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We explore the inelastic spectra of electrons impinging in a magnetic system. The methodology
here presented is intended to highlight the charge-dependent interaction of the electron beam in a
STEM-EELS experiment, and the local vector potential generated by the magnetic lattice. This
interaction shows an intensity 10−2 smaller than the purely spin interaction, which is taken to be
functionally the same as in the inelastic neutron experiment. On the other hand, it shows a strong
scattering vector dependence (κ−4) and a dependence with the relative orientation between the
probe wavevector and the local magnetic moments of the solid. We present YIG as a case study
due to its high interest by the community.
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I. INTRODUCTION

For quite some time, Moore’s Law, especially the con-
cern about its potential end, has driven research into new
computing approaches beyond traditional CMOS tech-
nology. One approach that has attracted attention is to
use the spin degree of freedom to substitute or integrate
with the current electronic computation. To this objec-
tive, magnonics has been extensively studied, it encom-
passes the study of fundamental properties of magnons,
which are quanta of the dynamic eigen-excitation of mag-
netically ordered materials in the form of spin-waves
[1][2].
To systematically investigate the generation, manip-

ulation, and identification of spin-waves, or magnons,
there is a requisite focus on improving the methodolo-
gies for both exciting and probing these phenomena.
Magnons are commonly studied by inelastic neutron scat-
tering (INS) techniques, time-resolved Kerr microscopy
[3], and Brillouin light scattering (BLS) [4]. While these
techniques probe the energy-momentum dispersion of
magnons with high energy resolution, their spatial res-
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olution is fundamentally limited to hundreds of nanome-
tres.

Over the past decade, meV-level STEM-EELS
has made significant strides, achieving atomic-level
contrast[5], detecting spectral signatures of individual
impurity atoms [6], and conducting spatial- and angle-
resolved measurements on defects in crystalline materials
[7].

The method’s potential expansion into studying
magnons is anticipated due to the overlapping energy
range with vibrational modes in solid-state materials.
Despite the weaker interaction of magnetic moments with
the electron beam compared to the Coulomb potential,
by up to 3 or 4 orders of magnitude, which makes
their detection challenging,[8][9] recent advancements in
hybrid-pixel detectors, leading to a drastic improvement
in the dynamic range and low background noise, with
signals a mere 107 of the full beam intensity readily de-
tectable [10], and improved monochromator and spec-
trometer design, resulting in increased energy resolutions
in particular at lower acceleration voltages (4.2meV at
30kV [11]), offer enhanced sensitivity and signal detec-
tion, making the exploration of magnon excitation feasi-
ble in experimental settings.

Theoretical approaches for evaluating the EEL spectra
have focused on spin-polarized probes and Low-energy
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electrons in a surface reflection geometry (REELS), in
bulk materials. In our case we will explore the effects of
non-spin-polarized beam in the meV-level STEM-EELS
apparatus, using YIG as a prototypical material, ac-
counting for the electron’s interaction with the vector
potential produced by the magnons in the system.

II. METHODS

The evaluation of the inelastic scattering of electrons
by magnons requires the evaluation of the doubly differ-

ential cross-section, which evaluates the relative inten-
sity of scattered particles into a solid angle dΩ, with a
wavevector in a small range around k1 given by dk1. As-
suming N scatterers in the target, and a monochromatic
beam with wavevector ko in the z-direction with a cur-
rent density (J0)z. This relative intensity can be written
as,

d2σ

dΩdk1
=

1

N

N0V
∑

n0,n1
Pn0

k2
1|⟨n1,k1|Hinter|n0,k0⟩|2δ(En0

+ E0 − En1
− E1)

(2π)2ℏ(j0)z
(1)

where we are denoting a scattering process where the
system undergoes a transition from state n0 to n1 with
energies E0 and E1, respectively, simultaneously the scat-
tered particle changed its momentum from k0 with en-
ergy E0 to k1 with energy E1. The interaction between
the particle and the material is encapsulated by the in-
teraction Hamiltonian Hinter, while the current density
of the particle beam along the z-direction is denoted by
(j0)z. Here, Pn0

signifies the probability of the material
to be in state n0 before any scattering event. While N ,
represents the number of statterers, N0 is the number of
particles in state k0, and V is the volume of the unit cell.
The choice of Hinter is the central point of the discus-

sion. In our case, we are interested in the interaction
of an electron beam with the magnetic structure of the
system. Disregarding the charge, the problem returns
to a similar situation as to the INS, the usual interac-
tion is taken in terms of an interaction between the mag-
netic field generated by the intrinsic magnetic moment of
the electrons and the orbital angular momentum. This
interaction leads to an exchange-like term and a term
involving the sample’s electron motion. In the case of
orbital quenched systems only the former terms is taken
in account. In our approach, the interaction will be as-
sumed to be given by the vector potential deriving from
the magnons in the solid and its effect on the canonical
momentum of the passing probe electrons. This interac-
tion is only present in the case of electrons as a probe.
We will then focus on the methodological development of
this contribution to the total EELS by magnons.
The interaction can be written by ignoring the weaker

Â2 terms and assuming orbital quenching, we have [12],

Hinter = i

(

µ0µ
2
B

π

)

∑

j

[

Ŝj ×
r− rj

|r− rj |3
]

· ∇r (2)

where we have the spin operator in site N is given by
Ŝj , µB is the Bohr magneton and µ0 is the permeability

of free space.
With a semi-classical approach to the spin operators,

justified by assuming that S >> 1, we can note our spins
in the laboratory frame as:

Si = S(sinθicosϕi, sinθisinϕi, cosθi) (3)

with θ being the polar angle in spherical coordinates and
ϕ the azimuthal angle. We can perform a transformation
to the local reference frame of the spin, given by:

R−1
j =





cosθjcosϕj −sinϕj sinθjcosϕj

cosθjsinϕj cosϕj sinθjsinϕj

−sinθj 0 cosθj





=





Aj
11 Aj

12 Aj
13

Aj
21 Aj

22 Aj
23

Aj
31 Aj

32 Aj
33





(4)

Which allows us to write Si = Ui ·Si. In this notation,
Si refers to the local reference frame and Si is the lab-
oratory reference frame. Hence we can substitute in our
interaction HamiltonianSi = U−1

i · Si, such that,

Hinter = i

(

µ0µ
2
B

π

)

∑

j

[

R−1
j · Sj ×

r− rj

|r− rj |3
]

· ∇r (5)

Assuming that the scattering particle doesn’t interact
with the system before or after the scattering event, i.e.,
no multiple scattering events, we can write the total wave
function as a product between a plane wave and the mag-
netic states,

|ki, ni⟩ → |ki⟩|ni⟩ (6)

for i = 0, 1. Here we have, |ki⟩ = e−iki·r being the
state of the probing beam, while |ni⟩, represents the state
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of the solid, which for our purposes is only transiting
between magnetic states, such that H0|ni⟩ = Ei|ni⟩ with
H0 being the Heisemberg Hamiltonian.
To further our analysis, let’s focus on the interaction

term. Substituting (2) in the Fermi’s Golden rule present
in (1), while taking (6) into account we have,

⟨n0,k0|Hinter|n1,k1⟩ =
(

µ0µ
2
B

π

)

⟨n1|i
∫

∑

j

e−i(k1−k0)·r

[

(

R−1
j · Sj

)

× r− rj

|r− rj |3
]

· k0dr|n0⟩
(7)

taking the integral over dr which is the same as taking
the Fourier transform, where we used the result,

FT

[

r− rj

|r− rj |3
]

=
2iq

q2
eiq·rj (8)

where we defined q = (k1 − k0). Then the summation
over j results in a discrete Fourier transform of the spin-
operators, leading to the result,

⟨n0,k0|Hinter|n1,k1⟩ =−
(

µ0µ
2
B

√
N

π

)

⟨n1|
∑

r

e−iq·rr

[

(

R−1
r · S(r)

q

)

× 2q

q2

]

· k0|n0⟩
(9)

where the summation over r labels the sum of mag-
netic moments in the lattice within the unit cell. Finally,
we will use the Holstein-Primakoff transformation in the
spin-wave approximation, with Sr as the magnitude of
the spin angular momentum, given by, in Fourier space,















S
x(r)
q =

√
2S(r)

2

(

a
(r)
q + a

†(r)
q

)

S
y(r)
q =

√
2S(r)

2i

(

a
(r)
q − a

†(r)
q

)

S
z(r)
q = S(r) − a

†(r)
q a

(r)
q

(10)

Noting that a†(r)q |n0⟩ =
√

Nq + 1|n1⟩ while a(r)q |n0⟩ =
0. In this sense we have two separate contributions to the
spectra, one coming from the creation of a magnon and

one from the destruction of one, referring to the possibil-
ity of Stokes and anti-Stokes scattering, note that with

this S
z(r)
q doesn’t contribute to the inelastic scattering

process. Focusing on Stakes scattering only we will only
keep the creation operators. Finally, for a general unit
cell for both colinear and non-colinear spin-structures,
the application of the creation and annihilation operators
presume a diagonal Hamiltonian, hence we need to make
sure that we have a consistent diagonalisation method for
all these cases. To achieve this we will use the method
outlined in [13][14][15]. In the case of the Heisenberg
Hamiltonian in the second quantization under the spin-
wave approximation, we can write,

H2 = v†q · L · vq (11)

where we defined:

v† = (a(1)†q , ..., a(M)†
q |a(1)−q, ..., a

(M)
−q ) (12)

We diagonalize L(q) with the unitary transformation
L′(q) = UL′(q)U†, where U † is a matrix which columns
are the eigenvectors of L, this allow us to write:

H2 = v⃗†U †ULU†Uv⃗ = w†L′w (13)

having defined w† = v⃗†U † given by:

w† = (α(1)†
q , ..., α(M)†

q |α(1)
−q, ..., α

(M)
−q ) (14)

while in real space we have:

a(r)q =

M
∑

m=1

(

U †
r,m(q)α(m)

q + U †
r,m+Nα

†(m)
−q

)

(15)

a
†(r)
−q =

M
∑

m=1

(

U †
r+N,mα(m)

q + U†
r+N,m+Nα

†(m)
−q

)

(16)

with all these definitions in place, we can write (9) as,

⟨n0,k0|Hinter|n1,k1⟩ =−
(

µ0µ
2
B

√
N

πq2V

)

M
∑

r=1

M
∑

m=1

√

2S(m)

(

N
(m)
q + 1

)

e−iq·rr
[

εαβγ

{

V −
rβU

†
r,m+N + V +

rβU
†
r+N,m+N

}

qγ

]

k0α

=−
(

µ0µ
2
B

√
N

πq2V

)

S ′(n0,k0 → n1,k1)

(17)

where we used Einstein’s summation rule, where repeat- ing Greek indexes are summed, for the vector opera-



4

tions, with εαβγ the Levi-Civita epsilon, defined S ′(n0,
k0 → n1,k1) as a short-hand notation for the summation
terms, and n0 and n1 define the state of the solid without
a magnon (ground state) and after the production of a
magnon by the probe, respectivelly. We also defined,

V ±
rα = (Rr)xα ± i(Rr)yα (18)

Finally using (j0)z = N0

V
ℏk0

m
and dE1 = ℏ

2k1

m
dk1 we

can write (1)

d2σ

dΩdE1
=

(

µ0µ
2
Bm

2ℏ2π2

)2
1

q4
k1
k0

∑

n0,n1

Pn0
|S ′(n0,k0 → n1,k1)|2δ(En0

+ E0 − En1
− E1) (19)

where the coupling constant, in this case,
(

µ0µ
2
Bm/2ℏ2π2

)2
= 0.002 Barn. Note that similarly to

the case of inelastic scattering of electrons by phonons,
the magnon case exhibits a q−4 dependence which,
paired with the q2 dependence of S ′(n0,k0 → n1,
k1) give an overall dependence of q−2. Hence,
corroborating with the discussion in [16] we expect
the signal to be strongest in the first Brillouin zone,
in contrast with the cases when neutrons or photons are
used, where the data has a stronger signal for larger q.

In the next section, we will compare EELS as an in-
elastic probe of magnons, and inelastic neutron scatter-
ing (INS) which is a well-regarded probing method for
momentum-resolved analysis of quasi-particle dispersion
relations [17].
For our analysis, we will use YIG as a prototypical ma-

terial for study, due to the high interest of the community
in its Thz magnons capability and high free-path length.
For the calculation of the underlying magnon disper-

sion, we will use the exchange parameters proposed from
fitting inelastic neutron scattering in [18].
Note that, for the third nearest neighbours, there are

two possibilities of exchange parameters J3a and J3b.
These two exchange paths are dissimilar and can be dis-
tinguished due to the symmetry of the crystal when ro-
tated about the bond vector. The J3a exchange path
exhibits a 2-fold symmetry, while the J3b exchange path
obey the higher D3 symmetry point group.
For the inelastic neutron scattering calculation, we

used the method described in [13], where the double-cross
section is given by,

d2σ

dΩdω
=

(

γe2

mec2

)2
[g

2
f(κ)

]2 kf
ki

∑

α,β

(

δαβ − κακβ

κ2

)

Sαβ(κ, ω)

(20)

where
(

γe2/mec
2
)2

= 0.291 barns is the coupling con-
stant of the neutron to the unpaired electron spins (note
the use of cgs units), g is the Landé factor, and f(κ)
is the magnetic form factor. We also define κ, which is
the scattering vector, such that κ = kf − ki, which is
the difference in momentum of the incoming and out-

FIG. 1: Crystal structure and magnetic exchange paths
in Yttrium Iron Garnet (YIG). The conventional unit

cell of YIG is represented,
with the majority tetrahedral sites marked in green and

the minority octahedral sites in blue. Yttrium is
depicted as black spheres,

and oxygen as red spheres. The first octant of the YIG
unit cell is shown,

highlighting the two distinct Fe3+ sites: tetrahedral
sites in green and octahedral sites in blue [18].

going neutrons. Using the notation q for the momen-
tum of the magnons, we have the relation κ = G + q,
with G a reciprocal lattice vector.
We point out that the coupling constant for EELS is

two orders of magnitude larger than the neutron’s. This
difference is counteracted by the flux of particles in the
two experiments. The neutron scattering experiment has
a typical flux of 1014 neutrons cm−2s−1 [19], which is 105

times lower than the typical 1019 electrons cm−2s−1[20]
in an electron microscope, leading to a lower exposition
time required by the EELS experiment compared to the
INS.

III. RESULTS

In figure 2 we compare the experimentally acquired
INS given in [18] with the calculated INS using Eq. 20
and the calculated charge-only EELS using Eq. 19. We
can see the similarities between the experiment and the
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calculated spectra for the INS, and compared with the
EELS, the same modes are active. Under the discussion
made before, both the intensities given in the figures 2-
b and 2-c coexist in the EELS spectra. The main dif-
ferences between the interaction forms, arise from the q
dependence and the dependence between the intensity
with the angle between the beam orientation and the lo-
cal magnetic moments’ orientation.
Taking the definition of the spin orientation given in 3,

we will keep ϕ = 0 and change the value of θ. In figure 2
we kept the orientation of the magnetic moments aligned
with oriented parallel to the axis of θ = π/2 and ϕ = 0,
while the electron/neutron beam is kept along the z-axis.
In figure 3 we see a strong dependence on the mag-

netic moments orientation. Here we see that the pro-
posed interaction shows a dependence of the intensity as
we change the polar angle θ of the orientation magnetic
moments axis of orientation. In the path Γ−H the inten-
sity varies with a cossine relation with the angle between
the spin and the beam angles.

IV. CONCLUSION

The proposed methodology is intended to facilitate the
distinction of magnon-related pecks in the EELS exper-

iments when paired with the evaluation of the phonon
EEL spectrum. The high spatial resolution united with
the magnetic moment orientation sensitive nature of the
non-spin polarized EELS spectrum, and given the dif-
ference in q dependence, a particular choice of spectra
taken from different, but related, scattering vectors can
be used to probe local differences in the orientation of
the Curie/Neel vector relative to the electron beam mo-
mentum.
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(a)
(b) INS (c) EELS

FIG. 2: Inelastic scattering by magnons: a) Experimental inelastic neutron scattering [18],
b) theoretical evaluation of inelastic neutron scattering,

c) charge-related EELS. All the calculations were performed for a relative angle between the probe’s wave vector
and the Nèel vector θ = π/2.

(a) θ = 0 (b) θ = 3π/10 (c) θ = π/2

(d) θ = 7π/10 (e) (f)

FIG. 3: a-d) Charge-related EELS,
for varying relative angles θ between the probe’s wave vector and the Nèel vector. e-f) Angle dependent intensity for

a particular point in momentum space,
showing a strong angle dependence on the point represented by the red dashed line,

but not on the point represented by the white dashed line.


