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For several decades, much effort has been put into identifying classes of CNF formulas 
whose satisfiability can be decided in polynomial time. Classic results are the linear-
time tractability of Horn formulas (Aspvall, Plass, and Tarjan, 1979) and Krom (i.e., 2CNF) 
formulas (Dowling and Gallier, 1984). Backdoors, introduced by Williams, Gomes and 
Selman (2003), gradually extend such a tractable class to all formulas of bounded distance 
to the class. Backdoor size provides a natural but rather crude distance measure between 
a formula and a tractable class. Backdoor depth, introduced by Mählmann, Siebertz, and 
Vigny (2021), is a more refined distance measure, which admits the utilization of different 
backdoor variables in parallel. We propose FPT approximation algorithms to compute 
backdoor depth into the classes Horn and Krom. This leads to a linear-time algorithm for 
deciding the satisfiability of formulas of bounded backdoor depth into these classes.
© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Deciding the satisfiability of a propositional formula in conjunctive normal form (CnfSat) is one of the most important 
NP-complete problems [6,21]. Despite its theoretical intractability, heuristic algorithms work surprisingly fast on real-world
CnfSat instances [10,12]. A common explanation for this discrepancy between theoretical hardness and practical feasibility 
is the presence of a certain “hidden structure” in realistic CnfSat instances [19]. There are various approaches to capturing 
the vague notion of a “hidden structure” with a mathematical concept. One widely studied approach is to consider the 
hidden structure in terms of decomposability. We can associate with each CNF formula a bipartite incidence graph with the 
formulas variables on one side and the formulas clauses on the other side, and edges between a variable and a clause if 
the former appears in the latter. For instance, CnfSat can be solved in quadratic time for classes of CNF formulas whose 
incidence graph has bounded treewidth [2,30].

A complementary approach proposed by Williams et al. [34] considers the hidden structure of a CnfSat instance in terms 
of a small number of key variables, called backdoor variables, that, when instantiated, move the instance into a polynomial-
time solvable class. More precisely, a backdoor1 of size k of a CNF formula F into a polynomial-time solvable class C is a 
set B of k variables such that for all partial assignments τ to B , the instantiated formula F [τ ] belongs to C . Here F [τ ]
denotes the CNF formula obtained from F by removing those variables set to false by τ and removing those clauses that 
are already satisfied by τ . In fact, CnfSat can be solved in linear time for any class of CNF formulas that admit backdoors 

✩ Parts of this paper appeared in the Proceedings of the 30th Annual European Symposium on Algorithms (ESA 2022) [8].
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of bounded size into the class of Horn, dual Horn or Krom (i.e., 2CNF) formulas. According to Schaefer’s Theorem [32], these 
three classes are the largest nontrivial classes of CNF formulas defined in terms of a property of clauses, for which CnfSat

can be solved in polynomial time.
For a CNF formula F and class of formulas C , the size d of a smallest backdoor of F into C conceptually measures a 

certain kind of distance that F has to C: If d = 0, then F is already in C , and otherwise d measures how many variables 
need to be assigned to “move” F into C . While the size of a smallest backdoor is a fundamental but rather simple distance 
measure between F and C , Mählmann, Siebertz, and Vigny [22] propose to instead consider the smallest depth over all 
backdoors as distance measure. For a formula F and a class C , we recursively define this depth depthC(F ) as

depthC(F ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if F ∈ C,

1 + min
x∈var(F )

max
ε∈{0,1} depthC(F [x = ε]) if F /∈ C and F is connected,

max
F ′∈Conn(F )

depthC(F ′) otherwise.

(1)

Here, Conn(F ) denotes the set of connected components of the incidence graph of F ; precise definitions are given in 
Section 2. We can certify depthC(F ) ≤ k with a component C-backdoor tree of depth ≤ k which is a decision tree that reflects 
the choices made in the above recursive definition.

Backdoor depth is based on the observation that if an instance F decomposes into multiple connected components of 
F [x = 0] and F [x = 1], then each component can be treated independently. This way, one is allowed to use in total an 
unbounded number of backdoor variables. As long as the depth of the component C-backdoor tree is bounded, one can still 
utilize the backdoor variables to solve the instance efficiently. In the context of graphs, similar ideas are used in the study 
of tree-depth [24,25] and elimination distance [5,11]. Bounded backdoor size implies bounded backdoor depth, but there 
are classes of formulas of unbounded backdoor size but bounded backdoor depth.

The challenging algorithmic problem C-Backdoor Depth is to find for a fixed base class C and a given formula F , a 
component C-backdoor tree of F of depth ≤ k. Mählmann et al. [22] gave an FPT-approximation algorithm for this problem, 
with k as the parameter) where C is the trivial class Null for formulas without variables. A component Null-backdoor tree 
must instantiate all variables of F . In an accompanying paper [9] we have extended this result to obtain fixed-parameter 
tractability of the constraint satisfaction problem (CSP) parameterized by the backdoor depth into CSP defined by any finite, 
tractable, semi-conservative constraint language.

1.1. New results

In this paper, we give the first positive algorithmic results for backdoor depth into nontrivial classes. A minimization 
problem admits a standard fixed-parameter tractable approximation (FPT-approximation) [23] if for an instance of size n and 
parameter k there is an FPT-algorithm, i.e., an algorithm running in time f (k)nO(1) , that either outputs a solution of size at 
most g(k) or outputs that the instance has no solution of size at most k, for some computable functions f and g; g(k) is 
also referred to as the performance ratio of the algorithm.

Main Result 1 (Theorem 19). C-Backdoor Depth admits an FPT-approximation algorithm if C is any of the Schaefer classes 
Horn, dual Horn, or Krom.

Since our FPT algorithms have linear running time for fixed backdoor depth k, we obtain the following corollary:

Main Result 2 (Corollary 20). CnfSat can be solved in linear time for formulas of bounded backdoor depth into the Schaefer 
classes Horn, dual Horn, and Krom.

Backdoor depth is a powerful parameter that is able to capture and exploit structure in CnfSat instances that is not 
captured by any other known method. In Fig. 1, we give a brief comparison between backdoor depth and other well-known 
parameters. Definitions of these parameters and separation proofs are given in Section 8.

1.2. Approach and techniques

A common approach to construct backdoors is to compute in parallel both an upper bound and a lower bound. The upper 
bounds are obtained by constructing the backdoor itself, and lower bounds are usually obtained in the form of so-called 
obstructions. These are parts of an instance that are proven to be “far away” from the base class. In the context of backdoor 
depth, this role is fulfilled by so-called obstruction trees, introduced in the pioneering work of Mählmann et al. [22]. In 
this paper, we also use obstruction trees, but construct them with using quite different techniques. The results of [22] are 
limited to the trivial base class Null, where the obstructions are rather simple because they can contain only boundedly 
many variables. Our central technical contribution is overcoming this limitation by introducing separator obstructions.
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backdoor depth
(into Horn, dual Horn, and Krom)

• backdoor treewidth into Horn, dual Horn, and 
Krom [14,13]

• backdoor size into heterogeneous base classes 
based on Horn, dual Horn, and Krom [16]

• backdoor size into scattered base classes based 
on Horn, dual Horn, and Krom [15]

• deletion backdoor size into the class of quadratic 
Horn formulas [17]

• backdoor size into bounded incidence 
treewidth [18]

• backdoor size into Horn, dual Horn, and Krom 
[26]

• number of leaves of backdoor trees into Horn, 
dual Horn, and Krom [29,27]

• backdoor depth into the class of variable-free 
formulas [22]

orthogonal

strictly dominated

Fig. 1. We list some well-known parameters which render CnfSat fixed-parameter tractable (the list is not complete but covers some of the most essential 
parameters). For all these parameters, there exist CNF formulas with constant backdoor depth (into Horn, dual Horn, and Krom) but where the other 
parameter is arbitrarily large; if there also exist formulas where the converse is true, we call the respective parameter “orthogonal”, otherwise we call it 
“strictly dominated.” We give definitions and separation proofs in Section 8.

Separator obstructions allow us to algorithmically work with obstruction trees containing an unbounded number of 
variables, an apparent requirement for dealing with nontrivial base classes different form Null. In the context of backdoor 
depth, it is crucial that an existing obstruction is disjoint from all potential future obstructions, so they can later be joined 
safely into a new obstruction of increased depth. Mählmann et al. [22] ensure this by placing the whole current obstruction 
tree into the backdoor—an approach that only works for the most trivial base class because only there the obstructions 
have a bounded number of variables. As one considers more and more general base classes, one needs to construct more 
and more complex obstructions to prove lower bounds. For example, as instances of the base class no longer have bounded 
diameter (of the incidence graph of the formula) or bounded clause length, neither have the obstructions one needs to 
consider. Such obstructions become increasingly hard to separate. Our separator obstructions can separate obstruction trees 
containing an unbounded number of variables from all potential future obstruction trees. We obtain backdoors of bounded 
depth by combining the strengths of separator obstructions and obstruction trees. We further introduce a game-theoretic 
framework to reason about backdoors of bounded depth. With this notion, we can compute winning strategies instead of 
explicitly constructing backdoors, greatly simplifying the presentation of our algorithms.

2. Preliminaries

Satisfiability. A literal is a propositional variable x or a negated variable ¬x. A clause is a finite set of literals that does 
not contain a complementary pair x and ¬x of literals. A propositional formula in conjunctive normal form, or CNF formula
for short, is a set of clauses. We denote by CNF the class of all CNF formulas. Let F ∈ CNF and c ∈ F . We denote by 
var(c) the set of all variables occurring in c, i.e., var(c) = { x | x ∈ c ∨ ¬x ∈ c } and we set var(F ) = ⋃

c∈F var(c). For a set of 
literals L, we denote by L = { ¬l | l ∈ L }, the set of complementary literals of the literals in L. The size of a CNF formula F is 
‖F‖ = ∑

c∈F |c|.
Let τ : X → {0, 1} be an assignment of some set X of propositional variables. If X = {x} and τ (x) = ε , we will sometimes 

also denote the assignment τ by x = ε for brevity. We denote by true(τ ) (false(τ )) the set of all literals satisfied (falsified) 
by τ , i.e., true(τ ) = { x ∈ X | τ (x) = 1 } ∪ { ¬x ∈ X | τ (x) = 0 } (false(τ ) = true(τ )). We denote by F [τ ] the formula obtained 
from F after removing all clauses that are satisfied by τ and from the remaining clauses removing all literals that are 
falsified by τ , i.e., F [τ ] = { c \ false(τ ) | c ∈ F and c ∩ true(τ ) = ∅ }. We say that an assignment satisfies F if F [τ ] = ∅. We 
say that F is satisfiable if there is some assignment τ : var(F ) → {0, 1} that satisfies F , otherwise F is unsatisfiable. CnfSat

denotes the propositional satisfiability problem, which takes a CNF formula as input, and asks whether the formula is 
satisfiable.

The incidence graph of a CNF formula F is the bipartite graph G F whose vertices are the variables and clauses of F , and 
where a variable x and a clause c are adjacent if and only if x ∈ var(c). We identify a subgraph G ′ of the incidence graph 
G F with the formula F ′ consisting of all the clauses of F that are in G ′ , each restricted to the adjacent variables in G ′ . 
With slight abuse of notation, we define var(F ′) to be the variables occurring in G ′ . Via incidence graphs, graph theoretic 
concepts directly translate to CNF formulas. For instance, we say that F is connected if G F is connected, and F ′ is a connected 
component of F if F ′ is a maximal connected subset of F . Conn(F ) denotes the set of connected components of F . Moreover, 
the primal graph of a CNF formula F has the vertex set var(F ) and an edge between vertices x, z ∈ var(F ) if and only if there 
exists a clause c ∈ F containing both x and y.
3
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Base classes. Let α ⊆ {+, −} with α = ∅, let F ∈ CNF and c ∈ F . We say that a literal l is an α-literal if is a positive 
literal and + ∈ α or it is a negative literal and − ∈ α. We say that a variable v α-occurs in a clause c, if v or ¬v is an 
α-literal that is contained in c. We denote by varα(c) the set of variables that α-occur in c. For α ⊆ {+, −} with α = ∅ and 
s ∈ N , let Cα,s be the class of all CNF formulas F such that every clause of F contains at most s α-literals. For C ⊆ CNF , 
we say that a clause c is C-good if {c} ∈ C . Otherwise, c is C-bad. Let τ be any (partial) assignment of the variables of F . We 
will frequently make use of the fact that Cα,s is closed under assignments, i.e., if F ∈ Cα,s , then also F [τ ] ∈ Cα,s . Therefore, 
whenever a clause c ∈ F is Cα,s-good it will remain Cα,s-good in F [τ ] and conversely whenever a clause is Cα,s-bad in F [τ ]
it is also Cα,s-bad in F .

The classes Cα,s capture (according to Schaefer’s Dichotomy Theorem [32]) the largest syntactic classes of CNF formulas 
for which the satisfiability problem can be solved in polynomial time: The class C{+},1 = Horn of Horn formulas, the class 
of C{−},1 = dHorn of dual Horn formulas, and the class C{+,−},2 = Krom of Krom (or 2CNF) formulas. Note also that the class 
Null of formulas containing no variables considered by Mählmann et al. [22] is equal to C{+,−},0. We follow Williams et al. 
[34] and focus on classes that are closed under assignments and therefore we do not consider the classes of 0/1-valid and 
affine formulas.

Note that every class Cα,s (and therefore also the classes of Krom, Horn, and dual Horn formulas) is trivially linear-time 
recognizable, i.e., membership in the class can be tested in linear-time. We say that a class C of formulas is tractable or 
linear-time tractable, if CnfSat restricted to formulas in C can be solved in polynomial-time or linear-time, respectively. The 
classes Horn, dHorn, Krom are linear-time tractable [1,7].

3. Backdoor depth

A binary decision tree is a rooted binary tree T . Every inner node t of T is assigned a propositional variable, denoted 
by var(t), and has exactly one left and one right child, which corresponds to setting the variable to 0 or 1, respectively. 
Moreover, every variable occurs at most once on any root-to-leaf path of T . We denote by var(T ) the set of all variables 
assigned to any node of T . Finally, we associate with each node t of T , the truth assignment τt that is defined on all 
the variables var(P ) \ {var(t)} occurring on the unique path P from the root of T to t such that τt(v) = 0 (τt(v) = 1) if 
v ∈ var(P ) \ {var(t)} and P contains the left child (right child) of the node t′ on P with var(t′) = v . Let C be a base class, 
F be a CNF formula, and T be a decision tree with var(T ) ⊆ var(F ). Then T is a C-backdoor tree of F if F [τt] ∈ C for every 
leaf t of T [29].

Component backdoor trees generalize backdoor trees as considered by Samer and Szeider [29] by allowing an additional 
node type, component nodes, where the current instance is split into connected components. More precisely, let C be a base 
class and F be a CNF formula. A component C-backdoor tree for F is a pair (T , ϕ), where T is a rooted tree and ϕ is a 
mapping that assigns each node t a CNF formula ϕ(t) such that the following conditions are satisfied:

1. For the root r of T , we have ϕ(r) = F .
2. For each leaf � of T , we have ϕ(�) ∈ C .
3. For each non-leaf t of T , there are two possibilities:

(a) t has exactly two children t0 and t1, where for some variable x ∈ var(ϕ(t)) we have ϕ(ti) = ϕ(t)[x = i]; in this case 
we call t a variable node.

(b) Conn(ϕ(t)) = {F1, . . . , Fk} for k ≥ 2 and t has exactly k children t1, . . . , tk with ϕ(ti) = Fi ; in this case we call t a 
component node.

For an example see Fig. 2. Thus, a backdoor tree is just a component backdoor tree without component nodes. The depth
of a C-backdoor is the largest number of variable nodes on any root-to-leaf path. The C-backdoor depth depthC(F ) of a 
formula F into a base class C is the smallest depth over all component C-backdoor trees of F . Alternatively, we can define 
C-backdoor depth recursively as in equation (1) from the introduction. For a component backdoor tree (T , ϕ) let var(T , ϕ)

be the set of all variables x such that some variable node t of T branches on x. We observe that one can use component 
C-backdoor trees to decide the satisfiability of a formula.

Lemma 1. Let C ⊆ CNF be tractable, let F ∈ CNF , and let (T , ϕ) be a component C-backdoor tree of F of depth d. Then, we can 
decide the satisfiability of F in time (2d‖F‖)O(1) . Moreover, if C is linear-time tractable, then the same can be done in time O(2d‖F‖).

Proof. Let m = ‖F‖. We start by showing that 
∑

�∈L(T ) ‖ϕ(�)‖| ≤ 2dm, where L(T ) denotes the set of leaves of T , using 
induction on d and m. The statement holds if d = 0 or m ≤ 1. We show that it also holds for larger d and m. If the root 
is a variable node, then it has two children c0, c1, and the subtree rooted at any of these children represents a component 
C-backdoor tree for the CNF formula ϕ(ci) of depth d − 1. Therefore, by the induction hypothesis, we obtain that si =∑

�∈L(Ti)
‖ϕ(�)‖ ≤ 2d−1m, for the subtree Ti rooted at ci , i ∈ {0, 1}. Consequently, 

∑
�∈L(T ) ‖ϕ(�)‖ = s0 + s1 ≤ 2 ·2d−1m = 2dm, 

as required. If, on the other hand, the root is a component node, then its children, say c1, . . . , ck , are labeled with CNF 
formulas of sizes m1 + · · · + mk = m. Therefore, for every subtree Ti of T rooted at ci , we have that Ti is a component 
4
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Fig. 2. A component C-backdoor tree of depth four, for C = Krom. Variable nodes are purple, component nodes are orange, and leafs are black. The 
gray boxes show the associated CNF formulas. Within each CNF formula, boxes depict clauses, circles depict variables and edges depict containment. The 
highlighted variable x is contained negatively in all dark blue clauses and positively in all light blue clauses. Similarly, y is contained negatively in all dark 
red clauses and positively in all light red clauses. After branching over x and y, the formula decomposes into 16 components at the third level of the tree. 
After branching over the depicted variable z, all clauses contain at most two variables. Hence, the leaves of the tree correspond to Krom formulas. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

C-backdoor tree of depth d for ϕ(ci), which using the induction hypothesis implies that 
∑

�∈L(Ti)
‖ϕ(�)‖ ≤ 2dmi . Hence, we 

obtain 
∑

�∈L(T ) ‖ϕ(�)‖ ≤ 2dm in total.
To decide the satisfiability of F , we first decide the satisfiability of all the formulas associated with the leaves of T . 

Because, as shown above, their total size is at most 2dm, this can be achieved in time (2dm)O(1) if CnfSat restricted to 
formulas in C is polynomial-time solvable and in time O(2dm) if CnfSat restricted to formulas in C is linear-time solvable. 
Let us call a leaf true/false if it is labeled by a satisfiable/unsatisfiable CNF formula, respectively. We now propagate the 
truth values upwards to the root, considering a component node as the logical and of its children, and a variable node as 
the logical or of its children. F is satisfiable if and only if the root of T is true. We can carry out the propagation in time 
linear in the number of nodes of T , which is linear in the number of leaves of T , which is at most 2dm. �

In Section 8, we will need the following simple observation. Let C ⊆ CNF and F ∈ CNF . A (strong) C-backdoor of F is a 
set B ⊆ var(F ) such that F [τ ] ∈ C for each τ : B → {0, 1}. Assume C is closed under partial assignments (which is the case 
for many natural base classes and the classes Cα,s) and (T , ϕ) a component C-backdoor tree of F . We argue that var(T , ϕ)

is a C-backdoor of F : Fix a partial assignment τ to var(T , ϕ). Traversing T downwards from the root according to τ yields 
a leaf t and sub-assignment τt of τ with F [τt] ∈ C . Since C is closed under partial assignments, we also have F [τ ] ∈ C .

4. Technical overview

We present all our algorithms in this work within a game-theoretic framework. This framework builds upon the following 
equivalent formulation of backdoor depth using splitter games. Similar games can be used to describe treedepth and other 
graph classes [20].

Definition 2. Let C ⊆ CNF and F ∈ CNF . We denote by Game(F , C) the so-called C-backdoor depth game on F . The game 
is played between two players, the connector and the splitter. The positions of the game are CNF formulas. At first, the 
connector chooses a connected component of F to be the starting position of the game. The game is over once a position in 
the base class C is reached. We call these positions the winning positions (of the splitter). In each round the game progresses 
from a current position J to a next position as follows:

• The splitter chooses a variable v ∈ var( J ).
• The connector chooses an assignment τ : {v} → {0, 1} and a connected component J ′ of J [τ ]. The next position is J ′ .

In the (unusual) case that a position J contains no variables anymore but J is still not in C , the splitter looses. For a 
position J , we denote by τ J the assignment of all variables assigned up to position J .
5
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The following observation follows easily from the definition of the game and the fact that the (strategy) tree obtained 
by playing all possible plays of the connector against a given d-round winning strategy for the splitter forms a component 
backdoor tree of depth d, and vice versa. In particular, the splitter choosing a variable v at position J corresponds to a 
variable node and the subsequent choice of the connector for an assignment τ of v and a component of J [τ ] corresponds 
to a component node (and a subsequent variable or leaf node) in a component backdoor tree.

Observation 3. The splitter has a strategy for the game Game(F , C) to reach within at most d rounds a winning position if 
and only if F has C-backdoor depth at most d.

Using backdoor depth games, we no longer have to explicitly construct a backdoor. Instead, we present so-called splitter-
algorithms that play the backdoor depth game from the perspective of the splitter. These algorithms will have some auxiliary 
internal state that they modify with each move. Formally, a splitter-algorithm for the C-backdoor depth game to a base 
class C is a procedure that

• gets as input a (non-winning) position J of the game, together with an internal state
• and returns a valid move for the splitter at position J , together with an updated internal state.

It can be understood as a function (position, state) → (new position, new state). We will usually use the internal state 
to hold an obstruction that the splitter will periodically increase in size. Assume we have a game Game(F , C) and some 
additional input S . For a given strategy of the connector, the splitter-algorithm plays the game as one would expect: In the 
beginning, the internal state is initialized with S (if no additional input is given, the state is initialized empty). Whenever 
the splitter should make its next move, the splitter-algorithm is queried using the current position and internal state, and 
afterwards the internal state is updated accordingly.

Definition 4. We say a splitter-algorithm implements a strategy to reach for a game Game(F , C) and input S within at most d
rounds a position and internal state with some property if initializing the internal state with S and then playing Game(F , C)

according to the splitter-algorithm leads—no matter what strategy the connector is using—after at most d rounds to a 
position and internal state with said property.

The following observation converts splitter-algorithms into algorithms for bounded depth backdoors. It builds component 
backdoor trees by trying all moves of the connector.

Lemma 5. Let C ⊆ CNF and fC : N →N . Assume there exists a splitter-algorithm that implements a strategy to reach in each play 
in the game Game(F , C) and non-negative integer d within at most fC(d) rounds either:

i) a winning position, or
ii) (an internal state representing) a proof that the C-backdoor depth of F is at least d.

Further assume this splitter-algorithm always takes at most O(‖F‖) time to compute its next move. Then there is an algorithm that, 
given F and d, in time at most 3 fC(d)O(‖F‖) either:

i) returns a component C-backdoor tree of depth at most fC(d), or
ii) concludes that the C-backdoor depth of F is at least d.

Proof. We compute a component C-backdoor tree of depth at most fC(d) by starting at the root and then iteratively 
expanding the leaves, using the splitter-algorithm to compute the next variable to branch over. For each position we reach, 
we store the internal state of the splitter-algorithm in a look-up table, indexed by the position. This way, we can easily 
build the component C-backdoor tree, e.g., in a depth-first way. If we encounter at any time an internal state representing 
a proof that the C-backdoor depth of F is at least d, we can abort. If this is not the case, then we are guaranteed that every 
leaf represents a winning position and therefore an instance in C . We have therefore found a component C-backdoor tree 
of depth at most fC(d).

Without loss of generality, we can assume that F is connected. We need to expand the root node F into a tree of depth 
fC(d). We show by induction on i ≥ 0 that we can expand a node J into a tree of depth i in time at most 3i c‖ J‖ for 
some constant c, thereby proving the lemma. As a base case, it takes no time to expand a node zero times. To expand 
a node J i > 0 times, we run the splitter algorithm in time c‖ J‖ to get the next variable and create a subtree for both 
assignments of this variable. For each of the two assignments, the instance splits into some components J1, . . . , Jk with 
‖ J1‖ + · · · + ‖ Jk‖ ≤ ‖ J‖ (for one assignment) and components J ′

1, . . . , J
′
k′ with ‖ J ′

1‖ + · · · + ‖ J ′
k′ ‖ ≤ ‖ J‖ (for the other 

assignment). By induction, we can expand each such component J j i − 1 times in time 3i−1c‖ J j‖. This yields a total run 
time of at most
6
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c‖ J‖ +
∑

j

3i−1c‖ J j‖ +
∑

j

3i−1c‖ J ′
j‖ ≤ c‖ J‖ + 2 · 3i−1c‖ J‖ ≤ 3ic‖ J‖. �

For the sake of readability, we may present splitter-algorithms as continuously running algorithms that periodically 
output moves (via some output channel) and always immediately as a reply get the next move of the connector (via some 
input channel). Such an algorithm can easily be converted into a procedure that gets as input a position and internal state 
and outputs a move and a modified internal state: The internal state encodes the whole state of the computation, (e.g., 
the current state of a Turing machine together with the contents of the tape and the position of the head). Whenever the 
procedure is called, it “unfreezes” this state, performs the computation until it reaches its next move and then “freezes” and 
returns its state together with the move.

Our main result is an approximation algorithm (Theorem 19) that either concludes that there is no backdoor of depth d, 
or computes a component backdoor tree of depth at most 22O(d)

. By Lemma 5, this is equivalent to a splitter-algorithm that 
plays for 22O(d)

rounds to either reach a winning position or a proof that the backdoor depth is larger than d.
Following the approach of Mählmann et al. [22], our proofs of high backdoor depth come in the form of so-called 

obstruction trees. These are trees in the incidence graph of a CNF formula. Their node set therefore consists of both variables 
and clauses. Obstruction trees of depth d describe parts of an instance for which the splitter needs more than d rounds to 
win the backdoor depth game. For depth zero, we simply take a single (bad) clause that is not allowed by the base class. 
Roughly speaking, an obstruction tree of depth d > 0 is built from two “separated” obstruction trees T1, T2 of depth d − 1
that are connected by a path. As we will see later in Section 6, these conditions ensure for any variable v that the splitter 
may play, that there is a response of the connector (i.e., an assignment of v and a component) in which either T1 or T2 is 
whole. From this position, the splitter needs by induction still more than d − 1 additional rounds to win the game, and thus 
needs more than d rounds to win the game as a whole.

Definition 6. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈ N . We inductively define C-obstruction trees T
for F of increasing depth.

• Let c be a C-bad clause of F . The set T = {c} is a C-obstruction tree in F of depth 0.
• Let T1 be a C-obstruction tree of depth i in F . Let β be a partial assignment of the variables in F . Let T2 be an 

obstruction tree of depth i in F [β] such that no variable v ∈ var(F [β]) that is contained in a clause of T2 is contained 
in T1 or α-occurs in a clause of T1. Let further P be (a CNF formula representing) a path that connects T1 and T2 in F . 
Then T = T1 ∪ T2 ∪ var(P ) ∪ P is a C-obstruction tree in F of depth i + 1.

We prove the following central lemma in Section 6.

Lemma 7. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈ N . If there is a C-obstruction tree of depth d in F , then the 
C-backdoor depth of F is larger than d.

Our splitter-algorithm will construct obstruction trees of increasing depth by a recursive procedure (Lemma 18) that we 
outline now. We say a splitter-algorithm satisfies Property i if it reaches in each game Game(F , C) within gC(i, d) rounds 
(for some function gC(i, d)) either

1) a winning position, or
2) a position J and a C-obstruction tree T of depth i in F such that no variable in var( J ) occurs in T or α-occurs in a 

clause of T , or
3) a proof that the C-backdoor depth of F is at least d.

If we have a splitter algorithm satisfying Property d + 1 then our main result, the approximation algorithm for backdoor 
depth, directly follows from Lemma 7 and Lemma 5. Assume we have a strategy satisfying Property i − 1, let us describe 
how to use it to satisfy Property i. If at any point we reach a winning position or a proof that the C-backdoor depth of F
is at least d, then we are done. Let us assume that this does not happen, so we can focus on the much more interesting 
case 2).

We use Property i − 1 to construct a first tree T1 of depth i − 1, and reach a position J1. We use it again, starting at 
position J1 to construct a second tree T2 of depth i − 1 that is completely contained in position J1. Since in the beginning 
the connector selected a connected component, T1 and T2 are in the same component of F and we can find a path P
connecting them. Let β be the assignment that assigns all the variables the splitter has chosen until reaching position J1. 
Then T2 is an obstruction tree not only in J1 but also in F [β]. In order to join both trees together into an obstruction 
of depth i, we have to show, according to Definition 6, that no variable v ∈ var(F [β]) that is contained in a clause of T2
is contained in T1 or α-occurs in a clause of T1. Since no variable in var( J1) occurs in T1 or α-occurs in a clause of T1
(Property i − 1), and T2 was built only from J1, this is the case. The trees T1 and T2 are “separated” and can be safely 
joined into a new obstruction tree T of depth i (see also Fig. 9 on page 17 and the proof of Lemma 18 for details).
7
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The last thing we need to ensure is that we reach a position J such that no variable in var( J ) occurs in T or α-occurs 
in a clause of T . This then guarantees that T is “separated” from all future obstruction trees that we may want to join it 
with to satisfy Property i + 1, i + 2 and so forth. This is the major difficulty and main technical contribution of this paper.

It is important to note here that the exact notion of “separation” between obstruction trees plays a crucial role for our 
approach and is one of the main differences to Mählmann et al. [22]. Mählmann et al. solve the separation problem in a 
“brute-force” manner: If we translate their approach to the language of splitter-algorithms, then the splitter simply selects 
all variables that occur in a clause of T . For their base class—the class Null of formulas without variables—there are at most 
2O(d) variables that occur in an obstruction tree of depth d. Thus, in only 2O(d) rounds, the splitter can select all of them, 
fulfilling the separation property. This completes the proof for the base class Null.

However, already for backdoor depth to Krom, this approach cannot work since instances in the base class have obstruc-
tion trees with arbitrarily many clauses. Moreover, the situation becomes even more difficult for backdoors to Horn, since 
additionally clauses are allowed to contain arbitrary many literals. Mählmann et al. acknowledge this as a central problem 
and ask for an alternative approach to the separation problem that works for more general base classes.

5. Separator obstructions

The main technical contribution of this work is a separation technique that works for the base classes C = Cα,s . The 
separation technique is based on a novel form of obstruction, which we call separator obstruction. Obstruction trees are 
made up of paths, therefore, it is sufficient to separate each new path P that is added to an obstruction. Note that P can 
be arbitrarily long and every clause on P can have arbitrary many variables and therefore the splitter cannot simply select 
all variables in (clauses of) P . Instead, given such a path P that we want to separate, we will use separator obstructions to 
develop a splitter-algorithm (Lemma 16) that reaches in each game Game(F , C) within a bounded number of rounds either

1) a winning position, or
2) a position J such that no variable in var( J ) occurs in P or α-occurs in a clause of P , or
3) a proof that the C-backdoor depth of F is at least d.

Informally, a separator obstruction is a sequence 〈P1, . . . , P�〉 of paths that together form a tree T� , in combination with 
an assignment τ of certain important variables occurring in T� . The variables of τ correspond to the variables chosen by 
the splitter-algorithm and the assignment τ corresponds to the assignment chosen by the connector. Each path Pi adds at 
least one C-bad clause bi to the separator obstruction, which is an important prerequisite to increase the backdoor depth 
by growing the obstruction. Moreover, by choosing the important variables and the paths carefully, we ensure that for every 
outside variable, i.e., any variable that is not an important variable assigned by τ , there is an assignment and a component 
(which can be chosen by the connector) that leaves a large enough part of the separator obstruction intact. Thus, if a 
separator obstruction is sufficiently large, the connector can play such that even after d rounds a non-empty part of the 
separator obstruction is still intact. This means a large separator obstruction is a proof that the backdoor depth is larger 
than d.

To illustrate the growth of a separator obstruction (and motivate its definition) suppose that our splitter-algorithm is at 
position J of the game Game(F , C) and has already built a separator obstruction X = 〈〈P1, . . . , Pi〉, τ 〉 (with corresponding 
tree Ti ) containing C-bad clauses b1, . . . , bi ; note that τ is compatible with τ J (i.e., τ and τ J agree on the common assigned 
variables) and we can assume without loss of generality that J is connected. If J is already a winning position, then 
Property i is satisfied. Therefore, J has to contain a C-bad clause. Note that if J does not contain a variable that is either 
in Ti or α-occurs in a clause of Ti , then J satisfies 2) of Property i and we are done. Otherwise, let Y be the set of all 
such variables in J and let bi+1 be a C-bad clause in J that is closest to any variable in Y . Note that it can happen that 
bi+1 is in Ti in which case, we let Pi+1 be the path that only contains bi+1. Otherwise, let P be a shortest path from 
bi+1 to Y in J and let y ∈ Y be the endpoint of P in Y . Let Pi+1 be the path that is equal to P if y ∈ Ti and otherwise 
Pi+1 is obtained from Pi after adding an edge from y to a clause c in Ti such that y α-occurs in c. Then, we extend our 
separator obstruction X by attaching the path Pi+1 to Ti (and obtain the tree Ti+1). Our next order of business is to choose 
a bounded number of important variables occurring on Pi+1 that we will add to X . Those variables need to be chosen such 
that no outside variable can destroy too much of the separator obstruction. Apart from destroying the paths of the separator 
obstruction, we also need to avoid that assigning any outside variable makes too many of the C-bad clauses b1, . . . , bi+1
C-good. Therefore, a natural choice would be to add all variables of bi+1 to X , i.e., to mark those variables as important. 
Unfortunately, this is not possible since bi+1 can contain arbitrarily many literals. Instead, we will only add the variables of 
bi+1 to X that α-occur in bi+1. By the following lemma, the number of those variables is bounded.

Lemma 8. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈ N . If F has C-backdoor depth at most some integer d, then 
every clause of F contains at most d + s α-literals.

Proof. As stated in the preliminaries, we can assume that every variable occurs at most once in every clause. Suppose 
that F contains a clause c containing more than d + s α-literals. If the splitter chooses a variable from c, the connector will 
8
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Fig. 3. A step-by-step example illustrating Definition 9. The recursive definition starts with a tree Ti−1, in this case with i = 3.

Fig. 4. The assignment τi−1 assigns the variables in V i−1. We illustrate the reduced formula F [τi−1] in our example. Omitted parts are indicated by “[...]”. 
We highlight in orange the clauses in Bi−1 and in light blue the variables in V i−1. The grayed out variables and clauses are present in F but no longer 
in F [τi−1]. This means grayed out variables are assigned by τi−1 and grayed out clauses were satisfied by τi−1. Bold edges indicate that a variable is 
α-contained in a clause.

assign it to zero if it occurs positively in c and to one otherwise. Thus, the connector can play such that after d rounds, c
still has more than s α-literals and therefore still is C-bad. By Observation 3, F has backdoor depth larger than d. �

While this still allows for outside variables to occur in many of the C-bad clauses b1, . . . , bi+1, it already ensures that 
no outside variable can α-occur in any of these clauses. This helps us, since when |α| = 1 (i.e., the only case where α-
occurs means something different then just occurs), it provides us with an assignment of any such outside variable that the 
connector can play without making the C-bad clauses in which it occurs C-good. For instance, if α = {+}, then any outside 
variable v can only occur negatively in a C-bad clause and moreover setting v to 1 ensures that the C-bad clauses remain 
C-bad.

Next, we need to ensure that any outside variable cannot destroy too many paths. By choosing a shortest path Pi+1, 
we have already ensured that no variable occurs on more than two clauses of Pi+1 (such a variable would be a shortcut, 
meaning Pi+1 was not a shortest path). Moreover, because Pi+1 is a shortest path from bi+1 to Ti , every variable that occurs 
on Ti and on Pi+1 must occur in the clause c in Pi+1 that is closest to Ti but not in Ti itself. Similarly, to how we dealt 
with the C-bad clauses, we will now add all variables that α-occur in c to X . This ensures that no outside variable can α-
occur in both Ti and Pi+1, which (by induction over i) implies that every outside variable α-occurs in at most two clauses 
(either from Ti or from Pi+1) and therefore provides us with an assignment for the outside variables that removes at most 
two clauses from X . However, since removing any single clause can be arbitrarily bad if the clause has a high degree in 
the separator obstruction, we further need to ensure that all clauses of the separator obstruction in which outside variables 
α-occur have small degree. We achieve this by adding the variables α-occurring in any clause as soon as its degree (in the 
separator obstruction) becomes larger than two, which happens whenever the endpoint of Pi+1 in Ti is a clause. Finally, if 
the endpoint of Pi+1 in Ti is a variable, we also add this variable to the separator obstruction to ensure that no variable 
has degree larger than three in Ti+1. This leads us to the following definition of separator obstructions (see also Figs. 3–7
for an illustration).

Definition 9. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈ N . A C-separator obstruction for F is a tuple 
X = 〈〈P1, . . . , P�〉, τ 〉 (where P1, . . . , P� are paths in F and τ is an assignment of variables of F ) satisfying the following 
recursive definition.
9
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Fig. 5. The graph Gi−1 is obtained from F [τi−1] by adding all clauses of Ti−1 and keeping precisely the edges corresponding to α-occurring variables (that 
is, bold edges). In the following two illustrations, we make a case distinction on how the clause bi connects to Gi−1.

Fig. 6. First case: e is a variable. We highlight in orange the clauses in Bi \ Bi−1 and in light blue the variables in V i \ V i−1.

Fig. 7. Second case: e is a clause. We again highlight in orange the clauses in Bi \ Bi−1 and in light blue the variables in V i \ V i−1.

• P1 is a shortest path between two C-bad clauses b0 and b1 in F . Let B1 = {b0, b1}, let V 1 be the set of all variables that 
α-occur in any clause in B1, let τ1 : V 1 → {0, 1} be any assignment of the variables in V 1, and let T1 = P1.

• Let Gi−1 be the graph obtained from the incidence graph of F [τi−1] after:

– adding all clauses in Ti−1 that are not in F [τi−1],
10
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– adding an edge between any variable v of F [τi−1] and any clause of c of Ti−1 such that v α-occurs in c in F .
– removing all edges between any clause c in Ti−1 and any variable v of F [τi−1] \ Ti−1 such that v does not α-occurs 

in c.

For every i with 1 < i ≤ �, let bi be a C-bad clause in F [τi−1] of minimal distance to Ti−1 in Gi−1. Then, Pi is a 
shortest path (of possibly length zero) in Gi−1 from bi to Ti−1 and Ti = Ti−1 ∪ Pi . Moreover, let e be the variable or 
clause that is both in Ti−1 and Pi . We define Bi and V i by initially setting Bi = Bi−1 ∪ {bi} and V i = V i−1 ∪ varα(bi) and 
distinguishing two cases:

– If e is a variable, then let c be the clause on Pi incident with e (note that it is possible that c = bi ). Then, we add c
to Bi and we add {e} ∪ varα(c) to V i .

– If e is a clause, then either e = bi or e = bi and there is a clause c that is closest to e on Pi (it may be that 
c = bi ). In the former case we leave Bi and V i unchanged and in the latter case, we add e and c to Bi and we add 
varα(e) ∪ varα(c) to V i .

τi : V i → {0, 1} is any assignment of the variables in V i that is compatible with τi−1.

We set τ = τ� . The size of X is the number of paths in T = T� , i.e., � + 1.

We comment on the role of the assignment τ as part of the above definition: In Lemma 11, the assignment will be used 
to define a winning strategy for connector, which will then show that separator obstructions indeed yield lower bounds on 
the backdoor depth.

We start by observing some simple but important properties of separator obstructions.

Lemma 10. lemma Let F ∈ CNF , C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈ N , and let X = 〈〈P1, . . . , P�〉, τ 〉 be a C-separator 
obstruction in F , then for every i ∈ [�]:

(C1) Ti is a tree.
(C2) Every variable v ∈ V i occurs in at most three clauses of P j for every j with 1 ≤ j ≤ i + 1.
(C3) Every variable v ∈ V i α-occurs in at most two clauses of P j for every j with 1 ≤ j ≤ i +1. Moreover, these clauses are consecutive 

in P j .
(C4) Every variable v ∈ V i α-occurs in at most two clauses of Ti and moreover those clauses are consecutively contained in one path 

of Ti .
(C5) Every variable v ∈ V i \ V i−1 α-occurs in most four clauses of Ti .
(C6) If a variable v ∈ V i α-occurs in a clause c of Ti , then c has degree at most two in Ti .
(C7) The degree of every clause in T is at most equal to the number of variables that α-occur in c plus two.
(C8) Every variable of F has degree at most three in T .
(C9) If every clause of F contains at most x α-literals, then |V i \ V i−1| ≤ 2s + x + 1.

Proof. We show (C1) by induction on i. (C1) clearly holds for i = 1. For i > 1, note that Ti is obtained from Ti−1 by adding 
the path Pi that intersects Ti−1 in at most one variable or clause. Since Ti−1 is a tree so is Ti .

Towards showing (C2), observe first that because v /∈ V i , it holds that v is in F [τ j−1] and therefore also in G j−1 for 
every j ≤ i + 1. Consider a clause c of P j that is not in T j−1; note that there is at most one clause on P j that is in T j−1. If 
v occurs in c in F , then G j−1 contains the edge between v and c. Therefore, if v is contained in at least three such clauses 
on P j , then P j would no longer be a shortest path in G j−1. Consequently, v is contained in at most two such clauses in 
P j (which are consecutive). Finally, because P j contains at most one clause that is also in Ti−1, we obtain that in total v is 
contained in at most three clauses of P j .

The proof for (C3) is very similar to the proof of (C2). One only needs to additionally observe that if v α-occurs in the 
at most one clause of P j that is also in T j−1, then G j−1 contains the edge between v and this clause; which is not the case 
if v occurs but does not α-occur in the clause.

We establish (C4) by induction on i. For i = 1, this follows immediately from (C3) because T1 = P1. Now suppose that 
the claim holds for i − 1. Then, v α-occurs in at most two consecutive clauses of some path of Ti−1. Moreover, because of 
(C3), v α-occurs in at most two consecutive clauses of Pi . We claim that it is not possible that v α-occurs both in a clause 
ci−1 of Ti−1 that is not in Pi and in a clause ci in Pi that is not in Ti−1. Clearly, ci−1 = ci . Note that because v /∈ V i , it holds 
that v is in Gi−1 and moreover because v α-occurs in ci−1 and ci , it holds that Gi−1 contains the edge between v and ci−1
and the edge between v and ci . Therefore, because Pi is a shortest path in Gi−1, we obtain that ci must be the clause in 
Pi \ Ti−1 that is closest to Ti−1. But then, ci ∈ Bi , which contradicts our assumption that v /∈ V i .

Towards showing (C5), first note that because of (C4), and the fact that v /∈ V i−1, we obtain that v can α-occur in at 
most two clauses of Ti−1. Moreover, it follows from (C3) that v can α-occur in at most two (consecutive) clauses of Pi . 
Therefore, v α-occurs in at most four clauses of Ti .
11
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Towards showing (C6), first observe that if c is a clause with degree larger than 2 in Ti , then c ∈ Bi . This is because for c
to have degree larger than 2, it must be contained in more than one path of Ti , i.e., there must be an index j ≤ i such that 
c is contained in both T j−1 and P j . But then, c ∈ B j ⊆ Bi . Now suppose for a contradiction that there is a clause c with 
degree larger than two in which a variable v /∈ V i α-occurs. Then, c ∈ Bi and because v ∈ varα(c), we obtain that v ∈ V i , a 
contradiction.

Towards showing (C7), let c be a clause of T . If c occurs in only one path of T , then c has degree 2 in T . Otherwise, let i
be the smallest integer such that c is contained in Pi . Then, for every j > i, it holds that if P j contains c, then the variable 
on P j that is adjacent to c α-occurs in c. Therefore, the degree of c in T is at most two plus the number of variables that 
α-occur in c.

Towards showing (C8), let v be any variable of F . If v occurs in at most one path of T , then v has degree at most two 
in T . Moreover, if not then let i be the smallest number such that v is contained in two paths of Ti . Then v has degree at 
most three in Ti and is the endpoint of the path Pi in Ti−1 and therefore v is added to V i . However, this implies that v
will not appear on any path P j for j > i (because any such path P j is a path in Gi , which does no longer contain v) and 
therefore the degree of v in T will be at most three.

We finish by showing (C9). We say that a path P of F (i.e., a path of G F ) is C-good if so are all clauses occurring as inner 
vertices on P . Note that the paths Pi for any i > 1 in the above definition are necessarily C-good paths due to the definition 
of bi . Because of the definition of C-separator obstructions, it holds that V i \ V i−1 is either equal to varα(bi) ∪ {a} ∪ varα(c)
or equal to varα(bi) ∪ varα(e) ∪ varα(c) for some C-bad clause bi , variable a, and C-good clauses c and e; note that we 
can assume that c and e are C-good since for every i > 2, Pi is a C-good path and therefore all clauses on Pi apart from 
bi are C-good. Since C-good clauses contain at most s α-literals and by assumption every other clause contains at most x
α-literals, we obtain that |V i \ V i−1| ≤ x + 2s + 1. �

We now show the main result of this subsection, namely, that also separator obstructions can be used to obtain a lower 
bound on the backdoor depth of CNF formulas.

Lemma 11. Let C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈ N and F ∈ CNF . If F has a C-separator obstruction of size at least 

� = (
(6s + 6d + 19)d(80 + 7d)

)2d

, then F has C-backdoor depth at least d.

Proof. Let X = 〈〈P1, . . . , P�〉, τ 〉 be a C-separator obstruction for F of size at least � with V i, Bi, Gi, Ti, T as in Definition 9. 
Consider the following three definitions that will be used extensively throughout the whole proof.

• Let J be a position in the game Game(F , C). We say that a subtree T ′ of T = T� is contained in J if every variable and 
clause of T ′ occurs in J .

• Let T ′ be a subtree of T that is contained in J . Let P j be a path of X . We say that P j is active in T ′ if either V (P j) = {b j}
and T ′ contains b j or T ′ contains a vertex in V (P j) \ V (T j−1).

• Moreover, we say that P j is intact in T ′ at position J if V (P j) ⊆ V (T ′) and b j is a C-bad clause in J . Otherwise, we say 
that P j is broken in T ′ at position J .

For the remainder of the proof, we will prove the following.

Main claim. For every 0 ≤ i ≤ d and position J reached after i rounds in the game Game(F , C) against S, there is a 
subtree T ′ of T contained in J , such that T ′ contains at least �i = �(1/2)i

/(6s + 6d + 19)i intact paths and at most zi = 7i
broken paths of X .

Note that �d = �1/2d
/(6s + 6d + 19)d = 80 + 7d ≥ 1 and that indicate paths contain C-bad clauses. Hence, for i = d, the 

main claim implies that any position J reached after d rounds in the game Game(F , C) contains at least one clause that is 
C-bad in J . This then implies the statement of the lemma.

We will prove the main claim by induction on i. It clearly holds for i = 0 since �0 = � and z0 = 0 and the connector can 
choose the component of F containing T . Assume now that i > 0 and let J be the position reached after i − 1 rounds. By 
the induction hypothesis, at position J there is a subtree T ′ of T contained in J containing at least �i−1 = �(1/2)i−1

/(6s +
6d + 19)i−1 intact paths and at most zi−1 = 7(i − 1) broken paths of X . Suppose that the splitter chooses variable v as its 
next move. Moreover, let o be the smallest integer such that v ∈ Vo; if v /∈ V� we set o = � + 1. Note that v /∈ V j for every 
j < o. Let I be the set of all paths P j of X that are intact in T ′ at position J and let I<o (I>o) be the subset of I containing 
only the paths P j with j < o ( j > o). Finally, let T ′

<o be the subtree of T ′ restricted to the paths P j of X with j < o. Note 
that at position J , T ′

<o is connected and the paths in I<o are intact also in T ′
<o . Then, the connector chooses the assignment 

β : {v} → {0, 1} such that:
12
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Fig. 8. Left: Case 1. The set I<o is large. Assigning v to β(v) decomposes the tree T ′
<o into at most seven components. The largest component T ′′ is still 

large. Right: Case 2. The set I<o is small. There is a path P to which many paths are weakly attached, forming a tree T P . Assigning v to β(v) splits T P

into few parts. The largest component T ′′ of T P is still large.

β(v) =

⎧⎪⎨
⎪⎩

τ (v) |I<o| < √
�i−1,

1 |I<o| ≥ √
�i−1 and + ∈ α,

0 otherwise.

As we will show below, β is defined in such a manner that the position J ′ = J [β] reached after the next round of the 
game Game(F , C) contains a subtree T ′′ of T ′ containing at least �i = √

�i−1/(6s + 6d + 19) paths that are intact in J ′ and at 
most zi = zi−1 + 7 broken paths. This then completes the proof of the main claim, since the connector can now choose the
component of J ′ containing T ′′ . We distinguish the following cases; refer also to Fig. 8 for an illustration of the two cases.

Case 1: |I<o| ≥ √
�i−1. We will show that T ′′ can be obtained as a subtree of T ′

<o .
Note first that all clauses b j with j < o that are C-bad in J are also C-bad in J ′ . This is because v /∈ V j (since j < o and 

v /∈ Vo−1) and therefore v cannot α-occur in b j , which implies that b j remains C-bad and not satisfied after setting v to 
β(v).

The tree T ′
<o in J may decompose into multiple components in J ′ . We will argue that one of these components contains 

many intact paths and only at most two more broken paths than T ′
<o . Since the C-bad clauses of an intact path remain 

C-bad in J ′ , the only way in which an intact path can become broken is if some parts of the path get removed, i.e., either 
v or clauses satisfied by setting v to β(v).

If β(v) = 1 then + ∈ α. If β(v) = 0 then + ∈ α, and since α = ∅, then − ∈ α. Thus, in J ′ = J [β], the only elements 
that are removed are the variable v as well as clauses in which v α-occurs. By Lemma 10 (C4), v α-occurs in at most two 
clauses of T ′

<o and because of (C6) those clauses have degree at most two in T ′
<o . Therefore, setting v to β(v) removes 

at most two clauses from T ′
<o , each of which having degree at most two. Moreover, according to Lemma 10 (C8), v itself 

has degree at most three in T ′
<o . This implies that setting v to β(v) splits T ′

<o into at most 2 · 2 + 3 = 7 components. 
Moreover, using the same arguments one can show that assigning v to β(v) can create at most 2 ∗ 2 + 3 = 7 new broken 
paths among the paths in T ′

<o . Therefore, there is a component of J ′ that contains a subtree of T ′
<o that contains at least 

|I<o|/7 −7 ≥ √
�i−1/7 −7 intact paths and at most zi−1 +7 ≤ 7i = zi broken paths of X . Note that 

√
�i−1 ≥ �d ≥ 80 +7d ≥ 80

and therefore 
√

�i−1/7 − 7 ≥ √
�i−1/(6s + 6d + 19) = �i .

Case 2: |I<o|<√
�i−1. This means β(v) = τ (v). In this case, we will build the subtree T ′′ by picking only one path from T ′

<o
and the remaining paths from Po+1, . . . , P� . Let A be the set of all paths of X that are active in T ′ and let A>o (A<o) be 
the subset of A containing only the paths P j with j > o ( j < o). We say that a path Pa of X is attached to a path Pb of X if 
a > b, V (Pa) ∩ V (Pb) = ∅ and there is no b′ < b with V (Pa) ∩ V (Pb′ ) = ∅. We say that a path Pa in A>o is weakly attached
to a path Pb in A<o if either:

• Pa is attached to Pb or
• Pa is attached to a path Pc in A>o that is in turn weakly attached to Pb .

Note that because T ′ is a tree, every path in A>o is weakly attached to exactly one path in A<o . Moreover, for the same 
reason, any path in A<o , together with all paths in A>o that are weakly attached to it, induces a subtree of T ′ .

Therefore, there is a path P in A<o such that at least |I>o|/|A<o| paths in I>o are weakly attached to P . Let T P be 
obtained by inducing T ′ on P and all paths in A>o that are weakly attached to P . As argued above, T P is a tree. Note that 
T P has at least |I>o|/|A<o| paths that are intact in T P and at most zi−1 paths that are broken in T P at position J . Since √

�i−1 ≥ �d = 80 + 7d ≥ 7d, zi−1 ≤ zd = 7d, and |I<o| ≤ √
�i−1, it holds that |I<o| + zi−1 ≤ 2

√
�i−1. Therefore, at least
13
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|I>o|/|A<o| ≥ (�i−1 − |I<o|)/(|I<o| + zi−1)

≥ (�i−1 − |I<o|)/2|I<o|
≥ �i−1/2

√
�i−1 − 1/2

≥ √
�i−1/2 − 1/2

≥ (6s + 6d + 19)�i/2 − 1/2
≥ (3s + 3d + 9)�i .

paths in I>o are weakly attached to P . Let us now analyse what happens with T P when going from J to J ′ . First consider 
a path P j with j > o. Because β(v) = τ (v), all clauses in P j apart from the at most one clause that is also in P remain in 
J ′ = J [β], moreover, if such a clause is C-bad in J , then it is also C-bad in J ′ . Therefore, if P j does not contain a clause 
from P , then its status in J ′ is the same as its status in J , i.e., if P is active (intact) in J , then P j is active (intact) in J ′ . 
Let O be the set of all clauses of P in which v occurs. Because of Lemma 10 (C2), |O | ≤ 3. Because of Lemma 8, we can 
assume that every clause in F contains at most s + d α-literals and therefore we obtain from Lemma 10 (C7) that every 
clause in O has degree at most s + d + 2 in T and therefore also in T P . Since v has degree at most three in T P (Lemma 10
(C8)), we obtain that T P splits into at most 3(s + d + 2) + 3 = 3s + 3d + 9 components in J ′ . Therefore, J ′ = J [β] contains 
a component that contains a subtree T ′′ of T P with at least �i paths that are intact in T ′′ and at most zi−1 + 1 ≤ zi paths 
that are broken in T ′′ . �
6. Basic properties of obstruction trees

In this section, we prove with Lemma 7 that obstruction trees yield indeed a lower bound on the backdoor depth.

Lemma 12. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈N . Let β be a partial assignment of the variables in F and T
be a C-obstruction tree of depth d in F [β]. Then, T is also a C-obstruction tree of depth d in F .

Proof. We use induction on d. If d = 0, then there is a C-bad clause c of F [β] such that T = {c}. Therefore, c is also a C-bad 
clause in F and T is a C-obstruction tree of depth 0 in F .

Towards showing the induction step, let d > 0. Then there is a C-obstruction tree T1 in F [β] of depth d −1, an assignment 
β ′ of the variables in F [β] and a C-obstruction tree T2 in F [β ∪ β ′] of depth d − 1 such that no variable of F [β ∪ β ′] that 
is contained in a clause of T2 is contained in T1 or α-occurs in a clause of T1. Moreover, there is a path P connecting 
T1 and T2 in F . Because of the induction hypothesis, T1 is a C-obstruction tree in F of depth d − 1. Therefore, T =
T1 ∪ T2 ∪ var(P ) ∪ P is a C-obstruction tree in F of depth d. �
Lemma 13. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈N . A set T is a C-obstruction tree of depth d in F if and only 
if there is a component F ′ of F such that T is a C-obstruction tree of depth d in F ′ .

Proof. This follows because all variables and clauses belonging to T induce a connected subgraph of F . �
Lemma 14. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈N . Let T be a C-obstruction tree of depth d in F , v ∈ var(F )

be a variable not occurring in any clause of T , and τ be an assignment to that variable. Then, T is a C-obstruction tree of depth d in 
F [τ ].

Proof. Because v does not appear in any clause of T , all clauses of T in F are still present in F [τ ] and contain the same 
literals as in F ; this also implies that every such clause is C-good (C-bad) in F if and only if it is in F [τ ]. Moreover, because 
every variable of T occurs in some clause of T , it also follows that v is not contained as a variable in T . Therefore, T has the 
same set of variables and clauses in F as in F [τ ] and moreover all clauses remain the same, which shows the lemma. �
Lemma 15. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈N . Let T be a C-obstruction tree of depth d in F , v ∈ var(F )

be a variable that neither occurs in T nor α-occurs in any clause of T , and τ be the assignment with τ (v) = 1 if + ∈ α and τ (v) = 0, 
otherwise. Then, T is a C-obstruction tree of depth d in F [τ ].

Proof. If α = {+, −}, the statement of the lemma follows immediately from Lemma 14. Otherwise, we can assume without 
loss of generality that α = {+}; for the only remaining case that α = {−}, the proof is analogous.

Thus, v does not occur positively in any clause of T and τ (v) = 1, which means that all clauses of T are still present in 
F [τ ] and moreover any C-bad clauses of T are still C-bad in F [τ ]. Because v does not occur in T , all variables and clauses 
of T are still contained in F [τ ] and moreover all C-bad clauses of T are still C-bad in F [τ ], which shows the lemma. �

We are now ready to show the most crucial property of obstruction trees, namely, that they can be used to obtain lower 
bounds for the backdoor depth of a CNF formula.
14
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Lemma 7. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈ N . If there is a C-obstruction tree of depth d in F , then the 
C-backdoor depth of F is larger than d.

Proof. Assume there exists a C-obstruction tree of depth d in F . We will show the following claim by induction on i.

Claim. Let 0 ≤ i ≤ d. The connector has a strategy for the game Game(F , C) to reach within i rounds a position J such 
that there is a C-obstruction tree in J of depth d − i.

For i = d, this claim allows the connector to reach after d rounds a position that contains a C-obstruction tree of depth 0, 
i.e., a C-bad clause. Thus, the splitter has no strategy to win the game after at most d rounds and by Observation 3, the 
statement of this lemma is proven. It hence remains to prove the claim by induction on i.

For i = 0, the claim holds trivially. So suppose that i > 0 and let J be the position reached by the connector after i − 1
rounds. Then, by the induction hypothesis, J contains a C-obstruction tree T of depth d − i + 1 > 1.

Since the depth is at least one, there further exist (by Definition 6) a C-obstruction tree T1 of depth d − i in J , a partial 
assignment β of the variables in J , and a C-obstruction tree T2 of depth d − i in J [β] such that no variable v ∈ var( J [β])
that is contained in a clause of T2 is in T1 or α-occurs in a clause of T1. Now, let v be the next variable chosen by the 
splitter. We distinguish the following cases:

1. Assume v /∈ var( J [β]). This means v ∈ var(β). Then, the connector can choose the assignment v = β(v) for v . Because 
of Lemma 12, T2 is a C-obstruction tree of depth d − i in J [v = β(v)]. Next, the connector chooses the component of 
J [v = β(v)] containing T2. By Lemma 13, T2 is also a C-obstruction tree in this component. Since T2 of depth d − i, this 
proves the claim.

2. Assume v ∈ var( J [β]) and v does not occur in a clause of T2. Then, as the connector, we assign v an arbitrary value. 
Let τ be this assignment. By Lemma 14, T2 is a C-obstruction tree of depth d − i in J [τ ]. We choose the connected 
component J ′ containing T2 in J [τ ]. By Lemma 13 T2 is also a C-obstruction tree of depth d − i in J ′ . This proves the 
claim.

3. Otherwise, v ∈ var( J [β]) and v occurs in a clause of T2. Since T is a C-obstruction tree in J , it follows by Definition 6
that v does neither occur in T1 nor does it α-occur in a clause of T1. Let τ be the assignment with τ (v) = 1 if + ∈ α
and τ (v) = 0, otherwise. By Lemma 15, T1 is a C-obstruction tree of depth d − i in J [v = τ (v)]. Next, the connector 
chooses the component of J [v = τ (v)] containing T1. By Lemma 13, T1 is also a C-obstruction tree in this component. 
Since T1 of depth d − i, this proves the claim. �

7. Winning strategies and algorithms

We are ready to present our algorithmic results. Earlier, we discussed that separator obstructions are used to separate 
existing obstruction trees from future obstruction trees. As all obstruction trees are built only from shortest paths, it is 
sufficient to derive a splitter-algorithm that takes a shortest path P and separates it from all future obstructions. By reaching 
a position J such that no variable in var( J ) occurs in a clause of P , we are guaranteed that all future obstructions are 
separated from P , as future obstructions will only contain clauses and variables from J .

Lemma 16. Let C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈N . There exists a splitter-algorithm that implements a strategy to reach for 
each game Game(F , C), non-negative integer d, and shortest path P between two C-bad clauses in F within at most

(3s + d + 1)
(
(6s + 6d + 19)d(80 + 7d)

)2d

rounds either:

1) a winning position, or
2) a position J such that no variable in var( J ) occurs in P or α-occurs in a clause of P , or
3) a proof that the C-backdoor depth of F is at least d.

This algorithm takes at most O(‖F‖) time per move.

Proof. If a clause of F contains more than d + s α-literals, then this constitutes by Lemma 8 a proof that the C-backdoor 
depth of F is at least d and we achieve case 3) of the lemma. Thus, we can assume that every clause in every position of 
the game contains at most d + s α-literals.

Let 〈〈P1, . . . , P�〉, τ 〉 be a C-separator obstruction for F and let τ ′ be a sub-assignment of τ assigning at least all variables 
in V�−1. Then, we call 〈〈P1, . . . , P�〉, τ ′〉 a partial C-separator obstruction for F . Consider the following splitter-algorithm, 
where we associate with each position J of the game Game(F , C) a partial C-separator obstruction X( J ) of the form 
X( J ) = 〈〈P1, . . . , P�〉, τ J 〉 with P1 = P . We set X(S) = 〈〈P 〉,∅〉 for the starting position S of the game.
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Then, the splitter-algorithm does the following for a position J in Game(F , C). Let X( J ) = 〈〈P1, . . . , P�〉, τ J 〉 and 
V i, Bi, Gi, Ti, T as in Definition 9. If there is at least one variable in V� \ V�−1 (where we set V 0 = ∅) that has not yet 
been assigned by τ J , the splitter chooses any such variable. Otherwise, X( J ) is a C-separator obstruction and we distin-
guish the following cases:

1. If there is a C-bad clause in J that has a path to some vertex of T� in G� , then let b�+1 be a C-bad clause that is 
closest to any vertex of T� in G� and let P�+1 be a shortest path from b�+1 to some vertex of T� in G� . Note that 
〈〈P1, . . . , P�, P�+1〉, τ J 〉 is a partial C-separator obstruction for F . The splitter now chooses any variable in V�+1 \ V� and 
assigns X( J ′) = 〈〈P1, . . . , P�, P�+1〉, τ J ′ 〉 for the position J ′ resulting from this move.

2. Otherwise, X( J ) can no longer be extended and either: (1) there is no C-bad clause in J , or (2) every C-bad clause of J
has no path to T� in G� . In situation (1), we reached a winning position and therefore achieved case 1) of this lemma. In 
situation (2), no variable of J occurs in T� or α-occurs in a clause of T� . Hence, the same holds for P , and we achieved 
case 2) of this lemma.

This completes the description of the splitter-algorithm. Moreover, if every play against the splitter-algorithm ends after 
at most (3s + d + 1)

(
(6s + 6d + 19)d(80 + 7d)

)2d

rounds, every position is either of type 1) or type 2) and we are done. 

Otherwise, after playing for (3s +d +1)
(
(6s +6d +19)d(80 +7d)

)2d

rounds we reach a position J . As stated at the beginning 
of the proof, every clause contains at most d + s α-literals, and therefore we obtain from Lemma 10 (C9) that |V i+1 \ V i | ≤
3s + d + 1. This means that the size of the C-separator obstruction increases by at least 1 after at most 3s + d + 1 rounds. 
Since J was reached after (3s + d + 1)

(
(6s + 6d + 19)d(80 + 7d)

)2d

rounds, the size has increased sufficiently often to 

guarantees the existence of a C-separator obstruction X( J ) of size at least 
(
(6s + 6d + 19)d(80 + 7d)

)2d

. By Lemma 11, this 
is a proof that F has C-backdoor depth at least d.

Finally, the splitter-algorithm takes time at most O(‖F‖) per round since a C-bad clause that is closest to the current 
C-separator obstruction and the associated shortest path can be found using a simple breadth-first search. �

Since selecting more variables can only help the splitter in achieving their goal, we immediately also get the following 
statement from Lemma 16.

Corollary 17. Consider C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈ N , a game Game(F , C) and a position J ′ in this game, a non-
negative integer d and shortest path P between two C-bad clauses in F . There exists a splitter-algorithm that implements a strategy 
that continues the game from position J ′ and reaches within at most

(3s + d + 1)
(
(6s + 6d + 19)d(80 + 7d)

)2d

rounds either:

1) a winning position, or
2) a position J such that no variable in var( J ) occurs in P or α-occurs in a clause of P , or
3) a proof that the C-backdoor depth of F is at least d.

This algorithm takes at most O(‖F‖) time per move.

As described at the end of Section 4, we can now construct in the following lemma obstruction trees of growing size, 
using the previous corollary to separate them from potential future obstruction trees.

Lemma 18. Let C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈ N . There is a splitter-algorithm that implements a strategy to reach for a 

game Game(F , C) and non-negative integers i, d with 0 ≤ i ≤ d within at most 2i(3s + d + 1)
(
(6s + 6d + 19)d(80 + 7d)

)2d

rounds 
either:

1) a winning position, or
2) a position J and a C-obstruction tree T of depth i in F such that no variable in var( J ) occurs in T or α-occurs in a clause of T , or
3) a proof that the C-backdoor depth of F is at least d.

This algorithm takes at most O(‖F‖) time per move.

Proof. We will prove this lemma by induction over i. Our splitter-algorithm will try to construct an obstruction tree of 
depth i by first using the induction hypothesis to build two obstruction trees T1 and T2 of depth i − 1 and then joining 
them together. After the construction of the first tree T1, we reach a position J1 and by our induction hypothesis no variable 
in var( J1) occurs in T1 or α-occurs in a clause of T1.
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Fig. 9. Overview of the construction in Lemma 18. First, T1 is chosen in F , yielding J1. Then, T2 is chosen in J1, yielding J2. In the end the connecting 
path P is chosen yielding J . A gray doublesided arrow between a position ̂ J and structure ̂T symbolizes that no variable v ∈ var(̂ J ) occurs in a clause of T̂ .

This encapsulates the core idea behind our approach, as it means that T1 is separated from all potential future obstruc-
tion trees T2 that we build from position J1. Therefore, we can compute the next tree T2 in J1 and join T1 and T2 together 
in accordance with Definition 6 by a path P . At last, we use Corollary 17 to also separate this path from all future obstruc-
tions. If at any point of this process we reach a winning position or a proof that the C-backdoor depth of F is at least d, we 
can stop. Let us now describe this approach in detail.

For convenience, let x = (3s + d + 1)
(
(6s + 6d + 19)d(80 + 7d)

)2d

. We start our induction with i = 0. If there is no C-bad 
clause in F , then it is a winning position and we can stop. Thus, we can assume that F contains at least one C-bad clause c. 
If c contains more than d + s α-literals, we have a proof that the C-backdoor depth of F is at least d and we achieve case 3) 
of the lemma. Otherwise, c contains at most d + s variables that α-occur in c and the splitter can now play by choosing 
those variables one-by-one to reach a position that satisfies 2) of the lemma after at most d + s ≤ 2i x rounds in time O(|F |).

We now assume the statement of this lemma to hold for i − 1 and we show it also holds for i. To this end, we start 
playing the game Game(F , C) according to the existing splitter-algorithm for i − 1. If we reach (within at most (2i−1 − 1)x
rounds) a winning position or a proof that the C-backdoor depth of F is at least d then we are done. Assuming this is not 
the case, we reach a position J1 and a C-obstruction tree T1 of depth i − 1 in F such that no variable v ∈ var( J1) occurs in 
T1 or α-occurs in a clause of T1.

We continue playing the game at position J1 according to the existing splitter-algorithm for Game( J1, C) and i − 1. The 
C-backdoor depth of F is larger or equal to the C-backdoor depth of J1. Thus again (after at most (2i−1 − 1)x rounds) we 
either are done (because we reach a winning position or can conclude that the C-backdoor depth of J1 is at least d) or 
we reach a position J2 and a C-obstruction tree T2 of depth i − 1 in J1 such that no variable v ∈ var( J2) occurs in T2 or 
α-occurs in a clause of T2.

We pick two clauses c1 ∈ T1 and c2 ∈ T2 that are C-bad in F and compute a shortest path P between c1 and c2 in F . 
We now argue that T = T1 ∪ T2 ∪ var(P ) ∪ P is a C-obstruction tree of depth i in F . Let β = τ J1 be the assignment that 
assigns all the variables the splitter chose until reaching position J1 to the value given by the connector. Note that J1 is a 
connected component of F [β]. Since all variables and clauses belonging to T2 induce a connected subgraph of J1, T2 is a 
C-obstruction tree of depth i − 1 not only in J1, but also in F [β]. Let v ∈ var(F [β]). We show that v if v is contained in 
a clause of T2, then v neither occurs in T1 nor α-occurs in a clause of T1. To this end, assume v is contained in a clause 
of T2. Since all clauses of T2 are in J1 and J1 is a connected component of F [β], we further have v ∈ var( J1). On the 
other hand (as discussed earlier), no variable v ∈ var( J1) is contained in T1 or α-occurs in a clause of T1. Therefore, by 
Definition 6, T = T1 ∪ T2 ∪ var(P ) ∪ P is a C-obstruction tree of depth i in F .

We use Corollary 17 to continue playing the game at position J2. Again, if we reach a winning position or a proof that 
the C-backdoor depth of F is at least d we are done. So we focus on the third case that we reach (within at most x rounds) 
a position J such that no variable v ∈ var( J ) is contained in P or α-occurs in a clause of P .

We know already that no variable v ∈ var( J1) is contained in T1 or α-occurs in a clause of T1 and that no variable 
v ∈ var( J2) is contained in T2 or α occurs in a clause of T2. Since var( J ) ⊆ var( J2) ⊆ var( J1), and T = T1 ∪ T2 ∪ var(P ) ∪ P , 
we can conclude that no variable v ∈ var( J ) is contained in T or α-occurs in a clause of T .

In total, we played for 2i−1x + 2i−1x + x = 2i x rounds. The splitter-algorithm in Corollary 17 takes at most O(‖F‖) time 
per move. The same holds for the splitter-algorithm for i − 1 that we use as a subroutine. Thus, the whole algorithm takes 
at most O(‖F‖) time per move. �

The main results now follow easily by combining Lemmas 1, 5, 7 and 18.

Theorem 19. Let C = Cα,s with α ⊆ {+, −}, α = ∅, and s ∈N . We can, for a given F ∈ CNF and a non-negative integer d, in time at 

most 222O(d) ‖F‖ either
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1) compute a component C-backdoor tree of F of depth at most 22O(d)
, or

2) conclude that the C-backdoor depth of F is larger than d.

Proof. We apply Lemma 18 with its parameters i and d both set to d + 1. An obstruction tree of depth d + 1 is, according 
to Lemma 7, a proof that the backdoor depth is at least d + 1, thus the output of the splitter-algorithm in Lemma 18 after 
22O(d)

rounds reduces to either a winning position, or a proof that the C-backdoor depth of F is at least d +1. The algorithm 
takes at most O(‖F‖) time per move. The statement then follows from Lemma 5. �
Corollary 20. Let C ∈ {Horn, dHorn, Krom}. The CnfSat problem can be solved in linear time for any class of formulas of bounded 
C-backdoor depth.

Proof. Let F ∈ CNF . We use Theorem 19 to compute a component C-backdoor tree for F of depth at most 22O(d)
and then 

use Lemma 1 to decide the satisfiability of F in time 222O(d) ‖F‖. �
8. Comparison with other approaches

In this section, we compare the generality of backdoor depth with other parameters that admit a fixed-parameter 
tractable solution of the problem, as we have listed in the introduction. Our comparison is based on the concept of domi-
nation [31]. For two integer-valued parameters p and q, we say that p dominates q if every class of instances for which q is 
bounded, also p is bounded; p strictly dominates q if p dominates q but q does not dominate p. If p and q dominate each 
other, they are domination equivalent. If neither of them dominates the other, they are domination orthogonal.

We first define two sequences of formulas that we will use for several separation results below. For any integer d ≥ 1, 
the CNF formula Qd , consists of n = 3 · 2d − 2 clauses c1, . . . , cn over the variables x0, . . . , xn and y1, . . . , yn , where ci =
{xi−1, ¬yi, xi}. The formula Q′

d is defined similarly, except that the yi variables are omitted, and hence ci = {xi−1, xi}. By 
construction, we have Qd ∈ dHorn \ (Horn ∪ Krom) and Q′

d ∈ Krom ∩ dHorn \ Horn.

Lemma 21. depth
Horn

(Qd) = depth
Krom

(Qd) = depth
Horn

(Q′
d) = d.

Proof. We focus on showing that depthC(Qd) = d for C ∈ {Horn, Krom}, the proof for depth
Horn

(Q′
d) = d is similar. We 

proceed by induction on d. Since Q1 = {c0}, the induction basis holds. Now assume d > 1. Since Qd is connected, the root r
of any component C-backdoor tree for it is a variable node. Assume r branches on variable xi . By the symmetry of Qn , we 
can assume, w.l.o.g., that i ≥ n/2. We observe that Qd[xi = 1] = Qd \ {ci, ci+1}, hence Qd−1 ⊆ Qd[xi = 1], where Qd−1 has 
3 · 2d−1 − 2 clauses. If r branches on yi , then Qd[xi] ⊆ Qd[yi = 0], and so Qd−1 ⊆ Qd[yi = 0] as well. Consequently, in any 
case, at least one child of r is labeled with a formula that contains Qd−1. By induction hypothesis depthC(Qd−1) = d − 1. 
Thus depthC(Qd) = d as claimed. �
8.1. Backdoor size into Horn, dHorn, and Krom

Let C ⊆ CNF . The C-backdoor size of a CNF formula F , denoted sizeC(F ), is the size of a smallest (strong) C-backdoor 
of F . Nishimura et al. [26] have shown that CnfSat is fixed-parameter tractable parameterized by C-backdoor size for 
C ∈ {Horn, dHorn, Krom}. A class C of CNF formulas is nontrivial if C = CNF .

Proposition 22. For every nontrivial class C of CNF formulas, depthC strictly dominates sizeC .

Proof. Clearly, depthC dominates sizeC , since if we have a C-backdoor B of some F ∈ CNF , we can build a backdoor tree 
with at most 2|B| variable nodes and depth ≤ |B|.

To show that the domination is strict, let F ∈ CNF \ C (it exists, since C is nontrivial) and let F1, . . . , Fn be variable-
disjoint copies of F . Since F /∈ C , we have sizeC(F ) ≥ depthC(F ) > 0. Let sizeC(F ) = s and depthC(F ) = d. Now sizeC(Fn) =
ns, so we can choose n to make sizeC(Fn) arbitrarily large. However, depthC(Fn) = d remains bounded, since in a backdoor 
tree we can use a component node at the root which branches into (at least) n components, each of C-backdoor depth at 
most d. �
8.2. Number of leaves of backdoor trees into Horn, dHorn, and Krom

Backdoor trees, introduced by Samer and Szeider [29,27], are a special case of component backdoor trees as defined 
in Section 3. A C-backdoor tree for F ∈ CNF is a component C-backdoor tree for F without component nodes. For a base 
class C and F ∈ CNF , let leavesC(F ) denote the smallest number of leaves of any C-backdoor tree (recall the definition in 
Section 3). CnfSat is fixed-parameter tractable parameterized by leavesC(F ) [27]. Since sizeC(F ) +1 ≤ leavesC(F ) ≤ 2sizeC(F ) , 
leavesC and sizeC are domination equivalent [29]. Hence we have the following corollary to Proposition 22.
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Corollary 23. For every nontrivial class C of CNF formulas, depthC strictly dominates leavesC .

8.3. Backdoor depth into Null

Mählmann et al. [22] considered the base class Null = {∅, {∅}} and showed that CnfSat is fixed-parameter tractable 
parameterized by depth

Null
.

Proposition 24. depthC strictly dominates depth
Null

for C ∈ {Horn, dHorn, Krom}.

Proof. It suffices to consider C ∈ {dHorn, Krom}, since the cases dHorn and Horn are symmetric. Since Null ⊆ dHorn ∩
Krom, depthC dominates depth

Null
. To show that the domination is strict, consider the CNF formulas Qd and Q′

d from 
above, with depth

Horn
(Qd) = depth

Horn
(Q′

d) = d by Proposition 21. Since Null ⊆ Horn, depth
Null

(Qd) = depth
Null

(Q′
d) ≥ d. 

However, depth
dHorn

(Qd) = depth
Krom

(Q′
d) = 0 since Qd ∈ dHorn and Q′

d ∈ Krom. �
8.4. Backdoor treewidth into Horn, dHorn, and Krom

Backdoor treewidth is another general parameter for CnfSat and the constraint satisfaction problem (CSP) defined with 
respect to a base class C [14,13]. Let F be a CSP instance and X ⊆ V (F ) a subset of its variables. The torso graph of F with 
respect to X , denoted TF (X), has as vertices the variables in X and contains an edge {x, y} if and only if x and y appear 
together in the scope of a constraint of F or x and y are in the same connected component of the graph obtained from the 
incidence graph of F after deleting all the variables in X . Let G = (V , E) be a graph. A tree decomposition of G is a pair 
(T , X ), X = {Xt}t∈V (T ) , where T is a tree and X is a collection of subsets of V such that: (i) for each edge {u, v} ∈ E there 
exists a node t of T such that {u, v} ⊆ Xt , and (ii) for each v ∈ V , the set {t | v ∈ Xt} induces in T a nonempty connected 
subtree. The width of (T , X ) is equal to max{|Xt | − 1 | t ∈ V (T )} and the treewidth of G is the minimum width over all tree 
decompositions of G . Let F ∈ CNF and X a C-backdoor set of F . The torso treewidth of X is the treewidth of the torso graph 
TF (X), and the C-backdoor treewidth of F , denoted bdtwC(F ), is the smallest torso treewidth over all C-backdoor sets of F . 
It is known that bdtwC dominates the treewidth of the formula’s primal graph and sizeC [14,13].

Proposition 25. For C ∈ {Horn, dHorn, Krom}, the parameters depthC and bdtwC are domination orthogonal.

Proof. Since the cases dHorn and Horn are symmetric, we may assume that C ∈ {Horn, Krom}.
First we construct a sequence of formulas of constant depthC but unbounded bdtwC (similar constructions have been 

used before [18,22]). For any n ≥ 2 we construct a CNF formula Fn based on an n × n grid graph Gn whose edges are 
oriented arbitrarily. We take a special variable x. For each vertex v ∈ V (Gn) we introduce three variables yi

v , 1 ≤ i ≤ 3, 
and for each oriented edge (u, v) ∈ E(Gn) we introduce a variable zu,v and the clauses cu,v = {x, y1

u, y2
u, y3

u, zu,v} and 
du,v = {¬x, ¬y1

v , ¬y2
v , ¬y3

v , ¬zu,v}. Let X be a C-backdoor of Fn . We observe that for each v ∈ V (Gn), X must contain at 
least one of the variables y1

v , y2
v , y3

v since, otherwise, F [X �→ 0] would contain a clause (a subset of cu,v ) that is neither 
Horn nor Krom. W.l.o.g., we assume y1

v ∈ X for all v ∈ V (Gn). Furthermore, for each edge (u, v) ∈ E(Gn), the torso graph 
TF (X) will contain the edge {y1

u, y1
v} or the edges {y1

u zu,v} and {zu,v , y1
v}. Consequently, TF (X) has a subgraph that is 

isomorphic to a subdivision of Gn . Since the treewidth of Gn is n, and subdividing edges does not change the treewidth, we 
conclude that bdtwC(Fn) ≥ n.

It remains to show that depthC does not dominate bdtwC . Consider again the formula Qd from above with depthC(Qd) =
d by Lemma 21. The set X = {x0, . . . , xn}, n = 3 · 2d − 2, is a C-backdoor of Fd . The torso graph TX (Fd) is a path of length n, 
which has treewidth 1. Thus bdtwC(Fd) = 1. �
8.5. Backdoor size into heterogeneous base classes based on Horn, dHorn, and Krom

Consider the possibility that different assignments to the backdoor variables move the formula into different base classes, 
e.g., for B ⊆ var(F ) and τ , τ ′ → {0, 1}, we have F [τ ] ∈ Horn and F [τ ′] ∈ Krom. We can see such a backdoor B as a C-back-
door for C = Horn∪Krom. Gaspers et al. [16] have shown that depth

Horn∪Krom
strictly dominates depth

Horn
and depth

Krom
.

They also showed that computing depth
Horn∪Krom

is FPT, but computing depth
Horn∪dHorn

is W[2]-hard (i.e., unlikely to be 
FPT).

Proposition 26. For any two different classes C = C′ ∈ {Horn, dHorn, Krom}, sizeC∪C′ and depthC are domination orthogonal.

Proof. Let C = C′ ∈ {Horn, dHorn, Krom}.
With the same padding argument as used in the proof of Proposition 22, we can show that there are formulas of constant 

depthC and arbitrarily large sizeC∪C′ .
For the converse direction, we utilize the formulas Q and Q′ from above, as well as the formulas Q and Q′ obtained 

from Q and Q′ , respectively, by flipping all literals to the opposite polarity. For any pair C, C′ , we can choose formulas 
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Fd, F ′
d ∈ {Q, Q′ , Q, Q′}, such that Fd ∈ C \ C′ and F ′

d ∈ C′ \ C . By Lemma 21 (applied directly or via symmetry) we have 
depthC′ (Fd) = depthC(F ′

d) = d. We may assume that Fd and F ′
d have disjoint sets of variables. We pick a new variable z

and add it positively to all clauses of Fd , and negatively to all clauses of F ′
d , obtaining the formulas Gd and G ′

d , respectively. 
Let G∗

d = Gd ∪ G ′
d . On the one hand, depthC(G∗

d) ≥ d, since any component C-backdoor tree of G∗
d must contain a subtree 

which induces a C-backdoor tree of F ′
d , whose depth is ≥ depthC(F ′

d) = d. On the other hand, sizeC∪C′ (G∗) = 1, since 
G∗

d[z = 0] = Fd ∈ C ⊆ C ∪ C′ and G∗
d[z = 1] = F ′

d ∈ C′ ⊆ C ∪ C′ . �
8.6. Backdoor size into scattered base classes based on Horn, dHorn, and Krom

For base classes C1, . . . , Cr ⊆ CNF , let C1 ⊕ · · · ⊕ Cr ⊆ CNF denote the class of CNF formulas F with the property that 
each F ′ ∈ Conn(F ) belongs to Ci for some i ∈ {1, . . . , r}. For example, if F ∈ Horn ⊕ Krom, then each connected component 
of F is either Horn or Krom. Such scattered base classes where introduced by Ganian et al. [15] for constraint satisfaction, 
but the concept naturally extends to CnfSat.

Proposition 27. For any two different classes C = C′ ∈ {Horn, dHorn, Krom}, sizeC⊕C′ and depthC are domination orthogonal.

Proof. Let C = C′ ∈ {Horn, dHorn, Krom}. Again, we can use the padding argument from the proof of Proposition 22 to 
show that there are formulas of constant depthC and arbitrarily large sizeC⊕C′ . For the converse direction, we argue as 
in the proof of Proposition 27 that there are variable-disjoint formulas Fd ∈ C \ C′ and F ′

d ∈ C′ \ C with depthC′ (Fd) =
depthC(F ′

d) = d. For F ∗
d = Fd ∪ F ′

d we have depthC(F ∗
d ) ≥ d but sizeC⊕C′ (F ∗) = 0 since F ∗

d ∈ C ⊕ C′ . �
8.7. Deletion backdoor size into Q-Horn

A CNF formula F is quadratic Horn if there exists a mapping f : var(F ) → [0, 1] such that for each clause c ∈ F we 
have 

∑
x∈C∩var(C) f (x) +∑

¬x∈C\var(C) 1 − f (x) ≤ 1. The class Q-Horn of all quadratic Horn formulas properly contains Horn, 
dHorn, and Krom (which can be seen by taking f to be the constant mapping to 1, to 0, and to 1/2, respectively). Satisfi-
ability and recognition of quadratic Horn formulas can be decided in polynomial time [3,4]. Gaspers et al. [17] considered 
deletion Q-Horn-backdoors, since computing sizeQ-Horn is W[2]-hard. A deletion Q-Horn-backdoor of F ∈ CNF is a set 
B ⊆ var(F ) such that F − B := { c \ (B ∪ B) | c ∈ F } ∈ Q-Horn. We denote the size of a smallest deletion Q-Horn-backdoor 
of F , i.e., the deletion Q-Horn-backdoor size of F , by delQ-Horn(F ). Ramanujan and Saurabh [28] showed that computing 
delQ-Horn(F ) is fixed-parameter tractable, improving upon an FPT-approximation result by Gaspers et al. [17]. Every deletion 
Q-Horn-backdoor is a Q-Horn-backdoor, but the converse does not hold. Hence sizeQ-Horn strictly dominates delQ-Horn .

Proposition 28. For C ∈ {Horn, dHorn, Krom}, the parameters depthC and delQ-Horn are domination orthogonal.

Proof. The padding argument from the proof of Proposition 22 shows that there are formulas of constant depthC and 
arbitrarily large sizeQ-Horn , and therefore of arbitrarily large delQ-Horn .

For the reverse direction, consider the formula Qd . By Lemma 21, depthC(Qd) = d for C ∈ {Horn, Krom}. By construction, 
Qd ∈ dHorn ⊆ Q-Horn, thus delQ-Horn(Qd) = 0. Hence neither depth

Horn
nor depth

Krom
dominates delQ-Horn . A symmetric 

argument shows that depth
dHorn

does not dominate delQ-Horn . �
8.8. Backdoor size into bounded incidence treewidth

The incidence treewidth of a formula F is the treewidth of its incidence graph. Let Wt denote the class of all CNF formulas 
of incidence treewidth ≤ t . CnfSat can be solved in polynomial time for formulas in Wt [30,33]. Gaspers and Szeider [18]
showed that for every constant t ≥ 1, sizeWt can be FPT approximated. Hence CnfSat is FPT parameterized by sizeWt .

Proposition 29. For C ∈ {Horn, dHorn, Krom} and every t ≥ 1, the parameters depthC and sizeWt are domination orthogonal.

Proof. Let t ≥ 1 be a constant and C ∈ {Horn, Krom}; the cases dHorn and Horn are symmetric.
Consider the (t + 1) × (t + 1) grid graph Gt+1. We construct the CNF formula T by introducing a variable xv for every 

v ∈ V (Gt+1) and a clause {¬xu, ¬xv} for every edge uv ∈ E(Gt+1). Let Fn be the formula consisting of n variable-disjoint 
copies of T . By construction, Fn ∈ C , hence depthC(Fn) = 0. The incidence graph of T contains Gt+1 as a minor, hence T ’s 
incidence treewidth is ≥ t + 1. Consequently, any Wt -backdoor of Fn must contain at least one variable from each of the n
copies of Ft+1. Thus sizeWt (Fn) ≥ n. It follows that sizeWt does not dominate depthC .

For the converse direction, consider again the formula Qd with depthC(Qd) = d (Lemma 21). The incidence treewidth of 
Qd is 2, hence sizeWt (Qt) = 0 for t ≥ 2. Consequently, depthC does not dominate sizeWt . �
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9. Conclusion

We showed that CnfSat can be solved in linear-time for formulas of bounded C-backdoor depth whenever C is any of 
the well-known Schaefer classes. We achieved this by showing that C-backdoor depth can be FPT-approximated for any class 
C = Cα,s . This allowed us to extend the results of Mählmann et al. [22] for the class of variable-free formulas to all Schaefer 
classes. Our results provide an important milestone towards generalizing and unifying the various tractability results based 
on variants of C-backdoor size (see also future work below) to the only recently introduced and significantly more powerful 
C-backdoor depth.

Let us finish with some natural and potentially significant extensions of backdoor depth that can benefit from our 
approach based on separator obstructions. Two of the probably most promising ones that have already been successfully 
employed as extensions of backdoor size are the so-called scattered and heterogeneous backdoor sets [16,15]; also refer to 
Sections 8.5 and 8.6. Interestingly, while those two notions lead to orthogonal tractable classes in the context of backdoor 
size, they lead to the same tractable class for backdoor depth. Therefore, lifting these two extensions to backdoor depth, 
would result in a unified and significantly more general approach. While we are hopeful that our techniques can be adapted 
to this setting, one of the main remaining obstacles is that obstructions of depth 0 no longer are single (bad) clauses. For 
instance, consider the heterogeneous class C = Horn ∪ Krom. Here, a CNF formula may not be in C due to a pair of clauses, 
one in Horn \ Krom and another one in Krom \ Horn. Finally, an even more general but also more challenging tractable 
class to consider for backdoor depth is the class of Q-Horn formulas (see Section 8.7), which generalizes the heterogeneous 
class obtained as the union of all considered Schaefer classes.
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