
Enough is Enough: Learning to Stop in
Generative Systems

Colin Roitt[0000−0002−1801−158X], Simon Hickinbotham[0000−0003−0880−4460],
and Andy M. Tyrrell[0000−0002−8533−2404]

School of PET, University of York, York, United Kingdom
{colin.roitt, simon.hickinbotham, andy.tyrrell}@york.ac.uk

Abstract. Gene regulatory networks (GRNs) have been used to drive
artificial generative systems. These systems must begin and then stop
generation, or growth, akin to their biological counterpart. In nature,
this process is controlled automatically as an organism reaches its ma-
ture form; in evolved generative systems, this is more typically controlled
by hardcoded limits, which can be difficult to determine. Removing pa-
rameters from the evolutionary process and allowing stopping to occur
naturally within an evolved system would allow for more natural and
regulated growth. This paper illustrates that, within the appropriate
context, the introduction of memory components into GRNs allows a
stopping criterion to emerge. A Long Short-Term Memory style network
was implemented as a GRN for an Evo-Devo generative system and
was tested on one simple (single point target) and two more complex
(point clouds) problems with and without structure. The novel LSTM-
GRN performed well in simple tasks to optimise stopping conditions,
but struggled to manage more complex environments. This early work
in self-regulating growth will allow for further research in more complex
systems to allow the removal of hyperparameters and allowing the evolu-
tionary system to stop dynamically and prevent organisms overshooting
the optimal.

Keywords: Generative Design · Self-regulation · EvoDevo.

1 Introduction

Evolutionary generative systems can be extremely powerful and interesting tools
for generating a variety of different designs, such as 2D images [22] or 3D worlds
[2]. As with many evolutionary systems, the more complex the generative system,
the more parameterisation can increase, leading to parameter tuning problems.
One major parameter that must be considered is when a generative system
should stop generating [10].

Artificial growth in generative systems can vary greatly in implementation,
but all must come to a point where they stop growing. This is typically achieved
with some hardcoded limit, often even built into the mechanism that generates
phenotypes, or as a limit set by a user [14, 13, 11]. However, to take full advan-
tage of the evolutionary emergence of properties, it may prove helpful to give

2 C. Roitt et al.

more control to the evolved generative systems. Indeed, it could be considered
detrimental to the principle of evolutionary systems, with hard-coding aspects
of a solution reducing exploration of the algorithm. In an ideal evolutionary
system, stopping would be determined dynamically based on the state of the
system. The question then becomes to what extent evolved systems are capable
of stopping at the right time within the context of what they design. Too many
steps and compute time are wasted at best, or at worst the organism overshoots
the optimal; too few, and it is unable to reach it.

Gene Regulatory Networks (GRNs) are the systems in biology that con-
trol gene expression and therefore morphogenesis (how organisms grow), mak-
ing them an interface between evolutionary and developmental processes. Two
biological systems, for the large part of the twentieth century, that were con-
sidered separate later became considered together as Evolutionary Development
(EvoDevo) [1, 16]. Three primary characteristics of GRNs have been identified
as heterochrony, spatial patterning, and interactions between genes and gene
products [3].

The impact of these three characteristics is a strong indirect encoding of
complex features; GRNs control the process of growth, not the final organism.
In nature, a relatively small amount of DNA encodes the biology of a remarkably
varied and complex organism. Indirect encoding of a genotype in a phenotype
is only possible by allowing interactions between genes, thus creating a GRN,
which has been shown to be powerful and key in the artificial domain [1, 8].

GRNs can be emulated within generative systems through computational
structures such as feedforward neural networks and have been successfully im-
plemented for multi-objective problems in [11]. That contribution used a fixed
number of development steps and did not investigate the controlled stopping of
growth. The development of neural networks into some recurrent structure with
a memory may aid in the emergence of halting decisions.

The ability to stop requires context not only in the current environment
but also on the historical actions made, thus requiring a construct of memory.
However, it has been shown that it is problematic for evolutionary systems to
develop these internal constructs, as it often requires a number of evolutionary
steps that are not immediately effective in increasing the fitness score [17].

Long short-term memory networks have long been used for sequence learning
as a form of recurrent neural network [12]. These systems have persistent memory
that is carried over recurrent iterations, allowing them to remember and forget
information within their architecture. However, the artificial evolution of LSTMs
is not as well understood as the more traditional training methodologies based on
backpropagation, for example. Where LSTMs have been used in evolved systems,
they have not been used in the context of generative systems and often do not
evolve the network directly [20, 21, 15].

Through the implementation of the recurrent Long Short-Term Memory
(LSTM) networks, the work outlined in this paper will examine how evolution-
ary systems make use of memory during generative tasks and, crucially, reveal

Enough is Enough: Learning to Stop in Generative Systems 3

if and how stopping criteria emerge; questions that become applicable to both
the aesthetic- or physical-property domains of generative applications.

The complications involved in evolving memory have been approached in
several ways, such as including helper objectives that promote memory in a sys-
tem and by pre-training an LSTM with an information maximisation objective
[20]. The topological evolution of LSTM has also been seen in [21]; producing a
genetic programming style tree that then builds the topology of the LSTM cell
- something that has been investigated outside of evolutionary spaces [15].

The motivation is to understand how these ideas of memory affect the evolu-
tion of developmental systems, on a simple level, and into more complex systems.
This background suggests that an LSTM style memory mechanism might aide
the development of stopping processes in developmental growth - Section 2 de-
tails the methodology of this paper in an EvoDevo system.

LSTMs have been shown to work with sequence data well; in particular, some
examples of this in an artistic generative case include generating rap lyrics [19]
and typefaces[18], both examples incorporating features the network has learnt
from a known corpus. With particular focus on song lyrics, an evolved system
that could generate lyrics to a contextually appropriate length rather than being
hardcoded could prove an interesting use case for the system outlined in this
paper.

2 Methodology

To evaluate recurrency in GRNs, this paper proposes a simple LSTM-GRN that
addresses the issue of halting generative developmental processes. Of the key
properties of GRNs outlined above, the inclusion of recurrency is intended to
facilitate the interaction of genes and their products in an artificial space, where
proteins and diffusion gradients are not inherent properties of an artificial sys-
tem, something that biological systems heavily leverage. The use of the system
state allows for more complex interactions over time.

An LSTM was chosen above a recurrent neural network as it already has
a framework for handling memory inbuilt. This new LSTM-GRN is evaluated
through a range of experiments. The following sections present the GRN model
and then the experimental methodology and setup of the environment in which
these tests were performed.

2.1 LSTM-Gene Regulatory Network

The LSTM-GRN, as shown in Figure 1, has three major parts: the LSTM cell, the
feedforward layer, and the activation function. LSTM cells are commonly placed
either before or after a perceptron layer. In the current design, the fully connected
feedforward perceptron layer follows the LSTM cell to process information that
is captured temporally by the LSTM memory [20].

4 C. Roitt et al.

LSTM

Feedfoward layer

LSTM-GRN

Fig. 1: Overview of the LSTM-GRN architecture shown for an N-dimensional
input vector. Visible are the three components: the LSTM cell (the large box,
left), the feedforward layer (the circle, middle) and the activation function (the
small box, right)

LSTM Cell This part of the LSTM-GRN is a simple construction of the basic
LSTM unit outlined in [12]. The unit itself contains a forget gate, an update
gate, and an output with an activation function.

The LSTM cell works by having two streams of long-term and short-term
memory flow through it. Short-term memory and the new data input are used,
along with weights, to determine how much long-term memory to forget. The
short-term memory and input are then calculated with additional weights to
determine candidate information; this is used to update the long-term memory
Ct, which is one output of the cell, fed back in at the next memory input stage,
and maintained by the forget and update actions. Finally, the long- and short-
term memory are used with more weights to calculate the final output, which
is also fed back into the new short-term memory. The output is then passed on
to the feedforward section of the LSTM-GRN constructed of a perceptron and
activation function, completing one full pass through the LSTM-GRN at any
given development step.

At any given time in the devo loop t, the inputs are defined as the long-term
and short-term relationship from the previous loop, Ct−1 and ht−1, respectively,
and the current input state xt. The weights and biases used in each equation
are given as Wf and bf , Wi and bi, Wc and bc and Wo and bo for forget, input,
candidate, and output stages, respectively.

The forget gate, ft, is defined by Equation 1 which will act on Ct−1 to give
Ct.

Enough is Enough: Learning to Stop in Generative Systems 5

ft = σ(Wf · [ht−1, xt] + bf) (1)

The update step requires candidate memory update values and some infor-
mation from the input, and those are given as:

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(Wc · [ht−1, xt] + bc) (3)

The final update step is given by:

Ct = ft × Ct−1 + it × C̃t (4)

The last step is to calculate the cell output, which is also used as the short-
term input for the next iteration, ht.

Ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = Ot × tanh(Ct) (6)

Feedforward and Activation The final two components of the LSTM-GRN
are a single feedforward layer with an activation function, which here is the tanh
function. This can allow the output of the LSTM cell to handle temporal data
through its memory gates; in this way, the flow of information is embedded with
temporal information before being handed on to the feedforward perceptron
layer, which then functions as a more classical neural network unaware of any
recurrency. This is given simply as:

Õt = tanh(ht ·W + b) (7)

The Tanh layer is a construct of the LSTM-GRN output requirement such
that the values can be normalised to a range between −1 and +1.

The network described here cannot be trained by a data set because there
is no appropriate training set. Therefore, evolution holds a key solution to pro-
ducing a GRN that behaves appropriately.

2.2 Evo-Devo loop

Evo-devo presents a strategy to take advantage of indirect encoding of gene reg-
ulatory networks in an evolutionary space. This process combines two straight-
forward approaches to both the evolution of a genome and the development of
an organism through the LSTM-GRN.

The process behind Evo-devo can be considered simply as two nested loops.
The evolution of the LSTM-GRN takes place in the outer loop, while the inner
loop acts as a fitness function for the evolutionary selection process. The mapping

andytyrell
Highlight

andytyrell
Sticky Note
or "function" ?

andytyrell
Highlight

andytyrell
Sticky Note
italics?

andytyrell
Highlight

andytyrell
Sticky Note
"tanh" in italics?

6 C. Roitt et al.

of genotype to phenotype occurs within this inner devo loop. The simple evolved
genotype is interpreted as the LSTM-GRN; this controls the complex growth of
the phenotype. The Devo-loop implementation is described in Algorithm 1.

Algorithm 1: Fitness function for a given individual

Data: genome
Result: fitness = [distance, steps]
t← TARGET ;
curr loc← (0, 0);
S,D,H ← None,None,None;
n← 0;
while n ̸= MAX DEV O STEPS &H < 0 do

n← n+ 1;
S,D,H ← GRN(genome, [curr locx, curr locy, H]);
if H < 0 then

step = |S| · 10;
direction = |D| · 10;
xi = step · cos (direction);
yi = step · sin (direction);
curr loc = (xi, xy);

else
END DEVO

end

end
distance← |curr loc− t|;
return[distance, n];

For initial experiments to consider the basic functionality of this new method,
the LSTM-GRN has a fixed topology and is represented in the search space as an
array of values, each encoding a specific weight or bias value used in the model,
Wf and bf ,Wi and bi,Wc and bc andWo and bo. This keeps the functions used for
genetic operations simple and available in most libraries; in this case, the library
chosen was the DEAP library for Python [9]. The evolutionary component is
a standard genetic algorithm (GA); however, the inclusion of the devo steps
introduces an indirect encoding that can evolve to generate complex behaviour
- this is extended by the memory component in the LSTM-GRN.

Evolution is driven by a number of genetic operators that are crucial to
achieving good convergence and achieving it in acceptable time. Simulated bi-
nary crossover [7] (probability: 0.5, η: 0.4) [6] was chosen for this task, as it is
capable of solving a number of issues not present in a binary value crossover,
but for a genome constructed of a series of real numbers. Similarly, a Gaussian
mutation function (individual probability: 0.3, gene probability: 0.2, µ: 0, σ: 0.3)
was used to randomly mutate individuals, allowing for frequent small mutations
in the real-coded genome, but also some infrequent larger mutations. Finally,

Enough is Enough: Learning to Stop in Generative Systems 7

the selection algorithm used was NSGA-II, a multiobjective algorithm that has
become a common standard in evolutionary space [5].

The output of this evolvable generative network is then used to drive the
morphological development of two structures outlined in Section 3. Source code
made available at https://github.com/ColinRoitt/LSTM-GRN

3 Experiments

In order to show that the LSTM can work within this context, this paper first
presents a simple “single point” problem where the organism must reach a point
in an artificial environment. Then to extend that to allow for a more visible
devo process a “point cloud” based problem is presented. Finally the idea is
extended to that of structural growth to see if the organism is able to evolve the
appropriate strategies to reach a task-specific point arrangement.

The approaches presented here are inspired by biological forms, specifically
the natural and efficient growth exhibited in an experiment with slime mould
Physarum polycephalum [23]. Wasted energy, while an abstract concept within
these experiments, is represented by optimised growth strategies. Learnt be-
haviours that react efficiently to an environment.

In the first experiment, a single point is used as a target for a single structure
to grow from its starting point to the target. The second experiment is a more
complex problem: An organism is placed in the middle of a field of targets
randomly placed in a band at a specified radius. The organism can then, over
each devo step, take a number of actions: step forward, change the angle, or
branch. Thus, it is possible for an LSTM-GRN to develop a structure to cover
the target area, efficiently collecting many targets.

4 Results

The aim here is to first validate the basic principle that a stopping criteria can be
met by a recurrent system and then go on to evaluate these established abilities
in a more complex problem.

4.1 Single-Point Target

The organism begins as a point in the bottom left of the arena shown in Figure 2.
Through each Devo step, the LSTM-GRN outputs a learnt step size and direction
in which to grow. Fitness, measured in the final Devo step, is given by the
distance between the final point reached and the food and the number of steps
taken. In this series of experiments, the position of the target is fixed at the
top of the arena, and the organism is blind to its location; the only feedback
that reaches the organism of its quality is after the devo process is complete.
Throughout the evolution of the organism, it must evolve the correct series of
steps to efficiently reach the target and, crucially, when to stop growing so as
not to expend unnecessary energy.

8 C. Roitt et al.

(a) Gen: 1, steps - 100, dis-
tance - 57.65

(b) Gen: 40, steps - 17, dis-
tance - 4.15

(c) Gen: 70, steps - 7, dis-
tance - 1.51

Fig. 2: An example of some of the visual selected best individuals evolved over
3 of the 100 generations. The organism can be seen to go through a number of
stages of evolution; first finding the target and then optimising its path to the
target. This experiment was carried out 7 times and achieved similar results in
each run.

The evolutionary process was given 100 generations and a maximum of 100
development steps. The final and best individual terminated its development
cycle after 7 steps and achieved a final distance from the target of 0.29 units.
Individuals from three different generations produced through an evolutionary
run are shown in Figure 2. Starting from a single point with little growth to
a long indirect path to the target, before finally finding the shortest path and
refining the step size to hit the centre of the target around generation 70. This
illustrates that the LSTM-GRN presented here is capable of balancing both the
pathfinding and termination criteria to encode a solution.

These early results suggest that it is possible to evolve a GRN that can
perform a stopping operation in an appropriate manner. However, it is important
to note that this is a relatively simple and crucially static test; The target is
in a fixed location, so location information can be encoded directly into the
genome and saved via evolution not development. To provide a more challenging
problem, the LSTM-GRN should be able to interpret spatial input based on its
environment, which will be addressed with more complex issues in the next
section.

4.2 Point Cloud

In this series of experiments, more targets are placed in the environment and
the organism must be able to sense its surroundings and follow routes efficiently
to collect the food.

Although the organism’s ability remains the same as in the previous exper-
iment, it now has the ability to push and pop its current location to and from
a stack in memory, allowing for branching growth. Another ability it is given is
a look-ahead vector pointing to its nearest food source. This is a critical piece
of information as the points are no longer fixed between evaluations and are
distributed randomly within a specified radius.

Enough is Enough: Learning to Stop in Generative Systems 9

Importantly, the organism retains the ability to terminate its growth, reduc-
ing the number of steps it has to take. An upper bound of 1,000 devo steps was
imposed to make the experiments tractable, this is compared to the previous
100 devo steps.

The results presented in Figure 3 show solutions taken from the Pareto front
of the final population. The phenotype does present reasonable coverage of the
environment and notably skips around the gap in the middle of the space. How-
ever, the key feature that must be investigated is the stopping of the growth
process at an appropriate point.

It is apparent that although an acceptable path has been discovered through
the environment, the organism has not terminated its growth. However, there
are a number of potential reasons why this may be the case. There are many
more targets in the arena that it may try to collect; this increase in the score
fitness may be winning out in the selection process over any organisms that halt
before this is done. This is a feature that can be seen in a number of results.

The final Pareto front (Figure 4) from another run of this experiment yielded
a typical distinct split across the solution space, and although it is clear there
are changes across generations (Figure 5), it is not yet clear how much of the
solution space is reachable with the current configuration of the LSTM-GRN.

A range of phenotypes emerge in the final population. A consistent trait
through the populations of this task is the large circles that are present in Figure
6a. These structures are large and repetitive, but they cover a large area and
collect a good number of targets, as highlighted in orange. These structures
emerge frequently when no termination action is activated in the majority of the
population.

Figure 6b is similar to the experiment run for Figure 3, however, in this
iteration of the experiment, the LSTM-GRN has a limited distance in which it
can see the direction of its nearest target. This results in large swooping arcs
compared with the unconstrained look-ahead of quite sharp turns. This is likely
due to it often lacking an understanding of its environment, and as such the best
strategies to maximise score involve finding ways to cover the space as much as
possible.

4.3 Structured Cloud

The final experiment replaces the random field of targets with deliberate struc-
tures. In this, the targets are of the form of capital letters Z and a straight line.
There are several reasons why these layouts were chosen. Letters of the alphabet
have been used in the past as a reference point for evolvable generative systems,
such as in the Biomorphs example [4]. However, mainly it gives some complexity
to the task of finding the shortest path, similar to solving mazes. Within the
straight line, a very clear optimal route is developed, with the letter Z that also
provides the challenge of tight turns for exploration.

Figure 7a is the first example of a response to a deliberate structure in the
environment. As before, the organism starts in the middle of the arena, and the
expected structure would be for the branching to occur towards the top right

10 C. Roitt et al.

(a) Development step: 250 (b) Development step: 500

(c) Development step: 750 (d) Development step: 1000

Fig. 3: An example of branches developing when directional distance information
is given to the network about the nearest point (unconstrained distance). Growth
starts in the centre of the arena.

andytyrell
Sticky Note
should you comment here on what blue and orange spots mean?

Enough is Enough: Learning to Stop in Generative Systems 11

Fig. 4: The solutions generated in
this run occupy tight clusters sug-
gesting difficult local minima to es-
cape. The final generation is marked
with the red diamond.

Fig. 5: Average of both fitness mea-
sures across 100 generations - steps
(minimised) and score (maximised).
The average step stabilises around
generation 20 as the populations be-
come fixed at the maximum or min-
imum number of steps. The score
shows good improvement over the
generations.

(a) Large circles commonly evolved a
strategy to maximise score in a land-
scape few networks perform well min-
imising the number of steps.

(b) A branching organism developed
when directional distance information
given to the GRN is constrained to
within 300 units.

Fig. 6: Two common results from the point cloud test

12 C. Roitt et al.

(a) The organism explores a straight
line from a centre point out in both di-
rections - it explores more effectively
towards the top right, neglecting the
bottom left.

(b) In order to cover the area of the
letter Z, the organism behaves similarly
to the examples seen when presented
with a point cloud.

Fig. 7: Two examples of structure being latent within the solution space.

and bottom left. The actual phenotype that evolves is not significantly different
from the expected result. However, it does take a lot of steps exploring either
side of the line rather than taking advantage of the proximity of the nearby
targets.

The quality of the exploration strategy of the organism is more difficult to
evaluate qualitatively here due to the tight structure of the targets. The organism
clearly does not adhere rigidly to the intended structure. However, the area below
the bottom line of the letter Z (Figure 7b) was briefly explored; then abandoned
and wasteful areas of exploration, such as the acute top angle of the structure,
are quite close to each other, so it would not be unreasonable to search in space
for more densely packed targets. Also note that the LSTM-GRN was unable to
stop earlier than the termination criteria allowed.

5 Discussion

The LSTM-GRN presented here can certainly evolve to stop, as shown in the first
experiment; however, as the complexity grows, it becomes harder to interrogate
small changes in efficacy. It may simply be a case of expanding the evolutionary
search strategy in selection or mutation or perhaps allowing some change to the
topology of the GRN. It is not unreasonable to expect this incongruity, as it has
been pointed out that the search space for evolving memory is “deceptively large”
[20]. It is also likely that it is simply challenging to escape the local minima of
the fitness space.

Enough is Enough: Learning to Stop in Generative Systems 13

An important distinction to make is the difference in complexity between
the two experiments outlined here. The success of the more simple experiment
in halting the devo process does suggest that this problem space becomes quite
challenging to search over, with many local minima seen throughout the solution
space.

There are a number of explanations that resolve the discrepancy presented
between these experiments. One such explanation is that the phenotypically
controlled organism never found all the points in the environment, and, given the
current experimental set-up, this may be a requirement to begin minimising the
step fitness. That is to say, there must first be a path to a maximum score fitness
before the evolutionary strategy is able to optimise the route thus minimising
the steps fitness - as seen in the first experiment.

Another limitation of this fitness strategy is that the collection of targets
is a binary measure. Using some proximity such that almost every mutation in
development process has some immediate feedback on quality may help guide
the search.

There is also an argument to suggest that the more complex problem is simply
poorly suited to this type of solution. If this were to be used, for example, in
the context of designing supports for a bridge, there may be some requirement
to have targets to grow to, but also some fixed boundary definitions. And fitness
may need to be based on other characteristics required by that of a bridge, such
as physical properties.

The question also arises of when the LSTM-GRN is learning to stop or opti-
mising to stop similar to questions on generalisability. Using the steps taken as a
fitness measure may lean into this idea that it’s simply an optimisation process,
rather than the LSTM-GRN learning to dynamically grow to its environment.
There is a great deal of nuance between these two ideas, and while they are
not the same thing, they are quite closely coupled. The inclusion of proxy fit-
ness measures may aid this, for example, including some amount of energy an
organism can use up and replenish within the environment.

6 Future Work

Many more avenues for exploration are possible and this paper only scratches
the surface of deep integration of recurrent systems into Evo-Devo environments
and generative designs stopping their growth.

Within the current framework, it would be valuable to adjust the fitness
function in order to guide the evolution process in a more granular way. For
example, including an amount of reward for proximity to a target would resolve
the issue with the binary scoring system. This makes small changes to the organ-
ism’s growth more likely to receive either positive or negative feedback, allowing
these small mutations time to be taken advantage of through generations.

This problem of learning to stop or optimising to stop can be a challenge
to extract; the simplest way would be to remove any idea of duration from the
fitness function. In this way, the system is no longer optimising for stopping, it

14 C. Roitt et al.

would have to learn when a stopping condition was met. One premise is the idea
of giving the organism some amount of energy. It can move around and collect
targets and gain more energy, or it can terminate with its current energy level.
To encourage termination, a strong penalty can be included for an organism
running out of energy or ‘dying ’. Removing direct references to stopping early
in the fitness function now removes one-half of the challenge of preventing a
GRN simply optimising for stopping. Then allowing the GRN to decide when to
stop based on energy levels and the environment. Upon a search of the literature
there seems to be little discussion of these artificial ideas of energy within the
context of EvoDevo algorithms.

7 Conclusion

While it is clear that including reccurency does allow termination criteria to be
handled internally by a GRN in more simple environments, it remains to be seen
whether this is true for much more complex generative systems. There is clear
evidence for the efficacy of the LSTM-GRN in handling generative tasks, but
it will become increasingly important to set a benchmark for how stopping is
handled across a number of GRN constructs.

It becomes clear through consideration of the results here that optimising to
stop and learning when to stop are similar but slightly different tasks. It remains
to be seen what the best way to ensure a system is learning when to stop, but it
is apparent a development in this area will significantly aide the understanding
of stopping in generative systems as a whole.

8 Acknowledgements

The authors acknowledge the support of a School-funded PhD studentship and
the support of the EPSRC project RIED EP/V007335/1

References

1. Banzhaf, W.: On the dynamics of an artificial regulatory network. In: Banzhaf,
W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) Advances in Artificial
Life. pp. 217–227. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

2. Broughton, T., Tan, A., Coates, P.S.: The use of genetic programming in explor-
ing 3D design worlds. In: CAAD futures 1997. pp. 885–915. Springer Netherlands
(1997)

3. Davidson, E.H.: Genomic Regulatory Systems: In Development and Evolution.
Elsevier (Jan 2001)

4. Dawkins, R.: The evolution of evolvability. On growth, form and computers pp.
239–255 (2003)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (Apr 2002)

Enough is Enough: Learning to Stop in Generative Systems 15

6. Deb, K., Agrawal, R.B., Others: Simulated binary crossover for continuous search
space. Complex Systems (1994)

7. Deb, K., Sindhya, K., Okabe, T.: Self-adaptive simulated binary crossover for real-
parameter optimization. In: Proceedings of the 9th annual conference on Genetic
and evolutionary computation. pp. 1187–1194. GECCO ’07, Association for Com-
puting Machinery, New York, NY, USA (Jul 2007)

8. Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on def-
erential gene expression. In: Harvey, I., Husbands, P. (eds.) Proceedings of the 4th
European Conference on Artificial Life. pp. 205–213. Springer (1997)

9. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
Evolutionary algorithms made easy. J. Mach. Learn. Res. (2012)

10. Frazer, J.: Chapter 9 - creative design and the generative evolutionary paradigm.
In: Bentley, P.J., Corne, D.W. (eds.) Creative Evolutionary Systems, pp. 253–274.
Morgan Kaufmann, San Francisco (Jan 2002)

11. Hickinbotham, S., Dubey, R., Friel, I., Colligan, A., Price, M., Tyrrell, A.: Evolving
design modifiers. In: 2022 IEEE Symposium Series on Computational Intelligence
(SSCI). pp. 1052–1058 (Dec 2022)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (Nov 1997)

13. Hornby, G.S., Lipson, H., Pollack, J.B.: Evolution of generative design systems for
modular physical robots. In: Proceedings 2001 ICRA. IEEE International Confer-
ence on Robotics and Automation (Cat. No.01CH37164). vol. 4, pp. 4146–4151
vol.4. IEEE (2001)

14. Hornby, G.S., Pollack, J.B.: Body-brain co-evolution using l-systems as a genera-
tive encoding. In: Proceedings of the 3rd Annual Conference on Genetic and Evo-
lutionary Computation. pp. 868–875. GECCO’01, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (Jul 2001)

15. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent
network architectures. In: Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37. pp. 2342–2350. ICML’15,
JMLR.org (Jul 2015)

16. Lohmann, I.: The birth of evo-devo. Nat. Rev. Mol. Cell Biol. 24(5), 311 (May
2023)

17. Ollion, C., Pinville, T., Doncieux, S.: With a little help from selection pressures:
evolution of memory in robot controllers. In: Artificial Life 13. MIT Press (Jul
2012)

18. Phon-Amnuaisuk, S., Salleh, N.D.H.M., Woo, S.L.: Pixel-Based LSTM genera-
tive model. In: Computational Intelligence in Information Systems. pp. 203–212.
Springer International Publishing (2019)

19. Potash, P., Romanov, A., Rumshisky, A.: GhostWriter: Using an LSTM for au-
tomatic rap lyric generation. In: Màrquez, L., Callison-Burch, C., Su, J. (eds.)
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing. pp. 1919–1924. Association for Computational Linguistics, Lisbon, Por-
tugal (Sep 2015)

20. Rawal, A., Miikkulainen, R.: Evolving deep LSTM-based memory networks using
an information maximization objective. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference 2016. ACM, New York, NY, USA (Jul 2016)

21. Rawal, A., Miikkulainen, R.: From nodes to networks: Evolving recurrent neural
networks (Mar 2018)

16 C. Roitt et al.

22. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-
Kovarik, J.T., Stanley, K.O.: Picbreeder: a case study in collaborative evolutionary
exploration of design space. Evol. Comput. 19(3), 373–403 (May 2011)

23. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki,
K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network
design. Science 327(5964), 439–442 (Jan 2010)

