
This is a repository copy of An Ultralow-Power Real-Time Machine Learning Based fNIRS
Motion Artifacts Detection.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/208160/

Version: Accepted Version

Article:

Ercan, R., Xia, Y., Zhao, Y. et al. (3 more authors) (2024) An Ultralow-Power Real-Time
Machine Learning Based fNIRS Motion Artifacts Detection. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 32 (4). 763 -773. ISSN 1063-8210

https://doi.org/10.1109/TVLSI.2024.3356161

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

An Ultra-low-power Real-time Machine Learning

based fNIRS Motion Artefacts Detection

Renas Ercan, Yunjia Xia, Student Member, IEEE, Yunyi Zhao, Rui Loureiro, Member, IEEE,

Shufan Yang, Senior Member, IEEE, and Hubin Zhao, Member, IEEE

 Abstract— Due to iterative matrix multiplications or gradient

computations, machine learning modules often require a large

amount of processing power and memory. As a result, they are

often not feasible for use in wearable devices, which have limited

processing power and memory. In this study, we propose an ultra-

low-power and real-time machine learning- based motion artefact

detection module for functional Near-Infrared Spectroscopy

fNIRS systems. We achieved a high classification accuracy of

97.42%, low FPGA resource utilization of 38,354 look-up tables

and 6024 flip-flops, as well as low power consumption of 0.021 W

in dynamic power. These results outperform conventional CPU

SVM methods and other state-of-the-art SVM implementations.

This study has demonstrated that an FPGA-based fNIRS motion

artefact classifier can be exploited whilst meeting low power and

resource constraints, which are crucial in embedded hardware

systems while keeping high classification accuracy.

Index Terms— Field-programmable gate array (FPGA), fNIRS,

low power, machine learning, motion artefact detection, real-time,

support vector machines (SVM)

I. INTRODUCTION

UNCTIONAL Near-Infrared Spectroscopy (fNIRS) is

an emerging modality that aims to characterize cortical

hemoglobin fluctuations through intensity

measurements of diffusely scattered near-infrared light [1,2]. It

can help neuroscientists to determine which brain regions are

activated during specific actions. However, pre-processing is

essential for fNIRS data which can be noisy. Due to the

participant’s motion, non-evoked systemic signal components

in recorded fNIRS signals pose a challenge. This challenge is

one of the main issues affecting fNIRS applications, as it results

in motion artefacts, causing an erroneous detection of

functional cortical activity [1].

Conventional motion detection is processed offline using

benchtop computers, and these methods are based on peaks or

shifts in time-series signals, including spline interpolation,

Manuscript received July 25, 2023; revised 01 Nov 2023 and 26 Dec 2023;

accepted 13 Jan 2024. Date of publication TBD; date of current version TBD.

The work of Hubin Zhao was supported by The Royal Society Research Grant

(RGS\R2\222333) and Engineering and Physical Sciences Research Council
Grant (EP/W000679/1). The work of Shufan Yang was supported by SHED

project Royal Academy of Engineering (IF2223-172) and Innovate UK KTP

(013191). This work was supported in part by Department of Orthopaedics and
Musculoskeletal Science and in part by the Wellcome Trust and EPSRC

through the WEISS Centre (grant: 203145Z/16/Z) at UCL. (Renas Ercan and

Yunjia Xia are co-first authors.) (Corresponding author: Hubin Zhao.)
R. Ercan was with UCL, now he is with the Department of Physics,

University of Cambridge, UK (e-mail: re378@cam.ac.uk).

wavelet filtering, and principal component analysis [3–5].

However, the performance of these methods largely depends on

a set of assumptions to describe motion artefacts and the

subjective selection of signals with associated tuning of

parameters. Hence, the need for a method that eliminates the

subjective fine-tuning of parameters and avoids relying on

stringent assumptions becomes crucial. To date, the common

machine learning method employed for automatically learning

with the fine-tuning of parameters is based on a denoised

autoencoder architecture which requires the use of high-power

graphics processing units (GPU), such as a Titian Xp GPU card

[3]. Implementations using GPUs can achieve high

classification accuracies, with [3] quoting a 100% success rate

in removing motion artefacts. However, GPU card is not

suitable for integration into wearable devices. Moreover, GPUs

are not appropriate to power-constrained applications. In the

execution of SVM algorithms, FPGAs are quoted to consume

over an order of magnitude less power as compared to GPUs.

This makes FPGA feasible to carry out machine learning

algorithms in low-power applications.

In this work we deploy support vector machines (SVM) as a

machine learning method instead of neural network implements

to consider the hardware constraints for standalone devices for

fNIRS motion artefact detection. Efficient SVM hardware

implementations can be achieved by considering various

techniques and optimizations. One approach is to use reduced

precision arithmetic, such as fixed-point or low-precision

floating-point formats, to perform computations with lower

energy consumption [6]. Alternatively, parallel processing units

can speed up SVM computations and reduce power

consumption or optimize memory access patterns and utilize

on-chip memory resources efficiently. This reduces data

transfer and storage requirements, leading to reduced power

consumption [7]. However, past attempts have several critical

limitations. Several simplification methods were applied when

reducing the hardware complexity, consequently sacrificing

Y. Xia, Y. Zhao and H. Zhao are with the HUB of Intelligent Neuro-
engineering (HUBIN), Division of Surgery & Interventional Science, UCL, UK

(e-mails: yunjia.xia.18@ucl.ac.uk; yunyi.zhao.21@ucl.ac.uk;

hubin.zhao@ucl.ac.uk).
R. Loureiro is with the IOMS, Division of Surgery & Interventional Science,

UCL, UK (e-mail: r.loureiro@ucl.ac.uk).

S. Yang is with the Institute of Medical & Biological Engineering, School
of Mechanical Engineering, University of Leeds. (e-mail:

s.f.yang@leeds.ac.uk) UK and UCL, UK.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org

F

2

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

classification accuracy. Past architectures also lack flexibility

and scalability and have exceptionally high power consumption

usage; this is problematic due to the challenge of achieving a

low-power hardware system [8]. Similar problem also occurs

when leveraging field-programmable gate arrays (FPGAs) to

achieve a high classification accuracy. Although FPGA have

flexible digital circuital design and extensive parallel

computation capabilities, the power consumption is still very

high [7]. Overall, past implementations of SVMs struggle to

meet important constraints imposed by the FPGAs, such as high

classification accuracy, real-time processing, minimal resource

utilization and low-power usage [8].

Therefore, the main contribution of this paper is the

development of an online machine learning-based motion

detection HLS (High-Level synthesis) Simulink model and

subsequent generation of a model at RTL (Register Transfer

Level) level for online motion artefact detection for an fNIRS

system with ultra-low-power. Our machine learning module

uses exponential approximation and overcomes the impact of

accuracy degradation when reducing power consumption using

a serial channeling method. This method overcomes resource

constraints and introduces an online processing technique that

can be miniaturized and seamlessly integrated as a standalone

device. Additionally, we conducted a systematic power

comparison, which demonstrates the novelty of the proposed

approach and leads to a practical design solution for a fast

FPGA-based prototype. A system development flowchart of

this study is shown in Fig. 1.

II. DIGITAL ARCHITECTURE DESIGN AND SIMULATION

In this section, we present a detailed design of the ultra-low-

power, real-time implementation for detecting motion artefacts

in fNIRS. We utilized the Gaussian Radial Basis Function

(RBF) kernel, widely recognized as a powerful and popular

choice for handling non-linear data [9]. We employed a

software and hardware co-development method. The pre-

processing and motion detection integration stages were

implemented using MATLAB and Simulink. Subsequent

models were then validated through a set of datasets with an in-

built Simulink testbench. The testbench enabled the calculation

of all miss-classification errors, providing a reliable

measurement of the classification rate for each architecture. By

adopting a high-level simulation approach early in the design

cycle, we facilitated the rapid prototyping of designs. Each

solution can be evaluated for its speed, complexity, and

accuracy, allowing for a thorough assessment of its

performance characteristics.

A. The fNIRS Dataset

Raw fNIRS data were obtained from a study wherein subjects

wearing the fNIRS device were given tasks including “seated-

texting” and “walking-texting”. The data was passed through an

fNIRS-specific data processing toolbox called Homer3 [10] and

a function called hmrMotionArtefact to determine periods of

motion artefact [10]. The purpose of finding these periods of

motion artefacts was to train the SVM model using labelled data

where the classifications have already been identified. Training

datasets were created through the down sampling and balancing

of a larger dataset with 99087 instances and two features.

Balanced and unbalanced datasets were used when testing

the architectural and HLS generated RTL SVM designs. The

tests used balanced datasets so that many segments of data with

motion artefacts could be tested. Unbalanced datasets were used

to test the SVM model on signals that mimic a naturalistic

scenario.

B. Training the SVM model

The full development cycle of the proposed SVM motion

artefact classifier starts by training a model offline in software

[9]. The model was trained in Python, and cross-validation was

applied with a grid search to find the best cost parameter and

kernel coefficient. An exhaustive search over various SVM

parameters was conducted to fine-tune the model. The cross-

validation revealed that the best parameters for the model were 𝛤𝛤 = 1 and regularization 𝜆𝜆 = 10. Here 𝛤𝛤 =
1𝜎𝜎, where σ is the

variance and 𝛤𝛤 represents how much impact one training point

has on its surrounding data points. The regularization term λ

was used to prevent overfitting. The support vectors were

extracted upon constructing the finished model, of which 55

were generated, and the associated Lagrange multiplier

coefficients and bias value were obtained.

C. Digital Architecture Design of Pre-processing

The RBF kernel in the SVM algorithm assumes that

incoming data has been centered and scaled. Therefore, the

incoming fNIRS signals need to be pre-processed for

normalization purpose. This required each feature to have its

mean value equal to zero and its standard deviation equal to one.

To achieve real-time preprocessing, we calculated an

exponentially weighted running mean and standard deviation.

In the time-domain the exponentially weighted running mean is

a statistic calculation that would consume a large number of

FPGA hardware resources, hence the frequency-domain

representation which is a first-order infinite impulse response

filter (IIR) consisting of a real pole was applied. This is simple

Fig. 1. Co-Design workflow for machine learning deployment in fNIRS

Applications: integrating Scikit-Learn, MATLAB/Simulink, and Vivado

for FPGA-based high-performance computing.

3

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

to implement in the time domain and uses far fewer hardware

resources. We then created an IIR filter circuit, following a z

transform, we find the transfer function: 𝐻𝐻(𝑧𝑧) =
𝑎𝑎

1 − (1 − 𝑎𝑎)𝑧𝑧−1 (1)

Herein, 0 < 𝑎𝑎 < 1 is a constant that determines the effective

length of the running average. To go to the continuous domain,

we make the substitution 𝑧𝑧 = 𝑒𝑒𝑠𝑠𝑠𝑠 , where T is the sample time.

After solving 1 − (1 − 𝑎𝑎)𝑒𝑒−𝑠𝑠𝑠𝑠 = 0, the continuous system has

a pole at 𝑠𝑠 =
1𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑎𝑎), where we set 𝑎𝑎 as 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 (

2∙𝜋𝜋∙𝑠𝑠𝜏𝜏), 𝜏𝜏 is the averaging time constant. The best value of 𝜏𝜏 and

subsequently 𝑎𝑎 was found through a comprehensive brute force

search that evaluates classification accuracy as a result; the final

value taken forward was 𝑎𝑎 = 0.01 . Given that the transfer

function (1) calculates the exponentially weighted running

mean, the variance and the standard deviation can be efficiently

computed. The Simulink architecture used to process a single

feature of the input fNIRS signal is shown in Fig. 2.

D. Digital Architecture of SVM inference

The underlying theory of the SVM architecture builds a

streaming architecture model based on the functional

decomposition of the SVM kernel [9]. The fundamental

arithmetic operations of the Gaussian radial basis function

kernel 𝐾𝐾(𝑒⃗𝑒𝑖𝑖, 𝑒⃗𝑒) = 𝑒𝑒−
‖𝑥𝑥��⃗ 𝑖𝑖 ,𝑥𝑥��⃗ ‖2𝜎𝜎

were directly mapped to Simulink

arithmetic blocks, where 𝑒⃗𝑒𝑖𝑖, 𝑒⃗𝑒 are two input test points and

Gamma Γ =
1𝜎𝜎 is defined as a new variable as a metric for how

much impact one training point has on its surrounding data

points. The proposed SVM hardware design was segmented

into three principal blocks: a kernel realization (A), inner-

product addition with an adder tree (B), and a threshold

comparison (C) [11]. The support vector values, and Lagrange

multiplier coefficients were taken from the trained Python SVM

model. Fig. 3 shows the data pre-processing block on the left-

hand side feeding pre-processed fNIRS signal into the SVM

algorithm architecture. The pre-processed fNIRS data was

streamed into square difference units with fifty-five support

vectors where the square difference between the fNIRS signal

and the support vectors were calculated, then passed to

exponential function units to achieve the RBF kernel function.

The adder tree and multipliers construct the classification

function (2): 𝑓𝑓(𝑒𝑒) = 𝑠𝑠𝑖𝑖𝑙𝑙𝑠𝑠(�𝛼𝛼𝑖𝑖 ∙ 𝐾𝐾(𝑒⃗𝑒𝑖𝑖, 𝑒⃗𝑒) + 𝑏𝑏) (2)

𝑛𝑛
𝑖𝑖=1

Fig. 2. Simulink-Based pre-processing of fNIRS data: IIR filter design using single-pole Z transform method.

Fig. 3. Advanced Simulink architecture for fNIRS data: Integrating SVM with kernel realization, inner-product accumulation, and threshold

comparison modules for motion artefact detection, yielding binary classification outputs to indicate the presence or absence of motion artefacts.

4

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The α term represents the Lagrange multipliers, and b is a bias

parameter. The bias parameter was not included as it was found

to increase the usage of FPGA resources whilst offering no

improvement in classification accuracy. In the last step, the

classification results were forecasted using the output of the

adder tree and a relational operator compared to '0' - the

classification that indicates the absence of a motion artefact.

The combined fNIRS data pre-processing and RBF kernel

SVM algorithm architecture was designed and simulated within

the Simulink environment. This work utilized MATLAB and

Simulink's automatic HDL code generation to convert the

digital system architecture to HDL code. HDL code creation

methods generally produce Verilog code that is highly

optimized and efficient whilst requiring minimal changes.

These overall methods allow for a fast development time.

III. HLS GENERATED RTL DIGITAL DESIGN AND SIMULATION

The HLS generated RTL digital design was evaluated using

Xilinx Vivado [12] and then generated bitstream to download

into Xilinx Zynq Ultrascale + MPSoC ('sfvc784-1-i' family).

The FPGA resources is shown in Table I [13].

Simulink tools generated arithmetic modules and captured

the digital design in Verilog code. RTL was generated in the

IEEE754 32-bit single-precision floating-point format. The

overall architecture utilized a differential clock to run the RTL;

this form of differential signaling employs two complementary

clock signals to transmit one information signal [13]. This

signaling system enhances noise resistance and enables reduced

voltage fluctuations, leading to decreased power consumption

in FPGAs. A unified software/hardware codesign method was

then developed. The HLS generated RTL design was to replace

critical blocks designed and tested in the Simulink architecture

with synthesizable Verilog blocks to provide the same function

with less resource requirement. The entire RTL design employs

a streaming architecture where the output of a subsystem is fed

directly to the input of the next subsystem. The streaming

architecture enables a subsystem to initiate computation once

sufficient data has been accumulated. This approach led to

reduced latency, as we directly utilized the results from each

subsystem without storing them in off-chip memory. The only

source of latency is the interim time between starting the device

setup and the initial feeding of the first model’s layer, after

which all computations proceed concurrently.

Data pre-processing of the fNIRS signals principally

revolved around using a single real pole IIR filter. This was

implemented in RTL by breaking the filter into core floating-

point arithmetic operations. A multiplier using a 'part

multiplier, part add-shift' mantissa multiplication architecture

was designed, which allows the filter's functions execution

while preserving accuracy. This architecture revolved around

splitting the 32-bit inputs into their sign, exponent and mantissa,

then performing simple assignments, binary bit switching and

shifting of the two inputs. Constants were fed into this particular

multiplication module to create a gain, and a single input was

given twice to create squaring operations. Addition and

subtraction modules were designed using similar RTL

architectures. The pre-processing data section was completed

with standalone floating-point square root and division

modules, which were instantiated to calculate the input data's

normalization.

A principal component analysis of the fNIRS data was used

to identify which input features contributed the most variation

in the data and thus, which features best captured the data’s

structure. This revealed only two features were required. Each

feature of these two input features has a pre-processing RTL

channel following the architecture given in Fig. 2. The two pre-

processing channels were operating in parallel, and for any

dataset, with more features, these can be easily extended to

include more channels.

The underlying principle of the SVM classifier architecture

was to exploit the FPGA’s parallel computational power and

resources to execute the decision function (2) most efficiently;

computation of this function involves highly parallelizable

vector operations. Consequently, the RBF function was

partitioned into small arithmetic blocks that form parallel

Support Vector channels. The proposed FPGA architecture for

the SVM classifier at RTL-level HDL design follows the digital

Simulink architecture given in Fig. 3. The RBF kernel to FPGA

architecture mapping allows each of the fifty-five Support

Vector channels to run synergistically, achieving a parallelized

classification system. Internal FPGA memory was employed

solely for the Support Vectors and Lagrange multiplier

coefficients. The raw fNIRS signal was streamed into the FPGA

and fed into the data-pre-processing units. Upon pre-

processing, we tackled the kernel calculation, the most

fundamental part of the SVM algorithm's RTL which would be

the most resource and power-intensive part of the RTL design.

The RTL model's compact size offered the advantage of

accommodating all SVM parameters, including support

vectors, within on-chip memory. This eliminates the need for

slower off-chip memory access, leading to improved overall

efficiency.

The problem of the RBF kernel calculation in RTL mimics

that seen in the digital architecture as it is distributed into

smaller parallel arithmetic units that are executed in larger

blocks as modules. These processing units employ the inherent

parallelism of the FPGA to accelerate any computation of the

decision function substantially. The parallel implementation of

the RBF kernel with 32-bit single precision across all fifty-five

TABLE I

OVERVIEW OF KEY HARDWARE RESOURCES ON THE TARGET FPGA FOR

SYSTEM IMPLEMENTATION

FPGA Resource Quantity Available

Logic Cells 154,000

Flip-Flops 141,000

Look-up-tables 71,000

Block RAM (BRAM) 240kB

Clock Management Units (CMTs) 3

18x25 MACCs (Multiply, Addition

and Multiply- Accumulate Blocks)
360

5

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Support Vector channels can provide fast processing speed.

However, it simultaneously overused FPGA hardware

resources. Given the target FPGA board hardware resource

limitations, we considered utilizing the oversampled channel

method in a serialized fashion.

IV. IMPLEMENTATION

Several methods were attempted to reduce the RTL FPGA

area usage. First, a common technique of applying a fixed-point

numerical representation was trialed. However, the model uses

an immense scale of numbers, therefore this approach severely

reduced the classification accuracy due to a restriction of

numbers representable by fixed-point notation. Any 32-bit

fixed point data with a value higher than 2^31 − 1 =
2,147,483,647 cannot be processed and expressed precisely,

and often the internal RTL values did exceed this precision. In

contrast, the 32-bit floating point number can accurately

represent values up to ≈ 3.4028235 × 1038. Next, it was found

that the SVM’s most computationally demanding task was the

kernel’s exponential function. This function used different

approximations taking advantage of its mathematical

relationships. We employed a trigonometric calculation

approach that utilized a Coordinate Rotation Digital Computer

(CORDIC) for hardware-efficient trigonometric calculations,

including a Taylor series approximation and experimented with

a table-driven calculation module. The most efficient technique

found for our design was to use autogenerated HDL code that

Simulink gives for the exponential function. This method,

similar to the addition and subtraction modules, breaks the

exponential function down into a long series of simplistic bit

operations on the floating-point input's mantissa and exponent.

To evaluate the effectiveness of various techniques employed

to reduce FPGA resource utilization, we conducted an analysis

of different SVM algorithms and their respective resource

consumption. Table II summarizes the resource consumption

and respective classification accuracy of four distinct SVM

implementations: 1) an initial floating-point model, 2) a fixed-

point model, 3) a new exponential function using a LUT stored

in memory rather than a mathematical implementation of the

exponential function and 4) a single oversampled channel. This

comparison highlights the development trajectory of the final

SVM algorithm, where the fixed-point model compromised

classification accuracy and the single oversampled channel

gave a lower resource utilization compared to the new

exponential function. Hence, algorithm 4) was opted for as it

achieved the best resource-efficient FPGA implementation of

the four implementations.

The final digital design that we adopted incorporates a

resource-aware scheme, which translates the initial fully

parallel design into a hybrid architecture that combines both

parallel and serial processing. In order to optimize FPGA area

utilization, we focused on the fifty-five Support Vector

channels, running them in oversampled channel, enabling the

operations of multiple channels to a single hardware unit. We

first converted the parallel Support Vectors and processed

fNIRS signals into a singular stream of samples time-

multiplexed onto a singular channel. Through this method we

optimized the hardware of the resource-costly kernel and inner-

product accumulation RTL. A singular subtraction, squaring,

and exponential function RTL were written for the kernel.

Lagrange coefficients were still stored in FPGA memory;

however, their multiplication operation was included within the

shared FPGA RTL. In the streaming design, the timing of each

channel is critical, a synchronization between the serial and

parallel sections of the design and channels is needed for

accurate operation of the RTL. To share these resources without

adding significant cycles of latency, the RTL of the singular

shared channel was oversampled at 55 times at the base clock

rate of the overall model. Consequently, the model only has one

extra cycle of latency of the base rate. The RTL operated at the

maximum power-optimized clock speed of 2.5 MHz. However,

with this new architecture, the base rate significantly reduced to

45.45 kHz. This adjustment accommodated the 55-fold increase

in clock speed for the oversampling channel method avoiding

this with only an additional latency of approximately 330 ns.

Considering that neural activities function on a timescale of tens

of seconds, coupled with the response activation times for

measuring oxygenation and deoxygenation, an internal clock is

necessary for serial data processing. The new architecture of the

SVM kernel and inner-product accumulation RTL with their

singular channel is shown in Fig. 4.

The proposed streaming architecture alongside the partially

parallel, partially serial model offers many advantages and is

crucial for a low-power design desired by neuroimaging

technologies. However, it demands meticulous design to avoid

bottlenecks that could impair the entire system's performance.

TABLE II

COMPARISON OF KEY FPGA RESOURCE UTILIZATION AND CLASSIFICATION ACCURACY FOR FOUR SVM ALGORITHMS

 1) Floating-Point Model 2) Fixed-Point Model
3) New Exponential

Function

4) Single Oversampled

Channel

LUT as Logic 232,069 220,785 86,751 38,354

Total Registers 309,666 248,770 149,107 3,592

Total Block

Memory Bits
187,816 172,612 93,935 6,024

Total DSP Blocks 342 342 342 12

Total Pins 70 70 70 70

Classification

Accuracy
94.34% 50.10% 93.60% 97.42%

6

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 5 shows the timing diagram of the architecture that ensures

there is no such bottleneck whilst giving further explanation to

the operation of the parallel-serial model. A pseudocode

showing the general flow and logic of the HDL realization and

subsequent HLS generated RTL design for the combined data

pre-processing and SVM algorithm is shown in Fig. 6. The

block diagram showing the FPGA module layout is shown in

Fig. 7.

V. RESULTS AND DISCUSSION

After validating the functionality of the SVM design through

behavioral software simulation, the next phase involves the

translation of functional HDL (Hardware Description

Language) code to an operational FPGA (Field-Programmable

Gate Array), specifically, the Zynq SoC. This transition

typically occurs in several sequential stages, with the most

crucial phases encompassing synthesis, place and route, and the

generation of the programming file. All of these processes were

executed within the Vivado tool.

In this context, the constraints file plays a pivotal role. It

defined a 6 ns clock cycle with a 3 ns switching period and maps

the RTL (Register-Transfer Level) GPIO (General-Purpose

Input/Output) to FPGA UART (Universal Asynchronous

Receiver-Transmitter) pins, which, in this configuration, are

configured as peak-to-peak 3.3 V LVCMOS (Low Voltage

Complementary Metal-Oxide-Semiconductor) pins. The

mapping, place and route, and static timing analysis were

automated procedures within Vivado. These operations took

place during the synthesis process as integral components of the

implementation phase.

Following successful navigation through these stages, the

place and route operation assessed the final resource utilization

and generated a netlist tailored for the FPGA. Finally, the RTL

design was exported to a bitstream for configuration within the

FPGA hardware.

A. Results

The primary evaluation criterion employed for assessing the

models was classification accuracy. Each of the four training

datasets was applied to the models, and the quantification of

motion artefacts, as determined by the digital architectural or

RTL error counter (depending on the model's stage of

Fig. 4. Refined RTL architecture of the SVM for serial singular and oversampled channel. This block diagram details the serialization and

deserialization processes in a single channel implementation of the SVM, incorporating key components as depicted in Fig. 3.

Fig. 5. Timing diagram of low-level design highlighting bottleneck avoidance. The diagram illustrates the parallel-serial model's operation,

showing the base clock and raw input data along with their oversampled equivalents. It emphasizes the oversampled clock's speed, which is

55 times slower than the base clock, and includes both oversampled input data and an example of the resultant clean output signal, which

signifies the detection of a motion artifact, labeled as an 'error'.

7

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

development), was used to evaluate their performance. A low

number of incorrectly identified motion artefacts indicate

superior model performance, as shown in Table II.

Additionally, complementary metrics such as FPGA resource

allocation and power consumption were utilized to evaluate the

models, especially concerning the objectives of low-power

operation and real-time capabilities as demonstrated in Fig. 5.

Nevertheless, given the medical application of the SVM

models, classification accuracy was considered the paramount

metric of importance.

The single channel oversampled model illustrated in Fig. 4

was taken to the hardware implementation of the tested models.

Table II illustrates the stark decrease in the FPGA resource

utilization between the initial 1) and final 4) models, where the

resource utilization includes the data pre-processing and kernel

implementation circuitry.

Using the ‘LUT as a logic’ metric as the most critical

indicator of resource utilization, a 151.49% decrease in the area

from 232,069 to 32,026 LUTs can be seen - due to the

application of the resource-cutting methods described in the

design methodology section. The investigation did not record

the change in FPGA power consumption. We analyzed the

classification accuracy further by looking at the output signals

produced by the RTL behavioral simulations as shown in Fig.

8. This primarily shows the ‘error_count’ counter that was

instantiated in the testbench. Here ‘Out1’ wasa the output

motion artefact signal of the SVM RTL, where a 1 (high)

indicated the presence of a motion artefact and a 0 (low)

indicated the absence of a motion artefact. The 'Out1_ref' was

an ideal real-world classification of the fNIRS input as labelled

by the Homer3 software. Importantly, the overall data points for

the testbench demonstrated a remarkably high accuracy rate of

Fig. 6. Pseudocode for HDL and RTL logic flow in fNIRS data pre-processing and SVM algorithm. This figure presents a structured overview

of the process, divided into three algorithms: the top-level SVM module (Algorithm 1), a submodule for oversampling (Algorithm 2), and

the submodule for executing SVM arithmetic operations (Algorithm 3).

Fig. 7. The block diagram of the proposed FPGA system.

Fig. 8. RTL behavioral simulation outputs and classification accuracy evaluation. The 'Out1' indicates the detected motion artifact signal

from SVM RTL, and its comparison with 'Out1_ref' from traditional motion artefact detection software Homer3, demonstrating an

accuracy rate of 97.42%.

8

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

97.42%. This level of accuracy underscores the reliability and

effectiveness of the RTL simulations in classifying motion

artefacts in fNIRS data, leveraging the robustness of the SVM

algorithm.

Within resource utilization, the most valuable resource can

vary between digital designs and project requirements. Based

on the neuroimaging FPGA’s real-time and low-power project

objectives, the use of specific resources could be minimized.

Utilization of memory logic was intentionally very low and was

split relatively evenly across LUT RAM (1.20%), Flip-Flops

(4.27%) and BRAM (1.85%) to achieve the hardware

objectives. As LUT RAM and Flip-Flops used for memory are

fast, and a value can be obtained immediately instead of waiting

for the next clock edge. However, it would use more power than

the BRAM, which has higher latency. A similar issue was found

for the DSP blocks as they may allow an RTL design to employ

the parallel architecture of an FPGA better – hence meeting the

real-time objective; however, this method utilized more power.

Given the broadly serial nature of the FPGA design, and its

medical fNIRS application, we have opted to limit the

utilization of DSP modules. These modules were specialized,

and complex components designed for intricate signal

processing, they often consume more resources, power, and can

increase both the RTL synthesis time and operating time of the

FPGA. Hence, they have been limited to a utilization of 3.3%.

This was decided based on the recognition that the inherent

advantages of DSP modules would not be fully harnessed in this

RTL model. Moreover, restricting DSP module usage allows

for future enhancements and features to be added ensuring that

the current design is scalable and flexible. The overall FPGA

resource utilization is summarized in Table III and depicted

visually in Fig. 9. It shows only around 50% of resources were

utilized.

The power consumption of the final HLS generated RTL

model implementation was synthesized and reported using the

Vivado software to provide benchmark tests of the design. The

power simulation was run in a 'worst-case' scenario to generate

the highest estimated power consumption. This scenario

includes a high ambient temperature of 40 °C, an airflow of 250

linear feet per minute, and a maximum process intensity.

Power is divided into two categories and governed by the

sum of its static (fixed) and dynamic (variable) power

consumptions. Static power originates from the FPGA

technology silicon design and dynamic power is derived from

the digital designs’ distinctive utilization. Initial power

consumption values wherein the clock frequency was set to

166.67 MHz gave a total power of 1.605 W, as seen in Fig. 10b.

Although such a power can be regarded as low and rivals that

of similar devices seen in the literature. This research aimed to

prioritize energy efficiency as it becomes vital in low-power

applications of the fNIRS technology. A tradeoff between

energy-efficiency with throughput existed, so by lowering the

baseline clocking frequency to 2.5 MHz the power consumption

was drastically reduced. Post the clock frequency reduction our

targeted device consumed 0.264 W, of which 0.243 W (92%)

TABLE III

FPGA RESOURCE UTILIZATION OF THE PROPOSED DESIGN

Resource Utilization Availability Utilization%

LUT 38,354 70,560 54.36

LUTRAM 347 28,800 1.20

Flip-Flops 6024 141,120 4.27

BRAM 4 216 1.85

DSP 12 360 3.33

I/Os 70 252 27.78

BUFG(Global

Clock Buffer)
4 196 2.04

Fig. 9. Visual depiction of the key FPGA resource utilization of the

proposed design.

Fig. 10. Detailed representation of the SVM RTL power consumption,

both dynamic and static; a) illustrates the initial and final optimized

power consumption at a clock frequency of 2.5MHz. b) illustrates the

initial and optimized power consumption after the clock frequency was

increased to 166.67MHz.

9

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

was reported for the static power and 0.021 W (8%) for the

dynamic power consumption, all dissipating through the PL

side of the Zynq. The most power-hungry sections of the RTL

design were the signals at 0.007 W (33%) and the logic, which

consumed 0.009 W (44%) of the total dynamic power. This is

expected because the core power rail consumes most of the

power, which uses RTL signals to drive the logic, a central

aspect of FPGA design. A more detailed breakdown of these

power figures is shown in Fig. 10b and gives a clear picture of

one of the more fundamental contributions of this work. The

FPGA underwent simulation at two different clock frequencies

166.67 MHz and 2.5 MHz. The final lower frequency of 2.5

MHz assumed typical conditions where the ambient

temperature was 28.6 °C, while at 166.67 MHz maximum

power simulation settings were employed with an ambient

temperature of 33.8 °C. These simulations yielded insights into

how the design performs under different operational conditions.

Our study uncovers insights that are often overlooked in fNIRS

and FPGA-SVM artifact rectification approaches. Additionally,

the literature on fNIRS lacks substantial focus on real-time,

low-power hardware implementations using machine learning

algorithms. Hence, a comparison between the SVM digital

design with other fNIRS-based approaches were not able to be

conducted. Instead, the successes and limitations of the FPGA

SVM design presented with other available hardware SVM

models found in the literature were compared to the proposed

design. One notable criticism of the FPGA SVM models in

existing literature is the lack of comprehensive reporting on key

metrics like power consumption, resource utilization, and

classification accuracy. Within the scope of this work, several

papers failed to address one or more of these important factors.

Six studies were selected with through report on power

consumption and resource utilization and were detailed in Table

IV [14–18].

To validate the efficacy of the proposed module, extensive

simulations have been designed and conducted, evaluating the

accuracy, timing, power and resource utilization of the

algorithm within a controlled environment. These simulations

laid a strong foundation for both the theoretical and practical

aspects of the proposed work. It should be noted that the results

were primarily a reflection of simulated performance

evaluations. The validation of these results through a physical

implementation on an FPGA board is a crucial next step and is

planned as the future work.

B. Discussion

Taking advantage of the single channel oversampled core we

saw vast hardware resource saving in the FPGA's computing

resources whilst preserving its classification accuracy.

However, a more detailed analysis of the partially serial

architecture’s effects supports the earlier theory that only a

single cycle of latency will be added to preserve the real-time

objective need for further investigation. Usually, an fNIRS

signal that represents a task performed by a patient is produced

over a two to seven second window [1]. Thus, an added latency

is unlikely to be detrimental to our real-time goal.

The second objective, which suffered at a higher cost, was

the goal of creating a low-power hardware accelerator. Power

is a fundamental cost directly linked to FPGA resource

utilization. Hence, effort dedicated to the project in reducing

resource utilization was also actively decreasing power

consumption. The two objectives are linked as the many

transistors used in the configurable logic blocks (CLBs) that

enact the logic of the RTL all require power to operate. The

more CLBs, the greater the power consumption. Hence, the

dynamic power is a product of each CLB depending on the

number utilized and their individual use within the design.

Consequently, more densely utilized FPGA designs will

consume more power. Utilizing the spread of dynamic power

shown in Fig. 10, we can hypothesize that the resources and

power of this RTL design can be further reduced if the

computational load of the digital circuit is taken off from the

dynamic memories found in the 'Logic' component of dynamic

power and redistributed to the 'BRAM' resources.

There are tens of seconds of delay in neural signals and

measurement activations due to the oxygenation and

deoxygenation of neural activities. While the latency is a major

concern, when using fNIRS as brain computer interface.

Portability is a key point for a wearable device, and therefore,

the device may operate on batteries. While FPGAs are typically

not ideal for battery-powered devices, we aim for low power

consumption to maximize battery life. The low power

consumption, in the range of milliwatts as reported in this work,

represents a significant contribution. It addresses the challenge

of power consumption, which is particularly important when

considering that the motion artifact classifier is just one

TABLE IV

A COMPARISON OF DIFFERENT FPGA SVM IMPLEMENTATION

SVM Kernel
Power

Use(W)

Number of

SVs

Frequency/Processing

Speed

Resource

Utilization in

LUTs

Classification

Accuracy Reference

Linear 1.686 61 56.60 µs 2870 97.92% [14]

Linear 1.756 248 11.26 µs 2566 80.85% [14]

Gaussian RBF 15 16 12.5 MHz / 80 ns 122,637 N/A [15]

Linear Polynomial 4.9 122 70 MHz 35,532 80% [16]

Linear Polynomial 3.2 254 84 MHz 31,854 84% [17]

Multiclass

Polynomial
2.021 192 146 MHz 461

N/A
[18]

Gaussian RBF 0.264 55 2.5 MHz 38,354 97.42% This Design

10

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

subsystem within the larger neuroimaging device.

In the evaluation of various FPGA-based SVM designs from

the literature, it is evident that the final RTL model presented

here exhibits lower power consumption compared to other

implementations. When examining studies that reported power

consumption on the lower end of the spectrum, it was observed

that these SVM designs all utilized a Xilinx Zynq board.

The RTL design presented here utilizes lower resource

utilization in comparison to many models found in the

literature. However, as seen in Table IV, there is room for

further reduction in resource utilization without necessarily

sacrificing classification accuracy. It is important to note that

studies achieving high classification accuracy with low power

and resource usage employed more expensive FPGAs that

offered larger and more sophisticated Configurable Logic

Blocks (CLBs) and faster clocks.

Finally, to our knowledge, the hardware-embedded system

using an FPGA-based SVM classifier of motion artefacts is

considered the first in the literature for fNIRS technology. In

addition, the implementation presented here effectively

overcame the challenges previously listed in the literature of

satisfying FPGA low power and area restrictions while

providing effective classification accuracies.

Prior research reports have demonstrated a propensity for

superficial application of offline and software-based techniques

would yield a improvement in the accuracy of fNIRS signal

processing [19–29]. However, it has been noted that attempts to

implement real-time hardware-based approaches, incorporating

additional hardware components such as acceleration sensors,

often lack comprehensive discussions regarding hardware and

power constraints. These metrics are of utmost importance in

the realm of hardware design, particularly in the context of the

technology's practical application in the field of medical

science.

Moreover, an examination of previous endeavors revealed

instances where fNIRS data, including motion artifacts

employed for model training and testing, had been solely

generated through simulation, rather than being derived from

real-world scenarios [21]. This practice is notably detrimental,

given the intricate, variable, and challenging nature of

accurately simulating motion artifacts.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

Numerous methodologies have been proposed to address the

challenge of motion artifacts in fNIRS signals. This research

marks a pioneering effort in introducing a novel solution—an

FPGA-based machine learning platform—specifically designed

and tested for the fNIRS modality, with a primary focus on

achieving ultra-low power consumption. Our approach

involves a seamless integration of software and hardware,

offering a practical and efficient means to incorporate machine

learning algorithms into FPGA hardware for fNIRS

applications. At the model training stage, we initiated the

process with high-level model training using Python.

Subsequently, we transitioned to high-level MATLAB and

Simulink architectural designs. After a diverse set of

architectures underwent rapid prototyping with rigorous

performance evaluations, assessing classification accuracy and

FPGA resource usage, the architecture that emerged as the

'best-performing' option involved data pre-processing through

single real-pole IIR filters, followed by the execution of the

Support Vector Machine (SVM) Radial Basis Function (RBF)

kernel in a singular oversampled channel. The post-synthesis

hardware system demonstrated high-performance, achieving

this without compromising the core objectives of maintaining a

low area footprint, minimal power consumption, and low

latency. Our results demonstrated that we overcome the

persistent challenge of motion artifacts in fNIRS signals by

introducing an innovative FPGA-based machine learning

platform. This platform represents a significant step toward

enhancing the utility and practicality of fNIRS technology in

various domains, including neuroscience and clinical

applications. Further exploration and development of this

platform holds the potential to revolutionize fNIRS data

processing and analysis.

B. Future Work

A critical evaluation considering the literature assessed in

this study demonstrates that advancements in research must be

made before we could implement a real-time, low-power

neuroimaging motion artefact detector. The first would be to

evaluate segments of the RTL design to look for possible power

consumption-saving improvements. This would serve the

study’s real-time and low power objectives. A potential method

would be to evaluate FPGA design methods that link and

harness the PL and PS sides of the board simultaneously. The

second area of required future work would be to complete the

hardware integration. This would involve functional RTL

simulations, implementing the bitstream onto the FPGA and

testing the SVM model on the FPGA in real life. Nevertheless,

the quality of the simulation results validated this

investigation's utility and established its potential use in a real

experimental scenario. Moreover, this research has achieved

innovations to modernize and drive research trends for the

wearable fNIRS and FPGA-based machine learning

implementations in the right direction, which could have wider

implications for neuroscience and clinical applications.

REFERENCES

[1] D. Perpetuini, D. Cardone, C. Filippini, A. M. Chiarelli, and A. Merla, “A
Motion Artifact Correction Procedure for fNIRS Signals Based on

Wavelet Transform and Infrared Thermography Video Tracking,”

Sensors, vol. 21, no. 15, p. 5117, Jul. 2021, doi: 10.3390/s21155117.
[2] R. J. Cooper et al., “A Systematic Comparison of Motion Artifact

Correction Techniques for Functional Near-Infrared Spectroscopy,”

Front Neurosci, vol. 6, 2012, doi: 10.3389/fnins.2012.00147.
[3] Y. Gao et al., “Deep learning-based motion artifact removal in functional

near-infrared spectroscopy,” Neurophotonics, vol. 9, no. 04, Apr. 2022,

doi: 10.1117/1.NPh.9.4.041406.
[4] F. C. Robertson, T. S. Douglas, and E. M. Meintjes, “Motion Artifact

Removal for Functional Near Infrared Spectroscopy: A Comparison of

Methods,” IEEE Trans Biomed Eng, vol. 57, no. 6, pp. 1377–1387, Jun.
2010, doi: 10.1109/TBME.2009.2038667.

[5] L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further

improvement in reducing superficial contamination in NIRS using double

11

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

short separation measurements,” Neuroimage, vol. 85, pp. 127–135, Jan.

2014, doi: 10.1016/j.neuroimage.2013.01.073.
[6] B. Lesser, M. Mücke, and W. N. Gansterer, “Effects of Reduced Precision

on Floating-Point SVM Classification Accuracy,” Procedia Comput Sci,

vol. 4, pp. 508–517, 2011, doi: 10.1016/j.procs.2011.04.053.
[7] P. Garcia, D. Bhowmik, R. Stewart, G. Michaelson, and A. Wallace,

“Optimized Memory Allocation and Power Minimization for FPGA-

Based Image Processing,” J Imaging, vol. 5, no. 1, p. 7, Jan. 2019, doi:
10.3390/jimaging5010007.

[8] S. Afifi, H. GholamHosseini, and R. Sinha, “FPGA Implementations of

SVM Classifiers: A Review,” SN Comput Sci, vol. 1, no. 3, p. 133, May
2020, doi: 10.1007/s42979-020-00128-9.

[9] B. Scholkopf et al., “Comparing support vector machines with Gaussian

kernels to radial basis function classifiers,” IEEE Transactions on Signal
Processing, vol. 45, no. 11, pp. 2758–2765, 1997, doi:

10.1109/78.650102.

[10] T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas,
“HomER: a review of time-series analysis methods for near-infrared

spectroscopy of the brain,” Appl Opt, vol. 48, no. 10, p. D280, Apr. 2009,

doi: 10.1364/AO.48.00D280.
[11] X. Song, H. Wang, and L. Wang, “FPGA Implementation of a Support

Vector Machine Based Classification System and Its Potential

Application in Smart Grid,” in 2014 11th International Conference on
Information Technology: New Generations, IEEE, Apr. 2014, pp. 397–

402. doi: 10.1109/ITNG.2014.45.

[12] “Vivado ML Overview.” https://www.xilinx.com/products/design-
tools/vivado.html (accessed Jul. 10, 2023).

[13] “ALINX AXU3EG or AXU3EGB: Xilinx Zynq UltraScale+ MPSOC

ZU3EG Ethernet FPGA development board.”
https://www.xilinx.com/products/boards-and-kits/1-1cm64x4.html

(accessed Jun. 14, 2023).

[14] S. Afifi, H. GholamHosseini, and R. Sinha, “A system on chip for
melanoma detection using FPGA-based SVM classifier,” Microprocess

Microsyst, vol. 65, pp. 57–68, Mar. 2019, doi:

10.1016/j.micpro.2018.12.005.
[15] M. Pietron, M. Wielgosz, D. Zurek, E. Jamro, and K. Wiatr, “Comparison

of GPU and FPGA Implementation of SVM Algorithm for Fast Image

Segmentation,” 2013, pp. 292–302. doi: 10.1007/978-3-642-36424-2_25.
[16] C. Kyrkou, C.S. Bouganis, T. Theocharides, and M. M. Polycarpou,

“Embedded Hardware-Efficient Real-Time Classification With Cascade

Support Vector Machines,” IEEE Trans Neural Netw Learn Syst, vol. 27,
no. 1, pp. 99–112, Jan. 2016, doi: 10.1109/TNNLS.2015.2428738.

[17] C. Kyrkou, T. Theocharides, and C.S. Bouganis, “An embedded

hardware-efficient architecture for real-time cascade Support Vector
Machine classification,” in 2013 International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation (SAMOS),

IEEE, Jul. 2013, pp. 129–136. doi: 10.1109/SAMOS.2013.6621115.
[18] R. A. Patil, G. Gupta, V. Sahula, and A. S. Mandal, “Power Aware

Hardware Prototyping of Multiclass SVM Classifier Through
Reconfiguration,” in 2012 25th International Conference on VLSI Design,

IEEE, Jan. 2012, pp. 62–67. doi: 10.1109/VLSID.2012.47.

[19] Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas,
“Eigenvector-based spatial filtering for reduction of physiological

interference in diffuse optical imaging,” J Biomed Opt, vol. 10, no. 1, p.

011014, 2005, doi: 10.1117/1.1852552.
[20] M. A. Yücel, J. Selb, R. J. Cooper, and D. A. Boas, “Targeted principle

component analysis: A new motion artifact correction approach for near-

infrared spectroscopy,” J Innov Opt Health Sci, vol. 07, no. 02, p.
1350066, Mar. 2014, doi: 10.1142/S1793545813500661.

[21] F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to

detect and reduce movement artifacts in near-infrared imaging using
moving standard deviation and spline interpolation,” Physiol Meas, vol.

31, no. 5, pp. 649–662, May 2010, doi: 10.1088/0967-3334/31/5/004.

[22] B. Molavi and G. A. Dumont, “Wavelet-based motion artifact removal for
functional near-infrared spectroscopy,” Physiol Meas, vol. 33, no. 2, pp.

259–270, Feb. 2012, doi: 10.1088/0967-3334/33/2/259.

[23] M. R. Siddiquee, J. S. Marquez, R. Atri, R. Ramon, R. Perry Mayrand,
and O. Bai, “Movement artefact removal from NIRS signal using multi-

channel IMU data,” Biomed Eng Online, vol. 17, no. 1, p. 120, Dec. 2018,

doi: 10.1186/s12938-018-0554-9.
[24] H. Zhao et al., “A wide field-of-view, modular, high-density diffuse

optical tomography system for minimally constrained three-dimensional

functional neuroimaging,” Biomed Opt Express, vol. 11, no. 8, p. 4110,
Aug. 2020, doi: 10.1364/BOE.394914.

[25] A. Blasi, D. Phillips, S. Lloyd-Fox, P. H. Koh, and C. E. Elwell,

“Automatic Detection of Motion Artifacts in Infant Functional Optical
Topography Studies,” 2010, pp. 279–284. doi: 10.1007/978-1-4419-

1241-1_40.

[26] J. Virtanen, T. Noponen, K. Kotilahti, J. Virtanen, and R. J. Ilmoniemi,
“Accelerometer-based method for correcting signal baseline changes

caused by motion artifacts in medical near-infrared spectroscopy,” J

Biomed Opt, vol. 16, no. 8, p. 087005, 2011, doi: 10.1117/1.3606576.
[27] A. Metz, M. Wolf, P. Achermann, and F. Scholkmann, “A New Approach

for Automatic Removal of Movement Artifacts in Near-Infrared

Spectroscopy Time Series by Means of Acceleration Data,” Algorithms,
vol. 8, no. 4, pp. 1052–1075, Nov. 2015, doi: 10.3390/a8041052.

[28] X. Cui, J. M. Baker, N. Liu, and A. L. Reiss, “Sensitivity of fNIRS

measurement to head motion: An applied use of smartphones in the lab,”
J Neurosci Methods, vol. 245, pp. 37–43, Apr. 2015, doi:

10.1016/j.jneumeth.2015.02.006.
[29] M. R. Siddiquee et al., “Sensor Fusion in Human Cyber Sensor System

for Motion Artifact Removal from NIRS Signal,” in 2019 12th

International Conference on Human System Interaction (HSI), IEEE, Jun.

2019, pp. 192–196. doi: 10.1109/HSI47298.2019.8942617.

	I. Introduction
	II. Digital Architecture Design and Simulation
	A. The fNIRS Dataset
	B. Training the SVM model
	C. Digital Architecture Design of Pre-processing
	D. Digital Architecture of SVM inference

	III. HLS Generated RTL Digital Design and Simulation
	IV. Implementation
	V. Results and Discussion
	A. Results
	B. Discussion

	VI. Conclusion and Future Work
	A. Conclusion
	B. Future Work

