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Abstract

We consider the NP-hard problem of finding a smallest deci-
sion tree representing a classification instance in terms of a
partially defined Boolean function. Small decision trees are
desirable to provide an interpretable model for the given data.
We show that the problem is fixed-parameter tractable when
parameterized by the rank-width of the incidence graph of
the given classification instance. Our algorithm proceeds by
dynamic programming using an NLC decomposition obtained
from a rank-width decomposition. The key to the algorithm
is a succinct representation of partial solutions. This allows
us to limit the space and time requirements for each dynamic
programming step in terms of the parameter.

Introduction
Decision trees (DTs) are extremely useful tools for describ-
ing, classifying, and generalizing data (Larose and Larose
2014; Murthy 1998; Quinlan 1986). In this paper, we con-
sider DTs for classification instances (CIs), consisting of a
finite set E of examples, also called feature vectors, over
a finite set feat(E) of features. Each example e ∈ E is a
function e : feat(E) → {0, 1}, determining whether the
feature f is true or false for e. Moreover, E is given as
a partition E+ ⊎ E− into positive and negative examples.
For instance, examples could represent medical patients and
features diagnostic tests; a patient is positive or negative,
corresponding to whether or not they have been diagnosed
with a certain disease. CIs are also called partially defined
Boolean functions (Boros et al. 1995), as we can consider
the features as Boolean variables and examples as truth as-
signments that evaluate to 0 (for negative examples) or 1 (for
positive examples). CIs have been studied as a key concept
for logical data analysis and switching theory (Boros et al.
2011, 2003; Boros, Ibaraki, and Makino 2003; Crama, Ham-
mer, and Ibaraki 1988; Ibaraki, Crama, and Hammer 2011;
McCluskey 1965).

Because of their simplicity, DTs are particularly attrac-
tive for providing interpretable models of the underlying CI.
Given the impact and widespread use of machine learning
methods, the importance of transparency has been strongly
emphasized in recent years (Darwiche and Hirth 2023; Doshi-
Velez and Kim 2017; Goodman and Flaxman 2017; Ignatiev
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et al. 2021; Lipton 2018; Monroe 2018). In this context, one
prefers small DTs, as they are easier to interpret and require
fewer tests to classify (a DT is smaller than another if it has
fewer nodes). Small trees are also preferred because of the
parsimony principle (Occam’s Razor), since small trees are
expected to generalize better to new data (Bessiere, Hebrard,
and O’Sullivan 2009). However, given a CI E = E+ ⊎E−

and an integer s, deciding whether E has a DT with at most
s nodes is NP-complete (Hyafil and Rivest 1976).

This complexity barrier motivates the study of the prob-
lem under the parameterized complexity paradigm. Ordyniak
and Szeider (2021) made the first approach in this direc-
tion, parameterizing the problem by solution size in terms
of the number of nodes or the depth of the computed DT.
In this paper, we parameterize the problem to exploit the
hidden structure of the given CI E. We capture the hidden
structure of E in terms of small rank-width of the incidence
graph, which is the bipartite graph G(E) whose vertices
are the examples in one part and the features in the other,
where an example e is adjacent to a feature f if and only
if e(f) = 1. Figure 1 shows a CI and a smallest DT for it,
and the incidence graph. Rank-width is a well-known graph
invariant that generalizes treewidth in the sense that all graph
classes of bounded treewidth have bounded rank-width, but
there are classes of dense graphs of bounded rank-width
and unbounded treewidth. We denote the rank-width and the
treewidth of a graph G by rw(G) and tw(G), respectively,
and use rw(G(E)) and tw(G(E)) to denote the rank-width
and treewidth of E, respectively.

We can state our main algorithmic result as follows (for a
formal statement, see Corollary 0.4).

Computing a smallest DT for a given CI E is fixed-
parameter tractable parameterized by the rank-width
of E.

Rank-width is an exceptionally well-suited parameter for this
problem because of its robustness and generality. Borrowing
from a similar notion for propositional CNF formulas (Lewis
1978), we define a renaming rX(E) of a CI E with respect
to a set X ⊆ feat(E) to be the CI containing all the exam-
ples eX for e ∈ E with eX(f) = 1 − e(f) if f ∈ X and
eX(f) = e(f) if f /∈ X . Clearly, the size of a smallest DT
is the same for E and all its renamings, and a robust parame-
ter should not depend on a particular chosen renaming. Let
us define the renamable rank-width of E as rw

∗(G(E)) =



E f1 f2 f3 f4

e1 ∈ E− 0 0 1 0

e2 ∈ E− 0 0 1 1

e3 ∈ E− 0 1 1 0

e4 ∈ E− 1 1 0 0

e5 ∈ E+ 1 0 0 1

e6 ∈ E+ 1 0 1 1
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Figure 1: A CI E = E+ ⊎ E− with six examples and four
features (left), a DT with 5 nodes that classifies E (middle),
the incidence graph G(E) (right).

minX⊆feat(E) rw(rX(G(E))) and the renamable treewidth of

E as tw
∗(G(E)) = minX⊆feat(E) tw(rX(G(E))). For two

integer-valued parameters p and q, we say that p dominates
q if, for every class of instances for which q is bounded, p
is also bounded; p strictly dominates q if p dominates q, but
q does not dominate p. If p and q dominate each other, they
are domination-equivalent. The following statements (proof
omitted) certify the robustness and generality of rank-width
for the DT problem.

• Rank-width and renamable rank-width are domination-
equivalent.

• Rank-width strictly dominates renamable treewidth.

• Renamable treewidth strictly dominates treewidth.

The main ingredient of our algorithm for rank-width is a
dynamic programming (DP) leaf-to-root algorithm along a
k-NLC-expression tree of the incidence graph of the CI E.
Note that we use NLC-width and NLC-expression trees, a
width parameter well known to be domination-equivalent to
rank-width (Wanke 1994), instead of rank-width and rank-
decompositions directly. This allows us to simplify the pre-
sentation of our algorithm.

The main challenge we had to overcome was to devise a
succinct and correct definition of the records computed for
every node of the given NLC-expression tree B and develop
and introduce the correct notions and operations to allow us
to construct such records. In particular, a (valid) record for
a node b of B needs to provide a compact representation of
an equivalence class of solutions, i.e. DTs for the whole in-
stance E, relative to the current subinstance containing only
the features and examples within the subtree of B rooted at b.
We overcome this obstacle by introducing various variants
of DTs (such as DT templates and skeletons) that allow us
to represent and argue about these equivalence classes com-
pactly. We also introduce various novel operations that work
for DTs as well as our abstractions of DTs, such as feature re-
labellings, contractions and reductions, which are interesting
in their own right and may be helpful in future algorithmic
applications of DTs.

DP algorithms using decompositions are well understood
and can often be easily designed for problems on graphs
or, more generally, for problems whose solutions can be
represented in terms of the graph for which the decomposition
is given. However, a DP approach can become challenging for
problems whose solutions have no or only minor resemblance
to the graph for which the decomposition is given, as is

the case for DTs; this also prevents a simple application of
Courcelle’s Theorem (Courcelle 1990). A prominent example
is the celebrated result by Bodlaender (1996), where he uses
a DP approach on an approximate tree decomposition to
compute the exact treewidth of a graph; here, the solutions
are tree decompositions, which are complex structures that
cannot easily be represented in terms of the graph. Other
prominent examples include a DP approach to compute a
graph’s exact tree-depth (Reidl et al. 2014) or clique-width
(Espelage, Gurski, and Wanke 2003) using an optimal tree
decomposition.

Preliminaries

Graphs and NLC-width We will assume that the reader
is familiar with basic graph theory (see e.g. Bang-Jensen and
Gutin 2009; Diestel 2017). We consider (vertex and edge
labelled) undirected graphs. Let G = (V,E) be a graph.
We write V (G) = V and E(G) = E for the sets of ver-
tices and edges of G, respectively. We denote an edge be-
tween u ∈ V and v ∈ V by {u, v}. For a set V ′ ⊆ V
of vertices, we let G[V ′] denote the graph induced by the
vertices in V ′, i.e. G[V ′] has vertex set V ′ and edge set
E ∩ { {u, v} | u, v ∈ V ′ } and we let G − V ′ denote the
graph G[V \ V ′]. For a set E′ ⊆ E of edges we let G− E′

denote the graph with vertex set V and edge set E \ E′.
A k-graph is a pair (G, λ), where G = (V,E) is a graph

and λ : V → [k] is a vertex label mapping that labels every
vertex v ∈ V with a label λ(v) from [k] = {1, . . . , k}. An
initial k-graph is a k-graph consisting of exactly one vertex v
(say, with label i) and is denoted by i(v).

Node label control-width (NLC-width) is a graph parameter
defined as follows (Wanke 1994): let k ∈ N be a positive
integer. A k-NLC-expression tree of a graph G = (V,E) is a
subcubic tree B, where every node b of B is associated with
a k-graph (denoted by (Gb, λb)), such that:

1. Every leaf represents an initial k-graph i(v) with i ∈ [k]
and v ∈ V .

2. Every non-leaf node b with one child c is a relabelling
node and has an associated relabelling function Rb :
[k] → [k]. Moreover, (Gb, λb) is obtained from (Gc, λc)
by relabelling all vertices of Gc with label i to label Rb(i)
for every i ∈ [k].

3. Every non-leaf node b with two children, i.e. a left child l
and a right child r, is a join node and has an associated
join matrix, i.e. a binary k × k matrix Mb. Moreover,
(Gb, λb) is obtained from the disjoint union of (Gl, λl)
and (Gr, λr) by adding an edge from all vertices la-
belled i in Gl to all vertices labelled j in Gr whenever
Mb[i, j] = 1.

4. G is equal to Gr for the root node r of B.

The NLC-width of a graph G, denoted by nlcw(G), is
the minimum k for which G has a k-NLC-expression tree.
A k-NLC-expression tree is nice if every relabelling node
has a relabelling function R : [k] → [k] such that for some
i, j ∈ [k], R(i) = j and R(ℓ) = ℓ for all ℓ ∈ [k] \ {i}.
Let b be a node in a k-NLC-expression tree of a graph G. We
let Vb denote the set of vertices of Gb. By the definition of a



k-NLC-expression tree, if u, v ∈ Vb have the same label in
(Gb, λb) and w ∈ V (G) \ Vb, then u is adjacent to w in G
if and only if v is. Computing the NLC-width of a graph is
NP-hard (Gurski and Wanke 2005). However, the following
result holds.

Proposition 0.1. Let G be a graph and k be an integer. There
is an fpt-algorithm for parameter k which either correctly
concludes that G has NLC-width larger than k or outputs a
nice 2k-NLC-expression tree for G with O(2kn) nodes.

Classification Problems An example e is a function
e : feat(e) → {0, 1} defined on a finite set feat(e) of features.
For a set E of examples, we let feat(E) =

⋃
e∈E feat(e). We

say that two examples e1, e2 agree on a feature f if f ∈
feat(e1), f ∈ feat(e2) and e1(f) = e2(f). If f ∈ feat(e1),
f ∈ feat(e2) but e1(f) ̸= e2(f), we say that the examples
disagree on f .

A classification instance (CI), also called a partially de-
fined Boolean function (Ibaraki, Crama, and Hammer 2011),
E = E+ ⊎ E− is the disjoint union of two sets of examples,
where for all e1, e2 ∈ E we have feat(e1) = feat(e2). The
examples in E+ are said to be positive; the examples in E−

are said to be negative. A set X of examples is uniform if
X ⊆ E+ or X ⊆ E−; otherwise X is non-uniform.

Given a CI E, a subset F ⊆ feat(E) is a support set of E
if any two examples e1 ∈ E+ and e2 ∈ E− disagree in at
least one feature of F . Finding a smallest support set, denoted
by MSS(E), for a CI E is an NP-hard task (Ibaraki, Crama,
and Hammer 2011, Theorem 12.2).

We define the incidence graph of E, denoted by G(E), to
be the bipartite graph with partition (E, feat(E)) having an
edge between an example e ∈ E and a feature f ∈ feat(e) if
and only if f(e) = 1.

Decision Trees A decision tree (DT) is a rooted binary
tree T with vertex set V (T ) and edge set E(T ) such that
each leaf node is either a positive or a negative leaf and the
following holds for each non-leaf t of T :

• t is labelled with a feature denoted by featT (t) or simply
feat(t) if T is clear from the context,

• t has two children, i.e. a left child and a right child.

We write feat(T ) = { feat(t) | t ∈ V (T ) } to denote the set
of all features used by T . The size of T is its number of nodes
i.e. |V (T )|.

Let T be a DT. We say that a node tA is a left (right)
ancestor of t if t is contained in the subtree of T rooted at
the left (right) child of tA. We denote the set of all left (right)
ancestors of t in T by ancLT (t) (ancRT (t)), or simply ancL(t)
(ancR(t)) if T is clear from the context. Let anc(t) be the set
of all ancestors of t in T , i.e. anc(t) = ancL(t) ∪ ancR(t).

Let E be a CI and let T be a DT with feat(T ) ⊆ feat(E).
For each node t of T , we let τt denote the partial fea-
ture assignment τt : feat(anc(t)) → {0, 1} defined by set-
ting τt(f) = 0 if f ∈ feat(ancL(t)) and τt(f) = 1 if
f ∈ feat(ancR(t)). We let ET (t), or simply E(t) if T is clear
from the context, denote the set E[τ(t)] of examples, where
E[τ(t)] is the set of all examples e in E with e(f) = τt(f)

for every feature f ∈ anc(t). We say that T classifies an
example e ∈ E if e is a positive (negative) example and
e ∈ ET (l) for a positive (negative) leaf l of T . We say that T
is a DT for E if T classifies all examples in E. See Figure 1
for an illustration of a CI, its incidence graph, and a DT that
classifies E.

We will consider the following optimisation problem.

MINIMUM DECISION TREE SIZE (DTS)

Input: A CI E.
Question: Find a DT of smallest size that classifies E.

We will need the following auxiliary lemma.

Lemma 0.2. Let A be a set of features. Then, the number of
DTs of size at most s that use only features in A is at most
|A|2s+1 and these can be enumerated in O(|A|2s+1) time.

An Algorithm for Rank-width

In this section, we show that DTS parameterized by the rank-
width of the incidence graph of the CI is fixed-parameter
tractable. To simplify the proof and its description, we will
provide the result for NLC-width. Because of Proposition 0.1,
it suffices to show the result for the case when we are provided
with a nice k-NLC-expression tree.

Theorem 0.3. Let E be a CI and let B be a nice k-NLC-
expression tree for G(E). Then, finding a DT of smallest size
that classifies E is fixed-parameter tractable parameterized
by k.

Corollary 0.4. DTS is fixed-parameter tractable parameter-
ized by NLC-width.

The remainder of this section is devoted to a proof of The-
orem 0.3. In principle, we will use a dynamic programming
algorithm along the k-NLC-expression tree B of G(E) that
computes a set R(b) of valid records for every node b of B
in a bottom-up (leaf-to-root) manner. The crucial part will
be the correct definition of the records. To simplify the pre-
sentation, we will write feat(b), exam(b), and Eb for the sets
feat(E) ∩ Vb, E ∩ Vb, and the subinstance of E induced by
the features in feat(b) and the examples in exam(b). We will
also say that the features and examples in feat(b) ∪ exam(b)
and (feat(E) \ feat(b)) ∪ (E \ exam(b)) are old and novel,
respectively.

Informal Description of the Algorithm

Here, we will informally describe the main ideas behind the
definition of the records for a node b of B. Intuitively, a
(valid) record for b will represent a compact representation
of an equivalence class of solutions (DTs) for the whole in-
stance from the perspective of the subinstance Eb. Therefore,
to illustrate the main ideas and motivations for the later defi-
nition of our records, we need to understand how a solution
for the whole instance, i.e. a DT T that classifies E, behaves
from the perspective of the subinstance Eb and what is the
information that one needs to store about T .

We start by analysing the role of novel features used by
the nodes in T . In particular, let f be a novel feature used
by T , and let e ∈ exam(b) be an old example. Then, because



B is a k-NLC expression tree for G(E), the value e(f) of f
for e only depends on the current label λb(e) of the example
e in (Gb, λb). Therefore, the role of f (and consequently the
role of all novel features) with respect to the old examples
in exam(b) can be described by the set of labels L ⊆ [k]
such that e(f) = 1 if and only if λb(e) ∈ L. This allows
us to replace every novel feature f in T with a so-called
future feature fL, whose behaviour towards the old examples
is completely described by the set L ⊆ [k] of labels, i.e.
e(fL) = 1 if and only if λb(e) ∈ L for every e ∈ exam(b).

Let T 1 be the tree obtained from T after replacing all
novel features with their corresponding future features; we
will later introduce so-called feature relabellings that will
allow us to relabel features of a DT in a very general manner.
Then, T 1 is still a DT for exam(b), and moreover, the future
features now act as placeholders for the novel features and
can be replaced later on during the algorithm. Crucially, we
can now also potentially significantly reduce the size of T 1.
This is because instead of keeping track of the arbitrarily
many novel features in T , we now only need to keep track of
the at most 2k future features (one for every L ⊆ [k]).

In particular, consider a node t of T 1 with feat(t) = fL for
some set L ⊆ [k] of labels and let AT 1(t) be the set of filtered
labels (see the following subsection for a formal definition
of AT 1(t)). Informally, AT 1(t) is the set of all labels ℓ ∈ [k]
such that all examples e ∈ exam(b) with label ℓ would end
up at t if only the effect of the future features on the path
from the root of T 1 to t is considered. Then, we say that t
is left (right) redundant in T 1 if AT 1(t) ⊆ L (AT 1(t) ⊆ L).
Intuitively, t is left (right) redundant if all examples that
can reach t (considering the influence of the future features
only) end up in the left (right) child of t; and therefore the
other child of t is redundant because it will never receive any
examples. To make use of this fact (and to remove redundant
nodes), we will define the following left (right) contraction
operation for left (right) redundant nodes in a DT. Let D be
a DT and d ∈ V (D) be an inner node of D with left child ℓ,
right child r, and parent p. We say that D′ is obtained from
D after left (right) contracting d if D′ is the DT obtained
from D after removing d together with all nodes in Dr (Dℓ)
and adding the edge between p and ℓ (r); if d has no parent,
then no edge is added. Therefore, if t is left (right) redundant
in T 1, we can left (right) contract t in T 1 without changing
the behaviour of T 1 towards the old examples in exam(b).

Let T 2 be the tree obtained from T 1 after left (right) con-
tracting every left (right) redundant node t assigned to a
future feature. Note that T 2 is still a DT for exam(b) (for a
formal proof see Observation 0.6). Moreover, it is easy to
see (and will be shown formally in Observation 0.8) that any
root-to-leaf path of T 2 contains at most k nodes assigned to
future features. We will later call T 2 a DT template for b.

Let us now consider the role of the old features used in
T 2 and, in particular, what information we need to store
about the structure (distribution) of these features in T 2. Note
that if we have a record at node b, we may assume that we
already verified that the record can be used to classify all
old examples correctly. Therefore, we only need to store
sufficient information about how the structure of the old
features affects how the record can be extended when novel

examples (and features) are added to the subinstance. In other
words, we only need to know how the structure of the old
features in T 2 affects the novel examples. In particular, let f
be an old feature used by T 2 and let e ∈ E \ exam(b) be
a novel example. Because B is a k-NLC expression tree
for G(E), the value of e(f) only depends on the current
label λb(f) of the feature f in (Gb, λb). Therefore, the role
of f (and consequently the role of all old features) with
respect to novel examples can be described by the label of the
old feature in (Gb, λb). This allows us to replace every old
feature f in T 2 with a so-called forgotten feature fl, which
will behave toward all novel examples like every old feature
f ∈ feat(b) with label l.

Let T 3 be obtained from T 2 by relabelling every old fea-
ture into its corresponding forgotten feature. Then, T 3 be-
haves in the same manner as T 2 with respect to all novel
examples. Moreover, like T 1, T 3 now also contains poten-
tially many nodes that are redundant with respect to their
behaviour towards novel examples; in T 1 the nodes were
redundant concerning their behaviour towards old examples.
To reduce T 3, we say that a node t of T 3 assigned to some
forgotten feature fl is left (right) redundant if t has a left
(right) ancestor tA that is assigned to the same forgotten fea-
ture as t. Similarly to before, we can now left (right) contract
every left (right) redundant node in T 3 without changing the
behaviour of T 3 towards the novel examples.

Let T 4 be obtained from T 3 after left (right) contracting all
left (right) redundant nodes. Note that every root-to-leaf path
of T 4 can now contain at most k future features and at most k
forgotten features, which implies that T 4 has bounded height
and therefore also bounded size. T 4 will later be called a DT
skeleton for b, and it contains all the information about the
structure of T that we need to keep in the record correspond-
ing to T . In particular, the record corresponding to T will
be the pair (T 4, s), where s is the number of nodes assigned
to forgotten features in T 3 that we have removed to obtain
T 4, i.e. s = |V (T 4) \ V (T 3)|. Moreover, informally, we say
that such a record is valid if s is the smallest number such
that there is a DT template for b that reduces to T 4 (in the
same manner that T 2 reduced to T 4). This completes the
description of the main ideas behind our records, and we are
now ready to provide formal definitions and proofs.

Formal Definition of Records and Preliminary
Results

In what follows, let E be a CI and let B be a k-NLC-
expression tree for G(E). Consider a node b of B. Let L
be a set of labels (usually L = [k]). For a subset L′ ⊆ L,

we let L′ denote the set L \ L′. For a label ℓ ∈ L, we intro-
duce a new feature fℓ, which we will call a forgotten feature.
Moreover, for a subset L′ ⊆ L of labels, we introduce a new
feature fL′ , which we call an future (or introduce) feature.
Let FL = { fℓ | ℓ ∈ L } be the set of all forgotten features
and let IL = { fL′ | L′ ⊆ L } be the set of all future features
with respect to L. To distinguish features in feat(E) from for-
gotten and future features, we will sometimes refer to them
as real features.

Let T be a DT and t ∈ V (T ) be an inner node of T with



left child l, right child r, and parent p. We say that T ′ is
obtained from T after left (right) contracting t if T ′ is the
DT obtained from T after removing t together with all nodes
in Tr (Tℓ) and adding the edge between p and l (r); if t has
no parent, then no edge is added.

A DT for b is a DT T for exam(b) that uses only the
features in feat(b). We say that an inner node t ∈ V (T ) is left
(right) redundant in T if feat(t) ∈ feat(ancL(t)) (feat(t) ∈
feat(ancR(t))). We say that t is redundant if it is either left
redundant or right redundant. Intuitively, a node t is left
(right) redundant if all examples that end up at t, i.e. the
examples in ET (t), go to the left (right) child of t in T .
Therefore, if t is left (right) redundant in T , then the tree
obtained after left (right) contracting t is still a DT for b.

We say that T is a DT template for b if T is a DT for
exam(b) that can additionally use the future features in I[k].
Here, we assume that a future feature fL′ ∈ I[k] for some

L′ ⊆ [k] is 1 at an example e ∈ exam(b) if λb(e) ∈ L′ and
otherwise it is 0. We say that a DT template is complete if
it does not use any features in I[k], otherwise we say that
it is incomplete. Informally, the role of the future features
in a DT template is to provide placeholders for the features
in feat(E) \ feat(b). Because all of these features behave
the same with respect to examples in exam(b) having the
same label, they can be characterized by the set of labels for
which these features are 1. Let T be a DT template for b and
let t ∈ V (T ). We let AT (t) (or A(t) if T is clear from the
context) denote the set of filtered labels for t, i.e. A(t) =
(
⋂

fL′∈feat(ancL(t))∩I[k]
L′)∩(

⋂
fL′∈feat(ancR(t))∩I[k]

L′). Infor-

mally, A(t) is the set of all labels l ∈ [k] such that all exam-
ples e ∈ exam(b) with label l would end up at t, if only the
effect of the future features on the path to t is considered. We
say that t with fL′ = feat(t) ∈ I[k] is left (right) redundant

in T if A(t) ⊆ L′ (A(t) ⊆ L′). We say that t is redundant if
it is either left redundant or right redundant. Intuitively, t is
left (right) redundant if all examples that can reach t (consid-
ering the influence of the future features only) end up in the
left (right) child of t. This also implies that if t is left (right)
redundant, then the DT template obtained after left (right)
contracting t is equivalent to T (all examples end up at the
same leaves). Finally, let us extend the definition ET (t) from
DTs to DT templates. That is, for a DT template T for a node
b, a node t ∈ V (T ), and a set of examples E′ ⊆ exam(b),
we let ET (E

′, t) (or ET (t) if E′ = exam(b)) denote the set
of examples e ∈ E′ with λb(e) ∈ A(t) and e ∈ E′[τ(t)],
where τ(t) is the assignment of the features in feat(b) along
the path from the root of T to t.

We say that T is a DT skeleton for b if T is a DT that
can only use features in F[k] ∪ I[k]. Note that because of
the features F[k], whose behaviour with respect to the exam-

ples in exam(b) is not defined, the behaviour with respect
to the examples in exam(b) of such a DT skeleton is not
necessarily defined. Nevertheless, the behaviour of a fea-
ture fℓ in F[k] is well defined with respect to the examples in

exam(E) \ exam(b), i.e. it behaves the same as any feature
in feat(b) with label ℓ. Intuitively, DT skeletons are obtained
from DT templates after replacing every feature f in feat(b)
with the forgotten feature fλb(f). This allows us to further

compress the information contained in DT templates, while
still keeping the information about how the DT template be-
haves with respect to future examples in E. In particular,
DT skeletons will form the main information stored by our
records.

Let T be a DT skeleton and t ∈ V (T ). Similarly to how
we did for DT templates, we say that T is complete if it uses
no future features and that it is incomplete otherwise. We say
that an inner node t with fℓ = feat(t) ∈ F[k] is left (right)

redundant in T if fℓ ∈ feat(ancL(t)) (fℓ ∈ feat(ancR(t))).
Similarly, to DT (templates), if t with feat(t) ∈ F[k] is left
(right) redundant, then we can left (right) contract t without
changing the properties of T .

Let T be a DT (skeleton/template). Then, let r(T ) be the
DT obtained from T after left (right) contracting every left
(right) redundant node of T . The next lemma shows that
r(T ) is well defined, i.e. the order in which the left (right)
contractions are performed does not influence the result.

Lemma 0.5. Let T be a DT (skeleton/template), let t ∈ V (T )
be a left (right) redundant node in T , and let T ′ be the DT
(skeleton/template) obtained from T after left (right) contract-
ing t. Then, a node t′ ∈ V (T ′) is left (right) redundant in T ′

if and only if t′ is left (right) redundant in T .

Proof. Clearly, if t′ is left (right) redundant in T ′, then the
same is true in T ; this is because if t′′ is a left (right) ancestor
of t′ in T ′, then the same holds in T . So suppose that t′ is
left (right) redundant in T . If feat(t′) is a real or forgotten
feature, then t′ is left (right) redundant in T because of some
left (right) ancestor tA of t′ in T with feat(tA) = feat(t′). If
tA ̸= t, then t′ is also left (right) redundant in T ′ (because tA
is also in T ′). Otherwise, tA = t and therefore t must also be
left (right) redundant in T , because otherwise t′ was removed
when t was contracted. Therefore, t is left (right) redundant
in T because of some left (right) ancestor t′A of t in T with
feat(t′A) = feat(t) = feat(t′), which implies that t′ is left
(right) redundant in T ′ because of t′A.

If, on the other hand, feat(t′) is a future feature fL′ ,

then AT (t
′) ⊆ L′ (AT (t

′) ⊆ L′). We will show that
AT (t

′) = AT ′(t′), which shows that t′ remains left (right)
redundant in T ′. This clearly holds if feat(t) is not a future
feature. So suppose that feat(t) = fL. Then, because t is
left (right) redundant in T (because otherwise t′ would have
been removed from T when contracting t), we have that
AT (t) ⊆ L (AT (t) ⊆ L). Therefore, AT (t) = AT (t) ∩ L
(AT (t) = AT (t) ∩ L), which shows that t has no influence
on AT (t

′) and therefore implies that AT (t
′) = AT ′(t′).

We now show that r(T ) shares certain properties with T .
In particular, the first observation shows that if T is a DT
template for b, then so is r(T ).

Observation 0.6. Let T be a DT template for b. Then r(T )
is also a DT template for b.

Proof. It suffices to show that if t is left (right) redundant
in T and e is in ET (t), then e goes to the left (right) child
of t in T . If feat(t) ∈ feat(b), then t is left (right) redundant
because of some left (right) ancestor t′ with feat(t′) = feat(t).
Moreover, because e ∈ ET (t), e went to the left (right) child



of t′ and therefore e goes to the left (right) child of t (because
feat(t) = feat(t′)). If, on the other hand, feat(t) is some

future feature fL, then A(t) ⊆ L (A(t) ⊆ L) and because
e ∈ ET (t), it follows that λb(e) ∈ A(t). Therefore, e goes
to the left (right) child of t.

The next observation shows the similar behaviour of T and
r(T ) with respect to future examples in E \ exam(b).

Observation 0.7. Let T be a DT (skeleton/template) for b,
and let e be an example in E \ exam(b) that is correctly
classified by T . Then, e is also correctly classified by r(T ).

Before we define our records and their semantics, we first
show a bound on the number of DT skeletons (and the time
to enumerate these), as this will allow us to obtain a similar
bound for the number of records. We say that T is reduced if
r(T ) = T .

Observation 0.8. Let T be a reduced DT skeleton whose
forgotten features use a set of at most kF labels and whose
future features use a set of at most kI labels. Then, T has
height at most kF + kI + 1 and size at most 2kF+kI+1.

We obtain the following corollary as a special case.

Corollary 0.9. Let T be a reduced DT skeleton for a node
b ∈ V (B). Then, T has height at most 2k + 1 and size at
most 22k+1.

Observation 0.10. There are at most (kF +2kI )2
kF +kI+2+1

reduced DT skeletons whose forgotten features use a set of
at most kF labels and whose future features use a set of
at most kI labels. Moreover, these can be enumerated in

O((kF + 2kI )2
kF +kI+2+1) time.

We obtain the following corollary as a special case.

Corollary 0.11. There are at most (k + 2k)2
2k+2+1 reduced

DT skeletons for a node b ∈ V (B) and these can be enumer-

ated in O((k + 2k)2
2k+2+1) time.

Let T be a DT (template/skeleton) using only features in
feat(E)∪FL ∪ IL for some set L of labels (usually L = [k]).
A feature relabelling is a function α : feat(E) ∪ FL →
FL′ ∪ IL′ , where L′ is some set of labels (usually L′ = L).
With a slight abuse of notation, we let α(T ) denote the de-
cision tree obtained after relabelling all features used by T
according to α, i.e. α(T ) is obtained from T after replacing
the feature assignment function featT (t) for T with the func-
tion featα(T )(t) defined by setting featα(T )(t) = α(featT (t))
if α is defined for feat(t) and featα(T )(t) = featT (t), oth-
erwise. We say that two feature relabellings α1 and α2 are
compatible if they agree on their shared domain.

We let αs
b denote the standard feature relabelling for b, i.e.

the function αs
b : feat(b) → F[k] defined by setting αs

b(f) =
fλb(f) for every f ∈ feat(b).

We now show an important property on the interchange-
ability of feature relabellings and reductions. That is, we
show in Lemma 0.13 below that the effect of any sequence of
feature relabellings and reductions that ends with the reduc-
tion operation (r()) is the same as the effect of the sequence
that contains the same relabelling operations followed by one
reduction operation at the end. To show this property, we
need the following auxiliary lemma.

Lemma 0.12. Let T be a DT (template/skeleton) for a node
b ∈ V (B) and let α be a feature relabelling. If a node t ∈
V (T ) is left (right) redundant in T , then it is also left (right)
redundant in α(T ).

Proof. We distinguish the following two cases. If feat(t) ∈
feat(b) ∪ F[k], then t is left (right) redundant in T because of

some left (right) ancestor t′ of t in T with feat(t) = feat(t′).
Because α(feat(t)) = α(feat(t′)), we find that t is also left
(right) redundant in α(T ) because of t′. If feat(t) ∈ I[k],
then t is left (right) redundant in T because of some set A of
ancestors tA with feat(tA) ∈ I[k]. Because the domain of α
does not include future features, it follows that α does not
change the feature assignment for t nor for its ancestors in A,
and therefore t is also left (right) redundant in α(T ).

Lemma 0.13. Let T be a DT (template/skeleton) and let α
be a feature relabelling. Then, r(α(T )) = r(α(r(T ))).

Proof. Let T ′ be the DT (template/skeleton) obtained
from α(T ) after left (right) contracting every node t that
is left (right) redundant in T ; note that such a node t is
also left (right) redundant in α(T ) because of Lemma 0.12.
Then, T ′ = α(r(T )) and, because of Lemma 0.5 (and us-
ing the fact that every node t that is left (right) redundant
in T is so in α(T )), a node t ∈ V (T ′) is left (right) redun-
dant in T ′ if and only if it is so in α(T ). Therefore, a node
t is left (right) redundant in α(T ) if and only if it is left
(right) redundant in T or in α(r(T )) = T ′, which shows that
r(α(T )) = r(α(r(T ))).

We are now ready to define the records and their semantics.
A record for b is a pair (T, s) such that T is a reduced decision
tree skeleton for b and s is a natural number. We say that
a record (T, s) is semi-valid for b if there is a (reduced)
DT template T ′ for b such that r(αs

b(T
′)) = T and s =

|V (T ′) \V (T )|. We say that a record (T, s) is valid for b if s
is the minimum number such that (T, s) is semi-valid. We let
R(b) denote the set of all valid records for b. The following
corollary follows immediately from Corollary 0.11.

Corollary 0.14. |R(b)| ≤ (k + 2k)2
2k+2+1.

Note that E has a DT of size at most s if and only if R(r)
for the root r of B contains a record (T, s′) such that T is
complete and s = |V (T )|+ s′. Therefore, given the set R(r)
of valid records for the root r of B, we can solve DTS for E
by outputting the smallest integer s such that R(r) contains a
record (T, s′) such that T is complete and s = |V (T )|+ s′.

Proof of the Main Result

We will now show that we can compute R(b) for each of the
three node types of a nice k-NLC expression tree provided
that R(c) has already been computed for every child c of b.
Recall that b is either a leaf node associated with a k-graph
i(v), a relabelling node with one child and with relabelling
function Rb, or a join node with a left child, a right child
and a join matrix Mb. Moreover, recall that (Gb, λb) is the
k-graph associated with b (whose unlabelled version is a
subgraph of G) and Vb is the set of vertices of Gb.



Lemma 0.15 (leaf node). Let b ∈ V (B) be a leaf node. Then

R(b) can be computed in O(k(1 + 2k)2
k+3+1) time.

Proof. Let i(v) be the initial k-graph associated with b.
If v is a feature, then R(b) contains all records (T, 0) such
that T is a reduced DT skeleton for b using only the features
in {fλ(v)} ∪ I[k]. The correctness in this case follows be-
cause Vb contains no examples and therefore every reduced
DT skeleton constitutes a valid record for b. Moreover, the
run-time follows from Observation 0.10, since the time re-
quired to enumerate all these reduced DT skeletons is at most

O((1 + 2k)2
k+3+1).

If v is an example, then R(b) contains all records (T, 0)
such that T is a reduced DT skeleton for b using only the
features in I[k] and which correctly classifies v. By Observa-

tion 0.10, these can be enumerated in O((1+2k)2
k+3+1) time

and checking for each of these whether it correctly classifies v
can be achieved in O(k) time by Observation 0.8.

Lemma 0.16 (join node). Let b ∈ V (B) be a join node. Then

R(b) can be computed in O(23k+1(2k + 2k)2
3k+2+1) time.

Proof sketch. Let bL and bR be the left and right child of b in
B, respectively. Let Mb be the join matrix for the node b, i.e.
Mb is a k×k binary matrix. For every label i ∈ [k], let Ai,∗ =
{j ∈ [k] |Mb[i, j] = 1} and A∗,i = {j ∈ [k] |Mb[j, i] = 1}.

To distinguish between forgotten features from the left and
the right subtree, we introduce the left version iL and the
right version iR for every label i ∈ [k]. With a slight abuse
of notation, we also let [kL] denote the set {1L, . . . , kL}
of (left) labels and let [kR] denote the set {1R, . . . , kR} of
(right) labels.

To compute the set R(b) of valid records for b, we first
enumerate all reduced DT skeletons T using features in
[kL]∪ [kR]∪ I[k]. Because of Observation 0.10, these can be

enumerated in O((2k + 2k)2
3k+2+1) time. For every such

reduced DT skeleton T , we now do the following in order
to decide whether T gives rise to a valid record for b. Let
αLR→ : F[kL] ∪ F[kR] → F[k] be the feature relabelling that
relabels every (left/right) feature fiH ∈ F[kL] ∪ F[kR] (for

some H ∈ {L,R}) to its original feature fi.
Let αL : F[kR] → I[k] be the feature relabelling that

relabels every forgotten feature fiR ∈ F[kR] to the future
feature fA∗,i

. Let TL be the reduced DT skeleton obtained
from T after applying the relabelling using αL followed
by αLR→ and then reducing the resulting DT skeleton, i.e.
TL = r(αLR→(αL(T ))).

Similarly, let αR : F[k]L → I[k] be the feature relabelling
that relabels every forgotten feature fiL ∈ F[kL] to the future
feature fAi,∗

. Let TR be the reduced DT skeleton obtained
from T after applying the relabelling using αR followed
by αLR→ and then reducing the resulting DT skeleton, i.e.
TR = r(αLR→(αR(T ))).

Let T̂ = r(αLR→(T )) and ŝ = |V (T ) \ V (T̂ )|. We now
check whether there are records (TL, sL) ∈ R(bL) and
(TR, sR) ∈ R(bR). If not, we discard T and if yes, then

we add the record (T̂ , sL + sR + ŝ) to R(b). This completes

the description about how the records R(b) are computed.
We omit the proof of correctness and run-time.

Lemma 0.17 (relabelling node). Let b ∈ V (B) be re-
labelling node in B. Then R(b) can be computed in

O(22k+1(k + 2k)2
2k+2+1) time.

We are now ready to prove the main result of this section.

Proof of Theorem 0.3. Given E and B, we use Lem-
mas 0.15, 0.16 and 0.17 to compute the set R(b) of valid
records for every node b of B in a leaf-to-root manner. We
then go through all records in R(r) for the root r of B to
find a record (T, s) such that |V (T )|+ s is minimum among
all such records where T is complete. The correctness of the
algorithm follows directly from the definition of the valid
records together with Lemmas 0.15, 0.16 and 0.17. Moreover,
we obtain the run-time of the algorithm as follows. The max-
imum time spent on any of the nodes b (which is achieved

for a join-node) is O(23k+1(2k + 2k)2
3k+2+1). Because B

has at most O(k|E ∪ feat(E)|) (see Proposition 0.1) nodes,

we obtain O(23k+1(2k + 2k)2
3k+2+1k|E ∪ feat(E)|) as the

total run-time of the algorithm, which shows that DTS is
fixed-parameter tractable parameterized by the NLC-width
(and therefore also the rank-width) of E.

Conclusion

We have initiated the study of the parameterized complexity
of learning DTs from data with respect to structural parame-
ters. Our main result provides novel insights into the structure
of DTs and utilises succinct representations of classes of DTs.
It exploits the low rank-width of the incidence graph of a
given CI, which constitutes a well-suited, general and robust
measure for the complexity of input data.

For instance, one often wants to learn DTs of small depth
instead of learning DTs of small size. Therefore, asking
whether our approach extends in this setting is natural. While
one can adapt our approach to obtain an XP-algorithm for
learning DTs of small depth, parameterized by rank/NLC-
width, it is not clear whether this problem is fixed-parameter
tractable. Another question is whether one can extend our
approach to CIs where features range over an arbitrary (non-
Boolean) ordered domain. In this case, one usually uses DTs
that make binary decisions (i.e. whether a feature is smaller
than, equal to, or larger than a given threshold). While our
approach can be extended if every feature has a domain
of bounded size (using the rank-width for edge-coloured
graphs (Kanté and Rao 2013) for the complete bipartite inci-
dence graph whose edges are coloured with domain values),
it is not clear what happens if the domains are allowed to
grow arbitrarily.
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