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FRACTAL CLASSES OF MATROIDS

DILLON MAYHEW, MIKE NEWMAN, AND GEOFF WHITTLE

Abstract. A minor-closed class of matroids is (strongly) fractal if the
number of n-element matroids in the class is dominated by the number
of n-element excluded minors. We conjecture that when K is an infi-
nite field, the class of K-representable matroids is strongly fractal. We
prove that the class of sparse paving matroids with at most k circuit-
hyperplanes is a strongly fractal class when k is at least three. The
minor-closure of the class of spikes with at most k circuit-hyperplanes
(with k ≥ 5) satisfies a strictly weaker condition: the number of 2t-el-
ement matroids in the class is dominated by the number of 2t-element
excluded minors. However, there are only finitely many excluded minors
with ground sets of odd size.

Dedicated to Joseph Kung, in gratitude for all his contributions to the

matroid community.

1. Introduction

In [5] we proved that every real-representable matroid is contained as
a minor in an excluded minor for the class of real-representable matroids.
(The same phenomenon holds for any infinite field.) Geelen and Camp-
bell strengthened this by showing that every real-representable matroid is
a minor of a complex-representable excluded minor for the class of real-
representable matroids [1]. In contrast to these results, the resolution of
Rota’s conjecture [2] implies that there are only finitely many excluded mi-
nors for F-representability when F is a finite field.

In this article we consider another possible dichotomy between finite fields
and infinite fields in matroid representation theory. LetM be a minor-closed
class of matroids, and let EX be the class of excluded minors for M. For any
non-negative integer n, let mn be the number of non-isomorphic n-element
matroids in M. Thus mn counts the n-element members of M modulo
the equivalence relation of isomorphism. Similarly, let xn be the number of
non-isomorphic n-element matroids in EX . (Henceforth, when we refer to a
matroid, we usually mean an isomorphism class of matroids.) We consider
the probability that a matroid chosen randomly from the n-element members
of M∪ EX is an excluded minor. In other words, we consider the ratio

xn
mn + xn

.
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2 MAYHEW, NEWMAN, AND WHITTLE

We will denote this fraction by ΓM(n). We consider only the case that M
contains infinitely many matroids, so that ΓM(n) is defined for all n. If
M has only finitely many excluded minors, then ΓM(n) = 0 for all large
enough values of n. It is impossible for ΓM(n) to be equal to one, but it could
tend to one in the limit. In this case our random choice is asymptotically
certain to be an excluded minor, so in some sense, the class M is eventually
overwhelmed by its ‘boundary’: the set of excluded minors. This leads us
to the following terminology.

Definition 1.1. Let M be a minor-closed class of matroids. If

lim
n→∞

ΓM(n) = 1,

then M is a strongly fractal class.

If M is the class of F-representable matroids where F is a finite field, then
ΓM(n) = 0 for all large enough values of n, since Rota’s conjecture is true.
We believe that this fails for infinite fields in the strongest possible way.

Conjecture 1.2. Let K be an infinite field. The class of K-representable
matroids is strongly fractal.

The class of gammoids is like the class of real-representable matroids, in
that the excluded minors form a maximal antichain [4]. We conjecture that
the class of gammoids is strongly fractal.

In the present article we are content merely to establish the non-obvious
fact that strongly fractal classes exist. A matroid is sparse paving if every
non-spanning circuit is a hyperplane.

Theorem 1.3. Let k ≥ 3 be a positive integer. Let Pk be the class of sparse
paving matroids with at most k circuit-hyperplanes. Then Pk is strongly
fractal.

A rank-r spike has a ground set of size 2r, say {a1, b1, . . . , ar, br}. Assume
that r > 3. Then the non-spanning circuits are exactly the sets of the form
{ai, bi, aj , bj}, along with (possibly) some sets that intersect each {ai, bi} in
either ai or bi. Any circuit of the latter type is also a hyperplane. Sometimes
such a matroid is called a tipless spike. The class of spikes with a bounded
number of circuit-hyperplanes is not minor-closed, but if we close it under
minors, we obtain a class that has a weaker fractal property.

Definition 1.4. Let M be a minor-closed class of matroids. If
ΓM(1),ΓM(2),ΓM(3), . . . contains an infinite subsequence that converges
to one, then M is weakly fractal.

Obviously a strongly fractal class is weakly fractal.

Theorem 1.5. Let k ≥ 5 be an integer. Let Sk be the class produced by
taking minors of the spikes with at most k circuit-hyperplanes. Then Sk is
a weakly fractal class, but is not strongly fractal.
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The reason the class in Theorem 1.5 is not strongly fractal is that
eventually there are no excluded-minors with odd-cardinality ground sets
(Lemma 3.10). In other words, ΓSk

(2t + 1) = 0 for all large-enough values
of t. However ΓSk

(2t) converges to one.
Definition 1.4 does not require the subsequence that converges to one to

have any particular structure. However, it is inconceivable that the following
conjecture fails.

Conjecture 1.6. Let M be a weakly fractal class of matroids. There exist
integers a and b such that the sequence

ΓM(a+ b), ΓM(2a+ b), ΓM(3a+ b), . . .

converges to one.

In the case of the class Sk, the integers a = 2 and b = 0 satisfy Conjec-
ture 1.6.

The only fractal classes we know of contain infinite antichains, and we
think this exemplifies a general pattern.

Conjecture 1.7. Any weakly fractal class of matroids contains an infinite
antichain.

We close this introduction with a consequence of the existence of strongly
fractal classes.

Proposition 1.8. Let γ be a real number in [0, 1]. Let M0 be a strongly
fractal class of matroids. There exists a minor-closed class of matroids,
M ⊇ M0, such that limn→∞ ΓM(n) = γ.

Proof. For any positive integer i, let N(i) be the smallest integer such that
ΓM0

(n) ≥ (i− 1)/i for every n ≥ N(i). The existence of N(i) follows from
limn→∞ ΓM0

(n) = 1. Note that N(1), N(2), N(3), . . . is a non-decreasing
sequence.

We construct a series of classes, M0 ⊆ M1 ⊆ M2 ⊆ · · · with the following
properties. Let n be a positive integer, and choose i so that N(i) ≤ n ≤
N(i + 1). Then the only matroids in Mn −Mn−1 are n-element excluded
minors for Mn−1, and γ − 1/i ≤ ΓMn

(n) ≤ γ. Note that the first condition
implies that Mn is a minor-closed class.

Assume that we have successfully constructed Mn−1. Choose i so that
N(i) ≤ n ≤ N(i + 1). Let mn and xn respectively denote the number of
n-element matroids in M0, and the number of n-element excluded minors
for M0. Because ΓM0

(n) ≥ (i − 1)/i, it follows that mn + xn ≥ i, for
otherwise the only way to satisfy ΓM0

(n) ≥ (i − 1)/i is for mn to be zero.
This is impossible because M0 must contain infinitely many matroids. From
mn + xn ≥ i and ΓM0

(n) ≥ (i − 1)/i, we in turn derive xn ≥ i − 1. Note
that an n-element excluded minor for M0 is not in Mn−1, but all of its
proper minors are in M0. Therefore any such matroid is an excluded minor
for Mn−1. Let x′n be the number of n-element excluded minors for Mn−1,
where we have just demonstrated that x′n ≥ xn ≥ i− 1.
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We observe that

x′n
mn + x′n

≥
xn

mn + xn
≥
i− 1

i
.

Let z be the smallest integer such that

x′n − z

mn + x′n
≤ γ,

and note that z is in {0, 1, . . . , x′n}. Now we choose z matroids from the
n-element excluded minors for Mn−1, and construct Mn by adding these z
matroids to Mn−1.

The n-element members of Mn are exactly the n-element members of M0

along with the z matroids we have added. The n-element excluded minors
for Mn are the x′n − z excluded minors that we did not add to Mn−1.
Therefore

ΓMn
(n) =

x′n − z

(mn + z) + (x′n − z)
≤ γ.

Furthermore, since mn + x′n ≥ i, our choice of z means that ΓMn
(n) is at

least γ−1/i. In this way we can construct the entire sequence M0 ⊆ M1 ⊆
M2 ⊆ · · · .

Now we defineM to be the union ∪n≥0Mn. The n-element members ofM
are the n-element members of Mn, and the n-element excluded minors for
M are the n-element excluded minors for Mn. Therefore ΓM(n) = ΓMn

(n).
Since this value is between γ − 1/i and γ, where N(i) ≤ n ≤ N(i + 1), it
follows that ΓM(n) converges to γ, as desired. �

We use P(X) to denote the power set of the set X. The symbol Z≥0

stands for the set of non-negative integers. Our reference for matroid terms
and concepts is [6]. Recall that a triangle is a circuit of size three, and a triad
is a 3-element cocircuit. A parallel pair is a circuit of size two, and a parallel
class is a maximal set such that every 2-element subset is a parallel pair. A
series pair is a 2-element cocircuit, and a series class is a maximal set with
every 2-element subset being a series pair. A thin edge of a graph is a non-
loop edge that is not in any parallel pair. Let f(n) and g(n) be functions
taking integers as input and returning real numbers as output. If we say that
f(n) is bounded by O(g(n)), we mean that there exist a positive constant c
and an integer N such that f(n) ≤ cg(n) whenever n > N . Similarly, if f
is at least Ω(g(n)), then there exist a positive constant c and an integer N
such that f(n) ≥ cg(n) whenever n > N .

2. Sparse paving matroids

A matroid is sparse paving if every non-spanning circuit is also a hy-
perplane. Every matroid with rank or corank equal to zero is vacuously
sparse paving. Let E be an n-element set, and let r be an integer satisfying
1 ≤ r ≤ n − 1. Rank-r sparse paving matroids on the ground set E are
in bijective correspondence with families, C, of r-element subsets of E, such
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that if C1 and C2 are distinct members of C, then |C1−C2| > 1. If C is such
a collection, then we use M(C) to denote the rank-r sparse paving matroid
on the ground set E with C as its family of circuit-hyperplanes.

For k a non-negative integer, let Pk denote the class of sparse paving
matroids with at most k circuit-hyperplanes. Note that P0 is the class of
uniform matroids. Let P be the set of all sparse paving matroids. Thus
P = ∪k≥0Pk. Let M =M(C) be a sparse paving matroid on the ground set
E, and let e be an element of E. If e is not a coloop in M then

M\e =M({C : C ∈ C, e /∈ C})

and if e is not a loop, then

M/e =M({C − e : C ∈ C, e ∈ C}).

This demonstrates that Pk is a minor-closed class for any k ≥ 0, and so is
P.

Definition 2.1. Let k and n be positive integers. Let C = (C1, . . . , Ck) be a
sequence of subsets of E, where E is a set of cardinality n. For every subset
I ⊆ {1, . . . , k}, define C(I) to be

(

⋂

i∈I

Ci

)

∩





⋂

i∈{1,...,k}−I

(E − Ci)



 .

Thus C(I) contains those elements of E that are in Ci for every i ∈ I, and
in the complement of Ci for every i /∈ I. This means that (C(I))I⊆{1,...,k}

is a partition of E (possibly containing empty blocks). We think of C(I) as
being a cell in a Venn diagram with k sets.

Let ψC be the function that takes I to |C(I)| for each I ⊆ {1, . . . , k}. Note
that

∑

I⊆{1,...,k}

ψC(I) = n.

Let k and n be positive integers. We describe a relation, Rn
k . The domain

of Rn
k is the set of n-element sparse paving matroids with exactly k circuit-

hyperplanes. The codomain is the set of functions from P({1, . . . , k}) to Z≥0.
The ordered pair (M,ψ) is in Rn

k if there is some ordering C = (C1, . . . , Ck)
of the circuit-hyperplanes ofM such that ψ = ψC . We use Rn

k(M) to denote
{ψ : (M,ψ) ∈ Rn

k}, the image of M under Rn
k . Thus Rn

k(M) contains at
most k! functions.

Proposition 2.2. Let k and n be positive integers. Let M and N be n-el-
ement sparse paving matroids with exactly k circuit-hyperplanes. Then M
and N are isomorphic if and only if Rn

k(M) ∩Rn
k(N) 6= ∅.

Proof. Let ρ be an isomorphism from M to N . Let C = (C1, . . . , Ck) be an
ordering of the circuit-hyperplanes in M . Then ρ(C) = (ρ(C1), . . . , ρ(Ck))
is an ordering of the circuit-hyperplanes in N . Because ρ is a bijection, it is
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clear that |C(I)| = |ρ(C)(I)| for every I ⊆ {1, . . . , k}. Thus ψC = ψρ(C), and
it follows that Rn

k(M) ∩Rn
k(N) is not empty.

For the converse, we assume that Rn
k(M) ∩ Rn

k(N) contains at least one
function. This means that there must be orderings, CM and CN , of the
circuit-hyperplanes in M and N , respectively, such that ψCM = ψCN . For
each I ⊆ {1, . . . , k}, let πI be an arbitrary bijection from CM (I) to CM (I).
Note that these sets have the same cardinality since ψCM (I) = ψCN (I), so
πI exists. We consider each πI to be a set of ordered pairs. Now we can
define π to be

⋃

I⊆{1,...,k}

πI .

Thus π is a bijection from E(M) to E(N). It is clear that π(X) is a circuit-
hyperplane of N if and only if X is a circuit-hyperplane of M . Therefore π
is the desired isomorphism between M and N . �

Lemma 2.3. Let k be a non-negative integer. The number of n-element

matroids in Pk is at most O(n2
k−1).

Proof. We observe that Pk can be partitioned into the classes

Pk − Pk−1, Pk−1 − Pk−2, . . . , P1 − P0, and P0.

Because P0 is the class of uniform matroids, it follows that the number of
n-element matroids in P0 is at most O(n). We will show that the number of
n-element matroids in Pm−Pm−1 is at most O(n2

m−1), and then the result
will follow, since the number of classes above is constant relative to n.

From Proposition 2.2, it follows that for any positive m, the number
of n-element matroids in Pm − Pm−1 is at most the number of functions
ψ : P({1, . . . ,m}) → Z≥0 such that

∑

I⊆{1,...,m} ψ(I) = n. By standard

enumeration techniques, the number of such functions is
(

n+ 2m − 1

n

)

=

(

n+ 2m − 1

2m − 1

)

.

Since m is a constant, this binomial coefficient is bounded by O(n2
m−1), and

we are done. �

Lemma 2.4. Let k ≥ 3 be an integer. The number of n-element excluded

minors for Pk is at least Ω(n2
k+1−k−4).

Proof. We prove the lemma by considering sparse paving matroids with
k + 1 circuit-hyperplanes. We insist that each element is in at least one of
the circuit-hyperplanes, and that no element is in all of them. This is enough
to ensure that the sparse paving matroids in question are excluded minors
for Pk. The technical details of the proof involve estimating the number of
these excluded minors.

Let I be the collection {I ⊆ {1, . . . , k + 1} : 2 ≤ |I| ≤ k}. Observe that
|I| = 2k+1 − k − 3. For s ∈ {2, . . . , k}, let Is denote the collection of sets
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in I with cardinality s. For each I ∈ I we introduce a variable xI . We are
going to consider non-negative integer solutions to the equation

(1) k
∑

I∈I2

xI + (k − 1)
∑

I∈I3

xI + · · ·+ 2
∑

I∈Ik

xI = n− 2(k + 1).

Claim 2.4.1. The number of non-negative integer solutions to (1) is at least

Ω(n2
k+1−k−4).

Proof. The proof of this claim is essentially the same as the proof of Schur’s
Theorem given in [9, Theorem 3.15.2]. By standard techniques, we see that
the number of non-negative integer solutions is equal to the coefficient of
zn−2(k+1) in the generating function

f(z) =

(

1

1− zk

)(k+1

2 )( 1

1− zk−1

)(k+1

3 )
· · ·

(

1

1− z2

)(k+1

k
)
.

Every pole of f(z) is a root of unity. In particular, the denominator of f(z)
has as a factor

(1− z)(
k+1

2 )+(k+1

3 )+···+(k+1

k
) = (1− z)2

k+1−k−3,

which shows that z = 1 is a pole with multiplicity 2k+1 − k − 3. If s is an
integer greater than one, then s does not divide all the values in 2, . . . , k.
In this case, if ω is an s-th root of unity and z = ω is a pole of f(z), then
its multiplicity is less than 2k+1 − k − 3. So f(z) has a pole of multiplicity
2k+1−k−3 at z = 1, and the multiplicity of every other pole is less than this
value. Now the arguments in [9, Theorem 3.15.2] shows that the number

of non-negative integer solutions is asymptotically equal to n2
k+1−k−4, and

this gives us the desired result. �

Let φ be an arbitrary solution to (1). Thus φ takes the variables {xI}I∈I
to non-negative integers, and

k
∑

I∈I2

φ(xI) + (k − 1)
∑

I∈I3

φ(xI) + · · ·+ 2
∑

I∈Ik

φ(xI) = n− 2(k + 1).

We will construct a sequence C = (C1, . . . , Ck+1), of subsets of {1, . . . , n}
such that:

(i) C1, . . . , Ck+1 are equicardinal,
(ii) |Ci − Cj | > 1 when i and j are distinct,
(iii) ψC(I) = φ(xI) for every I ∈ I, and
(iv) the sparse paving matroid M(C) is an n-element excluded minor for

Pk.

We construct C = (C1, . . . , Ck+1) by allocating each element in {1, . . . , n}
to a unique set of the form C(I) for some I ⊆ {1, . . . , k + 1}. We start by
allocating two elements to each set of the form C({i}), for i ∈ {1, . . . , k+1}.
This ensures that statement (ii) holds. We now have n− 2(k + 1) elements
left to allocate. We will allocate no elements to C(∅) or C({1, . . . , k+1}), so
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every element is in at least one of the sets (C1, . . . , Ck+1), and no element
is in all of them.

We process each subset I ∈ I in turn. We allocate φ(xI) elements to C(I),
and then for each i ∈ {1, . . . , k+1}−I, we allocate a further φ(xI) elements
to C({i}). We have thus allocated an additional φ(xI) elements to each set
in (C1, . . . , Ck+1), ensuring the sets remain equicardinal during this process.
Note that the number of elements we have allocated while processing I is
φ(xI)+ ((k+1)− |I|)φ(xI). After processing every subset in I, the number
of elements we have allocated is therefore

k
∑

I∈I2

φ(xI) + (k − 1)
∑

I∈I3

φ(xI) + · · ·+ 2
∑

I∈Ik

φ(xI) = n− 2(k + 1).

Hence all n elements have now been allocated, and the sets (C1, . . . , Ck+1)
are equicardinal, and satisfy |Ci − Cj | > 1 when i and j are distinct. Fur-
thermore, our method of construction ensures that ψC(I) = φ(xI) for every
I ∈ I. Since each element e ∈ {1, . . . , n} is in at least one of the sets in C,
but not all of them, it follows thatM(C)\e andM(C)/e both have at most k
circuit-hyperplanes, while M(C) itself has k+ 1. Thus M(C) is an excluded
minor for Pk, as desired.

The number of excluded minors we have constructed in this way is

Ω(n2
k+1−k−4) by Claim 2.4.1. Some of these excluded minors may be iso-

morphic copies of the same matroid. But because Rn
k+1(M) is no larger

than (k + 1)! for any excluded minor M , Proposition 2.2 implies that any
isomorphism class of excluded minors corresponds to no more than (k + 1)!
solutions to (1). As k is fixed with respect to n, dividing a function that

is at least Ω(n2
k+1−k−4) by (k + 1)! produces another such function, so the

proof of Lemma 2.4 is complete. �

Proof of Theorem 1.3. From Lemmas 2.3 and 2.4, it follows that there are
positive constants c1 and c2 such that for sufficiently large values of n we
have

ΓPk
(n) ≥

c1n
2k+1−k−4

c2n2
k−1 + c1n2

k+1−k−4
=

1

(c2/c1)n−2k+k+3 + 1
.

Since k ≥ 3, it follows that −2k + k+3 is negative, and hence ΓPk
(n) tends

to one as n tends to infinity. �

3. Spikes

We describe spikes and their minors using biased graphs. Let G be an
undirected graph, which may contain loops and parallel edges. A theta-
subgraph of G consists of two distinct vertices, u and v, and three paths
from u to v that do not share any vertices other than u and v. A linear
class is a collection, B, of cycles of G satisfying the constraint that no theta-
subgraph of G contains exactly two cycles in B. In this case, we say that
the pair (G,B) is a biased graph. The cycles in B are balanced and any other
cycle is unbalanced. A subgraph is unbalanced if it contains an unbalanced
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cycle, and otherwise it is balanced. Let E be the edge-set of G. We similarly
say that X ⊆ E is balanced if the subgraph G[X] is balanced, and otherwise
X is unbalanced.

Lift matroids were introduced by Zaslavsky [10]. The lift matroid,
L(G,B), has E as its ground set. The set X ⊆ E is a circuit of L(G,B)
if and only if G[X] is either: (i) a balanced cycle, (ii) a theta-subgraph
containing no balanced cycles, or (iii) a pair of unbalanced cycles with at
most one vertex in common. The rank of L(G,B) is equal to the number of
vertices in G, minus the number of balanced connected components. A set,
X ⊆ E, is a hyperplane of L(G,B) if and only if X is a maximal balanced
set, or is unbalanced and is a hyperplane of the graphic matroid M(G) [10,
Theorem 3.1]. Naturally, this characterises the cocircuits of L(G,B).

The next result is well known, but we include the proof for completeness.

Proposition 3.1. Let e be an element of the matroid M , and assume that
M/e = M(G) for some graph G. Let Ge be the graph obtained from G by
adding the loop e incident with an arbitrary vertex. Let B be the collection
of cycles in G such that C ∈ B if and only if the edge-set of C is a circuit
of M . Then B is a linear class of Ge and M = L(Ge,B).

Proof. Note that if C is the edge-set of a cycle in G, then either C or C ∪ e
is a circuit in M .

Let X be a set of edges such that G[X] is a theta-subgraph. Assume
G[X] contains two cycles in B. Hence there are distinct circuits C1 and C2

ofM that are contained in X. Two cycles in a theta-subgraph must contain
a common edge, so we assume that x is in C1 ∩ C2, and that therefore
(C1 ∪ C2)− x contains a circuit, C3, of M . Note that C3 ⊆ X, and C3 is a
union of circuits in M/e =M(G). But G[X] contains exactly one cycle that
does not contain x: the third cycle in the theta-subgraph. Therefore C3 is
the edge-set of this cycle, which implies that G[X] contains three cycles in
B. This shows that B is a linear class.

Next we will show that every circuit of L(Ge,B) is a circuit in M , and
vice versa. Let C be a circuit of L(Ge,B). If G[C] is a balanced cycle, then
C is also a circuit of M . Therefore we assume that G[C] is either a theta-
subgraph with no balanced cycles, or consists of two unbalanced cycles that
share at most one vertex. In the latter case, if G[C] contains the loop e,
then C consists of e and an unbalanced cycle, so C is also a circuit in M .
Therefore we assume that e is not in C. Hence there are disjoint circuits C1

and C2 inM/e such that C = C1∪C2 and both C1∪e and C2∪e are circuits
of M . By circuit elimination, C1 ∪ C2 contains a circuit, C3, of M . Hence
C3 is a union of circuits in M/e. But any circuit of M/e =M(G) contained
in C3 is either C1 or C2, so C3 is either equal to one of these circuits, or to
their union. Since C1 and C2 are not circuits of M it cannot be the case
that C = C1 or C = C2. Thus C = C1 ∪ C2 = C3 is also a circuit in M .

Now assume that G[C] is a theta-subgraph containing no balanced cycles.
Let C1 and C2 be the edge-sets of two distinct cycles in G[C]. As in the
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previous paragraph, C1 ∪C2 contains a circuit, C3, of M , and C3 is a union
of circuits in M/e = M(G). Since C1 and C2 are not circuits of M , there
are only two possibilities: C3 is the edge-set of the third cycle in the theta-
subgraph or C3 is the entire theta-subgraph. The first case is impossible,
since G[C] contains no balanced cycles. Therefore C3 = C1 ∪ C2, and C is
again a circuit in M .

Now we know that every circuit of L(Ge,B) is also a circuit in M , so to
complete the proof it suffices to show that every circuit of M contains a
circuit of L(Ge,B). Let C be a circuit of M . If e is in C, then C − e is
a circuit of M/e = M(G), so C − e is the edge-set of an unbalanced cycle.
In this case C is the union of two unbalanced cycles, one of them being the
loop e, so C is a circuit in L(Ge,B). Hence we assume e /∈ C. Now C is
the edge-set of a union of cycles in G. If any of these is a balanced cycle,
then C contains a circuit in L(Ge,B), so we assume that G[C] contains no
balanced cycle. If the union contains only one cycle (with that cycle being
unbalanced), then C is independent in M , which is not true. Thus the
union contains at least two unbalanced cycles. It is now easy to see that it
therefore contains a theta-subgraph, or two cycles that share at most one
vertex. Thus C contains a circuit of L(Ge,B) and we are done. �

Definition 3.2. Let r ≥ 3 be an integer, and let ∆r be the graph obtained
from a cycle with r edges by replacing each edge with a parallel pair. A
(tipless) spike is a matroid of the form L(∆r,B), where B is a linear class of
Hamiltonian cycles. Let S denote the class of matroids that are isomorphic
to minors of spikes. Let k be a non-negative integer. We use Sk to denote
the class of matroids that are isomorphic to minors of spikes of the form
L(∆r,B), where B contains at most k Hamiltonian cycles. Therefore S =
∪k≥0 Sk.

Recall that a cyclic flat is a flat that is a (possibly empty) union of circuits.
A set X is dependent if and only if |X ∩Z| > r(Z) for some cyclic flat Z, so
any matroid is determined by its cyclic flats and their ranks. It is an easy
exercise to prove the following result.

Proposition 3.3. Let r ≥ 3 be an integer, and let B be a linear class of
Hamiltonian cycles in ∆r. The cyclic flats of L(∆r,B) are as follows:

(i) the entire ground set is a cyclic flat of rank r,
(ii) the empty set is a cyclic flat of rank zero,
(iii) the edge-set of each cycle in B is a cyclic flat of rank r − 1,
(iv) Any set of p parallel pairs is a cyclic flat of rank p+1 when 2 ≤ p ≤

r − 2.

Let r ≥ 3 be an integer, and let C be a Hamiltonian cycle of ∆r. Let C
∗

be the Hamiltonian cycle that contains no edges in common with C. If B is
a linear class of Hamiltonian cycles, then B∗ is the linear class {C∗ : C ∈ B}.
It is well-known that the cyclic flats of M∗ are exactly the complements of
cyclic flats of M . Now the next result is easy to check.
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Proposition 3.4. Let r ≥ 3 be an integer, and let B be a linear class of
Hamiltonian cycles of ∆r. Then (L(∆r,B))

∗ = L(∆r,B
∗). Consequently,

Sk is closed under duality for each k ≥ 0, and so is S.

Although the set of spikes is not closed under taking minors, we are able
to give an explicit description of all the matroids in Sk. This is accomplished
in Proposition 3.5, which we now move towards proving.

The following description of minor operations on lift matroids follows from
[10, Theorem 3.6]. Let B be a linear class of cycles in the graph G, and let
e be an edge of G. We define B\e to be the collection of cycles in B that do
not contain e. Then L(G,B)\e = L(G\e,B\e). If e is not a loop, then we
define B/e to be the collection of cycles in G/e with edges sets of the form
E(C)− e, where C is a cycle in B that may or may not contain e. With this
definition, the equality L(G,B)/e = L(G/e,B/e) holds. If e is a balanced
loop, then L(G,B)/e = L(G,B)\e, and if e is an unbalanced loop, then
L(G,B)/e is equal to M(G\e), the cycle matroid of G\e. Since any cycle
matroid can be expressed as a lift matroid (by making every cycle balanced),
these observations show that the class of lift matroids is minor-closed.

We recall that graphs may contain loops and parallel edges. Let G be the
class of graphs containing:

(i) any graph with a single vertex,
(ii) any connected graph with exactly two vertices, and at most four

edges joining them,
(iii) any graph whose underlying simple graph is a cycle of at least three

vertices, where each parallel class contains at most two edges.

We note that if two graphs in G with equal edge-sets have the same
parallel pairs, loops, and thin edges, then their Hamiltonian cycles have the
same edge-sets. Furthermore the lift matroids corresponding to equal linear
classes are equal. In other words, the cyclic order in which the parallel
pairs and thin edges appear is immaterial to the lift matroid. Nor are the
incidences of loops important.

Proposition 3.5. Let k be a non-negative integer. A matroid belongs to Sk

if and only if it satisfies at least one of the following statements.

(A) M = L(G,B), where G ∈ G has at least three vertices, and B is a
linear class of at most k Hamiltonian cycles,

(B) M = L(G,B), where G ∈ G has exactly two vertices, and B is a
linear class of at most k edge-disjoint Hamiltonian cycles,

(C) M = L(G,B), where G ∈ G has a single vertex, and B contains at
most min{k, 1} loops,

(D) M =M(G) for a graph G ∈ G,
(E) M =M∗(G) for a graph G ∈ G, or
(F) every connected component of M has size at most two.

Definition 3.6. We refer to matroids satisfying the statements in Proposi-
tion 3.5 as being Category-(A), (B), (C), (D), (E), or (F), respectively.
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Proof of Proposition 3.5. We start by proving that any matroid in Sk satis-
fies one of the statements in Proposition 3.5. Assume this fails for M ∈ Sk.
Now M can be expressed as L(∆r,B)/I\J for disjoint sets I and J , where
B contains at most k Hamiltonian cycles. We assume that we have chosen
M so that |I ∪ J | is as small as possible. If |I ∪ J | = 0, then M = L(∆r,B)
is a Category-(A) matroid, contrary to our hypothesis. Therefore we let e
be an element in I ∪ J , and we define M e to be L(∆r,B)/(I − e)\(J − e).
Note that M e is in Sk, and M is either M e/e or M e\e. Our choice of M
means that M e is not a counterexample to the proposition.

If M e is Category-(F), then so is M , which is impossible. Assume that
M e = M(G) is Category-(D). Then M is also Category-(D) unless M =
M e\e where e is a thin edge in G. But in this case any circuit of M is either
a loop, or a parallel pair in G\e. Hence M is Category-(F). The case when
M e is Category-(E) leads to a dual contradiction. It is easy to see that any
minor of a Category-(C) matroid belongs to Category-(C) or (F). Assume
thatM e = L(G,B) is Category-(B). If e is a thin edge in G andM =M e\e,
then M is a rank-one matroid with no loops, and is therefore Category-(C).
In any other case M e\e is Category-(B), so we assume that M = M e/e.
If e is a loop then it is unbalanced, and M = M(G\e). In this case M is
Category-(D). So e is a non-loop edge. Since e is in at most one balanced
cycle, B/e contains at most one balanced loop. Therefore M = L(G/e,B/e)
is Category-(C).

Now we must assume that M e = L(G,B) is Category-(A). Assume M =
M e\e. If e is not a thin edge, thenM is also Category-(A). In the case that e
is a thin edge, there are no cycles in B\e. The thin edges of G\e are coloops
in M = L(G\e,B\e) = L(G\e, ∅). The only circuits of M consist of a pair
of loops in G, a loop and a parallel pair, or a pair of parallel pairs. Now it
is easy to see that M is M∗(H), where H is in G, and has the same parallel
pairs as G\e. The loops of H are the thin edges of G\e, and the thin edges
of H are the loops of G\e. Therefore M is Category-(E). Thus we assume
that M = M e/e. If e is a loop of G, then M = M(G\e) is Category-(D),
so we assume e is not a loop. If G has more than three vertices, then M
is certainly Category-(A), so we assume G has exactly three vertices. To
show thatM is Category-(B), we assume for a contradiction that two cycles
in B/e share an edge. This means that two cycles in B have two common
edges, one of which is e. Given that G has three vertices, these two cycles
differ in only one edge, which is a contradiction as B is a linear class and
contains no parallel pairs. We have now shown that matroids in Sk satisfy
at least one of the statements in the proposition.

Next we prove the converse. Let M be a Category-(F) matroid with l
loops, p parallel pairs, and c coloops. Then M is isomorphic to M(G)\e,
where G is a graph in G with l loops, p parallel pairs, and c+ 1 thin edges,
one of which is e. This shows that every Category-(F) matroid is a minor
of a Category-(D) matroid. Let M = M(G) be a Category-(D) matroid.
Then M = L(Ge, ∅)/e, where Ge is obtained from G by adding e as a
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loop. Since G is in G, it follows that Ge is also. Thus every Category-(D)
matroid is a minor of a matroid in Category-(A), (B), or (C). Similarly, let
M = M∗(G) be a Category-(E) matroid, where G has l loops, p parallel
pairs, and c thin edges. Then M is isomorphic to L(Ge, ∅)\e, where Ge ∈ G
has p parallel pairs, c loops, and l+1 thin edges, one of which is e. Because
of these arguments, it now suffices to show that Category-(A), (B), and (C)
matroids are in Sk.

Let M be an n-element Category-(C) matroid. Note that M has at most
one matroid loop. Construct the two-vertex graph Ge with n− 1 loops and
two non-loop edges, one of which is e. IfM has a loop, then set Be to contain
the unique Hamiltonian cycle of Ge, and otherwise make Be empty. Then
M = L(Ge,Be)/e. Next we let M = L(G,B) be a Category-(B) matroid. If
G has at most one non-loop, then M is the union of a coloop and a parallel
class. In this case it is easy to see that M is a minor of a Category-(A)
matroid. Therefore we assume that G has at least two non-loop edges.
Since G has at most four such edges, B contains at most two Hamiltonian
cycles. We construct Ge, a three-vertex graph in G. We set the number of
non-loop edges in Ge to be one more than the number of non-loops in G,
and we make e a thin edge of Ge. Let the number of loops in Ge be equal
to the number of loops in G. We can find a linear class Be of Hamiltonian
cycles in Ge so that |Be| = |B|. Now M is isomorphic to L(Ge,Be)/e, so
we have reduced the proof to showing that every Category-(A) matroid is
in Sk.

Let M = L(G,B) be a Category-(A) matroid. Let the parallel pairs of
G be {a1, b1}, . . . , {at, bt}, let the loops be {c1, . . . , cp}, and let the thin
edges be {d1, . . . , ds}. We construct G+ isomorphic to ∆t+p+s with parallel
pairs {a1, b1}, . . . , {at, bt}, {c1, x1}, . . . , {cp, xp}, and {d1, y1}, . . . , {ds, ys}.
Let C1, . . . , Cq be the cycles in B. For each Ci, let C

+
i be the Hamiltonian

cycle of G+ containing all of x1, . . . , xp and d1, . . . , ds, and such that C+
i

intersects {aj , bj} in the same edge as Ci for each j. It is clear that B
+ is a

linear class. Furthermore M is isomorphic to

L(G+,B+)/{x1, . . . , xp}\{y1, . . . , ys},

so M is in Sk, and the proof of the proposition is complete. �

Proposition 3.7. Let M = L(G,B) be a Category-(A) matroid, where G
has at least five vertices. If C is a circuit-hyperplane in M , then G[C] is a
cycle in B.

Proof. This follows very easily from Proposition 3.3. We note that the con-
straint |V (G)| ≥ 5 is necessary, for if G has four vertices, then a pair of
parallel pairs in G may form a circuit-hyperplane of M . �

We use the symbol to denote the graph obtained from a three-vertex
cycle by adding a single parallel edge. (This graph is sometimes also known
as the wheel with two spokes.)



14 MAYHEW, NEWMAN, AND WHITTLE

Proposition 3.8. The following matroids are not in S.

(i) U0,1 ⊕ U1,1 ⊕ U1,3,
(ii) U0,1 ⊕ U1,1 ⊕ U2,3,
(iii) U0,1 ⊕ U2,4,
(iv) U1,1 ⊕ U2,4,
(v) U1,2 ⊕M( ).

Proof. By virtue of Proposition 3.4, we need only prove that the matroids
in (i), (iii), and (v) are not in S. If a matroid belongs to S, then it belongs
to Sk for some value of k. Therefore we can apply Proposition 3.5. Note
that if a matroid in Sk has a loop, then it is Category-(C), (D), (E), or (F).
If a Category-(C), (D), or (E) matroid has a loop and a coloop, then every
element is a loop or a coloop. (For example, the only way a Category-(D)
matroid can have a coloop is if it is the cycle matroid of a graph with a thin
edge joining two vertices.) Category-(F) matroids have no components of
size three. In any case, we see that U0,1 ⊕ U1,1 ⊕ U1,3 is not in Sk. Cat-
egory-(C) matroids do not have rank two, Category-(D) and (E) matroids
obviously have no U2,4-minor as they are graphic or cographic, and nor do
Category-(F) matroids. Therefore U0,1 ⊕ U2,4 is not in Sk.

Finally, Category-(A), (B), or (C) matroids have at most one non-trivial
parallel class, so they cannot be isomorphic to U1,2⊕M( ). If U1,2⊕M( )
is Category-(D), then it is isomorphic to M(G) for some G ∈ G with four
vertices. But any such matroid is connected up to loops, so U1,2 ⊕M( )
is not Category-(D). Duality tells us it is not Category-(E) either, and it
certainly has a connected component with more than two elements so it is
not Category-(F). �

Lemma 3.9. Let M be an excluded minor for S such that r(M), r∗(M) > 2
and M is not isomorphic to U1,2 ⊕M( ). Then M is simple.

Proof. We start with the following claim.

Claim 3.9.1. LetM be an excluded minor for S such that r(M), r∗(M) > 2.
Then M is loopless.

Proof. Assume the contrary, and let e be a loop of M . If every connected
component ofM\e has size at most two, then the same statement applies to
M , so Proposition 3.5 now implies that M is in S, which is a contradiction.
Therefore we let N be a component of M\e with at least three elements. It
is an easy exercise to see that N has a minor isomorphic to either U1,3 or
U2,3 (see [6, Chapter 4 Exercise 9]). If there is another component of M\e
with rank at least one, then M has a minor isomorphic to U0,1 ⊕U1,1 ⊕U1,3

or U0,1 ⊕ U1,1 ⊕ U2,3. In this case, Proposition 3.8 implies that M must be
isomorphic to one of these two matroids, so M has rank or corank equal
to two, a contradiction to the hypotheses. Thus every component of M\e
other than N is a loop. Since r(M) ≥ 3, we deduce that r(N) ≥ 3.

Proposition 3.8 implies that if N has an U2,4-minor, thenM is isomorphic
to U0,1⊕U2,4, which is not possible. Therefore N is binary. Furthermore, N
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cannot have a minor isomorphic toM(K4), or elseM has a minor isomorphic
to U0,1 ⊕ U1,1 ⊕ U2,3. Therefore N is graphic (see [6, Theorem 10.4.8]). We
let G be a graph such that N = M(G). As r(N) ≥ 3, it follows that G has
at least four vertices. If every cycle of G contains at most two vertices, then
G is not 2-connected, and this implies that N is not connected. Since this
is not the case, G has a cycle with at least three vertices. Let C be such a
cycle with a minimum number of vertices. Thus C has no chords, meaning
that any edge joining two vertices in C is in C, or is parallel to an edge in
C. Assume that there is an edge, x, of G such that x is neither in C, nor
parallel to an edge of C. Then x is not in the span of C in N . This means
that N has a minor isomorphic to U1,1 ⊕ U2,3, and hence M has a minor
isomorphic to U0,1⊕U1,1⊕U2,3. This leads to a contradiction, so every edge
of G is either in C, or parallel to an edge in C. If G contains a parallel class
of size at least three, then N has a minor isomorphic to U1,1 ⊕ U1,3, which
again leads to a contradiction. Therefore G is obtained from a cycle of at
least three vertices by adding parallel edges in such a way that any parallel
class has size one or two. Now it follows that M is the cycle matroid of a
graph in G, and hence Proposition 3.5 implies that M is in S, which is a
contradiction. �

Let M be an excluded minor S satisfying r(M), r∗(M) > 2 and as-
sume that M is not isomorphic to U1,2 ⊕ M( ). Then M has no loops
by Claim 3.9.1. Since Claim 3.9.1 also applies to M∗, we deduce that M
has no coloops. Assume that M has at least one parallel pair, and let {x, y}
be such a pair.

Claim 3.9.2. M/x has a connected component containing at least three
elements.

Proof. Assume for a contradiction that every connected component of M/x
has size one or two. Then every connected component of M/x is a loop,
or a 2-element circuit, since M has no coloops. Let L be the set of loops
of M/x and note that L is not empty as it contains y. Then L ∪ x is a
parallel class of M , since M is loopless. Let C1, . . . , Cs be the 2-element
components of M/x that are not circuits in M , and let D1, . . . , Dt be the
2-element components that are circuits of M . Note that s + t ≥ 2, since
r(M) > 2 implies r(M/x) ≥ 2.

If t = 0, then M is isomorphic to M∗(G), where G is obtained from a
cycle of length s + |L| + 1 by replacing s of the edges with parallel pairs.
Thus G is in G, and Proposition 3.5 implies that M is in S, so we have
reached a contradiction. Therefore t > 0. Assume that s = 0, so that
t ≥ 2. The connected components of M are now D1, . . . , Dt and L ∪ x.
Thus |L∪x| > 2, or else every component of M has size at most two, which
is a contradiction as M is not in S. We contract an element from D1, so
that the other element of D1 is now a loop. We choose a single element
from D2, and three elements from L ∪ x. Now we see that M has a proper
minor isomorphic to U0,1 ⊕ U1,1 ⊕ U1,3, which contradicts Proposition 3.8.
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Therefore s and t are both positive. The restriction ofM to C1∪D1∪{x, y}
is isomorphic to U1,2 ⊕M( ). So M is isomorphic to this matroid, which is
not possible. This contradiction completes the proof of Claim 3.9.2. �

As M is an excluded minor, we know that M/x is a member of S. There-
fore it satisfies one of the statements in Proposition 3.5. Claim 3.9.2 shows
that M/x is not Category-(F). Category-(A) and (B) matroids do not have
loops, and M/x contains the loop y, so it belongs to neither of these cat-
egories. As the rank of M/x is at least two, it is not Category-(C). If
M/x = M∗(G) for some G ∈ G, then G has an isthmus, since M/x has a
loop. This is only possible if G is obtained from K2 by adding loops. In
this case M/x has at least two coloops (since r(M/x) ≥ 2). But this is
impossible, as M has no coloops. Therefore M/x is not Category-(E), so it
must be Category-(D). Let G ∈ G be chosen so that M/x =M(G), and let
L be the set of loops of G. Note that y is in L, and that G has at least three
vertices, since r(M) > 2.

We let Gx be the graph obtained from G by adding x as a loop. Let B
be the collection of cycles of G that correspond to circuits of M . Since M
is loopless, B contains no loop. Proposition 3.1 tells us that M = L(Gx,B).
If B contains only Hamiltonian cycles, then M is in S, a contradiction.
Therefore B must contain a cycle with two edges, a and b. Hence {a, b} is
a circuit of M . Assume that there is a two-edge cycle that is not in B and
let those edges be c and d. Then the restriction of M to {a, b, c, d, x, y} is
isomorphic to U1,2 ⊕M( ). This implies that M is isomorphic to U1,2 ⊕
M( ), which is a contradiction. We conclude that B contains every two-edge
cycle of Gx.

Assume that B contains no Hamiltonian cycles. The only circuits of M
are pairs in L ∪ x, parallel pairs in G, and the union of an element in L ∪ x
with the edge-set of a Hamiltonian cycle. In other words, M is obtained
from a circuit by adding parallel elements. If |L ∩ x| ≤ 2, then M is the
cycle matroid of a graph in G, which is not possible. Therefore |L∪x| ≥ 3. If
G has no parallel pairs, then M is the lift matroid of a graph obtained from
a cycle by adding loops (where no cycle is balanced). In this case M is a
Category-(A) matroid, which is impossible. Therefore G contains a parallel
pair of edges, a and b. We contract a, so that b is a loop, and then select
b, three elements from L ∪ x, and a single element not in L ∪ {x, a, b} (this
element exists because r(M) ≥ 3). This shows that M has a proper minor
isomorphic to U0,1 ⊕ U1,1 ⊕ U1,3, which is a contradiction.

Now we know that B contains a Hamiltonian cycle, C1. Assume there is
a Hamiltonian cycle, C2 that is not in B, and assume that we have chosen
C2 so that it has as many edges in common with C1 as possible. Let {e, f}
be a parallel pair of Gx such that e is in C1 and f is in C2. Let C3 be the
Hamiltonian cycle obtained from C2 by removing f and replacing it with e.
Then C3 is in B by our choice of C2. The theta-subgraph obtained from C3

by adding f contains C2, C3, and {e, f}, and exactly two of these cycles are
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in B, which contradicts the fact that B is a linear class. We conclude that
every Hamiltonian cycle is in B. This means that the only cycles of Gx not
in B are the loops. It follows that M is the direct sum of the cycle matroid
M(G\L) and the parallel class L ∪ x. But G\L has a minor isomorphic to
, and hence M has a minor isomorphic to U1,2 ⊕M( ), and this leads to

a contradiction that completes the proof of Lemma 3.9. �

Lemma 3.10. Let k be a non-negative integer. There exists an integer,
Nk, with the following property: if M is an excluded minor for Sk with
|E(M)| > Nk, then |E(M)| is even.

Proof. We start by noting that matroids of rank at most two are well-quasi-
ordered. This is not difficult to prove directly, but it also follows from [3],
since U3,3 is the sole excluded minor for the class of matroids with rank at
most two, and the main theorem in [3] implies that the class produced by
excluding U3,3 does not contain any infinite antichains. So there are only
finitely many excluded minors for Sk with rank (or corank, by duality) at
most two.

We let S ′ stand for the class of Category-(D), (E), or (F) matroids. By
referring to the proof of Proposition 3.5, we can easily verify that S ′ is a
minor-closed class. Note that all matroids in S ′ are graphic (since graphs
in G are planar). Therefore any excluded minor for S ′ is either an excluded
minor for the class of graphic matroids, or it is itself graphic. There are
only five excluded minors for the class of graphic matroids [8]. The class
of graphic matroids is well-quasi-ordered by the famous result of Robertson
and Seymour [7], so there are only finitely many graphic excluded minors for
S ′. Thus S ′ has finitely many excluded minors. (With only a small amount
of extra effort we could find the excluded minors for S ′ directly, in which
case we would not have to rely on Robertson and Seymour’s result.)

These arguments show that we can choose Nk so that it satisfies Nk ≥ 12,
and also Nk ≥ |E(M)| whenever M is an excluded minor for S ′ or an
excluded minor for Sk with rank or corank at most two. Now, if M is an
excluded minor for Sk such that |E(M)| > Nk, then r(M), r∗(M) ≥ 3, and
M is not an excluded minor for S ′.

Claim 3.10.1. Let M be an excluded minor for Sk. Assume |E(M)| is odd
and larger than Nk. Then M is not in S.

Proof. Assume otherwise, so that M belongs to Sk′ for some k′ > k. We
apply Proposition 3.5 to M . Since M is not in S ′, it is not Category-(D),
(E), or (F). It is also not Category-(B) or (C), as r(M) ≥ 3. Therefore M
is Category-(A), so M = L(G,B), where G ∈ G has at least three vertices,
and B is a linear class of at most k′ Hamiltonian cycles. As M is not in Sk,
it follows that k < |B| ≤ k′. Furthermore, |E(M)| is odd, so the edge-set of
G is not a union of parallel pairs. Hence G has either a loop or a thin edge.
Note that M has no loops or coloops.
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Assume that G has at most four vertices. Since |E(M)| > Nk ≥ 12, it
follows that G has at least five loops. Thus we can let P be a parallel class
of M satisfying |P | ≥ 5. Let x and y be distinct elements in P . We apply
Proposition 3.5 toM\x, which is in Sk. SinceM\x has a parallel class of size
at least four, it is not Category-(D) or (F). Furthermore, r(M) ≥ 3 implies
r(M\x) ≥ 3, so it is not Category-(B) or (C). Hence M\x is Category-(A)
or (E). If M\x is Category-(E), then M\x =M∗(Gx) for some graph Gx ∈
G, and the elements in P − x are thin edges of Gx. Let G+

x be obtained
from Gx by subdividing y, and naming the two new edges x and y. Then
M∗(G+

x ) is obtained from M∗(Gx) by placing x parallel to y. It follows that
M =M∗(G+

x ), and hence M is in S ′, a contradiction.
ThereforeM\x is Category-(A), so it is equal to L(Gx,Bx), where Gx ∈ G

contains at least three vertices, and Bx contains at most k Hamiltonian
cycles of Gx. The only parallel pairs in L(Gx,Bx) arise from loops of Gx.
We deduce that the elements of P − x are loops in Gx. We obtain G+

x from
Gx by adding x as a loop incident with an arbitrary vertex. Then L(G+

x ,Bx)
is obtained by adding x parallel to y, so L(G+

x ,Bx) = M . This implies M
is in Sk, which is not true. Therefore G has at least five vertices and hence
r(M) ≥ 5.

Recall that G has either a loop or a thin edge. Assume that G has a loop,
x. Note that M\x = L(G\x,B). Since M\x is in Sk, we apply Proposi-
tion 3.5. Because r(M\x) ≥ 5, it follows that M\x is not Category-(B) or
(C). Note that B is not empty, since it contains more than k Hamiltonian
cycles. Any cycle in B corresponds to a circuit-hyperplane in M\x, which
necessarily has at least five elements. Therefore M\x is not Category-(F).
The only Category-(D) matroids with a circuit-hyperplane have rank at
most two, and r(M\x) ≥ 3, so M\x is not Category-(D). A simple analysis
shows that a Category-(E) matroid with rank at least five has no circuit-
hyperplane, so M\x is not Category-(E). The only remaining possibility is
that M\x is Category-(A). Therefore M\x = L(Gx,Bx), where Gx ∈ G has
at least three vertices, and Bx contains at most k Hamiltonian cycles. Note
that Gx has at least five vertices, as r(M\x) ≥ 5. Proposition 3.7 implies
that M\x has at most k circuit-hyperplanes, which is impossible because
B contains at least k + 1 cycles, and thus M has at least k + 1 circuit-
hyperplanes that avoid x. Thus G has no loop. By an earlier conclusion, we
can let x be a thin edge.

As G has no loops and at least 13 edges, we can now see that G has at least
six vertices, so r(M) ≥ 6. We consider the matroid M/x, which is in Sk. As
in the previous paragraph, we can argue thatM/x = L(Gx,Bx), where Gx ∈
G has at least five vertices, and Bx contains at most k cycles. This implies
that M/x has at most k circuit-hyperplanes. But this is impossible, as B
contains at least k + 1 cycles, and each corresponds to a circuit-hyperplane
of M that contains x. �
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Now, whenever M is an excluded minor for Sk such that |E(M)| is odd
and larger than Nk, Claim 3.10.1 tells us that it is an excluded minor for
S. Since r(M), r∗(M) ≥ 3 and |E(M)| > 12, Lemma 3.9 implies that M is
simple. As M∗ is also an excluded minor for S, we can deduce that M is
cosimple.

Claim 3.10.2. Let M be an excluded minor for Sk. Assume |E(M)| is odd
and larger than Nk. If, for some e ∈ E(M), we have M\e = L(Ge,Be),
where Ge ∈ G has at least three vertices and Be is a linear class of at most
k Hamiltonian cycles, then Ge has no loops, and at least six vertices.

Proof. Assume x is a loop in Ge. Note that M\e/x = M(Ge\x), so that
M\e/x is Category-(D). As M is simple, M\e/x has no matroid loops.
Therefore x is the unique loop in Ge. We will apply Proposition 3.5 to
M/x, which is in Sk. Our aim is to deduce that M/x too is Category-(D).

Since Ge has exactly one loop, and at least twelve edges, it follows that
it has more than five vertices. Therefore r(M) > 5. This immediately rules
out the cases where M/x is Category-(B) or (C). Furthermore, if we let C
be the edge-set of any Hamiltonian cycle in Ge, then either C is a circuit-
hyperplane of M\e, or C ∪ x is a circuit. In any case, M/x has a circuit of
more than five elements, so it is not Category-(F).

We note that Category-(A) and (E) matroids have at most one paral-
lel class. So if M/x belongs to either of these categories, then M/x\e =
M(Ge\x) too has at most one parallel class. This implies that Ge has at
most one parallel pair. But in this case, Ge comprises a cycle, a loop, and
at most one parallel edge. This implies that r∗(M\e) ≤ 1, so r∗(M) ≤ 2, a
contradiction. Therefore we can conclude thatM/x is Category-(D), exactly
as we wanted.

Now let Gx ∈ G be chosen so thatM/x =M(Gx). Let G
+
x be constructed

from Gx by adding the loop x to an arbitrary vertex. Proposition 3.1 asserts
that M = L(G+

x ,B), for some linear class B of cycles in G+
x . But B cannot

contain a cycle with one or two edges, forM is simple. Therefore B contains
only Hamiltonian cycles of G+

x . This demonstrates that M is in S, which is
impossible, according to Claim 3.10.1. Therefore Ge has no loops, and as it
has at least twelve edges, it has at least six vertices. �

Claim 3.10.3. Let M be an excluded minor for Sk. Assume |E(M)| is odd
and larger than Nk. Assume also thatM\e = L(Ge,Be) for some e ∈ E(M),
where Ge ∈ G has at least three vertices and Be is a linear class of at most
k Hamiltonian cycles. Then Ge contains at least three parallel pairs, and if
{a, b} is a parallel pair in Ge, then {e, a, b} is a circuit of M .

Proof. Let the parallel pairs in Ge be {a1, b1}, . . . , {at, bt}. Assume that
t ≤ 2. Since Ge has no loops by Claim 3.10.2, it follows that r∗(M\e) ≤ 1,
which is impossible. Hence t ≥ 3. Since the numbering of the parallel pairs
is arbitrary, we can finish the proof by showing that {e, a1, b1} is a circuit
of M .
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Note that M\e/a1 = L(Ge/a1,Be/a1), where Be/a1 is obtained from
Be by removing the Hamiltonian cycles that do not contain a1, and then
contracting a1 from each of the remaining cycles. As b1 is a loop in Ge/a1,
it follows that {b1, ai, bi} is a triangle in M\e/a1 for each i ≥ 1, and is thus
a triangle in M/a1 and a triad in M∗\a1.

We apply Proposition 3.5 to M∗\a1. Because it has triads, it is not
Category-(F). Since r(M∗\a1) = r∗(M) ≥ 3, it follows that M∗\a1 is not
Category-(B) or (C). Note that M∗\a1 has no parallel pairs and no loops,
as M is cosimple. So if M∗\a1 is Category-(D), then it is a circuit, which
is impossible as its corank is at least two. Now assume that M∗\a1 is
Category-(E), so that M∗\a1 = M∗(Ga1) for some Ga1 ∈ G. Then Ga1 has
no loops, since M∗\a1 has no coloops. Furthermore, M∗\a1 is simple, so
Ga1 has at most one thin edge. But Ga1 also has an even number of edges,
so it follows that Ga1 is isomorphic to ∆r where r = 1

2(|E(M)| − 1). But
then M∗\a1 has no triads, which is impossible. We are forced to conclude
that M∗\a1 is Category-(A).

Now we choose Ga1 ∈ G and a linear class Ba1 of at most k Hamiltonian
cycles so that M∗\a1 = L(Ga1 ,Ba1). By Claim 3.10.2 we see that Ga1 has
no loops and at least six vertices. We observe that the only triads of M∗\a1
consist of a parallel pair in Ga1 along with a thin edge. Since {b1, ai, bi} is
a triad in M∗\a1 for each i ∈ {2, . . . , t}, we see that b1 must be a thin edge
of Ga1 , and each {ai, bi} is a parallel pair. As Ga1 has an even number of
edges, we let x be another thin edge, distinct from b1. Then {b1, x} is a
cocircuit of M∗\a1, and hence a circuit in M/a1. Since M is simple, this
implies that {x, a1, b1} is a circuit. If x = e, then there is nothing left to
prove, so we assume that x 6= e. Therefore {x, a1, b1} is a circuit of M\e.
But this is impossible, as Ge has no loops, and since Ge has at least six
vertices, it follows that M\e = L(Ge,Be) has no triangles. This completes
the proof of the claim. �

Now we let M be an excluded minor for Sk such that |E(M)| is larger
than Nk and odd. We recall that M is simple and cosimple. As M is not an
excluded minor for S ′, there is an element e ∈ E(M) such that either M\e
or M/e is in Sk but not in S ′. By duality, we can assume that M\e is in
Sk − S ′. We apply Proposition 3.5. From r(M) ≥ 3 we deduce that M\e is
not Category-(B) or (C), and as it is not in S ′, M\e must be Category-(A).
Choose Ge ∈ G and Be, a linear class of at most k Hamiltonian cycles in Ge,
such that M\e = L(Ge,Be). From Claims 3.10.2 and 3.10.3, we know that
Ge has no loops, at least six vertices, and least three parallel pairs. Thus
r(M) ≥ 6. Let {a1, b1}, . . . , {at, bt} be the parallel pairs of edges. Then
{e, ai, bi} is a triangle of M for each i.

Now we apply Proposition 3.5 toM\a1. As this matroid contains triangles
it is not Category-(F). The inequality r(M) ≥ 6 rules out Categories-(B)
and (C). IfM\a1 is Category-(D), then it must be a circuit, for these are the
only simple Category-(D) matroids. But this would contradict r∗(M) ≥ 3. If
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M\a1 is Category-(E), then M\a1 = M∗(Ga1) for some Ga1 ∈ G. Because
M\a1 has no coloops, Ga1 has no loops. If it contains a thin edge, then
it contains two thin edges, as the number of edges in Ga1 is even. This
implies M\a1 contains a parallel pair, which is impossible. So Ga1 is ∆r,
where r = 1

2(|E(M)| − 1). But then M∗(Ga1) contains no triangles, and
this is impossible since {e, a2, b2} is a triangle of M\a1. Therefore M\a1
is Category-(A). Now we can apply Claim 3.10.3 to M\a1. It tells us that
a1 is in at least three triangles of M , and that the intersection of any pair
of these triangles is {a1}. From this it follows that a1 is in a triangle of
M\e = L(Ge,Be), which is impossible as Ge has at least six vertices, and
no loops. Now the proof of Lemma 3.10 is complete. �

We are positive that there are only finitely many excluded minors for S.
But we do not require this for our main results, so we leave it as an open
problem.

Problem 3.11. Prove that S has only finitely many excluded minors, and
describe all of them.

From this point onwards our strategy in proving Theorem 1.5 is similar to
that used in the proof of Theorem 1.3. We start by recalling Definition 2.1:
if C = (C1, . . . , Ck) is a sequence of subsets of the set E, then for any
I ⊆ {1, . . . , k}, we use C(I) to denote the set {e ∈ E : e ∈ Ci ⇔ i ∈ I}. The
function ψC takes each I to |C(I)|. When dealing with spikes, we can fix one
of the circuit-hyperplanes, and then consider the pattern of its intersections
with the other circuit-hyperplanes. To facilitate this approach, we introduce
the following notation: if C = (C1, . . . , Ck) is a sequence of sets, then we
define trun(C) to be the derived sequence (C1 ∩Ck, . . . , Ck−1 ∩Ck) of k − 1
sets.

Let k and r be integers satisfying k ≥ 2 and r ≥ 5. The relation, Rr
k, has

as its domain the set of rank-r Category-(A) matroids with exactly k circuit-
hyperplanes. The codomain is the set of functions from P({1, . . . , k − 1})
to Z≥0. Let M be a matroid in the domain, and let ψ be a function in the
codomain. The ordered pair (M,ψ) belongs to Rr

k if and only if there is
an ordering C = (C1, . . . , Ck) of the circuit-hyperplanes in M such that ψ
is equal to ψtrun(C). In this case, ψ takes I ⊆ {1, . . . , k − 1} to the number
of elements in Ck that are in every Ci for i ∈ I, and in no Ci for i /∈ I.
Furthermore,

∑

I⊆{1,...,k−1}

ψ(I) = r.

Note that the image of M under Rr
k has cardinality at most k!.

A Category-(A) matroid M = L(G,B) with rank at least five has at
most one non-trivial parallel class (comprising the loops of G), and at most
one non-trivial series class (comprising the thin edges). Any triangle of
M comprises a loop of G and a parallel pair, and any triad comprises a
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parallel pair along with a thin edge. Moreover, the circuit-hyperplanes of
M correspond exactly to the cycles in B, as we noted in Proposition 3.7.

Let M be a Category-(A) matroid. If M has no triangle, we set p(M) to
be zero, and otherwise we set it to be the maximum size of a parallel class
in M . Similarly, if M has no triad, we set s(M) to be zero, and otherwise
we set it to be the largest size of a series class.

Proposition 3.12. Let k and r be integers satisfying k ≥ 2 and r ≥ 5.
Let M and N be rank-r Category-(A) matroids with exactly k circuit-
hyperplanes. Then M and N are isomorphic if and only if

(i) p(M) = p(N),
(ii) s(M) = s(N), and
(iii) Rr

k(M) ∩Rr
k(N) 6= ∅.

Proof. Let ρ be an isomorphism from M to N . The existence of ρ clearly
means that p(M) = p(N) and s(M) = s(N). Let (C1, . . . , Ck) be an ordering
of the circuit-hyperplanes inM . Then ρ(C) = (ρ(C1), . . . , ρ(Ck)) is an order-
ing of the circuit-hyperplanes in N . It is now clear that ψtrun(C) = ψtrun(ρ(C)),
so Rr

k(M) ∩Rr
k(N) contains at least one function.

For the converse, we assume p(M) = p(N) and s(M) = s(N), and
that Rr

k(M) ∩ Rr
k(N) contains a function. This means that we can let

CM = (CM
1 , . . . , CM

k ) and CN = (CN
1 , . . . , C

N
k ) be orderings of the circuit-

hyperplanes inM and N such that the functions ψtrun(CM ) and ψtrun(CN ) are
equal.

Assume that M = L(GM ,BM ) and N = L(GN ,BN ), where GM , GN ∈ G
have at least five vertices, and BM and BN contain exactly k Hamiltonian
cycles. Both GM and GN contain p := p(M) = p(N) loops, and we can
assume these loops are labelled c1, . . . , cp in both graphs. Similarly, GM

and GN have s := s(M) = s(N) thin edges, and we assume these edges are
labelled d1, . . . , ds. Now GM and GN have t := r − s parallel pairs, and we
assume that these pairs are labelled {a1, b1}, . . . , {at, bt}.

We will construct a permutation π of the ground set

E(M) = E(N) = {ai, bi}
t
i=1 ∪ {ci}

p
i=1 ∪ {di}

s
i=1

such that:

(i) π acts as the identity on c1, . . . , cp, d1, . . . , ds,
(ii) π takes any parallel pair {ai, bi} to another such pair, and
(iii) π takes any circuit-hyperplane in M to a circuit-hyperplane of N .

Since the non-spanning circuits of M and N are exactly the circuit-
hyperplanes, along with sets of the form {ai, bi, aj , bj}, the existence of π
will show that M and N are isomorphic.

Let I be the collection of proper subsets of {1, . . . , k− 1}. For each I ∈ I
let πI be an arbitrary bijection from trun(CM )(I) to trun(CN )(I). This
bijection exists because ψtrun(CM )(I) = ψtrun(CN )(I), and hence

| trun(CM )(I)| = | trun(CN )(I)|.
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Next we note that the thin edges d1, . . . , ds are contained in every circuit-
hyperplane of M and N . That is, the elements d1, . . . , ds are contained in
both trun(CM )({1, . . . , k − 1}) and trun(CN )({1, . . . , k − 1}). We let ∩(M)
stand for the intersection ∩k

i=1C
M
i and let ∩(N) stand for ∩k

i=1C
N
i . Let σ

be an arbitrary bijection from

∩(M)− {d1, . . . , ds} to ∩ (N)− {d1, . . . , ds}.

Let idd be the identity function on {d1, . . . , ds}. Now let π0 be the union

idd ∪ σ ∪
⋃

I∈I

πI .

Observe that π0 is a bijection from CM
k to CN

k .
We extend π0 to a permutation of E(M) = E(N) by insisting that

it preserves parallel pairs. To this end, we note that CM
k contains the

thin edges d1, . . . , ds, along with exactly one element from each of the
parallel pairs {a1, b1}, . . . , {at, bt}. We construct π1, a bijection from
{a1, b1, . . . , at, bt} − CM

k to {a1, b1, . . . , at, bt} − CN
k . If x is in the domain

of π1, then x is in a parallel pair with an edge y in GM . Moreover, y is in
CM
k , so π0(y) is defined, and is in CN

k . We note that π0(y) is in a parallel
pair with an edge x′ in GN , and we set the image π1(x) to be x′. Now we
set π to be π0 ∪ π1 ∪ idc, where idc is the identity function on {c1, . . . , cp}.
Thus π is indeed a permutation of E(M) = E(N), it acts as the identity on
{c1, . . . , cp, d1, . . . , ds}, and it takes any pair {ai, bi} to another such pair.

To complete the proof it suffices to show that π takes any circuit-
hyperplane of M to a circuit-hyperplane of N . This in turn will follow
if we can show that when x is in CM (I) for some I ⊆ {1, . . . , k}, the image
π(x) is in CN (I). This is true when x is in {c1, . . . , cp}, for then x ∈ CM (I)
implies I = ∅, and x = π(x) is also in CN (∅). Similarly, if x is in {d1, . . . , ds},
then x ∈ CM (I) implies I = {1, . . . , k}, and x = π(x) is in CN ({1, . . . , k}).
So we assume that x is not equal to any element ci or di. If I contains
k, then x is in CM

k , which means it is in the domain of π0. In this case
π(x) = π0(x) is in CN (I), by construction of π0. Therefore we assume that k
is not in I, so x is not in CM

k . This means that x is a non-loop edge that is

contained in a parallel pair {x, y} in GM , and furthermore y is in CM
k . Now

y is in exactly the circuit-hyperplanes that x is not in. In other words, y is in
CM ({1, . . . , k}− I). As y is in the domain of π0, it now follows that π0(y) is
in CN ({1, . . . , k}−I). But π(x) is parallel to π0(y) in GN , meaning that it is
in exactly the circuit-hyperplanes of N that π0(y) is not in. Thus it follows
that π(x) is in CM (I), exactly as desired. This completes the proof. �

Lemma 3.13. Let k be a positive integer. The number of 2t-element ma-

troids in Sk is at most O(t2
k−1+2).

Proof. We refer to Proposition 3.5. A Category-(F) matroid with 2t elements
is determined by giving the number of loops and the number of coloops. This
argument shows that there are no more than O((2t)2) such matroids, so we
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will henceforth disregard them. Up to isomorphism, a 2t-element matroid
of the form M(G) or M∗(G) can be determined by the number of loops
and thin edges in G. Therefore the number of 2t-element Category-(D)
or (E) matroids is at most O((2t)2), so we also disregard these classes.
There is a constant number of loopless graphs in G with a bounded number
of vertices. Thus there is a constant number of graphs with G with 2t
edges and a bounded number of vertices. So we disregard any matroids
of the form L(G,B) when G ∈ G has fewer than five vertices. Thus we
have disregarded Category-(B) and (C) matroids, and we now need only
consider Category-(A) matroids with rank at least five. A Category-(A)
matroid L(G,B) with at most one circuit-hyperplane is determined up to
isomorphism by the number of loops and thin edges in G, so there are at
most O((2t)2) such matroids. Therefore we may as well assume that k is
at least two, and we will consider only matroids with at least two circuit-
hyperplanes.

Our arguments have shown that we need only consider 2t-element Catego-
ry-(A) matroids with rank at least five and at least two circuit-hyperplanes.
We categorise these matroids as having rank r, where r satisfies 5 ≤ r ≤ 2t,
and having exactlym circuit-hyperplanes, wherem satisfies 2 ≤ m ≤ k. The
number of pairs (r,m) is O(t), so we will be done if we can show that the

number of matroids corresponding to the pair (r,m) is at most O(t2
k−1+1).

By Proposition 3.12, these matroids can be determined by a pair of num-
bers from {0, . . . , 2t}, and a function ψ : P({1, . . . ,m−1}) → Z≥0 such that
∑

I⊆{1,...,m−1} ψ(I) = r. The number of such functions is exactly

(

r + 2m−1 − 1

r

)

=

(

r + 2m−1 − 1

2m−1 − 1

)

,

which is at most O(r2
m−1−1). This is in turn bounded by O(t2

k−1−1).
There are at most O((2t)2) = O(t2) ways of selecting the two numbers in

{0, . . . , 2t}, so this leads to a bound of O(t2
k−1+1) matroids corresponding

to the pair (r,m), as we wanted. �

Lemma 3.14. Let k ≥ 2 be an integer. The number of 2t-element excluded

minors for Sk is at least Ω(t2
k−k−3).

Proof. As in the proof of Lemma 2.4, we construct spikes with 2t elements
and k + 1 circuit-hyperplanes. Again we insist that every element is in at
least one circuit-hyperplane, and that no element is in all of them. We will
assume that t is at least five.

Let I be the collection {I ⊆ {1, . . . , k} : 1 ≤ |I| ≤ k − 2} and note that
|I| = 2k − k − 2. For each I ∈ I we introduce a variable xI . We consider
non-negative integer solutions to the equation

(2)
∑

I∈I

xI = t− 2(k + 1).
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The number of such solutions is exactly
(

t+ 2k − 3k − 5

t− 2k − 2

)

=

(

t+ 2k − 3k − 5

2k − k − 3

)

,

which is at least Ω(t2
k−k−3).

Let φ be a solution to (2), so that φ is a function taking {xI}I∈I to
non-negative values, and summing over the image of φ produces a total of
t − 2(k + 1). We are going to construct a sequence D = (D1, . . . , Dk) of
subsets of {a1, . . . , at} in such a way that |D(I)| = φ(xI) for each I ∈ I. We
do this by allocating each element in {a1, . . . , at} to D(I) for a unique subset
I ⊆ {1, . . . , k}. We start by allocating two elements to D(∅). These two
elements are in none of the sets D1, . . . , Dk. Next, for each i ∈ {1, . . . , k},
we allocate two elements to D({1, . . . , k}− i). These two elements will be in
all of the sets D1, . . . , Dk except for Di. Now there are t− 2(k+1) elements
left to allocate. We allocate no elements to D({1, . . . , k}), so that no element
of {a1, . . . , at} is contained in all of the sets. The remaining n − 2(k + 1)
elements in {a1, . . . , at} are allocated to the sets D(I) for I ∈ I according
to the function φ, so that |D(I)| = φ(xI).

Next we construct subsets C = (C1, . . . , Ck+1) of {a1, . . . , at, b1, . . . , bt}.
We set Ck+1 to be {a1, . . . , at}. For i ∈ {1, . . . , k}, we define Ci to be the
union of Di and {bj : aj /∈ Di, 1 ≤ j ≤ k}. Thus each set Ci contains exactly
one element from each pair {aj , bj}. Furthermore, trun(C) = (D1, . . . , Dk),
so ψtrun(C) = φ. It follows from D({1, . . . , k}) = ∅ that no element of
{a1, . . . , at, b1, . . . , bt} is in all of the sets C1, . . . , Ck+1, and that every ele-
ment is in at least one of C1, . . . , Ck+1.

Let G be a graph obtained from a cycle of length t by replacing each edge
with a parallel pair. Let {a1, b1}, . . . , {at, bt} be the parallel pairs in G. Let
B be the class of Hamiltonian cycles in G with edge-sets C1, . . . , Ck+1. We
claim that B is a linear class. Let us assume otherwise. Any theta-subgraph
in G consists of a Hamiltonian cycle with one additional edge. So if B is not
a linear class, then there are two sets Ci and Cj such that Ci −Cj contains
a single element. But two elements of {a1, . . . , at} are in none of the sets
D1, . . . , Dk, so these two elements are in Ck+1 but none of C1, . . . , Ck. So i is
not k+1, and hence i is in {1, . . . , k}. There are two elements of {a1, . . . , at}
that are in all of the sets D1, . . . , Dk other than Di. This means that two
elements in {b1, . . . , bt} are in none of the sets C1, . . . , Ck+1 except for Ci,
and this is a contradiction. Therefore B is a linear class, as we claimed.

We letM be the spike L(G,B). SinceM has k+1 circuit-hyperplanes, and
t ≥ 5, it follows without difficulty from Proposition 3.7 that M is not in Sk.
However, since every element of M is in at least one circuit-hyperplane, and
avoids at least one circuit-hyperplane, deleting or contracting any element
from M produces a minor L(G′,B′), where G′ is in G, and B′ contains at
most k Hamiltonian cycles. So M is indeed an excluded minor for Sk.

For each solution to (2) we construct an excluded minor for Sk, as de-
tailed above. Some of these excluded minors may be isomorphic. But all
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excluded minors constructed in this way have no triangles and no triads, so
the functions p and s return zero. Now Proposition 3.12 implies that the
excluded minors are isomorphic if and only if they have the same images
under Rt

k+1. So any isomorphism class amongst the constructed excluded

minors is no larger than the image of a matroid under Rt
k+1, which is at

most (k+1)!. Since there are Ω(t2
k−k−3) solutions to (2), and k is constant

with respect to t, it follows that the number of excluded minors is at least

Ω(t2
k−k−3), as claimed. �

Proof of Theorem 1.5. Lemma 3.10 implies that ΓSk
(2t + 1) = 0 for all

sufficiently large values of t. So ΓSk
(n) does not tend to one, and hence Sk

is certainly not strongly fractal. However, by Lemmas 3.13 and 3.14 we see
that for sufficiently large values of t we have

ΓSk
(2t) ≥

c1t
2k−k−3

c2t2
k−1+2 + c1t2

k−k−3
=

1

(c2/c1)t−2k−1+k+5 + 1

for some positive constants c1 and c2. Since k ≥ 5, we see that −2k−1+k+5
is negative. Thus ΓSk

(2t) tends to one as t tends to infinity, meaning that
Sk is weakly fractal. �
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