SVM 

model. Fig. 3 shows the data pre-processing block on the left-

hand side feeding pre-processed fNIRS signal into the SVM 

algorithm architecture. The pre-processed fNIRS data was 

streamed into square difference units with fifty-five support 

vectors where the square difference between the fNIRS signal 

and the support vectors were calculated, then passed to 

exponential function units to achieve the RBF kernel function. 

The adder tree and multipliers construct the classification 

function (2): 𝑓𝑓(𝑒𝑒) = 𝑠𝑠𝑖𝑖𝑙𝑙𝑠𝑠(�𝛼𝛼𝑖𝑖 ∙ 𝐾𝐾(𝑒⃗𝑒𝑖𝑖, 𝑒⃗𝑒) + 𝑏𝑏)           (2)

𝑛𝑛
𝑖𝑖=1  

 
Fig. 2. Simulink-Based pre-processing of fNIRS data: IIR filter design using single-pole Z transform method. 

 
Fig. 3. Advanced Simulink architecture for fNIRS data: Integrating SVM with kernel realization, inner-product accumulation, and threshold 

comparison modules for motion artefact detection, yielding binary classification outputs to indicate the presence or absence of motion artefacts. 
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The α term represents the Lagrange multipliers, and b is a bias 

parameter. The bias parameter was not included as it was found 

to increase the usage of FPGA resources whilst offering no 

improvement in classification accuracy. In the last step, the 

classification results were forecasted using the output of the 

adder tree and a relational operator compared to '0' - the 

classification that indicates the absence of a motion artefact.  

The combined fNIRS data pre-processing and RBF kernel 

SVM algorithm architecture was designed and simulated within 

the Simulink environment. This work utilized MATLAB and 

Simulink's automatic HDL code generation to convert the 

digital system architecture to HDL code. HDL code creation 

methods generally produce Verilog code that is highly 

optimized and efficient whilst requiring minimal changes. 

These overall methods allow for a fast development time. 

III. HLS GENERATED RTL DIGITAL DESIGN AND SIMULATION 

The HLS generated RTL digital design was evaluated using 

Xilinx Vivado [12] and then generated bitstream to download 

into Xilinx Zynq Ultrascale + MPSoC ('sfvc784-1-i' family). 

The FPGA resources is shown in Table I [13].  

Simulink tools generated arithmetic modules and captured 

the digital design in Verilog code. RTL was generated in the 

IEEE754 32-bit single-precision floating-point format. The 

overall architecture utilized a differential clock to run the RTL; 

this form of differential signaling employs two complementary 

clock signals to transmit one information signal [13]. This 

signaling system enhances noise resistance and enables reduced 

voltage fluctuations, leading to decreased power consumption 

in FPGAs. A unified software/hardware codesign method was 

then developed. The HLS generated RTL design was to replace 

critical blocks designed and tested in the Simulink architecture 

with synthesizable Verilog blocks to provide the same function 

with less resource requirement. The entire RTL design employs 

a streaming architecture where the output of a subsystem is fed 

directly to the input of the next subsystem. The streaming 

architecture enables a subsystem to initiate computation once 

sufficient data has been accumulated. This approach led to 

reduced latency, as we directly utilized the results from each 

subsystem without storing them in off-chip memory. The only 

source of latency is the interim time between starting the device 

setup and the initial feeding of the first model’s layer, after 

which all computations proceed concurrently. 

Data pre-processing of the fNIRS signals principally 

revolved around using a single real pole IIR filter. This was 

implemented in RTL by breaking the filter into core floating-

point arithmetic operations. A multiplier using a 'part 

multiplier, part add-shift' mantissa multiplication architecture 

was designed, which allows the filter's functions execution 

while preserving accuracy. This architecture revolved around 

splitting the 32-bit inputs into their sign, exponent and mantissa, 

then performing simple assignments, binary bit switching and 

shifting of the two inputs. Constants were fed into this particular 

multiplication module to create a gain, and a single input was 

given twice to create squaring operations. Addition and 

subtraction modules were designed using similar RTL 

architectures. The pre-processing data section was completed 

with standalone floating-point square root and division 

modules, which were instantiated to calculate the input data's 

normalization. 

A principal component analysis of the fNIRS data was used 

to identify which input features contributed the most variation 

in the data and thus, which features best captured the data’s 

structure. This revealed only two features were required. Each 

feature of these two input features has a pre-processing RTL 

channel following the architecture given in Fig. 2. The two pre-

processing channels were operating in parallel, and for any 

dataset, with more features, these can be easily extended to 

include more channels. 

The underlying principle of the SVM classifier architecture 

was to exploit the FPGA’s parallel computational power and 

resources to execute the decision function (2) most efficiently; 

computation of this function involves highly parallelizable 

vector operations. Consequently, the RBF function was 

partitioned into small arithmetic blocks that form parallel 

Support Vector channels. The proposed FPGA architecture for 

the SVM classifier at RTL-level HDL design follows the digital 

Simulink architecture given in Fig. 3. The RBF kernel to FPGA 

architecture mapping allows each of the fifty-five Support 

Vector channels to run synergistically, achieving a parallelized 

classification system. Internal FPGA memory was employed 

solely for the Support Vectors and Lagrange multiplier 

coefficients. The raw fNIRS signal was streamed into the FPGA 

and fed into the data-pre-processing units. Upon pre-

processing, we tackled the kernel calculation, the most 

fundamental part of the SVM algorithm's RTL which would  be 

the most resource and power-intensive part of the RTL design. 

The RTL model's compact size offered the advantage of 

accommodating all SVM parameters, including support 

vectors, within on-chip memory. This eliminates the need for 

slower off-chip memory access, leading to improved overall 

efficiency. 

The problem of the RBF kernel calculation in RTL mimics 

that seen in the digital architecture as it is distributed into 

smaller parallel arithmetic units that are executed in larger 

blocks as modules. These processing units employ the inherent 

parallelism of the FPGA to accelerate any computation of the 

decision function substantially. The parallel implementation of 

the RBF kernel with 32-bit single precision across all fifty-five 

 

TABLE I 

OVERVIEW OF KEY HARDWARE RESOURCES ON THE TARGET FPGA FOR 

SYSTEM IMPLEMENTATION 

FPGA Resource Quantity Available 

Logic Cells 154,000 

Flip-Flops 141,000 

Look-up-tables 71,000 

Block RAM (BRAM) 240kB 

Clock Management Units (CMTs) 3 

18x25 MACCs (Multiply, Addition 

and Multiply- Accumulate Blocks) 
360 
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Support Vector channels can provide fast processing speed. 

However, it simultaneously overused FPGA hardware 

resources. Given the target FPGA board hardware resource 

limitations, we considered utilizing the oversampled channel 

method in a serialized fashion.  

IV. IMPLEMENTATION 

Several methods were attempted to reduce the RTL FPGA 

area usage. First, a common technique of applying a fixed-point 

numerical representation was trialed. However, the model uses 

an immense scale of numbers, therefore this approach severely 

reduced the classification accuracy due to a restriction of 

numbers representable by fixed-point notation. Any 32-bit 

fixed point data with a value higher than 2^31 − 1 = 
2,147,483,647 cannot be processed and expressed precisely, 

and often the internal RTL values did exceed this precision. In 

contrast, the 32-bit floating point number can accurately 

represent values up to ≈ 3.4028235 × 1038. Next, it was found 

that the SVM’s most computationally demanding task was the 

kernel’s exponential function. This function used different 

approximations taking advantage of its mathematical 

relationships. We employed a trigonometric calculation 

approach that utilized a Coordinate Rotation Digital Computer 

(CORDIC) for hardware-efficient trigonometric calculations, 

including a Taylor series approximation and experimented with 

a table-driven calculation module. The most efficient technique 

found for our design was to use autogenerated HDL code that 

Simulink gives for the exponential function. This method, 

similar to the addition and subtraction modules, breaks the 

exponential function down into a long series of simplistic bit 

operations on the floating-point input's mantissa and exponent. 

To evaluate the effectiveness of various techniques employed 

to reduce FPGA resource utilization, we conducted an analysis 

of different SVM algorithms and their respective resource 

consumption. Table II summarizes the resource consumption 

and respective classification accuracy of four distinct SVM 

implementations: 1) an initial floating-point model, 2) a fixed-

point model, 3) a new exponential function using a LUT stored 

in memory rather than a mathematical implementation of the 

exponential function and 4) a single oversampled channel. This 

comparison highlights the development trajectory of the final 

SVM algorithm, where the fixed-point model compromised 

classification accuracy and the single oversampled channel 

gave a lower resource utilization compared to the new 

exponential function. Hence, algorithm 4) was opted for as it 

achieved the best resource-efficient FPGA implementation of 

the four implementations. 

The final digital design that we adopted incorporates a 

resource-aware scheme, which translates the initial fully 

parallel design into a hybrid architecture that combines both 

parallel and serial processing. In order to optimize FPGA area 

utilization, we focused on the fifty-five Support Vector 

channels, running them in oversampled channel, enabling the 

operations of multiple channels to a single hardware unit. We 

first converted the parallel Support Vectors and processed 

fNIRS signals into a singular stream of samples time-

multiplexed onto a singular channel. Through this method we 

optimized the hardware of the resource-costly kernel and inner-

product accumulation RTL. A singular subtraction, squaring, 

and exponential function RTL were written for the kernel. 

Lagrange coefficients were still stored in FPGA memory; 

however, their multiplication operation was included within the 

shared FPGA RTL. In the streaming design, the timing of each 

channel is critical, a synchronization between the serial and 

parallel sections of the design and channels is needed for 

accurate operation of the RTL. To share these resources without 

adding significant cycles of latency, the RTL of the singular 

shared channel was oversampled at 55 times at the base clock 

rate of the overall model. Consequently, the model only has one 

extra cycle of latency of the base rate. The RTL operated at the 

maximum power-optimized clock speed of 2.5 MHz. However, 

with this new architecture, the base rate significantly reduced to 

45.45 kHz. This adjustment accommodated the 55-fold increase 

in clock speed for the oversampling channel method avoiding 

this with only an additional latency of approximately 330 ns. 

Considering that neural activities function on a timescale of tens 

of seconds, coupled with the response activation times for 

measuring oxygenation and deoxygenation, an internal clock is 

necessary for serial data processing. The new architecture of the 

SVM kernel and inner-product accumulation RTL with their 

singular channel is shown in Fig. 4.  

The proposed streaming architecture alongside the partially 

parallel, partially serial model offers many advantages and is 

crucial for a low-power design desired by neuroimaging 

technologies. However, it demands meticulous design to avoid 

bottlenecks that could impair the entire system's performance. 

 

TABLE II  

COMPARISON OF KEY FPGA RESOURCE UTILIZATION AND CLASSIFICATION ACCURACY FOR FOUR SVM ALGORITHMS  

 1) Floating-Point Model 2) Fixed-Point Model 
3) New Exponential 

Function 

4) Single Oversampled 

Channel 

LUT as Logic 232,069 220,785 86,751 38,354 

Total Registers 309,666 248,770 149,107 3,592 

Total Block 

Memory Bits 
187,816 172,612 93,935 6,024 

Total DSP Blocks 342 342 342 12 

Total Pins 70 70 70 70 

Classification 

Accuracy 
94.34% 50.10% 93.60% 97.42% 
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Fig. 5 shows the timing diagram of the architecture that ensures 

there is no such bottleneck whilst giving further explanation to 

the operation of the parallel-serial model. A pseudocode 

showing the general flow and logic of the HDL realization and 

subsequent HLS generated RTL design for the combined data 

pre-processing and SVM algorithm is shown in Fig. 6. The 

block diagram showing the FPGA module layout is shown in 

Fig. 7.  

V. RESULTS AND DISCUSSION 

After validating the functionality of the SVM design through 

behavioral software simulation, the next phase involves the 

translation of functional HDL (Hardware Description 

Language) code to an operational FPGA (Field-Programmable 

Gate Array), specifically, the Zynq SoC. This transition 

typically occurs in several sequential stages, with the most 

crucial phases encompassing synthesis, place and route, and the 

generation of the programming file. All of these processes were 

executed within the Vivado tool. 

In this context, the constraints file plays a pivotal role. It 

defined a 6 ns clock cycle with a 3 ns switching period and maps 

the RTL (Register-Transfer Level) GPIO (General-Purpose 

Input/Output) to FPGA UART (Universal Asynchronous 

Receiver-Transmitter) pins, which, in this configuration, are 

configured as peak-to-peak 3.3 V LVCMOS (Low Voltage 

Complementary Metal-Oxide-Semiconductor) pins. The 

mapping, place and route, and static timing analysis were 

automated procedures within Vivado. These operations took 

place during the synthesis process as integral components of the 

implementation phase. 

Following successful navigation through these stages, the 

place and route operation assessed the final resource utilization 

and generated a netlist tailored for the FPGA. Finally, the RTL 

design was exported to a bitstream for configuration within the 

FPGA hardware. 

A. Results 

The primary evaluation criterion employed for assessing the 

models was classification accuracy. Each of the four training 

datasets was applied to the models, and the quantification of 

motion artefacts, as determined by the digital architectural or 

RTL error counter (depending on the model's stage of 

 
Fig. 4. Refined RTL architecture of the SVM for serial singular and oversampled channel. This block diagram details the serialization and 

deserialization processes in a single channel implementation of the SVM, incorporating key components as depicted in Fig. 3. 

 

 

 

 
Fig. 5. Timing diagram of low-level design highlighting bottleneck avoidance. The diagram illustrates the parallel-serial model's operation, 

showing the base clock and raw input data along with their oversampled equivalents. It emphasizes the oversampled clock's speed, which is 

55 times slower than the base clock, and includes both oversampled input data and an example of the resultant clean output signal, which 

signifies the detection of a motion artifact, labeled as an 'error'. 
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development), was used to evaluate their performance. A low 

number of incorrectly identified motion artefacts indicate 

superior model performance, as shown in Table II. 

Additionally, complementary metrics such as FPGA resource 

allocation and power consumption were utilized to evaluate the 

models, especially concerning the objectives of low-power 

operation and real-time capabilities as demonstrated in Fig. 5. 

Nevertheless, given the medical application of the SVM 

models, classification accuracy was considered the paramount 

metric of importance.  

The single channel oversampled model illustrated in Fig. 4 

was taken to the hardware implementation of the tested models. 

Table II illustrates the stark decrease in the FPGA resource 

utilization between the initial 1) and final 4) models, where the 

resource utilization includes the data pre-processing and kernel 

implementation circuitry.  

Using the ‘LUT as a logic’ metric as the most critical 

indicator of resource utilization, a 151.49% decrease in the area 

from 232,069 to 32,026 LUTs can be seen - due to the 

application of the resource-cutting methods described in the 

design methodology section. The investigation did not record 

the change in FPGA power consumption. We analyzed the 

classification accuracy further by looking at the output signals 

produced by the RTL behavioral simulations as shown in Fig. 

8. This primarily shows the ‘error_count’ counter that was 

instantiated in the testbench. Here ‘Out1’ wasa the output 

motion artefact signal of the SVM RTL, where a 1 (high) 

indicated the presence of a motion artefact and a 0 (low) 

indicated the absence of a motion artefact. The 'Out1_ref' was 

an ideal real-world classification of the fNIRS input as labelled 

by the Homer3 software. Importantly, the overall data points for 

the testbench demonstrated a remarkably high accuracy rate of 

 
Fig. 6. Pseudocode for HDL and RTL logic flow in fNIRS data pre-processing and SVM algorithm. This figure presents a structured overview 

of the process, divided into three algorithms: the top-level SVM module (Algorithm 1), a submodule for oversampling (Algorithm 2), and 

the submodule for executing SVM arithmetic operations (Algorithm 3). 

 

 
Fig. 7. The block diagram of the proposed FPGA system. 

Fig. 8. RTL behavioral simulation outputs and classification accuracy evaluation. The 'Out1' indicates the detected motion artifact signal 

from SVM RTL, and its comparison with 'Out1_ref' from traditional motion artefact detection software Homer3, demonstrating an 

accuracy rate of 97.42%. 
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97.42%. This level of accuracy underscores the reliability and 

effectiveness of the RTL simulations in classifying motion 

artefacts in fNIRS data, leveraging the robustness of the SVM 

algorithm. 

Within resource utilization, the most valuable resource can 

vary between digital designs and project requirements. Based 

on the neuroimaging FPGA’s real-time and low-power project 

objectives, the use of specific resources could be minimized. 

Utilization of memory logic was intentionally very low and was 

split relatively evenly across LUT RAM (1.20%), Flip-Flops 

(4.27%) and BRAM (1.85%) to achieve the hardware 

objectives. As LUT RAM and Flip-Flops used for memory are 

fast, and a value can be obtained immediately instead of waiting 

for the next clock edge. However, it would use more power than 

the BRAM, which has higher latency. A similar issue was found 

for the DSP blocks as they may allow an RTL design to employ 

the parallel architecture of an FPGA better – hence meeting the 

real-time objective; however, this method utilized more power. 

Given the broadly serial nature of the FPGA design, and its 

medical fNIRS application, we have opted to limit the 

utilization of DSP modules. These modules were specialized, 

and complex components designed for intricate signal 

processing, they often consume more resources, power, and can 

increase both the RTL synthesis time and operating time of the 

FPGA. Hence, they have been limited to a utilization of 3.3%. 

This was decided based on the recognition that the inherent 

advantages of DSP modules would not be fully harnessed in this 

RTL model. Moreover, restricting DSP module usage allows 

for future enhancements and features to be added ensuring that 

the current design is scalable and flexible. The overall FPGA 

resource utilization is summarized in Table III and depicted 

visually in Fig. 9. It shows only around 50% of resources were 

utilized. 

The power consumption of the final HLS generated RTL 

model implementation was synthesized and reported using the 

Vivado software to provide benchmark tests of the design. The 

power simulation was run in a 'worst-case' scenario to generate 

the highest estimated power consumption. This scenario 

includes a high ambient temperature of 40 °C, an airflow of 250 

linear feet per minute, and a maximum process intensity. 

Power is divided into two categories and governed by the 

sum of its static (fixed) and dynamic (variable) power 

consumptions. Static power originates from the FPGA 

technology silicon design and dynamic power is derived from 

the digital designs’ distinctive utilization. Initial power 

consumption values wherein the clock frequency was set to 

166.67 MHz gave a total power of 1.605 W, as seen in Fig. 10b.  

Although such a power can be regarded as low and rivals that 

of similar devices seen in the literature. This research aimed to 

prioritize energy efficiency as it becomes vital in low-power 

applications of the fNIRS technology. A tradeoff between 

energy-efficiency with throughput existed, so by lowering the 

baseline clocking frequency to 2.5 MHz the power consumption 

was drastically reduced. Post the clock frequency reduction our 

targeted device consumed 0.264 W, of which 0.243 W (92%) 

TABLE III 

FPGA RESOURCE UTILIZATION OF THE PROPOSED DESIGN 

Resource Utilization Availability Utilization% 

LUT 38,354 70,560 54.36 

LUTRAM 347 28,800 1.20 

Flip-Flops 6024 141,120 4.27 

BRAM 4 216 1.85 

DSP 12 360 3.33 

I/Os 70 252 27.78 

BUFG(Global 

Clock Buffer) 
4 196 2.04 

 
Fig. 9. Visual depiction of the key FPGA resource utilization of the 

proposed design. 

 
Fig. 10. Detailed representation of the SVM RTL power consumption, 

both dynamic and static; a) illustrates the initial and final optimized 

power consumption at a clock frequency of 2.5MHz. b) illustrates the 

initial and optimized power consumption after the clock frequency was 

increased to 166.67MHz. 
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was reported for the static power and 0.021 W (8%) for the 

dynamic power consumption, all dissipating through the PL 

side of the Zynq. The most power-hungry sections of the RTL 

design were the signals at 0.007 W (33%) and the logic, which 

consumed 0.009 W (44%) of the total dynamic power. This is 

expected because the core power rail consumes most of the 

power, which uses RTL signals to drive the logic, a central 

aspect of FPGA design. A more detailed breakdown of these 

power figures is shown in Fig. 10b and gives a clear picture of 

one of the more fundamental contributions of this work. The 

FPGA underwent simulation at two different clock frequencies 

166.67 MHz and 2.5 MHz. The final lower frequency of 2.5 

MHz assumed typical conditions where the ambient 

temperature was 28.6 °C, while at 166.67 MHz maximum 

power simulation settings were employed with an ambient 

temperature of 33.8 °C. These simulations yielded insights into 

how the design performs under different operational conditions. 

Our study uncovers insights that are often overlooked in fNIRS 

and FPGA-SVM artifact rectification approaches. Additionally, 

the literature on fNIRS lacks substantial focus on real-time, 

low-power hardware implementations using machine learning 

algorithms. Hence, a comparison between the SVM digital 

design with other fNIRS-based approaches were not able to be 

conducted. Instead, the successes and limitations of the FPGA 

SVM design presented with other available hardware SVM 

models found in the literature were compared to the proposed 

design. One notable criticism of the FPGA SVM models in 

existing literature is the lack of comprehensive reporting on key 

metrics like power consumption, resource utilization, and 

classification accuracy. Within the scope of this work, several 

papers failed to address one or more of these important factors. 

Six studies were selected with through report on power 

consumption and resource utilization and were detailed in Table 

IV [14–18].  

To validate the efficacy of the proposed module, extensive 

simulations have been designed and conducted, evaluating the 

accuracy, timing, power and resource utilization of the 

algorithm within a controlled environment. These simulations 

laid a strong foundation for both the theoretical and practical 

aspects of the proposed work. It should be noted that the results 

were primarily a reflection of simulated performance 

evaluations. The validation of these results through a physical 

implementation on an FPGA board is a crucial next step and is 

planned as the future work. 

B. Discussion 

Taking advantage of the single channel oversampled core we 

saw vast hardware resource saving in the FPGA's computing 

resources whilst preserving its classification accuracy. 

However, a more detailed analysis of the partially serial 

architecture’s effects supports the earlier theory that only a 

single cycle of latency will be added to preserve the real-time 

objective need for further investigation. Usually, an fNIRS 

signal that represents a task performed by a patient is produced 

over a two to seven second window [1]. Thus, an added latency 

is unlikely to be detrimental to our real-time goal.  

The second objective, which suffered at a higher cost, was 

the goal of creating a low-power hardware accelerator. Power 

is a fundamental cost directly linked to FPGA resource 

utilization. Hence, effort dedicated to the project in reducing 

resource utilization was also actively decreasing power 

consumption. The two objectives are linked as the many 

transistors used in the configurable logic blocks (CLBs) that 

enact the logic of the RTL all require power to operate. The 

more CLBs, the greater the power consumption. Hence, the 

dynamic power is a product of each CLB depending on the 

number utilized and their individual use within the design. 

Consequently, more densely utilized FPGA designs will 

consume more power. Utilizing the spread of dynamic power 

shown in Fig. 10, we can hypothesize that the resources and 

power of this RTL design can be further reduced if the 

computational load of the digital circuit is taken off from the 

dynamic memories found in the 'Logic' component of dynamic 

power and redistributed to the 'BRAM' resources. 

There are tens of seconds of delay in neural signals and 

measurement activations due to the oxygenation and 

deoxygenation of neural activities. While the latency is a major 

concern, when using fNIRS as brain computer interface.  

Portability is a key point for a wearable device, and therefore, 

the device may operate on batteries. While FPGAs are typically 

not ideal for battery-powered devices, we aim for low power 

consumption to maximize battery life. The low power 

consumption, in the range of milliwatts as reported in this work, 

represents a significant contribution. It addresses the challenge 

of power consumption, which is particularly important when 

considering that the motion artifact classifier is just one 

TABLE IV  

A COMPARISON OF DIFFERENT FPGA SVM IMPLEMENTATION 

SVM Kernel 
Power 

Use(W) 

Number of 

SVs 

Frequency/Processing 

Speed 

Resource 

Utilization in 

LUTs 

Classification 

Accuracy Reference 

Linear 1.686 61 56.60 µs 2870 97.92% [14] 

Linear 1.756 248 11.26 µs 2566 80.85% [14] 

Gaussian RBF 15 16 12.5 MHz / 80 ns 122,637 N/A [15] 

Linear Polynomial 4.9 122 70 MHz 35,532 80% [16] 

Linear Polynomial 3.2 254 84 MHz 31,854 84% [17] 

Multiclass 

Polynomial 
2.021 192 146 MHz 461 

N/A 
[18] 

Gaussian RBF 0.264 55 2.5 MHz 38,354 97.42% This Design 



10 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

subsystem within the larger neuroimaging device. 

In the evaluation of various FPGA-based SVM designs from 

the literature, it is evident that the final RTL model presented 

here exhibits lower power consumption compared to other 

implementations. When examining studies that reported power 

consumption on the lower end of the spectrum, it was observed 

that these SVM designs all utilized a Xilinx Zynq board. 

The RTL design presented here utilizes lower resource 

utilization in comparison to many models found in the 

literature. However, as seen in Table IV, there is room for 

further reduction in resource utilization without necessarily 

sacrificing classification accuracy. It is important to note that 

studies achieving high classification accuracy with low power 

and resource usage employed more expensive FPGAs that 

offered larger and more sophisticated Configurable Logic 

Blocks (CLBs) and faster clocks. 

Finally, to our knowledge, the hardware-embedded system 

using an FPGA-based SVM classifier of motion artefacts is 

considered the first in the literature for fNIRS technology. In 

addition, the implementation presented here effectively 

overcame the challenges previously listed in the literature of 

satisfying FPGA low power and area restrictions while 

providing effective classification accuracies. 

Prior research reports have demonstrated a propensity for 

superficial application of offline and software-based techniques 

would yield a improvement in the accuracy of fNIRS signal 

processing [19–29]. However, it has been noted that attempts to 

implement real-time hardware-based approaches, incorporating 

additional hardware components such as acceleration sensors, 

often lack comprehensive discussions regarding hardware and 

power constraints.  These metrics are of utmost importance in 

the realm of hardware design, particularly in the context of the 

technology's practical application in the field of medical 

science. 

Moreover, an examination of previous endeavors revealed 

instances where fNIRS data, including motion artifacts 

employed for model training and testing, had been solely 

generated through simulation, rather than being derived from 

real-world scenarios [21]. This practice is notably detrimental, 

given the intricate, variable, and challenging nature of 

accurately simulating motion artifacts. 

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 

Numerous methodologies have been proposed to address the 

challenge of motion artifacts in fNIRS signals. This research 

marks a pioneering effort in introducing a novel solution—an 

FPGA-based machine learning platform—specifically designed 

and tested for the fNIRS modality, with a primary focus on 

achieving ultra-low power consumption. Our approach 

involves a seamless integration of software and hardware, 

offering a practical and efficient means to incorporate machine 

learning algorithms into FPGA hardware for fNIRS 

applications. At the model training stage, we initiated the 

process with high-level model training using Python. 

Subsequently, we transitioned to high-level MATLAB and 

Simulink architectural designs. After a diverse set of 

architectures underwent rapid prototyping with rigorous 

performance evaluations, assessing classification accuracy and 

FPGA resource usage, the architecture that emerged as the 

'best-performing' option involved data pre-processing through 

single real-pole IIR filters, followed by the execution of the 

Support Vector Machine (SVM) Radial Basis Function (RBF) 

kernel in a singular oversampled channel. The post-synthesis 

hardware system demonstrated high-performance, achieving 

this without compromising the core objectives of maintaining a 

low area footprint, minimal power consumption, and low 

latency. Our results demonstrated that we overcome the 

persistent challenge of motion artifacts in fNIRS signals by 

introducing an innovative FPGA-based machine learning 

platform. This platform represents a significant step toward 

enhancing the utility and practicality of fNIRS technology in 

various domains, including neuroscience and clinical 

applications. Further exploration and development of this 

platform holds the potential to revolutionize fNIRS data 

processing and analysis. 

B. Future Work 

A critical evaluation considering the literature assessed in 

this study demonstrates that advancements in research must be 

made before we could implement a real-time, low-power 

neuroimaging motion artefact detector. The first would be to 

evaluate segments of the RTL design to look for possible power 

consumption-saving improvements. This would serve the 

study’s real-time and low power objectives. A potential method 

would be to evaluate FPGA design methods that link and 

harness the PL and PS sides of the board simultaneously. The 

second area of required future work would be to complete the 

hardware integration. This would involve functional RTL 

simulations, implementing the bitstream onto the FPGA and 

testing the SVM model on the FPGA in real life. Nevertheless, 

the quality of the simulation results validated this 

investigation's utility and established its potential use in a real 

experimental scenario. Moreover, this research has achieved 

innovations to modernize and drive research trends for the 

wearable fNIRS and FPGA-based machine learning 

implementations in the right direction, which could have wider 

implications for neuroscience and clinical applications. 
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