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A B S T R A C T   

Railway track dynamic stiffness is the relationship between track deflection and loading frequency. Its inverse, 
also known as receptance, is an important quantity that affects the track’s dynamic response under moving trains 
and noise and vibration characteristics. Despite its importance, there has been limited detailed study into 
receptance at lower frequencies (< 1000 Hz). Thus, this paper contributes two main novelties. The first is the 
presentation of a novel numerical approach well-suited to receptance calculation, and secondly, a parametric 
study identifying the key frequencies associated with different track components. The new approach is first 
presented, which uses a 3D periodic domain coupled with perfectly matched layers and is solved in the 
frequency-wavenumber domain. It is well-suited to the problem because it can capture dynamic wave propa-
gation within the complex geometries associated with each track component, while using an efficiently-sized 
domain. The model is validated in terms of its ability to capture the dynamic response of 3D periodic struc-
tures, and also the behaviour of a railway track. It is then used to study the effect of two common modelling 
assumptions (beam-on-elastic foundation and symmetry) on the calculation of track receptance. It’s shown that 
ignoring wave propagation in the subgrade-earthwork layers induces errors in the ≈ 80 − 300% range at fre-
quencies below 200 Hz, and errors of ≈ 30% in the 200 − 440 Hz range. It is also shown that the assumption of 
track centreline symmetry ignores some track bending modes and can also introduce errors (≈ 20%) at fre-
quencies up to 1000 Hz. Finally, the effect of the most common ballasted track components on receptance are 
analysed and new knowledge is presented regarding the typical frequency ranges associated with each.   

1. Introduction 

The dynamic characteristics of a railway track play an important role 
in its interaction with rolling stock and are closely connected to short 
term and long term behaviour (settlement) [1,2]. Thus, dynamic stiff-
ness is key parameter reflecting the entire system’s quality and perfor-
mance, which depends on its component’s individual and collective 
behaviour. Track stiffness can be divided into two categories: static and 
dynamic. In both cases, it is expressed as the ratio between the applied 
force and the corresponding deformation of the structure [3–5]. How-
ever, the force and its resulting deflection are static in the former 
instance, whereas dynamic and frequency-dependent in the second case. 
Although both are relevant for track design and maintenance, dynamic 
stiffness is a key parameter for understanding railway dynamics issues. 

These include ground-borne noise and vibration at low-frequencies, 
track dynamics problems at mid-frequencies, and rolling noise issues 
at high-frequency ranges [6,7]. 

Dynamic stiffness is commonly studied via its inverse, ‘receptance’ 
(also referred to as ‘compliance’, ‘dynamic flexibility’ or ‘force- 
displacement transfer function’). Receptance analysis enables the 
characterisation of railway systems and their components in terms of 
frequencies influencing the track behaviour. These frequencies are 
typically referred to as frequencies of resonance and are associated to a 
‘mode’ of the structural vibration. Receptance can be used to identify 
various structural properties such as stiffness, damping and potentially 
component dimensions, as well as changes in these parameters and their 
overall relationship with the global system behaviour. This information 
has the potential to be used for assessing the mechanical behaviour of 

* Corresponding author. 
** Corresponding author. 

E-mail addresses: cnaclp@leeds.ac.uk (A.C. Lamprea-Pineda), D.Connolly@leeds.ac.uk (D.P. Connolly), amgcpinto@fe.up.pt (A. Castanheira-Pinto), pmbcosta@ 
reit.up.pt (P. Alves-Costa), mhussein@qu.edu.qa (M.F.M. Hussein), P.K.Woodward@leeds.ac.uk (P.K. Woodward).  

Contents lists available at ScienceDirect 

Soil Dynamics and Earthquake Engineering 

journal homepage: www.elsevier.com/locate/soildyn 

https://doi.org/10.1016/j.soildyn.2023.108331 
Received 25 September 2023; Received in revised form 26 October 2023; Accepted 27 October 2023   

mailto:cnaclp@leeds.ac.uk
mailto:D.Connolly@leeds.ac.uk
mailto:amgcpinto@fe.up.pt
mailto:pmbcosta@reit.up.pt
mailto:pmbcosta@reit.up.pt
mailto:mhussein@qu.edu.qa
mailto:P.K.Woodward@leeds.ac.uk
www.sciencedirect.com/science/journal/02677261
https://www.elsevier.com/locate/soildyn
https://doi.org/10.1016/j.soildyn.2023.108331
https://doi.org/10.1016/j.soildyn.2023.108331
https://doi.org/10.1016/j.soildyn.2023.108331
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2023.108331&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Soil Dynamics and Earthquake Engineering 177 (2024) 108331

2

the track structure, define control strategies for several railway issues, 
and optimise design of new systems. 

Receptance studies have proposed analytical, semi-analytical and 
numerical approaches to assess the track structure and its components. 
Perhaps the most comprehensive sensitivity studies on railway track 
components’ behaviour have been conducted using analytical methods, 
such as beam-on-elastic-foundation (BOEF) formulations. These studies 
have examined the effect of the excitation position, number of layers, 
element formulations (beam and damping models), material properties, 
and support effect [8–11]. This range of analysis is possible due to the 
simplified modelling approach, which characterises the track system 
components as beams, a series of elastic elements, and lumped masses. 
These studies have shown that analytical methods require a certain 
degree of complexity in their simulation, including a minimum of two 
layers and discrete supports, in order to be able to capture the main 
vibration modes [9]. 

Analytical approaches are unable to fully capture 3D wave propa-
gation effects because they are limited in the structural elements they 
can be formed from. Therefore, they are well suited to cases where the 
assumption of a rigid foundation is applicable (e.g. directly-fixed rail-
way track in a tunnel) or noise modelling where vibration is confined 
within the upper track structure. In an attempt to approximate 3D 
ground wave propagation [12], implemented flexibility matrices in the 
track sub-structure, defined in the frequency domain, thus enabling 
subgrade simulation. Different track support models resting on homo-
geneous and layered-homogenous mediums were compared with 
simpler analytical models. Results demonstrated the importance of 
modelling the ground at frequencies below 400 Hz, yielding a recep-
tance result that the viscoelastic foundation of the analytical model 
could not replicate. 

Nevertheless, receptance analyses conducted via analytical or semi- 
analytical strategies rely on several important approximations of the 
railway system. For instance, railpad complex geometries are usually 
simplified into viscoelastic point supports – elements described using 
minimal material parameters (i.e. stiffness and damping only, in absence 
of geometrical dimensions); track layers are often combined with 
equivalent parameters used instead; supporting ground is often simu-
lated via springs-in-series assumptions; among other track components’ 
behaviour ignored during simulation that affects the overall dynamic 
response. 

To address this, numerical approaches such as the finite element (FE) 
and boundary element (BE) methods have also been used to compute 
receptance. Numerical techniques can be solved in both frequency and 
time domain [13]. In the former, receptance is computed by enforcing 
Fourier transformations during the formulation of the algorithms. Ap-
proaches in this domain are widely employed in simulations since they 
provide a straightforward algebraic formulation. In contrast, 
time-domain methodologies are solved via iterative integration schemes 
[14,15]. Following the latter methodology [16], conducted an extensive 
investigation of the dynamic behaviour of the track, assessing the sup-
port effect, material properties, and the location of excitation and 
observation points on different track types, and comparing the results 
against field tests. This numerical time-domain model was then com-
bined with sensitivity studies on ballasted tracks to derive equations of 
the resonant frequencies in Ref. [17]. Similarly [18], used a 3D FEM 
solved in the time domain to compare two different railpad elements: 
viscoelastic and solid. However, as the frequency range of interest 
started at 300 Hz, the soil behaviour was not included in the simulation. 
This sensitivity analysis on railpads was extended in Ref. [19], including 
parameters such as the toe load, temperature effect, aging conditions, 
and railpad type. Additionally [20], studied the wheel-rail impact 
problem in the time domain by comparing two wheel-track interaction 
models, the beam and continuum FE. The former used a discretised 
Timoshenko beam in the rail and sleeper formulation, whereas the latter 
employed 3D solid elements. Although both cases simulated railpad and 
ballast via spring elements, the rail is supported at a single point in the 

beam model and over an area in the solid model. Overall, findings 
indicated that solid elements can approximate receptance more accu-
rately than the beam model. The frequency range was broader in this 
case, ranging from 10 to 3000 Hz and the subgrade was not included in 
the formulation. 

Although numerical methods potentially provide more flexibility to 
model the true geometry of a railway track compared to analytical and 
semi-analytical methods, they are computationally demanding. In order 
to reduce the computational effort while still delivering accurate ap-
proximations of the structure’s behaviour, periodic strategies are a 
promising solution. These approaches take advantage of the periodic or 
repetitive characteristics of the system, thus reducing the domain under 
consideration and, in turn, reducing the computational resources and 
increasing the computational efficiency. Among the various periodic 
approaches, the 2.5D Finite Element (FE) has been widely applied for 
railway track simulations [21–25]. This method requires simplifying the 
structure into a 2D slice. Assuming this slice repeats along the longitu-
dinal or train passage direction, a fully 3D response is recovered via 
Fourier transformations. For example, combining this approach with the 
boundary element method (BE) [26], studied the effects on ballasted 
tracks with mats via receptance analysis. However, since the study 
focused on lower-track components, only low-frequency ranges 
(f < 150 Hz) were considered. Despite providing computational bene-
fits, the 2.5D only meshes the cross-section of the structure and assumes 
a homogeneous behaviour in its longitudinal direction. Thus, the 
method fails to capture discrete rail support effects. 

As an alternative periodic approach to 2.5D, the 3D FE wave prop-
agation technique enables the simulation of discrete support behaviour 
[27–29]. This is achieved by discretising the structure into a 3D slice, 
and enforcing Floquet transformations solved via Eigenvalue problems 
in the wavenumber-frequency domain, i.e. modal analysis. Using this 
method [30], conducted low-frequency range (f < 100 Hz) receptance 
analysis to study several substructure track properties, such as transition 
zone problems and the effect of different mats. Although this method 
offers a flexible geometry, it relies on extracting Eigenmodes and 
demanding additional strategies to optimise the solution process. 

To address these challenges, this paper provides two main novelties: 
(1) the presentation of a new numerical approach tailored to receptance 
calculation on ballasted tracks, and (2) a comprehensive study identi-
fying the key frequencies associated with different track components. 
First the paper introduces the theory of receptance, resonant frequencies 
and vibration modes. Then, the numerical approach and its validation 
are presented. This employs a computationally efficient periodic tech-
nique that simulates the structure as a 3D FE-PML slice (finite elements 
coupled to perfectly matching layers to simulate both the track and the 
ground, respectively) and later recovers the complete structure’s 
response via a direct inversion and the application of Floquet’s theorem. 
Next, a sensitivity analysis of the various track components is conducted, 
including the effect of the rail section, railpad stiffness, sleeper material, 
under sleeper pad (USP) application, ballast stiffness, embankment 
simulation, and subgrade stiffness. Finally, the track components’ effect 
on receptance is assessed, allowing for the definition of typical fre-
quency ranges associated with each. Using the proposed 3D FE-PML 
periodic technique, it provides in-depth insight into the effects of 
track components on receptance, which complements the research 
conducted in Refs. [9,12,16]. 

2. Receptance concepts 

Receptance is a frequency response function (FRF) which allows for 
an understanding of the dynamic track behaviour in terms of deflection. 
The various vibration modes of the track are related to specific resonant 
frequencies and strongly depend upon their various components’ 
properties [10,16,31]. The conventional definition of receptance is 
described in Eq. (1): 
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α2(ω)= Sww(ω)
SFF(ω)

(1)  

where α is receptance or displacement amplitude resulting from the unit 
impulse excited with frequency ω; and Sww and SFF are the auto-spectrum 
of the displacement and the force, respectively [16]. In addition to 
receptance function, which expresses the response as displacements, two 
additional FRFs sometimes computed during in-situ testing are: mobility 
and accelerance, in terms of velocities and accelerations, respectively. 
See Table 1 where all frequency functions are mutually related by the 
angular frequency ω. Note that although FRFs are inherently complex 
functions, the focus of this paper is on the absolute response of the track. 
Thus, Eq. (1) and Table 1 depict auto-spectrum and absolute results, 
respectively (i.e. FRF complexity vanishes). Alternatively, if considering 
FRFs’ complexity, derivations in Table 1 should incorporate the imagi-
nary component in terms of iω. Similarly, to describe the complexity in 
Eq. (1), the cross-spectrum between the displacement and the force SwF 
can be included, resulting in α(ω) = SwF(ω) /SFF(ω) – see Ref. [31]. 

2.1. Vibration frequencies and modes 

The properties and position of the track components define the 
complete structural vibration. Based on this, three frequency ranges can 
be identified according to their main effect on the structural components 
[5]:  

• Low frequencies, f = [0 − 300] Hz, mostly influencing the track 
substructure.  

• Mid frequencies, f = [300 − 800] Hz, affecting all superstructure 
components except the rail.  

• High frequencies, f > 800 Hz, which mainly impact the rail 
behaviour. 

The important track frequencies can be discretised into those below. 
The corresponding mode shapes are shown in Fig. 1 using simplified 
beam-on-elastic foundation visual representation to assist understand-
ing. From low to high frequency:  

(a) Subgrade resonance fsubgrade. Although mainly governing the low- 
frequency range, the subgrade properties also influence the 
response up to the mid-range [12]. At this frequency, the bal-
lasted track has its maximum deformed shape, with all layers 
adopting a similar deformed shape to the subgrade, leading to a 
wide bending shape, as shown in Fig. 1(a).  

(b) Full track resonance ffull− track. Often found at low- and lower mid- 
ranges, at this frequency, the rail and the sleeper mass move 
vertically in phase on the flexibility of the lower track layers (i.e. 
ballast and sub-ballast). The amplitude of receptance is well- 
damped at ffull− track, mainly due to the ballast, which makes its 
receptance peak flat [32]. The vibration mode generated at this 
frequency is similar to that displayed at fsubgrade, however its 
deflection is lower with reduced subgrade deflection – see Fig. 1 
(b). Despite its characteristic deformed shape, due to the wave 

propagation effect of the subgrade, ffull− track can be challenging to 
identify. 

(c) Rail frequency frail. This receptance frequency occurs at fre-
quencies above ffull− track, between the mid- and high-frequency 
ranges. At this frequency, the rail and the sleeper mass move in 
opposite directions (i.e. in antiphase) on the flexibility of the 
railpad [8,9] – as illustrated in Fig. 1(c). Often, several peaks with 
similar mode shapes to frail can be found at different frequencies, 
resulting in multiple frail,i. Lower frequency peaks frail,1 are mostly 
related to the ballast properties. On the contrary, peaks located at 
higher ranges are related to a stiff railpad behaviour and the rail 
frequency can instead be defined as the railpad frequency, i.e. 

Table 1 
Frequency response definition and relationships [16].   

Receptance (or 
Compliance) 

Mobility (or 
Admittance) 

Accelerance (or 
Inertance) 

Response 
definition 

Displacement/Force Velocity/Force Acceleration/Force 

Equation α =
Y
ω =

χ
ω2 

Y = ωα =
χ
ω 

χ = ω2α = ωY 

Unit [m /N] [m /Ns] [m /Ns2]

Inverse Dynamic stiffness Mechanical 
impedance 

Apparent mass  

Fig. 1. Generalised mode shapes of a track on a flexible foundation. Corre-
sponding to: (a) subgrade resonance, (b) full-track resonance, (c) rail resonance, 
(d) sleeper anti-resonance, and (e) pin-pin resonant frequency. 
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frail,2 = frailpad. Note that for soft railpads, frailpad value is low, 
likely combining into a single peak with frail,1. 

(d) Sleeper anti-resonance fsleeper is a low magnitude region sepa-
rating both consecutive resonant frequencies ffull− track and frail. 
At this frequency, the amplitude of displacement drops, reaching 
a pronounced minimum. Due to this behaviour, which is analo-
gous to the pronounced maxima found in ffull− track and frail, this 
frequency is known as an anti-resonance. At this frequency, the 
rail displays minimal movement, while the sleeper moves verti-
cally in parallel to the railpad and the ballast [8,12] – as 
described in Fig. 1(d).  

(e) Pin-pin resonant frequency fpin− pin. Similar to frail, at fpin− pin the 
rail is in antiphase with its discrete supports. However, at the pin- 
pin resonance, the bending shape of the rail is defined by the 
support spacing [8,12]. Due to the low damping provided by the 
rail, the receptance peak lies in a narrow frequency range [32]. 
Fig. 1(e) shows the first order pin-pin frequency fpin− pin. 

To illustrate the reading and interpretation of receptance curves, 
Fig. 2 highlights the main resonant frequencies of a ballasted track 
resting on a homogeneous half-pace. Receptance curves, computed at 
mid-span and on support of the rail, are displayed in different formats: 
(a) linear-linear, (b) linear-log (semi-log), and (c) log-log scale. Also, the 
effect of the railpad stiffness is shown at mid-span and above sleeper 
receptance curves: soft railpads result in a single frail, while stiff railpads 
leads to multiple frail,i. In addition, it is seen that the railpad does not 
significantly affect the fpin− pin value at mid-span of the rail, however, 

stiff railpads increase the amplitude of the response at this frequency. On 
the contrary, above the sleeper, fpin− pin and its amplitude are lower for 
the soft compared to stiff railpads. In the linear-linear case, results are 
scaled equally on both axes, meaning readability can be challenging if 
the stiffness changes significantly throughout the track-ground struc-
ture. For instance, when a stiff track rests on a much softer ground, the 
amplitude of the response at lower frequencies is larger than that at 
higher frequencies. Therefore a linear-linear scale is usually most suit-
able for studying lower frequency energy. 

Alternatively, logarithmic formats can help improve the readability 
of receptance curves which oscillate over the wider amplitude (and 
frequency) ranges. In the linear-log scale, the horizontal axis (frequency) 
is linear, while the vertical (receptance amplitude) is in logarithmic 
format. This helps highlight changes in amplitude in the mid frequency 
range. Finally, a log-log format is useful for studying changes in the high 
frequency range because it amplifies oscillations at high frequency, 
which are small compared to the low frequency energy. Therefore it is 
commonly used for noise analysis. Considering the focus of this paper is 
on the effect of track components on receptance, the linear-linear scale is 
predominantly used hereafter. 

2.2. Receptance testing configuration 

Experimentally, receptance can be computed via an instrumented 
hammer test, which excites the track – either the rail or the sleeper. This 
results in time-history amplitudes recorded through accelerometers (or 
geophones) that, along with the time-domain excitation signal, are later 

Fig. 2. Ballasted track receptance curves with resonant frequencies highlighted: (a) linear scale, (b) semi-log scale, and (c) log-log scale.  
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processed to obtain the frequency-domain response and compute the 
receptance function [16,21,33,34]. However, when performing in-situ 
receptance testing, it is challenging to measure the response at the 
exact track position where the hammer excitation is applied. Thus, in 
contrast to the idealised receptance procedure performed in numerical 
models, in-situ transfer functions (also known as cross-receptance) 
require the sensor position to differ from the excitation. This results in 
lower deflection amplitudes in the latter case compared to the former. 

Fig. 3 shows some typical in-situ receptance test configurations, 
highlighting the excitation and sensor locations, including: rail above 
the sleeper (blue), rail at mid-span or between two sleepers (red), 
sleeper shoulder (yellow), and sleeper centre (green). The choice of 
excitation position plays a significant role in the receptance curve 
characteristics, particularly at high-frequency ranges. For example, 
when the excitation is applied at mid-span of the rail, the response at 
fpin− pin is high, resulting in an upper peak describing a large deflection 
and a resonant frequency. In contrast, when the force is on the rail above 
the support or directly on the sleeper, the pin-pin occurs at a lower peak, 
resulting in a stiff track and an anti-resonance [8,32,35] – see Fig. 2. 

3. Numerical modelling 

3.1. Motivation 

Beam-on-elastic-foundation (BOEF) approaches are widely 
employed when studying railway track dynamics. Most commonly they 
assume the track response can be approximated using a single-layer 

continuous beam supported by springs-in-series (representing the rails 
and the underlying track layers, respectively), thus, offering a straight-
forward and computationally efficient approach. Although the under-
lying formulation can be extended to incorporate discrete sleeper effect 
and additional track components in the form of lumped masses and 
elastic layers, it is difficult to accurately capture 3D wave propagation 
within the track, which is crucial for simulating receptance – see Fig. 4. 

To overcome this, the track requires 3D simulation, faithfully 
capturing the geometry of each track component. The challenges asso-
ciated with using BOEF for receptance, and how they are overcome 
using 3D modelling are:  

• Rail support conditions. Although able to represent their discrete 
support effect, BOEF often defines railpad components via springs 
and dampers [36,37]. These elements are described by minimal pa-
rameters (stiffness and damping only), ignoring the actual di-
mensions of the components and assuming small and rigid point 
supports spaced by length d – see Fig. 4(a). Instead, FEM employs 
elements defined by several material (stiffness, damping, Poisson’s, 
density, etc.) and geometrical parameters (length, height, width), 
thus providing a more realistic representation of the railway system’s 
behaviour [38] – as shown in Fig. 4(b). In this, a ballasted track is 
simulated via solid finite elements, which allows for actual railpad 
dimensions with effective support spacing (from end to end) d 
differing from the support spacing (from mid-to mid-point) d∗.  

• Track components. BOEF can consider various track components via 
multi-layer models. However, it typically combines several layers (e. 
g. ballast and sub-ballast) into equivalent parameters and disregards 
some of their mechanical behaviour and real dimensions – Fig. 4(a) 
shows lower track components combined into the single layer 
‘foundation’. In contrast, FEM complexity facilitates several track 
components’ mechanical behaviour representation [14,39] – as 
illustrated in Fig. 4(b), in where ballast and sub-ballast layers are 
simulated separately.  

• Subgrade conditions. BOEF employs springs in series elements to 
simulate the soil behaviour, thus, it is unable to reproduce the wave 
propagation within the soil and leads to an inaccurate dynamic track- 
ground response – see Fig. 4(a). Alternatively, FEM allows for a more 
accurate mechanical representation of the supporting soil, consid-
ering their actual material properties, a closer geometrical domain, 
and its wave propagation effect [15,40] – see Fig. 4(c). 

3.2. Model overview 

Although 3D simulation is advantageous for receptance computation 
compared to BOEF, small element sizes are required to capture waves 
propagating in the higher frequency range, while at the same time, large 
domains are required to capture waves propagating at the lower fre-
quency range. Also, the dynamic nature of the problem means boundary 
reflections must be minimal across the frequency range. A model is thus 
developed capable of meeting these conditions. It uses a periodic 
approach to reduce the effective domain length required for simulation 
in the direction of train passage, while also eliminating the need for an 
absorbing boundary in this plane. Then, to minimise boundary re-
flections in the remaining two directions, a high-performance perfectly 
matched layer solution is implemented in the frequency-wavenumber 
domain. 

This paper employs the direct periodic method, DPM, proposed by 
Ref. [41], a technique that exploits the repetitive or invariant nature of 
railway structures to study large domains (e.g. infinitely extending 
tracks). In railway systems, periodicity is found by considering both 
material and geometrical properties repeat themselves at a regular in-
terval, known as the periodic length d. For instance, in ballasted tracks, 
periodicity is defined by the repeated pattern of the sleepers [42,43] – 
see Fig. 5(a). In contrast, in slab tracks, the periodicity is found in the 
discrete rail-seats [44,45] or the slab units arrangement [46–49], as 

Fig. 3. Typical receptance excitation and accelerometers positions, (a) longi-
tudinal view, (b) transversal view, and (c) birdseye view. 
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shown in Fig. 5(b) and (c), respectively. 
Since the properties repeat themselves every length d, only a portion 

Ω̃ of the total structure Ω is required in the simulation. Then, the total 
response of the latter is retrieved by enforcing compatibility conditions 
at the boundaries of the former. This restricted domain is often known as 
the generic or unit cell, and it is assumed to be infinitely repeated, 
forming the entire structure or total domain [11]. Due to the simplifi-
cation in the study domain, the periodic approach allows for computing 
accurate results with minimal computational effort and shorter simu-
lation times compared to fully 3D modelling techniques. Procedure for 
calculating the total track response via the direct periodic method 
comprises three steps – Fig. 6:  

(a) Computation of the reference cell response in the wavenumber- 
frequency domain – see Fig. 6(a). Firstly, the system of equa-
tions of motion of the restricted domain is defined in the wave-
number and frequency domain. Then, periodic boundary 
conditions at the restricted domain’s back and front face are 
enforced, modifying the equilibrium equations and allowing for 
its response computation.  

(b) Response of all cells in the wavenumber-frequency domain – see 
Fig. 6(b). Once the reference cell response is obtained, periodic 
conditions are again imposed, and the response of the remaining 
cells in the wavenumber-frequency domain is computed.  

(c) Total structure response in the space-frequency domain – see 
Fig. 6(c). Fourier transformation is used to transform the total 
structure response in the wavenumber domain back to space. 

3.3. Solution process 

The DPM method allows for the computation of the entire periodic 
structure Ω by simply studying the behaviour of a discretised domain Ω̃, 
i.e. the reference cell response ̃un=0. Next, via enforcement of a periodic 
condition – defined by Floquet theory [45,50–52], the total domain 
response at all cells ũn is obtained, as shown in Eq. (2): 

ũn
(
x, y, z, k1,ω

)
= ũn=0(x̃, ỹ, z̃, k1,ω)eik1nd (2)  

where s = {x, y, z} and ̃s = {x̃, ỹ, z̃} are the space vectors defining Ω and 
Ω̃, respectively. Similarly, ̃un and ̃un=0 are the displacements of the total 
Ω and discretised Ω̃ domain, respectively. The tilde notation ‘ ∼ ’ in ũn, 

is employed to represent the wavenumber-frequency domain (k1,ω), and 
the number of the cell is defined by n, being n= 0 the reference cell, and 
n ∕= 0 the remaining structure; and d is the thickness of the reference cell 
in the periodic direction – x axis or longitudinal direction. Since peri-
odicity is assumed only in the longitudinal direction, the wavenumber 
response is presented solely around this direction and x̃∕= x. Similarly, 
the vectors corresponding to the transversal and vertical coordinates 

remain constant, i.e. y = y
∼

and z = z
∼
, and their corresponding wave-

number response, k2 and k3, are not considered in Eq. (2). 
In order to properly enforce the periodic condition described in Eq. 

(2), the displacements at the front face of the reference cell must be 
formulated according to those at the back and the periodic condition 
eik1d, see Eq. (3): 

u∼
front
n=0 (x

∼
= d, y = y∼, z = z∼, k1,ω)

= u∼
back
n=0 (x

∼
= 0, y = y∼, z = z∼, k1,ω)eik1d

(3)  

where ̃ufront
n=0 and ̃uback

n=0 refer to the front and back border displacements of 
the reference cell, respectively. 

Enforcement of the periodic conditions described in Eqs. (2)-(3), 
ensures the continuity of the displacements at the boundaries of each 
cell, allowing for the displacements of the back and front faces of the nth 

cell to be continuous at the front of the nth− 1 cell and back of the nth+1 
cell, respectively – see Fig. 6(b) and Eq. (4): 

u∼
back
n = u∼

front
n− 1

u∼
front
n = u∼

back
n+1

(4) 

Once obtained the k1 domain response for all n cells, ̃ucell,n (Eq. (2)), it 
can be transformed back to space domain x through the Fourier trans-
form in Eq. (5): 

û(x, y, z,ω) = 1
2π

∫ ∞

− ∞
u∼n(x, y, z, k1,ω)eik1xdk1 (5)  

where û is the displacement of the total domain in the space-frequency 
domain (x,ω), as described by the hat notation ‘ ˆ ’. 

3.3.1. Reference cell definition and response 
Firstly, the reference cell response ̃un=0 must be computed in order to 

retrieve the total structural response û. To do so, the system of equations 

Fig. 4. Track simulation comparison: (a) track on rigid support – BOEF model, (b) track on rigid support – FE model, and (c) track on flexible support – wave 
propagation effect (mesh omitted for visibility). 
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Fig. 5. Overview of 3D periodic and generic domains, (a) ballasted track – periodicity due to sleeper placement, (b) slab track – periodicity due to rail-seats, (c) slab 
track – periodicity due to the discontinuous slabs [11]. 
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Fig. 6. Direct periodic method overview: (a) reference cell response in wavenumber-frequency domain, (b) all cells’ response in wavenumber-frequency domain, and 
(c) total response in space-frequency domain. 
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of motion of the restricted domain must be formulated and solved in the 
wavenumber-frequency domain. Eq. (6) shows the set of equilibrium 
equations of the reference cell n= 0, in matrix format: 

[D̃n=0]{ũn=0}={F̃n=0} (6)  

where 
{

F
∼

n=0

}

and 
{

u
∼

n=0

}

are the vectors of the moving external force 

and displacements of the reference cell, respectively. The dynamic 

stiffness matrix (DSM) of the reference cell 
[

D
∼

n=0

]

is computed by 

combining its stiffness k, damping c and mass m parameters, in the 
frequency domain ω, as shown in Eq. (7): 

[D̃n=0] = [Kn=0] − ω2[Mn=0] (7)  

in where [Kn=0] and [Mn=0] are the complex stiffness and mass matrices of 
the cell n= 0. The damping formulation is accounted within [Kn=0] via 
the hysteretic model [11] in Eq. (8): 

[Kn=0] = [K](1+ iη) (8)  

where [K] is the real stiffness matrix and η is the loss factor of the ma-
terial and. The stiffness and mass matrices are computed via finite 

element approaches with Eqs. (9) and (10): 

[Kn=0(x
∼
, y∼, z∼) ] =

∫

x∼

∫

y∼

∫

z∼
[B]T [D][B]dx∼dy∼dz∼

(9)  

[Mn=0(x
∼
, y∼, z∼) ] =

∫

x∼

∫

y∼

∫

z∼

[N]T ρ[N]dx∼dy∼dz∼
(10)  

where [D] is the elasticity or material matrix, [B(x
∼
, y
∼

, z
∼
) ] = [L(x

∼
, y
∼

,

z
∼
) ][N(x

∼
, y
∼

, z
∼
) ] is the strain–displacement transformation matrix or ma-

trix of partial derivatives [L] of the shape functions [N], and ρ is the 

material density. Regarding the force vector 
{

F
∼

n=0

}

, a point load is 

defined by considering a combination of multiple plane waves [23]. 
Fig. 7(a) shows the plane wave combination, and their shapes, related to 
each value of the wavenumber sampling (only the limits and the jth 

component of k1 are shown). In contrast, Fig. 7(b) presents the resulting 
point load in the wavenumber domain F̃(k1) obtained after combining 
the plane waves associated to all wavenumber values. The schematic 
representation of the point load can be defined via Eq. (11): 

Fig. 7. Reference cell subject to a point load decomposed into plane waves: (a) plane wave shapes, and (b) point load in k1 domain.  
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F̃(k1)=Peik1 x̃ (11)  

where P is the magnitude of the force, the exponential term eik1 x̃ defines 
the plane waves, and x̃ is the space coordinate, in the longitudinal di-
rection, of the nodes where the plane waves are distributedly applied in 
the reference cell. Note that Eq. (11) is similar to the format used when 
accounting for multiple axles, derived from the Fourier transform of the 
force in the space domain depicted in Eq. (12): 

F(x)=Pδ(x − xo)eiϖt (12)  

where δ(•) is a Dirac delta function defining an impulse, xo is the 
observation point, ϖ is the oscillating frequency of the excitation. 
Fourier transformation of the force (from space to wavenumber), results 
in the removal of the exponential term eiϖt : 

F
∼

(k1) =

∫∞

− ∞

F(x)e− ik1xdx =

∫∞

− ∞

Pδ(x − xo)eiϖte− ik1xdx = Pe− ik1xo (13) 

Overall, it is important to consider that the plane waves are 
distributed forces – as shown in Fig. 7. Thus, its equivalent nodal forces 
are required to define the force vector in the Finite Element problem. 

3.3.2. Boundary conditions and response 
Before solving the system in Eq. (6), periodic boundary conditions at 

the restricted domain’s back and front face are enforced, rearranging the 
equilibrium equations and allowing for its response computation. This 
rearrangement can be seen as a compatibilisation procedure, since pe-
riodic conditions are enforced at the back (x̃= 0) and front (x̃= d) faces 
of the reference cell – see Fig. 6. Eq. (14) recalls the periodic condition to 
be imposed within n= 0: 
{

ũfront
n=0

}
=
{

ũback
n=0

}
eik1d (14) 

To allow for continuity in the complete domain, it is necessary to 
avoid double counting the front contribution of each cell in the total 
response. This is achieved by taking the contribution of the front nodes 
of the reference cell to the corresponding back nodes in the dynamic 
stiffness matrix and the vectors of displacements and forces. Eq. (15) and 
(16) show the compatible system and its inversion to obtain the response 
of the reference cell in terms of displacements, respectively. 
[
D̃

∗

n=0(k1,ω)
]{

ũ∗

n=0(k1,ω)
}
=
{

F̃
∗

n=0(k1)
}

(15)  

{
ũ∗

n=0(k1,ω)
}
=
[
D̃

∗

n=0(k1,ω)
]− 1{

F̃
∗

n=0(k1)
}

(16)  

where ‘*’ indicates the compatibilisation condition imposed in the 
vectors and the matrix (dropped in the following computations for 
visibility). 

3.3.3. Total structural response 
Assuming a periodic behaviour, the track can be thought as a com-

bination of multiple reference cells connected to each other at their ends 
via enforcement of periodic conditions – see Fig. 6(b). Eq. (17) shows the 
track response ũ in the wavenumber-frequency domain: 

u∼(x, y, z, k1,ω)

= u∼n(x = x∼ + nd, y = y∼, z = z∼, k1,ω)

= u∼n=0(x
∼
, y∼, z∼, k1,ω)eik1nd

(17)  

where ũn is the displacement of all nodes of the nth cell, which is 
computed from the combination of the reference cell displacement ũn=0 

and the exponential term eik1nd defining the periodic condition. 
The space vectors describing the reference cell in the longitudinal, 

transversal and vertical directions are {̃s} = {x̃, ỹ, z̃}, respectively. 
Alternatively, the space vectors defining the total track response are 

{s} = {x,y,z}. Note that although the response is computed in the (k1,ω)

domain, {̃s} and {s} are used in the definition of the reference cell and 
the track response in terms of the nth cell – as shown in Eq. (17). Also, 
since periodicity is assumed only in the longitudinal direction, the 
wavenumber response is presented solely around the x direction, and the 
space vector related to this coordinate depends upon the number of cell 
n and its length d, i.e. k1 = kx and x = x̃+ nd, respectively. Thus, the 
vectors corresponding to the transversal and vertical coordinates remain 

unchanged, i.e. y = y
∼

and z = z
∼
, and no wavenumber samplings are 

required along these directions. 
Once the response in the (k1,ω) is obtained at all cells, the inverse 

Fourier transform (Eq. (18)) is employed to convert the wavenumber 
result ̃f(k1) back to space domain f(x), as described in Eq. (19): 

f (x) =
1

2π

∫ ∞

− ∞
f
∼

(k1)eik1xdk1 (18)  

û(x, y, z,ω) = 1
2π

∫∞
− ∞ u∼n(x = x∼ + nd, y, z, k1,ω)dk1

=
1

2π

∫ ∞

− ∞
u∼n=0(x

∼
, y∼, z∼, k1,ω)eik1nddk1

(19)  

where û is the total domain response in the space domain. By expanding 
Eq. (19), it can be seen that the exponential value eik1nd is analogous to 
the exponential eik1x in the inverse Fourier transformation shown in Eq. 
(18). 

3.4. Soil domain 

Vibrations induced by the train passage have two excitation com-
ponents: quasi-static and dynamic. Although the former, resulting from 
the vehicle weight, plays an important role at lower frequencies in the 
near-field, the dynamic excitation caused by train-track interaction 
dominates the ground vibration levels [11,23,53,54]. To study the wave 
propagation within the ground, half-space foundation models are useful. 
However, these models are complex and computationally demanding 
since they often require large domain simulations and/or absorbing 
boundaries. 

By itself, the finite element method (FEM) can be employed to model 
the foundation soil. Nevertheless, FEM computational efficiency is 
highly reduced due to the large number of elements required to provide 
an accurate soil representation – particularly when employing three- 
dimensional formulations. Thus, soil simulations via FE tend to restrict 
its number of elements and soil domain, and requires the inclusion of 
additional techniques to prevent wave reflection effect on its boundaries 
[28]. The perfectly matched layers (PML) provide a solution for this 
problem by simulating the absorbing domain and preventing wave’s 
reflection at the boundaries of the model [55]. Therefore, the combi-
nation of both the FEM and the PML allow for the wave propagation 
behaviour representation and improves the computational efficiency. 

Following this approach, the FEM-PML method can be combined 
with periodic strategies (i.e. DPM-FEM-PML) to further increase the 
efficiency of studying the ground-borne response. Fig. 8 shows a 3D 
reference cell, of domain Ω̃ and thickness d, with the railway track and 
ground components defined by the elastic domain Ω̃FEM and bounded by 
the PML domain Ω̃PML (i.e. Ω̃ = Ω̃FEM ∪ Ω̃PML). 

3.4.1. PML stretching functions 
The PML is a layer of elements with material properties similar to the 

elastic medium they bound or truncate. In addition, they can perfectly 
match the truncated medium by absorbing and attenuating outgoing 
waves from it [56]. The outgoing wave, travelling in the s direction, is 
attenuated at a finite distance H̃s within the PML domain Ω̃PML and is 
minimally reflected back toward the truncated domain Ω̃FEM from the 
outer fixed PML limit ̃st – see Fig. 9. Since the reflection of the wave is 
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not significant, the PML is able to simulate unbounded domain [56,57]. 
The absorbing domain is defined through complex stretching co-

ordinates s
ˇ
, which allow for the artificial increment of the propagating 

wave attenuation [58]. Eq. (20) shows the stretching or new coordinate 

s
ˇ
, derived from the stretching function λ̃, corresponding to each Carte-

sian coordinate within the reference cell domain ̃s: 

sˇ =
∫ s∼

0
λ
∼

(s
∼
)ds∼ = s∼0 +

∫ s∼t

s∼0

λ
∼

(s∼)ds∼,
{

s∼ = x∼, y∼, z∼

sˇ = xˇ, y
ˇ

, z
ˇ (20)  

where s̃0 and s̃t are the origin and end limits of the PML. Note that 
throughout Ω̃, only Ω̃PML is stretched and Ω̃FEM remains unchanged – see 
Fig. 9. In addition, since the structure is assumed to be periodic in the 
longitudinal domain ̃x, only {̃s} = {ỹ, z̃} are stretched, as depicted in Eq. 
(21): 

sˇ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xˇ = x∼

yˇ =
∫ s

0
λ
∼

(y
∼

)dy∼

zˇ =
∫ s

0
λ
∼

(z∼)dz∼
(21) 

Enforcement of Ω̃PML is achieved through the same set of equations of 

motion defined for Ω̃FEM (Eq. (14)). However, stretching coordinates {s
ˇ
}

are used instead of the reference cell Cartesian coordinates {̃s}. 
Although different λ̃ formulations have been defined in the literature – 
see for instance Refs. [28,57–60], most stretching functions follow the 
formulation presented in Eq. (22): 

λ
∼

(s∼) = f e
s∼(s

∼
) − i

f p
s∼
(s
∼
)

a0
(22)  

where f e
s̃ 

and fp
s̃ 

are the polynomial functions that attenuate the 
evanescent and propagating waves inside the PML, respectively; and a0 
is a frequency dependent parameter related to the stretching function 
definition. This paper employs the stretching function proposed by 
Ref. [58], which defines the attenuation functions in terms of linear and 
quadratic polynomials with unit or zero values when computed within 
the FEM domain (Eq. (23)): 

f e
s∼(

s∼) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f e
s∼0

s
Hs∼

;Ω
∼

PML =

{

s∼0 < s∼ ≤ s∼t

}

1 ;Ω
∼

FEM =

{

s∼ ≤ s∼0

}

f p
s∼
(s
∼
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f p
s∼0

(
s

Hs∼

)2

;Ω
∼

PML =

{

s∼0 < s∼ ≤ s∼t

}

0 ;Ω
∼

FEM =

{

s∼ ≤ s∼0

}
(23)  

a0 = k(k1,ω)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
s − k2

1

√

(24)  

where fp
s
∼

0
= 2π/|k| and fe

s̃0
= 20 are the parameters employed to adjust 

the amount of attenuation; Hs̃ and s = |̃s − s̃0| are the layer thickness and 
the local Cartesian coordinates within Ω̃PML, respectively. In addition, a0 
or k are the effective wavenumber for waves propagating along the 
cross-section (Eq. (24)). Note that to avoid mathematical problems, 
when k2

s = k2
1, the wavenumber is modified to k1 = 0.999k1. Similarly, 

ks = ω/Cs, is the variable depending on the angular frequency ω and the 
velocity of the shear wave Cs. Combining Eqs. (23)-(24) into Eq. (25), 
the latter becomes: 

λ̃(̃s)=
2π
|k|

(
s

Hs̃

)

− i
20
k

(
s

Hs̃

)2

(25) 

Depending on the PML region, the direction of the propagating 
waves varies (Fig. 9): 

Fig. 8. 3D FE reference cell Ω̃FEM bounded by PML layers Ω̃PML. Back and front 
boundaries in dashed lines. 

Fig. 9. Back face of reference cell Ω̃ composed by linear Ω̃FEM and PML Ω̃PML 

domain. Limits and stretching functions λ̃ highlighted. 
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• λ
∼

(x
∼
) = 1, ​ λ

∼

(y
∼

) ∕= 1, ​ λ
∼

(z
∼
) = 1; stretching coordinates in the ỹ di-

rection only (i.e. side regions). 

• λ
∼

(x
∼
) = 1, ​ λ

∼

(y
∼

) = 1, ​ λ
∼

(z
∼
) ∕= 1; stretching coordinates in the z̃ di-

rection only (i.e. bottom region).  

• λ
∼

(x
∼
) = 1, ​ λ

∼

(y
∼

) ∕= 1, ​ λ
∼

(z
∼
) ∕= 1; stretching coordinates in the ỹ and z̃ 

directions (i.e. corner regions). 

3.4.2. Equilibrium equations of motion 
In the Ω̃PML, the partial derivatives with respect to the stretching 

coordinates (Eq. (26)) allows for the definition of the PML matrix of 
partial derivatives [LPML] (Eq. (27)): 

∂
∂sˇ

=
1

λ
∼

(s∼)

∂
∂s∼
; {s} = {x, y, z} (26)  

[LPML] =
[

L
ˇ

(x
ˇ
, yˇ, z

ˇ
)
]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂/∂xˇ

0
0
0

∂/∂zˇ

∂/∂yˇ

0
∂/∂yˇ

0
∂/∂zˇ

0
∂/∂xˇ

0
0

∂/∂zˇ

∂/∂yˇ

∂/∂xˇ

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27) 

Note that in the direct periodic problem, the stretching coordinates 
are only present in the vertical ỹ and transversal z̃ direction; therefore, 
the partial derivatives with respect to the longitudinal axis x̃ remain 

unchanged in [LPML], i.e. λ̃(x̃)= 1 and ∂/∂x
ˇ
= ∂⁄ ∂x

∼
. Similar to the FEM 

case, the PML approach satisfies the differential system of equations (Eq. 
(9) and (10)). Thus, the reference cell stiffness and mass matrices in 
Ω̃PML, can be computed through Eqs. (27) and (28), respectively: 
[

KPML
n=0

(

x∼, λ
∼

y∼, λ
∼

z∼

)]

=

∫

x∼

∫

y∼

∫

z∼

λ
∼

y∼λ
∼

z∼
[

B
ˇ
]T
[D]

[

B
ˇ
]
dx∼dy∼dz∼ (28)  

[

MPML
n=0

(

x∼, λ
∼

y∼, λ
∼

z∼

)]

=

∫

x∼

∫

y∼

∫

z∼

λ
∼

y∼λ
∼

z∼
[

N
ˇ
]T

ρ
[

N
ˇ
]
dx∼dy∼dz∼ (29)  

where [KPML
n=0 ] and [MPML

n=0 ] are the PML stiffness and mass matrices, 

respectively; and 
[

B
ˇ
(

x
∼
, λ
∼

y
∼, λ

∼

z
∼

)]

=

[

L
ˇ
(

x
∼
, λ
∼

y
∼, λ

∼

z
∼

)][

N
ˇ
(

x
∼
, λ
∼

y
∼, λ

∼

z
∼

)]

is 

the matrix of partial derivatives 
[

L
ˇ
]

of the shape functions 
[

N
ˇ
]
. Since the 

PML domain is defined through complex stretching coordinates, all 

matrices in Eqs. (28)-(29) are also complex. Thus, 
[

B
ˇ
]T 

and 
[

N
ˇ
]T 

require 

the non-conjugate transpose instead of their conjugate transpose. 
Although in both cases, rows and columns are interchanged, in the 
former, the sign of the imaginary part remains unchanged, whereas, in 
the latter, they are the opposite. For instance, Eq. (30) shows the non- 
conjugate and conjugate transpose of matrix [A], [A]

T and [A]
∗T, 

respectively. 

[A] =

[
a1 + ib1
a2 + ib2

]

⟹[A]T =

{
[A]T = [a1 + ib1 a2 + ib2]

[A]∗T = [a1 − ib1 a2 − ib2]
(30) 

Eq. (31) describes the system of equations of motion in the total 
reference cell domain, in where the total dynamic stiffness matrix 

[D̃
FEM+PML
n=0 ] is computed by properly assembling the matrices in both Ω̃FEM 

and Ω̃PML domains (Eqs. (32) and (33)). 
[
D̃

FEM+PML
n=0

]{
ũFEM+PML

n=0

}
=
{

F̃
FEM+PML
n=0

}
(31)  

[
D̃

FEM+PML
n=0

]
=
[
D̃

FEM
n=0

]
+
[
D̃

PML
n=0

]
(32)  

[

D
∼FEM

n=0 (x
∼
, y∼, z∼, k1,ω)

]

=
[
KFEM

n=0 (x
∼
, y∼, z∼)

]
− ω2[MFEM

n=0 (x
∼
, y∼, z∼)

]

[

D
∼PML

n=0 (x
∼
, y
ˇ

, z
ˇ
, k1,ω)

]

=
[
KPML

n=0 (x
∼
, y
ˇ

, z
ˇ
)
]
− ω2[MPML

n=0 (x
∼
, y
ˇ

, z
ˇ
)
]

(33)  

where [KFEM,PML
n=0 ] are complex stiffness matrices accounting for the hys-

teretic damping model. 

4. Model verification 

This section presents a numerical verification that demonstrates the 
accuracy of the DPM formulation. The method is employed to approxi-
mate the dynamic response of a structure and its wave propagation ef-
fect, thus confirming that the 3D DPM-FEM can be coupled with PML (i. 
e. 3D DPM-FEM-PML). This verification considers the example described 
in Ref. [39], which uses the fully analytical solution proposed by Tadeu 
and Kausel [59]. 

Fig. 10 shows the geometry of the 3D DPM reference cell: a 3 m × 3 m 
FEM mesh bounded by a PML layer of 1 m of width in the vertical and 
transversal directions, both with thickness d= 6× Δx, where Δx= 0.1 m 
is the size element in the periodic direction x. Also, the reference cell is 
defined by linear brick elements, 9600 elements with 11767 nodes in 
total, described by hysteretic damping in the frequency domain. The 
symmetry of the structure is exploited, therefore only half of the domain 
is modelled. Regarding the boundary conditions, constraints are applied 
at the ends of the PML domains (black markers) and the symmetry axis 
(blue markers). In addition, the ground domain is constrained longitu-
dinally and transversally at the top (red markers), i.e. in the x and y 
direction, respectively. 

This domain is subject to a stationary force F = Peiϖt of magnitude 

Fig. 10. 3D DPM reference cell.  
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P = 0.25 N applied at the axis origin (x = y = z= 0 m) and excited by 
two frequencies f = [10, 75] Hz, where the angular frequency is ϖ = 2πf , 
and t is the time. Regarding the material properties, the soil has a 
Young’s modulus E = 80 MPa; velocity of the shear and dilatational 
waves Cs= 126.5 m/s and Cp = 219.1 m/s, respectively; Poisson’s coef-
ficient ν= 0.25; density ρ = 2000 kg/m3; and loss factor η= 0.002. 

The vertical surface displacements are computed along the trans-
versal direction (i.e. x = y= 0 m) at three dimensionless wavenumbers 
k1 = [0.5,1.0, 1.5], where the wavenumber is defined by k1 = k1ϖ/ Cs. 
Figs. 11 and 12 compares the real and imaginary components of the 
response computed via the periodic and analytical solution at 10 Hz and 
75 Hz, respectively. In both cases, the periodic model uses the stretching 
function ̃λ(̃s) defined in Eq. (25). It can be seen that periodic results yield 
a good approximation to the analytical solution for k1 = [0.5, 1.5]. 
However, small discrepancies are evident at k1= 1.0 due to the nu-
merical inaccuracy in the periodic method when k1 = ϖ/ Cs. Overall, 
results confirms the accuracy of the DPM-FEM-PML when simulating the 
ground behaviour and its wave propagation effect. 

Finally, it is important to highlight that since the material and 
geometrical properties of the structure are continuous along the periodic 
direction (longitudinal axis x), the thickness of the reference cell in the 
DPM can be reduced from d= 6×Δx to a single value d = Δx, i.e. from 
11767 to 3362 nodes. This domain reduction produces similar results to 
the obtained in Figs. 11 and 12 and allows for further optimisation of the 
periodic simulation. 

5. Model refinement for receptance applications 

The receptance calculation models presented in the literature often 
make assumptions regarding the track to improve computational effi-
ciency. One common assumption is the track support can be modelled as 
a rigid boundary condition rather than a flexible condition representa-
tive of the underlying earthworks. Another is that symmetry can be 
assumed along the track centreline, meaning both rails are excited 
rather than one, which is unlikely to be the case when field testing. This 
section investigates the validity of these two assumptions. It is shown 
that large errors at frequencies up to 450 Hz are introduced if the track 
support conditions are not adequately considered. Similarly, errors are 
introduced up to approximately 800 Hz when comparing symmetrical 
and non-symmetrical loading. 

5.1. Modelling parameters 

The DPM is used for all receptance calculations. Table 2 shows the 
characteristic or base parameters, while Appendix A shows all additional 
properties. Note that the selected base permutation corresponds to a stiff 
track supported by well-compacted earthworks, which is characteristic 
of a modern high-speed track. Also, under-sleeper pad (USP) and the 
presence of the embankment are ignored during model refinement. 

All components are defined using linear brick elements (8-node solid 
elements) with hysteretic damping – as described in Eq. (8). Fig. 13 
shows the 3D view of the reference cell mesh with thickness d, defined 
according to the sleeper spacing. 

The reference cell is subject to a stationary force of magnitude F =

1 N excited at frequency ω, which is evenly applied on top of both rails 
above the sleeper support (x = d/2) – see Eqs. (11) and (12). The ver-
tical deflection is computed at different track positions, initially in 
(k1,ω) domain and later transformed back to (x,ω). Fig. 14 shows the 
position of the excitation F and the observation points where the 
response is obtained:  

(1) rail above sleeper – u
(
x = d/2, y = yrail, z = ±zrail

)
,  

(2) rail at mid-span – u
(
x = 0, y = yrail, z = ±zrail

)
,  

(3) sleeper shoulder – u
(

x = d/2, y = ysleeper, z = ±zsleeper,1

)
, and 

Fig. 11. Vertical deflection at f = 10Hz: (a) k1 = 0.5, k1 = 0.5, (b) k1 = 1.0, and 
(c) k1 = 1.5. 
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(4) sleeper centre – u
(

x = d/2, y = ysleeper, z = ±zsleeper,0

)
, 

in where yj and zj are the vertical (top) and transversal coordinates of 
j = rail, sleeper. Note that z = zsleeper,0 describes the centre of mid-span 
coordinate of the sleeper. In contrast, z = zsleeper,1 corresponds to the mid 
coordinate between the sleeper end and the rail. Additionally, only in 
case (1) the response is a receptance – since the deflection is obtained at 
the same coordinate as the excitation. In contrast, in cases (2), (3) and 
(4), the result is a transfer function (or a cross-receptance) since both 
coordinates differ. 

The frequency range of study is f = [0 − 1600] Hz, while the wave-
number sampling is k1 = [ − k1,max : k1,max/2048 :k1,max], where k1,max =

20 rad/m. This sampling is chosen because it is sufficient to capture the 
response from both the track and the ground. Regarding discretisation, 
element size is, Δx = d/6, where d is cell thickness. 

5.1.1. Flexible vs rigid trackbed support 
To study the support conditions, the frequency responses of a track 

resting on a semi-infinite ground and on a rigid support are compared – 
see Fig. 15. In both cases, base parameters are employed and results are 

Fig. 12. Vertical deflection at f = 75Hz: (a) k1 = 0.5, k1 = 0.5, (b) k1 = 1.0, and 
(c) k1 = 1.5. 

Table 2 
Main track parameters – Base permutation.  

Component Parameter Value 

Track l0 Gauge 0.7175 m 
Reference cell d Length 0.6 m 
Rail – Section CEN60/60E2 
Railpad Erp Young’s modulus 200 MPa 
Sleeper – Material Concrete 
USP lyusp Depth 0 m 
Ballast Eb Young’s modulus 220 MPa 

lyb Depth 0.3 m 
Sub-ballast lysb Depth 0.2 m 
Embankment lye Depth 0 m 
Subgrade Esg Young’s modulus 80 MPa  

Fig. 13. Base permutation reference cell mesh 3D view. Only half-track shown 
for visibility purposes. 
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shown in terms of absolute vertical deflections at different points on the 
rail and the sleeper – see Fig. 14. 

Fig. 16 illustrates the absolute deflection computed in a track resting 
on a subgrade or flexible support (TS) and on a rigid support (TR). Re-
sults computed at the rail above sleeper and at mid-span – see Fig. 16(a), 
show that the maximum deflection is obtained at low frequencies: at 0 to 
50 Hz in TS and at 130 Hz in TR. This behaviour is attributed to soft 
lower components supporting much stiffer upper layers. In TS model, 
the maximum response corresponds to the subgrade fsubgrade. This 
additional component leads to wave-propagation effect, magnifying the 
response below 50 Hz and making it challenging to identify ffull− track, the 
frequency of resonance related to the lower-track layers (i.e. ballast and 
sub-ballast), above this frequency. Alternatively, in TR model, the 
maximum occurs at ffull− track and fsubgrade is not visible due to the absence 
of the subgrade. 

Above these frequencies, the amplitude decays, reaching a low re-
gion between 50 − 180 Hz and 160 − 220 Hz in TS and TR, respectively. 
In the latter case, the minimum is observed at a lower sharp peak around 
180 Hz and can be interpreted as fsleeper. In contrast, this region is not 
clearly delineated in the former case, and its minimum is not prominent. 
This occurs because of the wave propagation effect, which makes it 
challenging to identify fsleeper. 

After this low region, the amplitude of the response increases in both 
models and two upper peaks are observed: at 250 Hz and 400 Hz for the 
rigid support, and 320 Hz and 440 Hz in the subgrade support model. 
Note that the second peaks are close to convergence, indicating that the 
subgrade impact has decreased. Then, above 440 Hz, both models 
overlap and the response is governed by upper track components. 
Similarly, new peak occurs at 730 Hz at both observation points. 
Although no evident difference between these peaks, they are all asso-
ciated to frail. Note that both curves experience a rapid decay above 
800 Hz. This behaviour is attributed to the frequency of resonance of the 
rail, fpin− pin, which is not captured in the frequency range displayed in 

Fig. 14. Excitation and observation point locations within the ballasted track 
model: (a) 3D view and (b) birdseye view. Subgrade layer omitted and only 
half-track shown for visibility. 

Fig. 15. Ballasted track model support conditions: (a) rigid trackbed, and (b) flexible trackbed. Half-track transversal view shown for visibility.  
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Fig. 16. 
Alternatively, Fig. 16(b) shows the absolute deflection at the shoul-

der and centre of the sleeper. Again, the greatest response occurs at 
lower frequencies: at fsubgrade and ffull− track in TS and TR, respectively. 
After these frequencies, all curves decay reaching their minimum be-
tween 50 − 250 Hz in TR and 200 − 350 Hz in TS. The low region is 
clearly defined in the latter. However, this range differs to the displayed 
at the rail observation points in Fig. 16(a), and the minimum at the 
sleeper points occurs at a higher frequency that in the rail case. This 
behaviour is typical of the vibration mode related to fsleeper, in where the 
sleeper’s deflection is larger than the rail. 

Regarding the subgrade case, its low region is not well defined due to 
the subgrade properties. This behaviour and range are consistent with 
results obtained at the rail observation points (see Fig. 16(a)), indicating 
that the sleeper follows a behaviour close to that of the rail. This can be 
explained by a combination of factors, such as a soft supporting sub-
grade, a low sleeper mass, and a strong connection between the rail and 
the sleeper [16]. 

Next, an upper peak develops around 440 Hz where both models 
converge. Above this frequency, all curves decay, illustrating the 
reduced of the sleeper and the rail and railpad track dominance. 

Regarding the observation point, both support models show that the 
sleeper at mid-span experiences a greater amplitude compared to that on 
support. This behaviour can be explained by the bending effect of the 
sleeper. 

Figs. 17–19 compare the vibration modes due to different support 
conditions according to the resonant frequencies identified in Fig. 16. To 
improve visibility, only 11 track cells are illustrated (i.e. n= − 5 : 5), 
and the railpad height and all deflection values have been magnified (by 
a percentage increment of 800% and a factor of 1E3, respectively). 
Fig. 17 shows the absolute deformation of (a) a track resting on rigid 
support excited at 130 Hz, (b) a zoomed view of a track on a flexible 
support excited at 6 Hz, and (c) a full view of a track on a flexible support 
excited at 6 Hz. The first vibration mode in (a) corresponds to ffull− track, 
while the response at (b) and (c) is related to fsub− grade. Although in all 
cases the track components move in phase with a broad bending wave- 
shape, the wave propagation effect of the subgrade magnifies the 
response, resulting in a larger deformation in (b) and (c) compared to 
(a). 

Fig. 18 presents the absolute deformation related to fsleeper. Fig. 18(a) 
shows the response at 180 Hz in the rigid-support case, in where the rail 
deflection is much lower than the sleeper. Since identifying fsleeper in a 
track on subgrade model is challenging, deflections at two frequencies 
are plotted: 100 Hz and 130 Hz, as seen in Fig. 18(b) and (c) respec-
tively. These values lie within low frequency range described in Fig. 16. 
At 100 Hz, the track components move in phase with both the rail and 

Fig. 16. Deflections due to a track on subgrade (TS) and a track on rigid 
support (TR) at: (a) at rail above sleeper and rail at mid-span, and (b) sleeper 
shoulder and sleeper centre. 

Fig. 17. Vertical deflections of: (a) track on rigid support excited at 130 Hz – 
longitudinal view, (b) track on subgrade support excited at 6Hz – zoomed 
longitudinal view, and (c) track on subgrade support excited at 6 Hz – 3D view. 
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the sleeper experiencing a large deflection. In contrast, at 130 Hz, the 
sleeper displays minimal movement relative to the rail. Overall, (b) 
shows that the sleeper follows a behaviour similar to the rail. In contrast, 
(c) illustrates how the sleeper effect decreases with frequency. 

Alternatively, Fig. 19 illustrates the track deflections at frail,2 =

730 Hz, where the rail moves in anti-phase with the supporting track 
layers. Note that although frail,2 lies in the upper mid-range, the rail 
deflection and response propagation within the lower track layers are 
still visible at this frequency. 

Fig. 20 compares the difference in amplitude between both support 
conditions at all observation points. Results show that the maximum 
difference is found at lower frequency ranges, within fsub− grade range, 
where an error of approximately 80% occurs at 0 Hz. This high error 
occurs due to the absence of fsubgrade under rigid support conditions. 
Similarly, the subgrade presence amplifies the response, making iden-
tifying ffull− track and fsleeper challenging. This behaviour explains the 
maximum error of 300% at around 130 Hz. The error rapidly decays 
with frequency, reaching an average of 30% between 200 − 440 Hz. This 
range corresponds to the frequencies of resonance of the rail (frail) 
occurring in both models. Above 440 Hz, all observation points yield an 
error of approximately 10%. This low error is expected since both 
models converge at higher frequencies. Regarding the observation 
points, the maximum error is obtained at the sleeper. This occurs due to 

the subgrade properties, which greatly influence the lower-track layers, 
including the sleeper. In contrast, the overall minimum is observed at 
the rail on support, where the excitation is applied. 

5.1.2. Symmetry boundary conditions 
Numerical simulations of track receptance typically assume the track 

can be modelled using a centreline symmetry condition. Although this 
reduces computation requirements, it means both rails must be excited 
in an identical manner. In contrast, in-situ receptance test configurations 
excite a single side of the structure, thus making the problem inherently 
non-symmetric. In order to study the effect of this symmetry assumption 
and its effect on track bending modes, a full-track model is excited in two 
different ways:  

(1) symmetric loading, where F1 = F2 = 0.5 N, and  
(2) non-symmetric loading, where F1 = 0.5 N and F2 = 0 N 

In Configuration (1), a full-width track is excited by identical forces 
on both sides of the track. This is the case of a track centreline symmetry 
condition, as commonly used in numerical simulations to approximate 
the response due to rolling stock excitation. In contrast, configuration 
(2) is used to excite only one side of the track, as commonly performed 
during receptance field-testing that excites a single side of the track. 
Fig. 21 illustrates the reference cell with the observation and excitation 
points arrangement used to study symmetry conditions. Note that for 
comparison purposes, configuration (2) sets F1 = 0.5 N. 

However, for a closer approximation to in-situ receptance condi-
tions, F1 should be 1.0 N. Additionally, considering the geometrical 
symmetry of the structure (symmetric boundary conditions and linear 
material properties), it is possible to approximate case (2) by combining 
two symmetric models subject to:  

(a) symmetric loading, where F1 = F2 = 0.25 N, and  
(b) anti-symmetric loading, where F1 = 0.25 N and F2 = − 0.25 N. 

Fig. 22(a) and (b) show the absolute deflection at the rail above the 
sleeper and mid-span, and at the shoulder and centre of the sleeper, 
respectively. In both cases, symmetric (Symm) and non-symmetric 
(NSymm) excitation are compared. Fig. 22(a) shows that in the case of 
symmetric conditions, the structure is equally loaded and provides 
similar results on both sides. Due to this behaviour, only a single side of 
the structure response is presented in Symm case. Alternatively, in 
NSymm case, the response at the loaded (Load) and unloaded (ULoad) 

Fig. 18. Vertical deflections of: (a) track on rigid support excited at 180 Hz, (b) 
track on subgrade support excited at 100 Hz – zoomed view, and (c) track on 
subgrade support excited at 130 Hz – zoomed view. Longitudinal views. 

Fig. 19. Vertical deflections due to an impulse excited at 730 Hz – zoomed 
view. Longitudinal view. 

Fig. 20. Amplitude error between track on subgrade and track on rigid support 
model at different observation points. 
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sides differ, indicating non-symmetric deformations, with the maximum 
response obtained at Load-side. 

It can be seen that the overall maximum occurs when both sides of 
the track are equally excited. This difference is particularly evident 
between 0 − 50 Hz, i.e. around fsub− grade. Between 50 − 180 Hz, results 
shift and the maximum is obtained in the NSymm case at both obser-
vation points. At this frequency range, the response of the sleeper 
(fsleeper) is more rigid in NSymm than Symm. 

Above 180 Hz, four main frequencies are identified: frail,0 = 320 Hz, 
frail,1 = 440 Hz, frail,2 = 600 Hz, and frail,3 = 730 Hz. Excluding the peak 
at frail,0, all frequencies of resonance at f > 180 Hz differ in both models 
and NSymm frequencies values are higher than those obtained in Symm. 
Also, although only Load-side is excited, the response propagates to the 
opposite ULoad-side, resulting in small yet significant deformations on 
the latter. However, between 180 − 400 Hz and above 800 Hz, 
ULoad-side’s contribution reaches its minimum, explaining the 
convergence of both models at these ranges. 

Regarding the sleeper’s results – see Fig. 22(b), it is seen that as the 
sleeper centre is a unique point corresponding to the geometric centre of 
the track, a single curve is retrieved for this observation point in the 
NSymm-model. Thus, only for the sleeper shoulder, results are presented 
for both loaded (Load) and unloaded (ULoad) sides. Similar to the rail 
results (Fig. 22(a)), sleeper’s deflections obtained with Symm-model are 
symmetric, thus indicating symmetric bending modes. Alternatively, 
Load-side results differ from ULoad in NSymm, thus sleeper bending 
models are non-symmetric in this case. 

It can be seen that, below 600 Hz, the overall maximum is found with 
Symm-model at both observation points. However, both models 
converge above this frequency at the sleeper shoulder, and after 1000 Hz 
at the sleeper centre. Again, both models converge when NSymm −

ULoad contribution is minimum. However, as the result at sleeper centre 
is only provided by a single point, results converge at a higher frequency 

than the sleeper shoulder case. 
Although the excitation is non-symmetric in NSymm, its structure 

(including its boundary conditions and geometrical and linear material 
properties) is fully-symmetric. Thus, combination of Load- and 
ULoad-side at each observation point in NSymm can approximate the 
fully symmetric model. Fig. 23 compares the total response due to the 
non-symmetric model (NSymmtot) with the corresponding symmetric 
results (Symm). However, since the sleeper centre response at the non- 
symmetric model retrieves a single value, the corresponding NSymmtot 
result is obtained by doubling its response. 

Fig. 24 compares the difference in amplitude between symmetric and 
non-symmetric conditions models at all observation points. Results 
show that symmetric conditions induce moderate errors (≈ 20%) at 
around 0 − 20 Hz, 60 − 100 Hz, 420 − 520 Hz and 570 − 700 Hz. These 
ranges correspond to the frequencies of resonance fsubgrade, fsleeper, frail,1 

and frail,2, respectively. In contrast, lower errors < 20%) are observed at 
the remaining frequencies, where both models converge. Note that as 
the sleeper centre response in the non-symmetric model is half the 
symmetric case, it will lead to a constant error of approximately 100%, 
thus, the error at this observation point is not included in Fig. 24. 

Figs. 25–28 compare the absolute track deflections caused by sym-
metric and non-symmetric loading, when excited at various frequencies. 
Three-dimensional and transverse views results are employed to high-
light the transversal bending modes at the upper track layers. Firstly, 
Fig. 25 presents the track deformation at 6 Hz. At this frequency, the 
response is mainly affected by the subgrade properties and the sym-
metric model yields larger deflections than the non-symmetric case. The 
maximum deformation occurs at the rail, the point where the force is 
applied, and its effect propagates in all directions within the track, with 
a considerable contribution in the sleeper below. In the symmetric case, 
the force is evenly distributed along the track, resulting in a symmetric 
bending mode. In contrast, the transversal bending mode of the track is 

Fig. 21. Excitation and observation point locations within the full-track model: (a) transversal view and (b) birdseye view. Subgrade layer omitted for visibility.  
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non-symmetric in the non-symmetric case, and its loaded side experi-
ences the greatest deflection. Overall, the large response in both cases is 
due to the magnification effect resulting for the wave propagation effect 
at low frequencies. 

Fig. 26 illustrates that at 130 Hz, the maximum is achieved with the 
non-symmetric configuration. Because the influence of the subgrade 
diminishes with frequency, the propagation of the response within the 
track is less significant at 130 Hz than at 6 Hz (Fig. 25). 

Fig. 27 shows the absolute deformation at 320 Hz. Both results pre-
sent similar magnitudes, with the symmetric case displaying a slightly 
higher value. This similarity is responsible for the near-undeformed 
deformation on the unloaded side of the non-symmetric model. It can 
be observed that the propagation of the response within the lower-track 
layers is lower at 320 Hz than at 130 Hz (see Fig. 26). This is because as 
frequency increases, the track component’s effect on the response in-
creases while the subgrade’s effect decreases. 

Alternatively, results computed at 440 Hz – see Fig. 28, show that the 
symmetric model provides a greater deformation compared to the non- 
symmetric. The difference between both models is also presented on the 
unloaded side of the non-symmetric case, which is considerable and 

larger than the obtained in the quasi-undeformed result at 320 Hz (see 
Fig. 27). Similarly, the deformation is concentrated on the upper-track 
layers, accounting for their relevance at higher frequencies. 

Finally, it is evident that symmetry conditions have an effect on 
receptance results. In a symmetrical configuration, two forces of equal 
magnitude are applied on two opposite positions, resulting in a response 
that propagates evenly along the track to the ground support and sym-
metric transversal bending modes. In contrast, in a non-symmetrical 
configuration a single impulse leads to non-symmetric bending modes, 
where the maximum response, occurring at the loaded side, gradually 
decreases as it extends to the opposite and unloaded side. In addition, 
results show non-symmetric conditions lead to lower deflections and 
lower frequencies of resonance compared to the symmetric case. Thus, 
to realistically approximate receptance field tests, a full-track model 
with non-symmetric conditions (with F1 = 1 N and F2 = 0 N) is 
considered hereafter. Regarding the support conditions, the subgrade 
component is considered at low- and mid-frequency ranges while dis-
regarded at higher-frequency, ranges for simplicity purposes. 

Fig. 22. Deflections at: (a) rail above sleeper and at mid-span, and (b) sleeper 
shoulder and centre. Full-track model: non-symmetric loaded side (NSymm −

Load), non-symmetric unloaded side (NSymm − ULoad), and fully-symmetric 
loaded (Symm). 

Fig. 23. Deflections at different observation points of a full-track model: non- 
symmetric total (NSymmtot), and fully-symmetric (Symm). 

Fig. 24. Amplitude error between symmetric and non-symmetric loaded model 
at different observation points – track on subgrade support. 
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6. Sensitivity study 

A sensitivity study is performed to study the geometric and material 
properties of the track. Appendix A presents the properties of each track 
component while the track properties defined in Table 2 are the base 
parameters. Table 3 highlights the base permutation and the 17 com-
binations grouped according to the characteristic parameters related to 
each component. Fig. 29 shows the 3D view of the reference cell mesh 
with all studied components. Note that the base simulation did not 
include under-sleeper pads (USP) or an embankment. Using the findings 
related to model design from the previous section, the full track width is 
modelled (i.e. no symmetry condition), supported by an infinitely deep 
soil medium. 

6.1. Rail 

Fig. 30 presents the absolute deflection for three different rail 

sections: 49E1, 56E1 and 60E2 (base case). The rail properties primarily 
influence the response at higher frequencies (f > 800 Hz) and therefore 
the results are shown only at the rail above the sleeper, rather than at 
other observation points. Below 50 Hz, the curves have comparable 
gradients, with the heaviest rail exhibiting the lowest amplitude and the 
lightest rail displaying the highest amplitude. The rail section size in-
duces a similar response at all frequencies up to approximately 800 Hz, 
where all curves rapidly decay. 

6.2. Railpad 

Fig. 31 displays the response of the rail above the sleeper, computed 
with soft (B1), typical (base case, B2) and stiff railpads (B3). Similar to 
the rail behaviour, all railpad curves experience a comparable decay rate 
of amplitude below 50 Hz. Beyond this frequency, the difference be-
tween them becomes more pronounced, leading to diverging results 
where the maximum difference occurs between 300 − 600 Hz, where the 

Fig. 25. Absolute track deformation at 6 Hz: (a) symmetric force model 3D view, (b) symmetric force model transversal view, (c) non-symmetric force model 3D 
view, and (d) non-symmetric force model transversal view. Lower components removed for visibility. 

Fig. 26. Absolute track deformation at 130 Hz: (a) symmetric force model 3D view, (b) symmetric force model transversal view, (c) non-symmetric force model 3D 
view, and (d) non-symmetric force model transversal view. Lower components removed for visibility. 
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rail mass resonates over the railpad stiffness, i.e. at the railpad frequency 
of resonance frailpad. Between these frequencies, soft and stiff railpads 
exhibit the highest and lowest amplitude, respectively. Note that typical 
and stiff railpads show multiple peaks at around 300 Hz and 600 Hz, 
corresponding to frail and frailpad, respectively. In contrast, soft railpad 

response results in a low frailpad overlapped by frail, thus making the 
former challenging to identify. Next, at f > 600 Hz, all curves experi-
ence a rapid decay. 

6.3. Sleeper 

The sleeper effect is investigated considering three scenarios: 
wooden (C1), plastic (C2), and concrete (base case, C3) sleepers. To do 
so, results are shown at the rail above sleeper (RS) and sleeper centre 
(SC) observation points – see Fig. 32. All curves experience a similar and 
relatively constant gradient below 50 Hz, with identical and more flex-
ible behaviour in C1 and C2, compared to C3. Note that the stiffness 
values of wooden and plastic sleepers are comparable (8.4 GPa and 
8 GPa, respectively), thus explaining their similarities in the response. 
Above this frequency, the sleeper stiffness and density induce a change 
in the gradient and all curves diverge reaching their maximum differ-
ence at around 320 Hz (frail). At this frequency, the response at the rail 

Fig. 27. Absolute track deformation at 320 Hz: (a) symmetric force model 3D view, (b) symmetric force model transversal view, (c) non-symmetric force model 3D 
view, and (d) non-symmetric force model transversal view. Lower components removed for visibility. 

Fig. 28. Absolute track deformation at 440 Hz: (a) symmetric force model 3D view, (b) symmetric force model transversal view, (c) non-symmetric force model 3D 
view, and (d) non-symmetric force model transversal view. Lower components removed for visibility. 

Table 3 
Parametric simulation permutations.  

Permutation Case of Study 

A3/B2/C3/D1/E2/F1/G1/H2 – Base parameters 
A123/B2/C3/D1/E2/F1/G1/H2 A Rail: sections 
A3/B123/C3/D1/E2/F1/G1/H2 B Railpad: stiffness 
A3/B2/C123/D1/E2/F1/G1/H2 C Sleeper: material 
A3/B2/C3/D123/E2/F1/G1/H2 D USP: stiffness 
A3/B2/C3/D1/E12345/F1/G1/H2 E Ballast: stiffness and thickness 
A3/B2/C3/D1/E2/F1/G1/H2 F Sub-ballast: single case 
A3/B2/C3/D1/E2/F1/G123/H2 G Embankment: depth 
A3/B2/C3/D1/E2/F1/G1/H123 H Subgrade: stiffness  
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point (RS) yields the stiffest at C3 and the softest at C1. This behaviour is 
opposed to the sleeper observation point (SC), where C3 and C1 yield the 
stiffest and softest response, respectively. Regarding C1 and C2 cases, it 
can be seen that the lower density of the former induces a greater 
deflection. 

6.4. Under sleeper pads 

The effect of Under-Sleeper Pads (USP) is explored in Fig. 33. Results 
are shown at the rail above sleeper and at the sleeper centre observation 

points, considering three scenarios: no USP (base case, D1), soft USP 
(D2) and stiff USP (D3). Below 50 Hz, the gradients of all curves remain 
relatively stable. However, above this frequency, the gradient difference 
starts to increase slightly. In the 50 − 500 Hz range, USP inclusion leads 
to a slight increase in the response amplitude. Conversely, for fre-
quencies above 500 Hz, the USP scenarios generate the stiffest response, 
resulting in a slightly higher railpad resonance frequency (frailpad) 
compared to the absent case. 

6.5. Ballast 

Fig. 34 compares the effect of the ballast stiffness at the rail above 
sleeper and sleeper centre observation points. Below 50 Hz, the ballast 
stiffness impact the response in a similar manner, with the soft case (E1) 
producing the greatest amplitude, followed by the typical (base case, E2) 
and the stiff ballast (E3) – all curves with comparable gradients. This 
behaviour persists up to approximately 300 Hz, the rail resonance (frail), 
where the amplitude difference among all results reaches its maximum. 
Above 300 Hz, all curves decays, first by the soft ballast, followed by the 

Fig. 29. 3D view reference cell mesh with components in permutations high-
lighted. Only half-track shown for visibility purposes. 

Fig. 30. Rail receptance above sleeper. Rail section effect.  

Fig. 31. Rail receptance above sleeper. Railpad stiffness effect.  

Fig. 32. Frequency response at rail above sleeper (RS) and sleeper centre (SC). 
Sleeper material effect. 
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typical and the stiff cases. Next, at around 600 Hz (frailpad), all curves 
converge, indicating that the ballast does not affect the structure at high- 
frequency ranges. 

In addition to the stiffness effect, ballast thickness is also investi-
gated. Three cases are assessed: typical (E2), deep (E4) and deeper (E5) 
ballast. Results demonstrate the height does not significantly influence 
the resonant frequencies – see Fig. 35. It is observed that the ballast 
height leads to similar amplitudes and gradients up to approximately 
50 Hz. However, beyond this frequency, all curves intersect at around 
100 Hz and 200 Hz and ultimately converge above 400 Hz. 

6.6. Embankment 

Fig. 36 illustrates the effect of embankment height, considering a 
well compacted embankment with E = 200 MPa. Results are shown at 
the rail above sleeper point for three cases: at-grade (base case, G1), 
deep embankment (G2), and deeper embankment (G3). Results show the 
embankment implementation primarily affects the response at 

f < 300 Hz, reducing the structure deflection and broadening the 
response. This occurs because the embankment is stiffer than the sup-
porting subgrade. This behaviour is accompanied by disturbances 
manifested as peaks between 0 − 200 Hz, representing the propagation 
of the response within the embankment. Also, it is observed that the 
embankment cases (G2 and G3) intersect the at-grade case at 50 Hz, 
180 Hz and 300 Hz. Between the first two intersection points (50 −

180 Hz) all curves exhibit a similar gradient, with G2 and G3 displaying 
a higher deflection than G1. This behaviour is opposed to the second set 
of intersection points (180 − 300 Hz), where G2 and G3 display a stiffer 
response compared to G1. Overall, this behaviour likely indicates the 
frequency range in which the sub-ballast layer is most affected, as both 
the embankment and the sub-ballast has similar properties. 

6.7. Subgrade 

Finally, Fig. 37 compares the rail on support response for a soft (H1), 
typical (base case, H2) and stiff (H3) subgrade cases. Results show the 
subgrade mainly affects the response at frequencies below 300 Hz. 
Similar to the embankment effect, it can be seen that the typical and the 

Fig. 33. Frequency response at rail above sleeper (RS) and sleeper centre (SC). 
USP effect. 

Fig. 34. Frequency response at rail above sleeper (RS) and sleeper centre (SC). 
Ballast stiffness effect. 

Fig. 35. Frequency response at rail above sleeper (RS), rail at mid-span (RM), 
and sleeper centre (SC). Ballast thickness effect. 

Fig. 36. Rail receptance above sleeper. Embankment effect.  
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stiff subgrade curves intersect the soft subgrade at approximately 50 Hz, 
180 Hz and 300 Hz. At f < 50 Hz, the stiff subgrade has the lowest 
deflection, followed by the typical and soft subgrade. Between 50 −

180 Hz, all curves show similar behaviour, with the stiff subgrade 
having a slightly larger amplitude than the typical and soft cases. In 
contrast, at 180 − 300 Hz, the soft subgrade exhibits a slightly softer 
deflection compared to the other subgrade cases. Overall, it is observed 
that both the stiff subgrade and the inclusion of embankment (see 
Fig. 36) greatly improves the response at lower frequency ranges. 
However, the latter is accompanied by additional disturbances, which 
do not develop when increasing the stiffness of the subgrade. 

7. Discussion 

This paper introduces new in-sights on receptance analysis and ex-
pands upon previous researches conducted in Refs. [9,12,16] by 
focusing on:  

1. Implementing the DPM, a computationally efficient technique that 
allows replicating the total structural behaviour via a single slice,  

2. Providing a closer approximation of both track (through complex 
support conditions and track’s components representation) and 
ground dynamic behaviour via a combination of 3D FEM-PML 
techniques, 

3. Investigating the effect of rigid foundations and symmetry condi-
tions, and  

4 Presenting an in-depth assessment of multiple track components’ 
effect on the structure’s response which allows for the definition of 
more detailed frequency ranges. 

The related sensitivity study is used to identify the influence of 
specific track parameters on the entire structure. This allows for the 
definition of frequency ranges within which the response amplitude 
changes or remains constant. With this information, it is possible to 
identify and target particular railway issues by adjusting the track 
components’ mechanical parameters and ultimately optimise railway 
system’s design and maintenance operations, thus improving the total 
system response. Fig. 38 displays the frequency ranges where each track 
component has a dominant effect on the track response. For each 
component the horizontal bar indicates the relevant frequency range, 
with the colour intensity indicating the dominance of each frequency 
within. It can be seen that the subgrade mainly impacts frequencies 
around 10 Hz however still has some influence up to 300 Hz. The 

embankment’s effect is comparable to that of the subgrade albeit with a 
minimal shift to higher frequency. In contrast, the ballast energy is 
observed between 80 − 600 Hz, with its main impact at approximately 
300 Hz. The sleeper’s influence extends to the high-frequency range 
(> 800 Hz) however primarily affects frequencies around 350 Hz. 
Finally, the railpad and the rail affect the response above 250 Hz and 
800 Hz, respectively. This behaviour is expected as they are the upper-
most track components. However, the dominant effect of the railpad 
occurs around 600 Hz – a frequency close to the rail’s lower limit, while 
the rail occurs at > 1000 Hz. 

8. Conclusions 

Railway track dynamic stiffness can be measured through receptance 
analysis, the relationship between track mechanical response and fre-
quency. This parameter affects the track’s dynamic response under 
moving train loads, elastic behaviour and noise and vibration charac-
teristics. Thus, this paper provides two main novelties: (1) the presen-
tation of a new numerical approach tailored to receptance calculation, 
and (2) a parametric study identifying the key frequencies associated 
with different track components. 

Firstly, the numerical approach is introduced. This employs a 
computationally efficient 3D periodic technique coupled with perfectly 
matched layers solved in the frequency-wavenumber domain (3D DPM- 
FEM-PML). The approach allows for the simulation of complex track 
geometry and its dynamic wave propagation effect using an efficiently- 
sized domain. Next, the periodic model’s ability to replicate the railway 
track and wave propagation dynamics is validated. Then, the 3D DPM- 
FEM-PML is used to study the effect of rigid foundations and symme-
try conditions, both common modelling assumptions used in the 
modelling of track receptance. It is shown that disregarding wave 
propagation in the subgrade layers and below introduces significant 
errors, approximately 80 − 300% for frequencies below 200 Hz and er-
rors of around 30% for frequencies between 200 − 440 Hz. Additionally, 
it is shown that assuming track centreline symmetry neglects some track 
bending modes and can lead to errors of ≈ 20% up to 1000 Hz. Finally, 
the effect of the most common track components on receptance is ana-
lysed and new knowledge is presented regarding the typical frequency 
ranges associated with each component. 
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Appendix A 

Table A1 shows the material and geometrical properties of each track component considered in the simulations.  

Table A.1 
Track properties. Model refinement and sensitivity analysis  

Component Parameter Units Case 

1 2 3 4 5 

– Track l0 Gauge m 0.7175 – – – – 
Cell d Length m 0.6 – – – – 

A Rail – Layer type – 49E1 CEN56/56E1 CEN60/60E2* – –   
lyr Height m 0.190 0.210 0.218 – –   
lzr Width m 0.033 0.034 0.035 – –   
ηr Loss factor – 0.01 0.01 0.01 – –   
ρr Density kg/m3 7850 7850 7850 – –   
mr Mass kg/m 49 56 60 – –   
νr Poisson ratio – 0.3 0.3 0.3 – –   
Er Young’s modulus GPa 210 210 210 – –  

B Railpad – Layer type – Soft Typical* Typical* – –   
lxrp Length m 0.2 0.2 0.2 – –   
lyrp Thickness m 0.01 0.01 0.01 – –   
lzrp Width m 0.035 0.035 0.035 – –   
ηrp Loss factor – 0.15 0.15 0.15 – –   
ρrp Density kg/m3 1000 1000 1000 – –   
νrp Poisson ratio – 0.45 0.45 0.45 – –   
Erp Young’s modulus MPa 100 200 300 – –  

C Sleeper – Layer type – Wood Plastic Concrete* – –   
lxs Length m 0.2 0.2 0.2 – –   
lys Thickness m 0.2 0.2 0.2 – –   
lzs Width m 1.3 1.3 1.3 – –   
d0 Spacing m 0.6 0.6 0.6 – –   
ηs Loss factor – 0.01 0.01 0.01 – –   
ρs Density kg/m3 1096 1800 2500 – –   
νs Poisson ratio – 0.2 0.4 0.2 – –   
Es Young’s modulus GPa 8.4 8 31 – –  

D USP – Layer type – Absent* Soft Stiff – –   
lxusp Length m – 0.2 0.2 – –   
lyusp Thickness m 0 0.01 0.005 – –   
lzusp Width m – 1.3 1.3 – –   
ηusp Loss factor – – 0.08 0.1 – –   
ρusp Density kg/m3 – 800 800 – –   
νusp Poisson ratio – – 0.35 0.45 – –   
Eusp Young’s modulus MPa – 1.5 2 – –  

E Ballast – Layer type – Soft Typical* Stiff Deep Deeper   
wb Shoulder width m 0.3 0.3 0.3 0.3 0.3   
lxb Length m 0.6 0.6 0.6 0.6 0.6   
lyb Thickness m 0.3 0.3 0.3 0.4 0.5 

(continued on next page) 
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Table A.1 (continued ) 

Component Parameter Units Case 

1 2 3 4 5   

lz1b Width - Top m 1.6 1.6 1.6 1.6 1.6   
lz2b Width - Bottom m 2.1 2.2 2.3 2.2 2.2   
ηb Loss factor – 0.4 0.4 0.4 0.4 0.4   
ρb Density kg/m3 1700 1700 1700 1700 1700   
νb Poisson ratio – 0.3 0.3 0.3 0.3 0.3   
Eb Young’s modulus MPa 150 220 290 220 220  

F Sub-ballast – Layer type – Typical* – – – –   
wsb Shoulder width m 0.4 – – – –   
lxsb Length m 0.6 – – – –   
lysb Thickness m 0.2 – – – –   
lz1sb Width - Top m 2.7 – – – –   
lz2sb Width - Bottom m 2.7 – – – –   
ηsb Loss factor – 0.1 – – – –   
ρsb Density kg/m3 1900 – – – –   
νsb Poisson ratio – 0.3 – – – –   
Esb Young’s modulus MPa 200 – – – –  

G Embankment – Layer type – At-grade* Deep Deeper – –   
lxe Length m – 0.6 0.6 – –   
lye Height m 0 2 4 – –   
lz1e Width - Top m – 3.3 3.3 – –   
lz2e Width - Bottom m – 5.3 7.3 – –   
ηe Loss factor – – 0.1 0.1 – –   
ρe Density kg/m3 – 2000 2000 – –   
νe Poisson ratio – – 0.3 0.3 – –   
Ee Young’s modulus MPa – 200 200 – –  

H Subgrade – Layer type – Soft Typical* Stiff – –   
lysg Depth m ∞ ∞ ∞ – –   
ηsg Loss factor – 0.1 0.1 0.1 – –   
ρsg Density kg/m3 1800 1800 1800 – –   
νsg Poisson ratio – 0.35 0.35 0.35 – –   
Esg Young’s modulus MPa 40 80 120 – – 

* Base parameters. 

Appendix B 

In addition to vertical displacement, the track’s response due to a harmonic impulse can be expressed in terms of velocity and acceleration. When 
measuring the response at the same point as the application of the force, point receptance, mobility, or accelerance can be determined, depending on 
whether displacements, velocities, or accelerations are being computed, respectively. On the contrary, when the measuring point differs from the 
force, the frequency responses are all transfer functions, i.e. transfer receptance, transfer mobility, or a transfer accelerance. 

Fig. B.1 compares the frequency response at different rail positions, taking into account the support and symmetric loading effect. In the first case, 
Fig. B1(a), results are presented in terms of velocity. Alternatively, Fig. B1(b) illustrates the acceleration of the structure. Overall, the resonant fre-
quencies identified in the displacement response (see Figs. 16 and 22) are also displayed in the velocity and acceleration results. Despite this, the 
minimum amplitude is found at lower frequencies in the velocity and acceleration response, and on higher frequencies in the displacement case. This is 
because the response is divided by the frequency and the square of the frequency in the velocity and accelerance case respectively, resulting in 
suppression of the amplitude at lower frequencies and amplification at higher frequencies. 
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Fig. B.1. Track response: (a) velocities and (b) accelerations. Track on subgrade support – non-symmetric loading (TS − NSymm), track on subgrade support – 
symmetric loading (TS − Symm), and track on rigid support – symmetric loading (TR − Symm) 
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