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Mobilise‑D insights to estimate 
real‑world walking speed 
in multiple conditions 
with a wearable device
Cameron Kirk 1,63, Arne Küderle 2,63, M. Encarna Micó‑Amigo 1,63, Tecla Bonci 3, 
Anisoara Paraschiv‑Ionescu 4, Martin Ullrich 2, Abolfazl Soltani 4, Eran Gazit 5, Francesca Salis 6, 
Lisa Alcock 1,7, Kamiar Aminian 4, Clemens Becker 8, Stefano Bertuletti 6, Philip Brown 10, 
Ellen Buckley 3, Alma Cantu 11, Anne‑Elie Carsin 12,13,14, Marco Caruso 9, Brian Caulfield 15,16, 
Andrea Cereatti 9, Lorenzo Chiari 17,18, Ilaria D’Ascanio 17, Judith Garcia‑Aymerich 12,13,14, 
Clint Hansen 19, Jeffrey M. Hausdorff 5,20,21, Hugo Hiden 10, Emily Hume 22, Alison Keogh 15,16, 
Felix Kluge 2,23, Sarah Koch 12,13,14, Walter Maetzler 19, Dimitrios Megaritis 22, Arne Mueller 23, 
Martijn Niessen 24, Luca Palmerini 17,18, Lars Schwickert 8, Kirsty Scott 3, Basil Sharrack 25, 
Henrik Sillén 26, David Singleton 15,16, Beatrix Vereijken 27, Ioannis Vogiatzis 22, 
Alison J. Yarnall 1,7,10, Lynn Rochester 1,7,10, Claudia Mazzà 3, Bjoern M. Eskofier 2, 
Silvia Del Din 1,7* & Mobilise‑D consortium 1,23*

This study aimed to validate a wearable device’s walking speed estimation pipeline, considering 
complexity, speed, and walking bout duration. The goal was to provide recommendations on the use 
of wearable devices for real‑world mobility analysis. Participants with Parkinson’s Disease, Multiple 
Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart 
Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real‑world (2.5 h), 
using a lower back wearable device. Two walking speed estimation pipelines were validated across 
4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a 
multi‑sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative 
error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and − 2.1 to 14.4%, with ICCs 
(Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real‑world MAE ranged 
from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) 
agreement. Lower errors were observed for cohorts without major gait impairments, less complex 
tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy 
in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for 
robust technical validation before clinical application.

Trial registration: ISRCTN – 12246987.
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Mobility has been defined as the ability to move freely and easily, representing an essential component of health 
and quality of life, being key to physical, mental, and social well-being1. Sudden loss in mobility has been asso-
ciated with morbidity, falls, dementia, cognitive decline, hospitalizations, mortality and symptoms of chronic 
 disorders2–6. Mobility loss translates to an inability to perform activities of daily living, which has also been 
defined as mobility  disability1,7. According to the World Health Organization (WHO), it is estimated that 1 
billion people currently live with mobility disability due to impairments in their respiratory, cardiovascular, 
musculoskeletal or neurological  systems8. This number is expected to rise further due to increased longevity of 
the worldwide population and prolonged survival in people with chronic diseases leading to motor detriment. 
This will entail large public health implications and increase an already growing social and economic burden 
upon healthcare systems.

Efforts to mitigate the loss of mobility disability are of increasing priority and have been the focus of several 
recent clinical intervention  trials9–12. Existing mobility endpoints are based upon patient self-reporting and one-
off assessments of physical function, such as the timed up and go test or a 6 minutes walk test. While such an 
assessment provides useful insights on an individual’s mobility capacity (how much they can do), it lacks ecologi-
cal validity as it does not reflect an individual’s mobility performance (how much they actually do) during daily 
 life1,7,13,14. This incomplete assessment of mobility limits therapeutic development and clinical  management14. 
Therefore, valid and easy-to-use methods to accurately and reliably assess mobility performance would provide 
insight into how mobility disability manifests in the real-world7.

Digital health technology, such as wearable devices, offer an objective, low-cost and ecologically valid 
approach of continuously monitoring real-world mobility performance through characterisation of Digital Mobil-
ity Outcomes (DMOs)7. A single wearable device can be worn unobtrusively and comfortably on the lower back, 
attached to a belt or affixed to the  skin15,16. Walking speed remains the most widely explored  DMO17, where 
reduced walking speed has been associated with ageing, mortality, neurological and cardiovascular conditions, 
cognitive decline, and risk of  falling2,5,18–21. Furthermore, walking speed represents a composite measure of walk-
ing ability, as it is estimated from the combination of other spatial and temporal DMOs, specifically stepping 
cadence and stride length. As such, walking speed represents a global measure of mobility that can be interpreted 
and is meaningful to patients and clinicians  alike17.

A lack of robust technical validation of real-world walking speed measurements has prevented the adoption 
of walking speed derived from wearable devices as a clinical endpoint for interventional  trials7,22,23. Technical 
validation requires the comparison of DMOs quantified from a wearable device with DMOs quantified by an 
established reference system, whilst accounting for and acknowledging a wide range of contextual  factors24. The 
majority of algorithms to estimate walking speed have typically been validated based upon healthy adults assessed 
in simple laboratory tasks in standardized and supervised settings that do not represent the more challenging 
and variable nature of real-world  environments24. Furthermore, studies often validate DMO algorithms in isola-
tion, without considering the complexity of a comprehensive multi-stage pipeline needed to estimate walking 
 speed25–28. This first requires the identification of walking activity, followed by the quantification of DMOs (e.g., 
steps, cadence, stride length, walking speed). Interactions between all algorithmic steps in the pipeline will influ-
ence final outputs, and errors will accumulate along the pipeline. A robust validation of walking speed therefore 
requires analysis of the estimate of walking speed at a walking bout (WB) level from the implementation of the 
full pipeline.

The aim of this study was to provide a comprehensive validation of walking speed estimated from a single 
inertial measurement unit based wearable device against a multi-sensor reference system integrating pressure 
insoles (INDIP)29–31, to enable a robust validation: (i) in both laboratory and real-world settings, (ii) across dif-
ferent clinical cohorts with a range of mobility disabilities, (iii) across gait tasks of varying complexity and (iv) 
accounting for confounding factors (WB duration and walking speed). Subsequently, we provide recommenda-
tions for the suitability of a wearable device paired with the proposed analytical pipeline as a measure of real-
world mobility and suggest a framework for future studies aiming to validate DMOs for real-world monitoring.
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Results
Clinical and demographic characteristics of the participants are presented by cohort in Table 1 (Mean ranges: 
Age 47–79 years, Height 166–176 cm, mass 70.6–83.6 kg). Participants were recruited (n = 108) from the fol-
lowing cohorts: congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD), healthy adult 
(HA), multiple sclerosis (MS), Parkinson’s disease (PD) and proximal femoral fracture (PFF). Eleven participants 
(CHF: 4, MS: 3, PD: 1, PFF: 3) were excluded from the laboratory recordings and 26 participants (CHF: 3, HA: 
3, MS: 7, PD: 5, PFF: 8) from the real-world recordings due to technical difficulties with either the reference 
system or the wearable device.

An overview of the method of validating walking speed can be viewed in Fig. 1.

True Positive Evaluation
In the laboratory assessments a total of 1365 WBs were detected by the reference system and 1298 WBs by the 
wearable device. To be able to compare DMOs on a WB level, the analysis included WBs that were concurrently 
detected by both systems (true positive analysis). All WBs with a time-overlap of more than 80% of their dura-
tion were considered true positive, resulting in 692 WBs that were considered for analysis and considered a TP 
(see Methods and Supplementary Figs. 1 and 2 for more details). Based on these true positive WBs, we observed 
a mean error of 0.01 m/s (MRE = 5.9%), and MAE of 0.10 m/s (MARE = 14.96%) across all cohorts (Fig. 2, left. 
Table 2). We found that walking speed was estimated with good reliability (ICC = 0.84) by the wearable device, 
with a slight overestimation compared to the INDIP reference system.

In the 2.5-h real-world assessment, the reference system detected 4409 WBs, while the wearable device 
identified 4620 WBs. The average sensitivity and specificity for WB detection compared to the reference system 
were 0.65 and 0.99, respectively (Table 3). Across all detected WBs, 1414 (30% of all WBs) were identified as true 
positive WBs (i.e., more than 80% overlap with a reference WB). Based on these WBs, we observed a mean error 
of 0.06 m/s (MRE = 14.48%) and a MAE of 0.11 m/s (MARE = 20.31%) across all cohorts (Fig. 2, right, Table 2). 
As observed in the laboratory data, results showed a good reliability (ICC = 0.77) (Table 4), with an overestima-
tion of walking speed by the wearable device (0.01 m/s).

Combined evaluation
To remove potential bias by focusing only on the true-positive WBs and to mimic actual use of wearable device 
where reference data may not be available, we performed a second evaluation for which we combined all WBs 
for a Laboratory test and 2.5 h recording in the real world by taking the median of the calculated DMOs (see 
Methods). These combined values were then compared between the systems. Results from laboratory data 
showed a mean error over all tests of 0.01 m/s (MRE = 7.47%) and a MAE of 0.12 m/s (MARE = 17.82%) (Fig. 3, 
left. Table 4). In contrast, in the real-world we observed a higher mean error over all participants of 0.11 m/s 
(MRE = 24.48%) and a MAE of 0.13 m/s (MARE = 26.47%) (Fig. 3, right. Table 4). For both environments the 
errors were higher than those estimated from the analysis on true-positive WBs. The biggest effect was seen 
on the ICC during the real-world recording which dropped considerably to 0.33 (poor) across all cohorts and 

Table 1.  Demographic and clinical characteristics of the participants included in the real-world analysis. 
Values are presented as mean ± standard deviation. CAT  chronic obstructive pulmonary disease (COPD) 
assessment test, EDSS expanded disability status scale, FEV1 forced expiratory volume in 1 second, KCCQ-
12 Kansas City cardiomyopathy questionnaire-12, MDS-UPDRS III Movement disorder society unified 
Parkinson’s disease rating scale part III, MoCA montreal cognitive assessment, SPPB Short physical 
performance battery, 6MWT 6 minute walking test, HA healthy adults, PD Parkinson’s disease, MS multiple 
sclerosis, COPD chronic obstructive pulmonary disease, CHF congestive heart failure, PFF proximal femoral 
fracture.

Characteristic HA (n = 17) CHF (n = 9) COPD (n = 17) MS (n = 13) PD (n = 15) PFF (n = 11)

Age (years) 72.35 ± 6.00 68.00 ± 12.80 69.35 ± 9.10 47.23 ± 11.09 69.20 ± 7.48 79.70 ± 6.86

Height (cm) 167.00 ± 10.91 176.33 ± 8.75 168.97 ± 6.61 166.31 ± 9.11 172.73 ± 7.96 170.23 ± 9.07

Weight (kg) 74.36 ± 12.53 83.61 ± 19.56 73.71 ± 14.22 80.09 ± 22.11 79.13 ± 16.27 70.59 ± 16.86

Walking aid users (% [n]) 5% [1] 22% [2] 5% [1] 30% [4] 26% [4] 45% [5] 

MoCa [0–30] 28.18 ± 1.38 26.56 ± 3.21 24.65 ± 3.39 26.23 ± 3.49 23.93 ± 4.45 25.09 ± 4.46

Hoehn & Yahr stage (n)
H&Y I: 3
H&Y II: 7
H&Y III: 5

MDS-UPDRS III [0–132] 30.67 ± 13.33

EDSS [0–10] 3.85 ± 1.72

SPPB [0–12] 7.73 ± 3.10

CAT Score [0–40] 19.65 ± 8.95

FEV1/FVC 0.54 ± 0.12

6MWT distance (m) 348.81 ± 164.34 357.65 ± 88.52

KCCQ-12 Score [0–100] 82.39 ± 18.51
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showed no (PFF: 0.04) or even negative correlation (MS: − 0.15). This is not surprising due to the limited number 
of datapoints included for this type of analysis (one datapoint per participant).

Figure 1.  Overview of (a) the TVS protocol, (b) the analytical pipeline applied to estimate walking speed from 
the wearable device data (WD), (c) the approach to validating walking speed estimated from the analytical 
pipeline.
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Factors that can influence walking speed validity
Influence of the cohort. The MAE based on the true-positive evaluation differed by < 0.05 m/s between cohorts 
in both laboratory and real-world settings. In the laboratory, the COPD cohort had the lowest MAE (0.06 m/s) 
followed by HAs (0.08 m/s) (Table 2), whereas the PFF and CHF cohorts had the largest MAE of 0.12 m/s. In the 
real-world, HAs presented the lowest MAE (0.09 m/s) followed by the PFF cohort (MAE = 0.11 m/s) (Table 2). 

Figure 2.  Residual plots of walking speed for all true-positive WBs recorded in the laboratory (left) and during 
the real-world recording (right). The margin plots represent the overall speed and error distributions. The 
margin plots are further grouped by the performed tests for the laboratory and by the cohort for the real-world 
recordings. The light blue bars around the Limits of Agreement (LOA) (dashed horizontal lines) represent 
their bootstrapped confidence intervals. The dashed black line represents the result of a linear regression on all 
datapoints. The grey area around the regression line represents the bootstrapped 95% confidence intervals.

Table 2.  characterization of relative and absolute errors, Intraclass correlation coefficient (ICC), Limits of 
agreement (LoA), for walking speed estimated from the true-positive walking bouts (WBs) from all Laboratory 
tasks combined and the real-world assessment. Values are either provided as mean and [5%, 95%] quantile or 
as mean and limit of agreement, if indicated by LoA.

Cohort n-WBs (#) Reference (m/s) Wearable device (m/s) Error with LOA (m/s)
Rel. error with LOA 
(%) Abs error (m/s) Rel. Abs. error (%) ICC

Laboratory

 HA 103 0.86 [0.54, 1.15] 0.86 [0.54, 1.17] − 0.00 [− 0.21, 0.20] 0.55 [− 28.19, 29.28] 0.08 [0.01, 0.21] 10.34 [0.68, 29.22] 0.86 [0.80, 0.90]

 CHF 60 0.94 [0.45, 1.52] 0.88 [0.56, 1.29] − 0.06 [− 0.37, 0.26] − 2.06 [− 40.71, 36.60] 0.12 [0.01, 0.30] 13.86 [1.72, 37.90] 0.82 [0.72, 0.89]

 COPD 106 0.89 [0.59, 1.13] 0.90 [0.58, 1.14] 0.01 [− 0.15, 0.17] 2.27 [− 20.62, 25.16] 0.06 [0.01, 0.16] 7.82 [0.75, 19.35] 0.91 [0.87, 0.94]

 MS 169 0.83 [0.45, 1.27] 0.85 [0.53, 1.18] 0.02 [− 0.26, 0.30] 6.58 [− 38.09, 51.25] 0.11 [0.01, 0.28] 15.87 [1.20, 48.71] 0.81 [0.75, 0.86]

 PD 133 0.80 [0.47, 1.20] 0.82 [0.54, 1.15] 0.02 [− 0.26, 0.31] 7.99 [− 45.21, 61.19] 0.11 [0.01, 0.33] 17.01 [1.28, 45.27] 0.79 [0.72, 0.85]

 PFF 121 0.70 [0.35, 1.34] 0.74 [0.44, 1.12] 0.04 [− 0.26, 0.33] 14.43 [− 50.98, 79.83] 0.12 [0.01, 0.32] 22.19 [1.19, 66.49] 0.82 [0.75, 0.87]

 All 692 0.83 [0.43, 1.28] 0.84 [0.52, 1.18] 0.01 [− 0.25, 0.28] 5.92 [− 40.94, 52.77] 0.10 [0.01, 0.28] 14.96 [0.93, 46.15] 0.84 [0.81, 0.86]

Real-world

 HA 364 0.72 [0.38, 1.22] 0.76 [0.47, 1.23] 0.04 [− 0.18, 0.27] 10.53 [− 35.92, 56.98] 0.09 [0.01, 0.26] 15.45 [0.83, 56.00] 0.88 [0.85, 0.90]

 CHF 172 0.95 [0.46, 1.38] 0.92 [0.56, 1.33] − 0.04 [− 0.35, 0.27] 1.29 [− 48.12, 50.70] 0.12 [0.01, 0.32] 15.48 [1.24, 53.42] 0.82 [0.76, 0.86]

 COPD 328 0.65 [0.36, 1.01] 0.76 [0.51, 1.06] 0.11 [− 0.16, 0.38] 22.71 [− 43.84, 89.26] 0.13 [0.01, 0.40] 24.88 [1.05, 91.11] 0.57 [0.49, 0.64]

 MS 196 0.67 [0.40, 1.02] 0.76 [0.53, 1.06] 0.09 [− 0.20, 0.39] 19.56 [− 48.42, 87.53] 0.13 [0.01, 0.37] 23.53 [1.70, 80.64] 0.63 [0.54, 0.71]

 PD 192 0.76 [0.37, 1.19] 0.84 [0.52, 1.20] 0.08 [− 0.24, 0.40] 17.79 [− 52.94, 88.53] 0.13 [0.01, 0.38] 22.99 [0.64, 94.50] 0.72 [0.64, 0.78]

 PFF 162 0.66 [0.38, 1.04] 0.69 [0.45, 0.97] 0.04[− 0.25, 0.32] 10.63 [− 50.73, 71.98] 0.11 [0.01, 0.33] 20.02 [1.24, 73.39] 0.66 [0.56, 0.74]

 All 1414 0.72 [0.38, 1.21] 0.78 [0.49, 1.18] 0.06 [− 0.23, 0.35] 14.48 [− 47.17, 76.13] 0.11 [0.01, 0.36] 20.31 [0.95, 76.20] 0.77 [0.75, 0.79]
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Walking speed tended to be overestimated for all cohorts apart from CHF, for which walking speed was under-
estimated by 0.06 m/s in the laboratory and 0.04 m/s in the real-world.

Influence of WB duration and walking speed. In the analysis based on the true positive WBs, errors decreased 
for longer WB durations (Fig. 4). MAE across all cohorts for very short WBs < 10 s ranged between 0.09 and 
0.16 m/s, compared to 0.06–0.11 m/s for long WBs (between 60 and 120 s). However, as WB duration increased, 
the number of available WBs included in the validation analysis decreased as well. When looking at the com-
bined approach (across all detected WBs) (Fig. 5) the trends from the true-positive analysis were confirmed. The 
MAE for the very short WBs (< 10 s) was lower than for the short WBs (10–30 s), and the number of very short 
WBs detected by the wearable device was disproportionally higher compared to the reference system. Overall, 
about two thirds of all WBs were shorter than 30 s. When removing very short WBs (< 10 s) from the calculation 
of the mean/median errors, the range in error was marginally smaller for some cohorts than the error observed 
at all WBs for the true positive analysis (improvement < 0.1 m/s). The median of the absolute difference of the 
combined analysis increased from 0.1 m/s over all WBs to 0.14 m/s for the WBs longer than 10 s.

In both environments, a clear linear negative relationship between the magnitude of the reference walking 
speed and the measurement errors was observed (Fig. 2). For the slowest WBs (< 0.6 m/s), we observed the 
largest absolute errors, increasing to 0.8 m/s in real-worlds WBs. Walking speed tended to be overestimated for 
slow WBs and underestimated for fast WBs. This trend can also be observed in the overall speed distribution of 
the WBs (Supplementary Fig. 2), which shows a larger number of slow walking bouts and a lower median gait 
velocity for the reference system compared to the wearable device.

Table 3.  The performance of the WB detection calculated by comparing, sample by sample, the detected 
walking bout regions by the single wearable device with the detected walking bout regions by the reference 
system in the real-world recordings. Performance values are first calculated per participant and then 
aggregated per cohort, over all participants. Results are provided as mean and confidence intervals.

Cohort Accuracy Sensitivity Specificity Positive Predictive Value

 HA 0.93 [0.87, 0.98] 0.72 [0.57, 0.91] 0.99 [0.98, 1.00] 0.97 [0.92, 0.99]

 CHF 0.89 [0.74, 0.97] 0.57 [0.49, 0.68] 0.99 [0.97, 1.00] 0.97 [0.92, 1.00]

 COPD 0.94 [0.89, 0.98] 0.67 [0.55, 0.82] 0.98 [0.96, 1.00] 0.89 [0.71, 0.99]

 MS 0.95 [0.88, 0.99] 0.67 [0.46, 0.89] 0.99 [0.97, 1.00] 0.90 [0.72, 0.99]

 PD 0.92 [0.72, 0.99] 0.60 [0.33, 0.82] 0.99 [0.93, 1.00] 0.93 [0.72, 1.00]

 PFF 0.92 [0.85, 0.99] 0.61 [0.47, 0.83] 0.99 [0.98, 1.00] 0.96 [0.88, 1.00]

 All 0.93 [0.83, 0.99] 0.65 [0.45, 0.87] 0.99 [0.97, 1.00] 0.93 [0.79, 1.00]

Table 4.  Walking speed ranges and error analysis for the results combined per Laboratory test (laboratory) or 
over the entire real-world recording. Values are either provided as mean and [5%, 95%] quantile or as mean 
and limit of agreement, if indicated by the limits of agreement (LoA). The first column shows the number of 
datapoints (n-DPs) used to calculate the statistics.

Cohort n-DPs (#) Reference (m/s)
Wearable device 
(m/s)

Error with LoA 
(m/s)

Rel. error with LoA 
(%) Abs. error (m/s) Rel. Abs. Error (%) ICC

Laboratory

 HA 136 0.90 [0.56, 1.32] 0.85 [0.57, 1.15] − 0.05 [− 0.34, 0.23] − 3.65 [− 34.63, 27.33] 0.12 [0.01, 0.30] 12.72 [0.86, 32.94] 0.74 [0.66, 0.81]

 CHF 58 0.92 [0.45, 1.52] 0.87 [0.52, 1.24] − 0.05 [− 0.40, 0.30] − 0.54 [− 41.45, 40.38] 0.13 [0.01, 0.38] 14.42 [0.90, 39.66] 0.80 [0.68, 0.87]

 COPD 109 0.88 [0.47, 1.23] 0.87 [0.55, 1.13] − 0.01 [− 0.34, 0.31] 1.51 [− 32.13, 35.16] 0.10 [0.01, 0.27] 11.65 [0.60, 35.76] 0.72 [0.61, 0.80]

 MS 129 0.81 [0.43, 1.29] 0.84 [0.52, 1.23] 0.03 [− 0.26, 0.33] 9.05 [− 38.46, 56.55] 0.11 [0.01, 0.28] 16.92 [0.74, 60.84] 0.81 [0.74, 0.86]

 PD 132 0.79 [0.42, 1.27] 0.82 [0.53, 1.20] 0.03 [− 0.25, 0.32] 9.10 [− 38.67, 56.86] 0.11 [0.01, 0.31] 17.25 [1.35, 52.02] 0.82 [0.76, 0.87]

 PFF 119 0.65 [0.23, 1.24] 0.72 [0.43, 1.04] 0.07 [− 0.24, 0.37]
26.05 [− 60.69, 
112.78]

0.14 [0.01, 0.32] 32.57 [1.84, 124.21] 0.80 [0.73, 0.86]

 All 683 0.81 [0.40, 1.31] 0.82 [0.51, 1.18] 0.01 [− 0.31, 0.32] 7.47 [− 47.71, 62.66] 0.12 [0.01, 0.30] 17.82 [0.75, 59.08] 0.80 [0.77, 0.83]

Real-world

 HA 17 0.56 [0.44, 0.76] 0.61 [0.51, 0.71] 0.05 [− 0.13, 0.24] 11.89 [− 21.95, 45.74] 0.09 [0.03, 0.16] 17.25 [3.67, 32.29] 0.41 [− 0.06, 0.73]

 CHF 9 0.66 [0.42, 0.84] 0.82 [0.66, 1.04] 0.17 [− 0.02, 0.35] 29.62 [− 12.61, 71.86] 0.17 [0.02, 0.26] 29.80 [2.04, 61.60] 0.45 [− 0.21, 0.84]

 COPD 17 0.59 [0.47, 0.72] 0.66 [0.52, 0.78] 0.07 [− 0.07, 0.21] 12.67 [− 14.18, 39.52] 0.08 [0.01, 0.17] 14.12 [1.98, 32.21] 0.43 [− 0.04, 0.75]

 MS 13 0.57 [0.40, 0.74] 0.71 [0.57, 0.83] 0.13 [− 0.15, 0.42] 28.91 [− 34.27, 92.09] 0.16 [0.00, 0.31] 32.23 [0.28, 74.43] − 0.15 [− 0.62, 0.41]

 PD 15 0.54 [0.28, 0.77] 0.71 [0.51, 0.86] 0.17 [− 0.07, 0.41]
44.06 [− 45.40, 
133.51]

0.17 [0.01, 0.36] 44.27 [1.77, 124.63] 0.33 [− 0.19, 0.71]

 PFF 11 0.52 [0.41, 0.64] 0.64 [0.53, 0.77] 0.13 [− 0.01, 0.26] 26.03 [− 11.30, 63.35] 0.13 [0.06, 0.25] 26.03 [11.65, 58.40] 0.04 [− 0.53, 0.60]

 All 82 0.57 [0.35, 0.82] 0.68 [0.52, 0.84] 0.11 [− 0.10, 0.33] 24.48 [− 32.34, 81.30] 0.13 [0.01, 0.30] 26.47 [1.62, 71.34] 0.33 [0.12, 0.51]
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Influence of task complexity. As task complexity increased, so did the MAE. For instance, the most complex 
laboratory gait task (“simulated daily activities”) presented the highest MAE across all cohorts (0.17 m/s) and 
the least complex task (the slow straight walking test) presented the lowest MAE (0.08 m/s) (Table 5, Fig. 6). 
Furthermore, the influence of task complexity was cohort dependent. The largest differences between the simple 
and complex gait tests were observed for the MS, PD, and PFF cohorts (P1 pipeline). In the real-world, for the 
same cohorts, differences were observed in the errors estimated between the WBs without turns and WBs with 
turns. For all cohorts, mean error and MAE from real-world assessments were comparable or slightly lower than 
from simulated daily activities.

Discussion
To our knowledge, this study is the most extensive validation of a complex comprehensive multi-stage analytical 
pipeline for estimation of walking speed from a single wearable device. Overall, our findings showed good to 
excellent validation results in the laboratory and moderate to good agreement in the real-world. We demon-
strated that validity of walking speed estimation is slightly impacted by several factors including environment 
(laboratory vs real-world), clinical cohort, gait task complexity and other confounding factors (number of turns, 
WB duration, WB speed). Our results have strong implications for future research, below we provide our recom-
mendations for future validations and on the use of wearable device-based walking speed in daily life and more 
broadly, DMOs in general.

Overall validation results
Overall, laboratory walking speed demonstrated excellent agreement with the reference system, with the ICCs 
of the true positive WBs ranging from good (0.79) to excellent (0.91) and MAEs ranging from 0.06 to 0.12 m/s 
across all cohorts. Within the combined evaluation, the ICC of walking speed was slightly lower (0.72–0.82), 
indicating that only a small difference was introduced by the true positive evaluation. Previous studies con-
ducted across various HAs and various clinical cohorts in laboratory settings have shown lower or comparable 
 results27,32–34. However, in comparison to those studies, the pipelines in this study were validated over a wider 
variety of more complex gait tasks, challenging the estimation of walking speed as the signals are more variable 
and less cyclic, in comparison to steady-state and straight path gait.

Estimating walking speed in real-world gait assessment poses challenges due to the complexity and non-
standardized nature of environments. This difficulty is supported by previous literature, which has found that 
real-world assessments present a greater challenge for DMO  estimation35,36.

Figure 3.  Residual plots for the walking speed combined over all identified WBs. For the laboratory tests 
the median over all WBs within one motor task is taken (left). For the real-world recording the median over 
all WBs in the entire real-world assessment is shown (right), where each datapoint represents an individual 
participant. The margin plots represent the overall speed and error distributions. The margin plots are further 
grouped by the performed tests for the laboratory and by the cohort for the real-world recordings. The light blue 
bars around the Limits of Agreement (LOA) (dotted horizontal lines) represent their bootstrapped confidence 
intervals. The dashed black line represents the result of a linear regression on all datapoints. The grey area 
around the regression line represents the bootstrapped 95% confidence intervals.
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Despite these challenges, we achieved good results, since agreement was found to be moderate to good (ICCs 
within true positive WBs ranging between 0.57 and 0.88) and MAE ranged from 0.09 to 0.13 m/s. As regards to 
the combined real-world WB analysis, the ICCs were lower than the ICCs from true positive WBs. The MAE 
remained within usable ranges (< = 0.18 m/s), but MARE increased up to 44% primarily due to large relative 
errors for low gait speeds. In the combined analysis, median average walking speeds for each participant was 
calculated, which may have increased the impact of individual datapoints with larger errors, as there was only 

Figure 4.  The dependency of the absolute walking speed error of all true-positive WBs from the real-world 
recording on the WB duration reported by the reference system. In the top, WB errors are grouped by various 
duration bouts. In the bottom the number of bouts within each duration group is visualized.

Figure 5.  The walking speed estimations from the real-world recording of the reference system and the 
wearable device, from all WB within the respective duration bouts. The boxplots show the distribution over all 
WBs. The bars in the upper plot show the absolute difference between the medians of the distributions (see right 
y-axis). The bottom plot shows the number of WBs in each duration bout.
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one data point per participant. In some instances, we also observed negative ICCs (MS cohort = − 0.15), which 
indicates a very poor correlation. Furthermore, this analysis reduced the range in walking speeds, where a larger 
number of slow WBs were included, which further increased the estimation error.

The WB detection results further show that, dependent upon the cohort, the detected WBs on average only 
cover between 57 and 72% of the overall walking present in the data. As the pipeline is tuned to provide high 
specificity, this relatively low sensitivity is expected and this difference in the underlying data distribution par-
tially explained the increased error values for the combined analysis. This demonstrated the bias introduced in 
the true-positive analysis. Furthermore, the combined approach aggregates real-world data into singular values, 
which does not reflect the entire distribution of walking  speed37.

Comparing to one of the few other studies that performed a real-world validation of walking speed, the work 
by Soltani et al.38 validated an algorithm based on a single wrist-worn sensor against a head-mounted Global 
Navigation Satellite System device, finding low bias [interquartile range (IQR) = − 0.01, 0.00 m/s] and an accuracy 
expressed by root mean square error [IQR = 0.04, 0.06 m/s]. However, this validation was only performed in 
30 HAs (mean age = 37 years)38. Given the promising results we report for estimation of walking speed, and the 
results provided for the individual algorithmic blocks previously  reported26, we demonstrate that it is possible 
to use a single wearable device on the lower back for accurate quantification of mobility. However, it must be 
considered that the performance of algorithms and pipelines are dependent upon a variety of factors that should 
be taken into consideration during study design, future validation, and data interpretation.

Table 5.  Dependency on complexity for a selection of the gait tasks. The results are shown for each cohort, 
with limits of agreement (LoA). The “All” represents the statistics over all walking bouts (WBs) independent of 
the cohort.

Cohort Error with LOA (m/s) Rel. error with LOA (%) Abs error (m/s) Rel. abs. error (%)

All straight walks (low complexity)

 HA − 0.03 [− 0.18, 0.11] − 5.88 [− 30.92, 19.16] 0.07 [0.01, 0.13] 10.83 [1.47, 24.03]

 CHF − 0.12 [− 0.44, 0.19] − 11.28 [− 33.35, 10.78] 0.14 [0.03, 0.31] 12.99 [2.90, 29.27]

 COPD − 0.03 [− 0.13, 0.07] − 3.41 [− 17.78, 10.95] 0.04 [0.00, 0.09] 5.80 [0.38, 14.00]

 MS − 0.02 [− 0.29, 0.25] 0.67 [− 38.85, 40.18] 0.10 [0.02, 0.25] 14.40 [1.31, 37.39]

 PD − 0.04 [− 0.34, 0.26] 0.50 [− 34.73, 35.72] 0.12 [0.01, 0.34] 14.86 [1.64, 33.08]

 PFF − 0.03 [− 0.30, 0.25] 3.38 [− 40.07, 46.82] 0.11 [0.01, 0.32] 15.29 [1.19, 55.27]

 All − 0.04 [− 0.31, 0.23] − 0.87 [− 37.34, 35.61] 0.10 [0.01, 0.33] 13.66 [1.16, 36.71]

Straight walk slow (low complexity)

 HA − 0.03 [− 0.18, 0.11] − 5.88 [− 30.92, 19.16] 0.07 [0.01, 0.13] 10.83 [1.47, 24.03]

 CHF − 0.10 [− 0.26, 0.06] − 12.64 [− 31.78, 6.50] 0.10 [0.02, 0.22] 13.02 [2.34, 26.89]

 COPD − 0.02 [− 0.11, 0.08] − 2.89 [− 17.59, 11.82] 0.04 [0.00, 0.09] 5.51 [0.36, 14.06]

 MS 0.02 [− 0.18, 0.23] 6.15 [− 38.39, 50.69] 0.08 [0.03, 0.22] 16.58 [4.01, 51.47]

 PD 0.01 [− 0.18, 0.19] 4.42 [− 28.15, 37.00] 0.08 [0.01, 0.15] 13.55 [1.72, 35.43]

 PFF 0.05 [− 0.12, 0.22] 14.55 [− 33.80, 62.91] 0.08 [0.01, 0.19] 19.00 [1.13, 66.73]

 All 0.00 [− 0.18, 0.19] 3.14 [− 36.01, 42.28] 0.08 [0.01, 0.19] 14.14 [1.01, 40.68]

Simulated daily activities (high complexity)

 HA 0.09 [− 0.18, 0.36] 16.54 [− 29.66, 62.73] 0.12 [0.03, 0.30] 20.54 [3.77, 51.48]

 CHF 0.13 [− 0.12, 0.38] 29.99 [− 28.01, 88.00] 0.15 [0.03, 0.29] 32.24 [3.41, 64.94]

 COPD 0.02 [− 0.25, 0.30] 15.23 [− 48.13, 78.59] 0.11 [0.03, 0.22] 24.87 [4.06, 61.21]

 MS 0.19 [− 0.11, 0.49] 37.12 [− 27.99, 102.24] 0.21 [0.06, 0.40] 39.93 [6.36, 96.34]

 PD 0.16 [− 0.16, 0.49] 37.65 [− 56.98, 132.29] 0.18 [0.00, 0.36] 39.55 [0.47, 149.25]

 PFF 0.18 [0.03, 0.33] 40.29 [− 3.19, 83.78] 0.18 [0.10, 0.30] 40.29 [16.66, 77.12]

 All 0.15 [− 0.14, 0.43] 32.39 [− 35.64, 100.43] 0.17 [0.02, 0.37] 35.14 [2.42, 82.42]

All Real World WBs

 HA 0.04 [− 0.18, 0.27] 10.53 [− 35.92, 56.98] 0.09 [0.01, 0.26] 15.45 [0.83, 56.00]

 CHF − 0.04 [− 0.35, 0.27] 1.29 [− 48.12, 50.70] 0.12 [0.01, 0.32] 15.48 [1.24, 53.42]

 COPD 0.11 [− 0.16, 0.38] 22.71 [− 43.84, 89.26] 0.13 [0.01, 0.40] 24.88 [1.05, 91.11]

 MS 0.09 [− 0.20, 0.39] 19.56 [− 48.42, 87.53] 0.13 [0.01, 0.37] 23.53 [1.70, 80.64]

 PD 0.08 [− 0.24, 0.40] 17.79 [− 52.94, 88.53] 0.13 [0.01, 0.38] 22.99 [0.64, 94.50]

 PFF 0.04 [− 0.25, 0.32] 10.63 [− 50.73, 71.98] 0.11 [0.01, 0.33] 20.02 [1.24, 73.39]

 All 0.06 [− 0.23, 0.35] 14.48 [− 47.17, 76.13] 0.11 [0.01, 0.36] 20.31 [0.95, 76.20]
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Recommendation for real‑world DMO validation
Validation protocol
Across all cohorts we observed larger absolute errors and lower ICCs with walking speed estimated from the 
real-world in comparison to laboratory assessment, showing the importance of real-world validations to obtain 
realistic and ecologically valid error estimates of DMOs.

Despite this, our results also show that some real-world challenges can be replicated within laboratory set-
tings, as the errors observed during the simulated-daily activities in the laboratory were in fact higher than in 
the real-world. In these tasks, participants undertook short WBs containing turns, changes of direction and 
transitions. Scott et al.39 compared the walking speed ranges recorded from the laboratory and 2.5 h protocol 
that were adopted in the present study and found a diverse profile of walking speed ranges in the laboratory that 
was representative of the walking speed range observed in the real-world. Future validation studies should take 
into account an adequate balance between challenging tasks (short WBs, turns and transitions) and long unin-
terrupted walks in the laboratory protocol to properly replicate the expected error ranges from the real-world.

In general, the expected error ranges were dependent upon task complexity. Most condition specific differ-
ences were only prevalent in the real-world, which is consistent with previous research reported in HAs and 
people with MS and  PD13,18,40. Our findings motivate the inclusion of complex tasks and simulated daily activities 
into any future laboratory validation. However, we also recommend inclusion of real-world measurements to 
capture the true range of gait task complexity performed in daily life as well as a myriad of contextual factors, 
including the distribution of WB duration and walking speed.

Reference system
Utilization of the INDIP system as a reference during both the laboratory-based and real-world protocol proved 
to be successful in overcoming limitations in accuracy, battery life and usability, all of which are common restric-
tions of real-world reference systems previously adopted in the literature (e.g., wearable camera and GNSS (global 
navigation satellite system)38,41). Specifically, the INDIP system has been validated, showing excellent agreement 
(ICC > 0.95) and very low MAEs (simulated daily activities =  ≤ 0.05 m/s) against a stereophotogrammetric sys-
tem in the same cohorts and laboratory protocol as in the present  study31. The INDIP system was designed to 
enable the detection of gait and calculation of parameters based on as few assumptions as possible, particularly 
concerning the type of walking and the walking environment. Gait event detection relies on pressure insoles that 
are expected to work independently of the setting, and spatial parameter estimation is based purely on physics-
based integration methods that estimate the 3D trajectory of the foot. The INDIP’s performance was evaluated 
based on a  complex experimental protocol specifically designed for mobility assessment. Experiments included 
selected cohorts of participants with various conditions affecting gait characteristics, performing a complex bat-
tery of motor tests designed to produce a heterogeneous and broad range of gait patterns. Results showed overall 
good/excellent reliability and high repeatability and accuracy for the DMOs analyzed across populations, walking 
speeds, and WBs. Therefore, the INDIP system is a valuable candidate to collect reference standard data for the 
analysis of gait in real-world  conditions42,43. Other existing technologies can be used for obtaining reference data 
“out-of-the laboratory” (e.g., cameras, markerless systems), but they have intrinsic limitations that make their 
use inefficient (time consuming data analysis or small volume of data capture), less accurate for stride-by-stride 
description or not robust to quantify specific gait outcomes (e.g., spatial outcomes).

Figure 6.  The dependency of the absolute walking speed error on the different defined complexity tasks (see 
text). The results are split by patient cohort. The “All” group represents the statistics over all WBs independent of 
the cohort.
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The INDIP system can be used in both laboratory and real-world settings to enable a concurrent validation of 
walking speed measurements, as provided in the present study. The recording duration of 2.5 h with the INDIP 
system enabled recording of a wide range of activities and walking speeds.

Data analysis
We adopted two approaches to analyzing walking speed, (i) only considering WBs that were directly matched 
between the wearable device and reference system (true positive evaluation) and (ii) considering the median 
value of walking speed across all available data (combined analysis).

The true positive evaluation allowed comparisons to be performed with high granularity on a WB level, allow-
ing better understanding of the circumstances under which the wearable device performs best. However, for the 
true positive analysis we observed bias with regards to the overall walking speed ranges (Supplementary Figs. 1 
and 2), resulting in a non-negligible impact on the real-world results. Therefore, the combined analysis is required 
to confirm observed error ranges and differences in the results of the two approaches should be considered and 
discussed. Furthermore, this type of analysis introduced the true-positive threshold as a parameter that influ-
ences the results. While we could not find a relevant effect of the selection of this parameter value on the walking 
speed error (Supplementary Figs. 1 and 2), this might influence other DMOs. As our results indicate, no single 
type of analysis can provide a definite and full picture of the error ranges. Given the lack of other established 
approaches to perform real-world comparisons of DMOs with a high granularity, we suggest our framework as 
a basis for future DMO validation studies.

Practical recommendations for the use of wearable devices for real‑world walking speed 
measurements
Our results demonstrate that walking speed can be estimated accurately and reliably across a range of environ-
ments, cohorts, tasks and contextual factors. Based upon our promising validation results, below we provide our 
recommendations on the use of wearable device for real-world walking speed measurement.

Influence of pipeline
For improved understanding of the error, the impact on individual DMOs within the pipeline should be con-
sidered. In our case, given the complexity of the respective algorithms, stride length is expected to have a larger 
contribution to the observed walking speed error compared to cadence (Supplementary Tables 1 and 2)26. This 
motivates further research in more robust methods for spatial parameter estimation. Furthermore, the wearable 
device seems to record more shorter WBs than the reference, suggesting that longer continuous bouts of walking 
were split into multiple shorter WBs. Based on specific investigations of such cases, this was often due to limita-
tions of the initial contact and left–right detection. Under challenging conditions (e.g., turns or stairs), these 
algorithms could not provide reliable stride information leading to a separation of longer periods of walking 
into multiple WBs, as no valid stride was detected for multiple seconds. This could be the result of the wearable 
device being positioned on the lower back, where the reference system was also comprised of feet sensors, thus 
being more robust to quantify gait events across longer periods. The full pipeline is implemented separately for 
each system, so the combined estimates of all DMOs needed to meet criteria of a WB leads to heterogeneity 
between systems. This motivates further research in the detection of initial contacts and their laterality under 
challenging real-world conditions.

Walking bout duration
Real-world walking speed encapsulates a rich dataset of mobility that has been undertaken across various WBs 
which differ in their length, duration, and context. Each WB reflects a different profile of walking in terms of 
the number of turns, transitions, and periods of straight walking, which influences walking speed measurement. 
Therefore, it is not surprising that walking speed estimations were influenced by the WB duration, where very 
short WBs (< 10 s) presented the largest error. Additionally, the wearable device tends to detect a larger number 
of shorter WBs than the reference system but fewer medium WBs with intermediate durations (Fig. 5). This 
suggests that the wearable device tends to fragment gait sequences into smaller segments, possibly attributable 
to mis-detected initial contacts. We speculate that short WBs predominantly took place within confined indoor 
spaces such as the home environment. While walking speed captured at this short duration does not reflect steady 
state gait activities, it could still hold valuable information about balance and functional status (e.g., postural 
transition, weight-shift, sit-to-stand44. Algorithms optimized for straight walking in controlled settings had an 
increased likelihood of higher absolute errors at very short durations. Based on this, we would recommend using 
a lower cut-off (WBs > 10 s), to trade-off between the number of removed WBs and still including a minimum 
threshold of 401 WBs, needed to ensure reliability and validity for real-world gait monitoring in a single  cohort39.

Moving toward clinical application of wearable devices and walking speed measurement, it is important to 
consider in which specific real-world context wearable devices can quantify mobility most accurately and reli-
ably. Our findings demonstrated that WBs > 30 s provide the most accurate and reliable measurement. WBs > 30 
can be characterized as medium to long in their duration. Walking speed estimated from medium length WBs 
(between 30 and 60 s), may reflect activities of daily living, such as intermittent periods of shopping or under-
taking other errands in public spaces outside the  home18,45. In contrast, longer WBs (> 60 s), typically capture 
faster walking speeds that are closer to what is already being measured in the laboratory. Thus, walking speed 
measured in medium length WBs reflects a balance between capturing activities of daily living, and sufficient 
periods of straight walking activity that enable the robust quantification of walking speed. However, for certain 
patients walking continuously for 30 s as our cut-off suggests might already be strenuous. Thus, we would rec-
ommend using all (WBs > 10 s) to include a balance between capturing a sufficient number of WBs for patients 
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with a variety of condition severities, whilst ensuring walking speed can still be quantified reliably. Future clinical 
validation studies with a larger number of participants with severe gait impairments are required to confirm the 
reported error ranges for specific disease populations and can confirm the influence of WB duration upon the 
functional insight of mobility provided by walking  speed46.

Walking speed
The influence of the speed at which each WB is completed upon the validity of the walking speed is considered 
a confounding factor of gait  analysis47. When exploring the average walking speed across all WBs, we found 
that walking speed in WBs undertaken at slower speeds (< 0.6 m/s) tended to be overestimated by ≤ 0.8 m/s. The 
wearable device and WBs with faster speeds were underestimated, where moderate walking speeds provided the 
highest accuracy (Fig. 2). Longer WBs (> 60 s) were completed at faster walking speed in comparison to medium 
length WBs, which were undertaken at moderate speeds. Further, the overall number of slow WBs appears to be 
smaller for the wearable device. The speed distribution of only the true-positive WBs exhibits a similar shift in 
distributions but at overall higher speeds (Supplementary Fig. 2). In conjunction with the presented error values, 
this suggests that slow WBs are detected correctly, but their speed values are overestimated. Notably, these lower 
speeds were predominantly observed in short WBs. Consequently, this further justifies our recommendation 
that medium-length WBs provide the right balance between functional relevance and accuracy. Exploration 
of the clinical properties of walking speed encapsulated within these WBs, will become a topic of research and 
further investigated in on-going clinical validation  efforts46. Furthermore, measurements with cohorts consisting 
of predominantly slow walkers will likely result in larger error ranges. This is consistent with previous research 
that also validated algorithms based upon a single lower back  sensor33,48.

The algorithms used in this study were optimized and developed based on independent datasets to avoid 
bias. We foresee that future algorithms developed on the TVS dataset, and other similar real-world datasets can 
improve on the speed dependency observed here.

Real-world complexity
Aside from the WB duration, accuracy of walking speed estimation was also dependent upon the complexity of 
tasks/activities. The influence of complexity was cohort dependent and had the largest influence upon error for 
the MS, PD and PFF cohorts (estimated from P1 pipeline). We would expect those cohorts to experience more 
gait impairments than the CHF, COPD and HA cohorts (estimated from the P2 pipeline). However, whether the 
observed effect is caused by specific gait properties of the respective cohorts or by shortcomings in the selected 
algorithms, cannot be concluded based on the performed analysis.

Despite the challenges posed by outdoor environments (changes in terrain, weather and traffic negotiation 
(humans and vehicles))49,50, outdoor environments capture more prolonged and uninterrupted walks in com-
parison to indoor environments, such as the household, which represent more confined and cluttered spaces 
with limited capacity for completing sequences of straight walking. Thus, we would expect error ranges from 
long uninterrupted outdoor walks are expected to be lower than results from confined indoor environments. 
Therefore, the combination of gait parameters with further contextual information might help to take this into 
account during data interpretation.

Limitations
While this study is one of the largest and most comprehensive validation studies for gait analysis based on wear-
able devices to date, the analysis of specific subgroup effects would require larger sample sizes. Potential links 
between the error, the condition severity and other medical comorbidities could not be established. Furthermore, 
the effect of walking aid use on results has not been assessed in this study. Future studies with more variable 
condition severity are needed to explore the influence of walking aid usage upon the validity of the analytical 
pipelines.

The real-world data was limited to 2.5 h for technical reasons. However, we accept that a recording of this 
length may not be sufficient to capture all the variability and patterns that would be included in multiple days 
of consecutive assessment. Due to technical issues with the devices, we were unable to assess some participants, 
which reduced our dataset. Data was also collected during the COVID-19 pandemic which may have impacted 
on participants’ activity. While the analytical pipeline offers several strengths, its combined implementation does 
have limitations. As previously stated, the analytical pipelines for the wearable device data have the tendency to 
split longer WBs into multiple individual WBs. Hence, future research should explore whether this is caused by 
limitations of the initial contact and Left–Right detections, and how specific real-world contexts may influence 
walking speed performance. We found that error in walking speed estimation was more dependent upon stride 
length (spatial) estimation (MARE across all cohorts; laboratory = 14.31% and real-world 20.35%), however 
cadence (temporal) can be estimated with substantially lower errors (MARE across all cohorts; laboratory = 4.1% 
and real-world 4.8%) (Supplementary Tables 1 and 2). Therefore, future researchers looking to further improve 
performance of walking speed estimation, should target optimization of spatial algorithms.

Conclusion
Through the extensive real-world and laboratory validation across multiple cohorts, this study represents, to the 
best of our knowledge, the most accurate estimate of the expected error ranges of a lower-back wearable device 
for estimation of walking speed. The presented state-of-the-art algorithms pipelines could reliably estimate 
DMOs across a wide range of scenarios, providing a solid foundation for future studies to establish their clinical 
 meaningfulness46. While complex setups like camera-based motion capture systems in the laboratory and wear-
able multi-modal sensor system in real-world scenarios still provide superior performance and might be required 
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for certain types of clinical analysis, we demonstrated the suitability of a single easy-to-use and inexpensive 
wearable device for movement monitoring across a wide range of clinical indications. This has the potential to 
make gait related parameters from long-term real world recordings ubiquitously available for clinical decision 
making. Our results showed that various parameters can influence DMO performance and multi-faceted analysis 
is crucial for understanding of the capabilities of any DMO pipeline. This motivates the capture of additional 
context information during real-world measurements to focus analysis on signal areas where high reliability can 
be expected. Furthermore, we identified clear areas where future algorithm pipelines can still improve, and we 
believe that the captured dataset will be vital for the development of future algorithms specifically targeting the 
challenges of unsupervised real-world recordings.

Methods
Participants
For the Mobilise-D technical validation study (TVS), participants were recruited from five clinical cohorts (CHF, 
COPD, MS, PD, and PFF) alongside HA. Participants were recruited at five sites: The Newcastle upon Tyne 
Hospitals NHS Foundation Trust, UK (Sponsor of the study) and Sheffield Teaching Hospitals NHS Foundation 
Trust, UK (ethics approval granted by London – Bloomsbury Research Ethics committee, 19/LO/1507); Tel Aviv 
Sourasky Medical Center, Israel (ethics approval granted by the Helsinki Committee, Tel Aviv Sourasky Medical 
Center, Tel Aviv, Israel, 0551-19TLV), Robert Bosch Foundation for Medical Research, Germany (ethics approval 
granted by the ethical committee of the medical faculty of The University of Tübingen, 647/2019BO2), University 
of Kiel, Germany (ethics approval granted by the ethical committee of the medical faculty of Kiel University, 
D438/18). Informed consent was provided by all participants to take part in the study and all research was per-
formed in accordance with the Declaration of Helsinki. Inclusion and exclusion criteria are fully described  in24.

Protocol
The protocol has been extensively detailed  in24. Participants were assessed in the laboratory and during a 2.5-h 
real-world observation. Mobility data was collected with a wearable device (McRoberts Dynaport MM+ , sam-
pling frequency: 100 Hz, triaxial acceleration range: ± 8 g/resolution: 1 mg, triaxial gyroscope range: ± 2000 
degrees per second (dps)/ resolution: 70 mdps), secured at the lower back with a Velcro belt. Participants were 
also asked to wear a multisensor INDIP reference system (sampling frequency: 100 Hz)24,30. Specifically, two 
magneto-IMUs were positioned over the instep and fixed to shoelaces with clips, and a third IMU was attached 
to the lower back with Velcro. Distance sensors were then positioned asymmetrically with Velcro (one above left 
ankle and another 3 cm higher on the right leg). Pressure insoles were selected for each participant’s foot size and 
inserted into the shoe. The INDIP system has been validated in previous studies across a range of conditions and 
in this TVS cohorts also, showing excellent results and reliability in the qualification of mobility outcomes (MAE 
laboratory ≤ 0.02 m/s, simulated daily activities = 0.03 to 0.05 m/s), a complete overview of the validation results 
can be found  in31. The INDIP and the wearable device were synchronized using their timestamps (± 10 ms). 
Participants only performed tasks that they felt comfortable and safe to do in both protocols.

Laboratory protocol
Participants were asked to complete seven motor tasks with increasing complexity: Straight walking (slow, 
normal and fast speed), Timed Up and Go, L-Test, Surface Test, Hallway Test and Simulated Daily Activities. 
Each task was designed to capture and assess various elements associated with real-world walking including a 
range of walking speeds, incline/steps, surface, path shape, turns and specific motor tasks to simulate typical 
real-world  transitions24,39.

Real-world protocol
Participants were assessed for up to 2.5 h in the real-world, as they went about their normal activities unsuper-
vised (home/work/community/outdoor). The duration of the observation has been established as a trade-off 
between experimental, clinical, and technical requirements. To capture the largest possible range of activities 
during this assessment, participants were guided by the following list of activities: if relevant for their chosen 
environment, rise from a chair and walk to another room; walk to the kitchen and make a drink; walk up and 
down a set of stairs (if possible); walk outdoors (if possible, for a minimum of 2 min); if walking outside, walk 
up and down an inclined path. We did not provide supervision or structure on how these tasks should be com-
pleted to the  participants24.

Calculation of walking speed
The evaluation of walking speed requires the combination of various algorithmic steps, including the identifica-
tion of gait sequences and of initial contacts, estimation of DMOs, i.e., cadence and stride length. Selection of the 
top-ranked algorithms to detect gait-sequences, estimate initial contact events, cadence and stride length within 
identified gait-sequences was determined in our previous  work26 (Fig. 1). The best performing algorithm was 
then used to estimate walking speed using the outputs of the stride length and cadence algorithms using Eq. (1):

Two independent analytical pipelines (P1 and P2) were identified in this process due to differences in algo-
rithm selection for gait-sequence detection and cadence for the different conditions included in the  study26. P1 
provides the optimal combination of algorithms selected for HA, COPD, and CHF conditions, and P2 provides 
the optimal combination for PD, MS, and PFF (Fig. 7).

(1)Walking speed[m/s] =

(

cadence
[

step/min
]

/(2 ∗ 60)
)

∗ stride length[m]



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1754  | https://doi.org/10.1038/s41598-024-51766-5

www.nature.com/scientificreports/

Two additional algorithms were added to both gait analysis pipelines: turn detection  algorithm51, and a 
customized algorithm to detect the laterality (left or right step) of each  IC52. Laterality was used to interpolate 

Figure 7.  Overview over the different algorithmic steps of the analytical pipeline with short explanations of the 
intermediate and final outputs of each of the algorithmic blocks; gait sequence detection (GSD), initial contact 
detection (ICD), cadence estimation (CAD) and stride length estimation (SL). The algorithm column indicates 
the used algorithms for the two pipelines P1 (HA, COPD, CHF). (MS, PD, PFF) and P2 (MS, PD, PFF) Short 
citations for the algorithms are provided below the figure. For more details see Table 1  in26.
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the cadence, stride length, and walking speed parameters (provided as per-second values by the algorithms) to 
stride-level values (stride interpolation).

DMOs were evaluated on a stride level, conforming to consensus agreed  definitions53 for WBs. Accord-
ingly, a WB was defined as a continuous sequence containing at least two consecutive strides of both feet (e.g., 
R–L–R–L–R–L or L–R–L–R–L–R, being R/L the right/left foot making contact with the ground); consecutive 
WBs were defined if a break greater than 3 s was identified between them; and, for a stride to be included in a 
given WB it had to have a duration between 0.2 and 3.0 s and a stride length > 0.15  m54. WBs compliant with this 
definition were generated by first filtering the list of identified strides based on the stride level definition (stride 
selection) and then grouped into final WBs based on breaks within the stride sequence (walking bout assembly). 
The same definitions were also used to define the WBs for the reference system. For both systems final DMOs 
were calculated as the average value over all strides within a WB.

Validation of walking speed
All comparisons between the wearable device and the reference system were performed based on the average 
walking speed within each identified WB. In addition, comparison results for cadence and stride length can 
be found in Supplementary Tables 1 and 2. Further, we evaluated the performance of the WB detection on the 
2.5-h real-world assessment to provide additional context for the error parameters. For this we calculated the 
accuracy, sensitivity, specificity and positive predictive value, by comparing the regions of the WBs detected by 
the wearable device with the WBs reported by the reference system on a sample-by-sample basis following the 
same approach used for evaluation of the gait sequence detection (GSD) methods  in26. Real-world recordings 
also provide new challenges during data analysis. WBs detected by the wearable device, and the reference system 
might not match up, thus direct comparison of individual strides or WBs is not possible. One straight-forward 
approach is to average DMOs across all WBs before comparison. However, this reduced granularity makes it 
difficult to fully understand under which circumstances a wearable device works well and can “mask” the bias 
or error (e.g., over or underestimation under specific circumstances) that only considering a single WB could be 
identified. We proposed a new approach for these types of data analysis, by splitting the analysis into a detailed 
comparison of only WBs that were identified in both systems (True positive WBs) and a traditional analysis of 
all data combined (Combined WBs).

1. True Positive Evaluation Novel method of analysis, which directly compares the performance of the DMOs 
on only the WBs that were detected in both systems (true positives). This allows for the calculation of tra-
ditional of comparison metrics (e.g., interclass correlation and Bland–Altman plots), that require a direct 
comparison of individual measurement points. WBs were included in the true positive analysis, if there was 
an overlap of more than 80% between the two systems (details about the selection of this threshold can be 
found in Supplementary Fig. 1). The threshold of 80% was selected as a trade-off to allow us: (i) to consider 
as much as possible a like-for-like comparison between selected WBs (INDIP vs. wearable device), and at 
the same time (ii) to include the minimum number of walking bouts to ensure sufficient statistical power 
for the analyses (i.e., at least 101 walking bouts for each cohort). This target was based upon the number of 
walking bouts rather than a percentage of total walking bouts that would allow us to meet criteria estab-
lished by statistical experts for robust statistical analysis after sample-size re-evaluation (total walking bouts 
number > 101 corresponding to ICC > 0.7 and a CI = 0.2).

2. Combined Evaluation Traditional method of analysis, where we calculated the median walking speed from 
all identified WBs within each laboratory task (resulting in one value per gait task per participant) or within 
the 2.5 h real-world assessment per participant (resulting in one value per participant) and compared these 
combined values between the systems. This comparison is free of potential biases introduced by the selec-
tion of only the true-positive WB and reflects how DMOs will typically be evaluated in a research or clinical 
setting or when reference data may not be available.

Factors that can influence walking speed validity
A range of factors can influence walking speed, and this may impact the algorithm performance and validity of 
the results. We investigated the possible sources of confounding such as: the cohort, environment (laboratory 
vs real-world), task complexity, walking speed and walking bout duration, and participant performance upon 
walking speed validity. All comparisons (unless otherwise stated) are performed using WBs identified as true 
positive (true positive evaluation).

Influence of the cohort and environment
We compared errors in the estimation of walking speed between each of the different clinical cohorts included 
in the study, alongside differences between laboratory and real-world environments.

Influence of gait task complexity
Real world walking contains complex gait sequences, which are comprised of short steps, frequent turns, or 
obstacle negotiation where individuals often multitask during walking. Thus, gait patterns observed in the real-
world are not comparable with the straight walking tasks undertaken in controlled environments, even if we 
account for differences in WB duration and walking speed. To assess the effect of gait-task complexity we com-
pared validation results of walking speed estimated from the (i) simulated daily activities (high complexity), (ii) 
slow straight walking (low complexity), (iii) all straight walking tasks (low complexity), and (iv) all laboratory 
tests with the validation results of walking speed estimated from real-world walking. We further subdivided 
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real world walking based on the percentage of a WB that was assessed to be a turn. Based on this we defined the 
following levels of gait complexity: (v) “simple” straight gait (< 20% covered by turns) and (vi) “complex gait” 
(> = 60% covered by turns).

Influence of walking speed and walking bout duration
Given the impact of real-world WB durations and  speeds44 on the adopted biomechanical  strategies55, we ana-
lyzed their influence on the validity of the walking speed. For this, we assessed whether validity of walking 
speed estimation differed within specific WB durations bins (< 10 s, > 10 s, 10–30 s, 30–60 s, > 60 s and > 120 s). 
This was first performed for all true positive WBs comparing their errors across each WB threshold, and sub-
sequently repeated for the combined analysis, by calculating the median walking speed for each participant 
within the respective speed bout and comparing the median values between the reference system and the wear-
able device. All these analyses permitted the validation of the quantification of walking speed across different 
walking strategies.

Validation measures
For all types of evaluations (all available WBs/aggregated values or on the respective subgroups), we calculated 
various statistical/comparison measures to quantify the walking speed estimation error for the sensitivity analysis:

• Intraclass Coefficient  (ICC(2,1))
56 was calculated to assess the association between the DMOs of the two 

systems. Based on ICC estimates, values < 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and > 0.90 were 
deemed to be indicative of poor, moderate, good, and excellent reliability,  respectively57.

• Absolute agreement was assessed by quantifying (i) the accuracy/mean absolute error (MAE), (ii) bias/mean 
error and (iii) precision/limits of agreements (LoA)58 between walking speed estimates of both systems.

• Mean relative errors (MRE) and mean absolute relative error (MARE) were estimated as the ratio between 
the (absolute) errors per WB and the corresponding estimates from the reference system, expressed as a 
percentage.

Data availability
Representative data from the dataset presented in this study can be found on Zenodo: https:// doi. org/https:// doi. 
org/ 10. 5281/ zenodo. 75471 25. The complete dataset of the Mobilise-D Technical Validation study will be made 
publicly available in the future.
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