
This is a repository copy of A General Theoretical Framework for Learning Smallest
Interpretable Models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/208013/

Version: Accepted Version

Proceedings Paper:
Ordyniak, S. orcid.org/0000-0003-1935-651X, Paesani, G., Rychlicki, M. et al. (1 more
author) (Accepted: 2023) A General Theoretical Framework for Learning Smallest
Interpretable Models. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24), 20-27 Feb 2024,
Vancouver, Canada. AAAI Press . (In Press)

© 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). This is
an author produced version of a conference paper accepted for publication in Proceedings
of the AAAI Conference on Artificial Intelligence. Uploaded in accordance with the
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A General Theoretical Framework for Learning Smallest Interpretable Models

Sebastian Ordyniak1, Giacomo Paesani1, Mateusz Rychlicki1, Stefan Szeider2

1University of Leeds, Leeds, UK,
2TU Wien, Vienna, Austria

{sordyniak,giacomopaesani,mkrychlicki}@gmail.com, sz@ac.tuwien.ac.at

Abstract

We develop a general algorithmic framework that allows us
to obtain fixed-parameter tractability for computing smallest
symbolic models that represent given data. Our framework
applies to all ML model types that admit a certain extension
property. By establishing this extension property for decision
trees, decision sets, decision lists, and binary decision dia-
grams, we obtain that minimizing these fundamental model
types is fixed-parameter tractable. Our framework even ap-
plies to ensembles, which combine individual models by ma-
jority decision.

Introduction

The modern highly successful subsymbolic Machine Learn-
ing models like neural networks can exhibit lack of ro-
bustness, display bias, and their operation is invariably
inscrutable for human decision makers (Gunning 2019).
Hence, symbolic models such as decision trees, decision
lists and sets, and binary decision diagrams have recently re-
ceived new attention as they are easier to analyze and control
and more interpretable (Rudin 2019; Molnar 2022). How-
ever, also symbolic models become increasingly opaque if
their size increases. Hence one is interested in finding small-
est models. This task is typically NP-hard; thus, practition-
ers have utilized powerful tools like SAT, MIP, and CP
solvers to compute small or even smallest models that fit the
data (Ignatiev and Marques-Silva 2021; Narodytska et al.
2018; Schidler and Szeider 2021; Shati, Cohen, and McIl-
raith 2021). Also, from a theoretical perspective, the param-
eterized complexity of finding smallest decision trees or en-
sembles of decision trees has become the subject of inten-
sive research (Ordyniak and Szeider 2021; Eiben et al. 2023;
Kobourov et al. 2023; Komusiewicz et al. 2023) which re-
vealed that the problem is fixed-parameter tractable when
parameterized by the solution size plus a bound δ on the
number of features any two examples differ1. Such studies
are still pending for other symbolic ML model types like
decision lists, decision sets, binary decision diagrams, and
ensembles.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Empirical investigations show that δ is reasonably small for
real-world data sets (Ordyniak and Szeider 2021).

strongly extendable? # branches
single ensemble

DS ✓ δ 2 + sδ
DL ✓ δ + s+ 1 1 + s(1 + δ)
DT ✓ δ(s+ 1) 2 + 2sδ
BDD - δ3O(s) δ3O(s)

Table 1: The number of branches required by our framework
for DSs, DLs, DTs, and BDDs, both for learning simple mod-
els and for learning ensemble models. All model types ex-
cept BDDs are strongly extendable and allow for polynomial
number of branches. The run-time of our algorithm to learn
a small model (ignoring polynomial factors) only depends
on the number of branches b and is given by O∗(b2).

In this paper, we significantly extend this line of research
to all the mentioned symbolic model types. However, in-
stead of developing specialized algorithms for all the model
types, we develop a general algorithmic framework that ap-
plies to all of them and any further model type that admits
one of two natural extension properties: strong extendabil-
ity and (weak) extendability. Therefore, to show that a par-
ticular type of model admits the efficient computation of a
smallest model, one only needs to show that the model type
admits one of the two extension properties. This way, we
generalize the fixed-parameter tractability results from deci-
sion trees (DTs) to decision sets (DSs), decision lists (DLs),
binary decision diagrams (BDDs), and even ensembles of all
these model types.

Our framework uses a bounded-depth branching algo-
rithm that, starting from the empty model, exhaustively
branches into all “important” extensions of the current
model until either a small model is found or the framework
correctly returns that no model of the required size (in the
following denoted by s) exists. The main challenge behind
the algorithm is to restrict the number of important exten-
sions of the current model that need to be considered at every
step. In particular, it is crucial to bound the number of addi-
tional features whose addition to the model is required for an
exhaustive enumeration of all minimum models. We employ
two main approaches which lead to strong and (weak) ex-
tendability, respectively. For DSs, DLs, and DTs, we can em-

ploy an adapted version of the annotation approach that has
recently been developed for DTs (Komusiewicz et al. 2023).
Here, parts of the model are annotated with examples that
allow us to guide the selection of important features. While
the approach is similar to the approach of Komusiewicz et al.
(2023), we show that it can also be applied to DSs and DLs
(as well as ensembles thereof), and we also manage to sim-
plify the approach significantly for the case of DTs. Indeed,
we can simplify the annotation by showing that it suffices
to annotate only with already correctly classified examples.
We also simplify their correctness proof by defining exten-
sion in a declarative manner instead of explicitly in terms of
operations (that are required to obtain the extension). This
allows us not to have to ensure that the operations are invari-
ant under reordering, which led to an unnecessarily technical
proof used in previous work (Komusiewicz et al. 2023). Sur-
prisingly, the annotation approach does not seem to apply to
BDDs. In this case, we are, however, able to adapt the ideas
(most notably the notion of “useful” sets of features) behind
the first algorithm for DTs given by Ordyniak and Szeider
(2021) to show that BDDs, as well as their ensembles, can be
learned efficiently. Our algorithmic results are summarized
in Table 1. There we state the number of branches that our
framework requires to extend the current model for each of
the considered model types, since this is the main parameter
that influences the run-time of our framework for learning
a smallest model of size at most s, which is then given by
O∗(bs) (O∗ suppresses polynomial factors). Interestingly,
the number of branches dramatically differs between the dif-
ferent model types and their ensembles, particularly between
the strongly extendable models using the first approach and
the (weakly) extendable models using the second approach.

We complement our algorithmic results with hardness re-
sults. First, we show that similar to decision trees, also for
the other model types, the parameter δ is indispensable;
when parameterized by solution size alone, we obtain W[2]-
hardness. Second, we show that for decision sets and de-
cision lists, we cannot replace the parameter solution size
with either the total number of terms or the maximum size
of a term by showing that, in this case, the problems remain
NP-hard even for δ = 2.

Preliminaries
Classification Instances. A (binary) classification instance
(CI) is a triple C = (E,F, τ), where E is a set of examples
over a set of binary features F and τ is a classification func-
tion τ : E → {0, 1}. We commonly say that an example e
is a 0-example, or negative example, (1-example, or positive
example) if τ(e) = 0 (τ(e) = 1) and we denote by e(f) the
value of the example e ∈ E on the feature f ∈ F . The size
of a C is given by ∥C∥ = |E| · |F |.

We say that two examples e and e′ agree (don’t agree) on
a feature f if e(f) = e′(f) (e(f) ̸= e′(f)) and denote with
δ(e, e′) the set of features on which e and e′ disagree on. For
a (partial) assignment τ : F ′ → {0, 1}, where F ′ ⊆ F , we
denote by E[τ] the set of all examples in E that agree with τ ,
i.e., all examples e with e(f) = τ(f) for every feature f ∈
F ′. For two partial assignments τ1 : F1 → {0, 1} and τ2 :
F2 → {0, 1}, where F1, F2 ⊆ F and F1∩F2 = ∅, we denote

by τ1 ∪ τ2 the assignment τ : F1 ∪ F2 → {0, 1} defined
by setting τ(f) = τ1(f) if f ∈ F1 and τ(f) = τ2(f) if
f ∈ F2. Finally, δ(C), or simply δ if C is clear from the
context, denotes the maximum size of δ(e, e′) over all pairs
of examples (e, e′), where τ(e) + τ(e′) = 1.

In the following, let C = (E,F, τ) be a CI.

Models and Support Sets. In the following we will define
models of different types; some of these are illustrated in
Figure 1. Here, we will introduce some notation that applies
to all models. Let M be a model. We denote by F (M) the
set of all features used by M . Moreover, we will denote by
M : E → {0, 1, u} the classification function defined by
M , which classifies every example e ∈ E as either 0, 1,
or u (which means undefined). We say that M classifies e
correctly if M(e) = τ(e) and we will say that M is a model
for C if M classifies all examples of C correctly.

A set S ⊆ F of features is a support set of C if it con-
tains at least one feature from δ(e, e′) for every pair (e, e′)
of 0-example e and 1-example e′. The following observa-
tion follows immediately from the fact that a model for a CI
needs to at least be able to distinguish every 0-example from
every 1-example.

Observation 1. Let M be a model for a CI C = (E,F, τ).
Then, F (M) is a support set for C.

Decision Sets. A term t over C is a set of literals with each
literal being of the form (f = z) where f ∈ F and z ∈
{0, 1}. A rule r is a pair (t, c) where t is a term and c ∈
{0, 1}. We say that a rule (t, c) is a c-rule. We say that a
term t (or rule (t, c)) applies to (or agrees with) an example
e if e(f) = z for every element (f = z) of t. Note that the
empty rule applies to any example.

A decision set M is a pair (T, b), where T is a set of
terms and b ∈ {0, 1} is the classification of the default rule
rD = (∅, b). We denote by ∥M∥ the size of M which is
equal to (

∑
t∈T |t|) + 1; the +1 is for the default rule. The

classification function M : E → {0, 1} of a DSM = (T, b)
is defined by setting M(e) = b for every example e ∈ E
such that no term in T applies to e and otherwise we set
M(e) = 1− b.

Decision Lists. A decision list L is a sequence of rules (r1 =
(t1, c1), . . . , rℓ = (tℓ, cℓ)), for some ℓ ≥ 0. The size of

a DL L, denoted by ∥L∥, is equal to
∑ℓ

i=1(|ti| + 1). The
classification function L : E → {0, 1} of a DL L is defined
by setting L(e) = b if the first rule in L that applies to e is
a b-rule. For convenience, we set L(e) = u if no rule in L
applies to e.

Decision Trees. A decision tree M is a pair (T, λ) such that
T is a rooted binary tree and λ : V (T) → F ∪ {0, 1} is
a function that assigns a feature in F to every inner node
of T and either 0 or 1 to every leaf node of T . Every inner
node of T has exactly 2 children, one left child (or 0-child)
and one right-child (or 1-child). The classification function
M : E → {0, 1} of a DTM = (T, λ) is defined as follows
for an example e ∈ E. Starting at the root of T one does
the following at every inner node t of T . If e(λ(t)) = 0
one continues with the 0-child of t and if e(λ(t)) = 1 one

A B C D out
1 0 1 1 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 0 1 0 1
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1

A

1 D

B 1

C 0

0 1

0 1

0 1

0 1

0 1

if A = 0 then 1
if A = 1 ∧ B = 0 ∧ C = 1 then 1
default 0

if A = 0 then 1
elseif B = 1 then 0
elseif C = 1 then 1
elseif true then 0

A

B

C

01

0

1

0
1

1 0

Figure 1: A classification instance C and four models that classify C: a decision tree, a decision set, a decision list, and a binary
decision diagram (from left to right).

continues with the 1-child of t until one eventually ends up
at a leaf node l at which e is classified as λ(l).

For every node t of T , we denote by EM (t) the set of ex-
amples that reach t from the root of T . EM (t) can be defined
recursively as follows: Set EM (r) = E for the root r of T
and if t is an x-child of some (inner) node p, then we set
EM (t) = EM (p)∩ {e | e(λ(p)) = x} for every x ∈ {0, 1}.
We denote by ∥M∥ (h(M) = h(T)) the size (height) of a
DT, which is equal to the number of leaves of T (the length
of a longest root-to-leaf path in T).

Binary Decision Diagrams. A binary decision diagram
(BDD) B is a pair (D, ρ) where D is a directed acyclic graph
with three special vertices {s, t0, t1} such that:

• s is a source vertex that can (but does not have to) be
equal to t0 or t1,

• t0 and t1 are the only sink vertices of D,

• every non-sink vertex has exactly two outgoing neigh-
bors, which we call the 0-neighbor and the 1-neighbor
and

• ρ : V (D) \ {t0, t1} → F is a function that associates to
every non-sink node of D a feature of E

For an example e ∈ E, we denote by PB(e) (or P (e) if
B is clear from the context), the unique path from s to either
t0 or t1 followed by e in B. That is starting at s and ending
at either t0 or t1, P (e) is iteratively defined as follows. Ini-
tially, we set P (e) = (s), moreover, if P (e) ends in a vertex
v other than t0 or t1, then we extend P (e) by the e(ρ(v))-
neighbor of v in D. Let B be a BDD and e an example of
a CI (E,F, τ). The classification function B : E → {0, 1}
of B is given by setting B(e) = b if PB(e) ends in tb. We
denote by ∥B∥ the size of B, which is equal to |V (D)|.

Ensembles. An T -ensemble E is a set of models of type T ,
where T ∈ {DS,DL,DT,BDD}. We say that E classifies an
example e ∈ E as b if so do the majority of models in E ,
i.e., if there are at least ⌊|E|/2⌋+1 models in E that classify
e as b. We denote by ∥E∥ the size of E , which is equal to∑

M∈E ∥M∥.

Considered Problems. Let T ∈ {DS,DL,DT,BDD}. We
consider the following problems.

T -MINIMUM MODEL SIZE (T-MMS)

INSTANCE: A CI C = (E,F, τ) and an integer s.
QUESTION: Find a model of type T and size at most

s for C or report correctly that no such
model exists.

T -MINIMUM ENSEMBLE MODEL SIZE (T -MEMS)

INSTANCE: A CI C = (E,F, τ) and an integer s.
QUESTION: Find an ensemble model of type T and

size at most s for C or report correctly
that no such model exists.

Note that all our (tractability) results still apply to the corre-
sponding optimisation variants of the above problems, i.e.,
our algorithms are able to find a smallest (ensemble) model
in fpt-time if the parameter s is replaced by the size of an
optimal model.

The Framework

In this section we develop the framework for learning mod-
els as well as ensembles of models for different model-
types. In the following sections, we will then show how
this framework can be employed to learn (ensembles) of de-
cision sets, decision lists, decision trees, and any form of
binary decision diagrams. At its core the framework uses
a bounded-depth branching algorithm that starting from an
empty model branches over all simple extensions of the cur-
rent model that could potentially be part of an optimum
model until either an optimum model is found or it is shown
that no optimal model of the required size exists. The frame-
work can therefore be applied to all types of models, where
the number of simple extensions of a model that can poten-
tially lead to an optimum model is bounded by our parame-
ters s+ δ and those extensions can be computed efficiently.
Designing such a procedure, i.e., an efficient algorithm that
given a model computes a small but complete set of exten-
sions that can be part of an optimum model, for every model
type is the main challenge of our approach. In particular,
to achieve this one needs to design the update procedure in
such a way that at every step only a small set of novel fea-
tures need to be considered that must potentially be added to
the current model.

The framework will need to deal with so-called partial
models and so-called annotated models. That is, a partial
model can be thought of as an incomplete model that by it-
self is not yet a model but can be completed into one and
an annotated model can be thought of as a pair (M,A),
where M is a model and A is an annotation of the model
with examples that will help guide the search for possible
extensions. While the exact definitions of these notions will
depend on the particular type of model, for the purposes of
presenting our framework we merely require them to satisfy
the following natural properties.

(P0) Deciding whether a model M is a model for a CI C =
(E,F, τ) and if not providing an example e ∈ E that
is not correctly classified by M can be achieved in time
O(|E|∥M∥).

(P1) Any model M is an extension of the empty partial/an-
notated model, denoted by nil.

(P2) If a partial/annotated model is a strict extension of an-
other partial/annotated model, then the former is larger
than the latter.

To make our framework work for all of our model types, we
need to distinguish between two forms of “extendability”,
i.e., strong and (weak) extendability that we will introduce
in the next two subsections.

Strong Extendability

In this section, we will introduce and develop our frame-
work for strong extendable models, which as we will see
later include DSs, DLs, and DTs. For all these model types,
we will later introduce so-called annotated models, which
can be thought of as a pair (M,A), where M is a model and
A is an annotation of the model with examples that will help
guide the search for possible simple extensions. The main
advantage of strong extendability versus (weak) extendabil-
ity is that model types that are strongly extendable automati-
cally allow also for an efficient algorithm to learn ensembles
of that model type.

We are now ready to provide a formal definition of strong
extendability. Let (M,A) be an annotated model such that
M is not a model for the CI C = (E,F, τ) and let e ∈ E be
an example not correctly classified by M . A full set of strict
extensions for a annotated model (M,A) and example e is
a set E of strict extensions of (M,A) such that every model
M ′ that correctly classifies e and is an extension of (M,A)
is also an extension of some annotated model in E .

We say that a model-type T is strongly
(f(|M |, δ), g(|M |, |C|))-extendable for some computable
functions f(|M |, δ) and g(|M |, |C|) if there is an algorithm
running in time O(g(|M |, |C|)) that given a CI C, an
annotated model (M,A) of type T , and an example e ∈ E
that is not correctly classified by M computes a full set E of
strict extensions for (M,A) and e with |E| ≤ f(|M |, δ).

The following theorem now provides an algorithm for
T-MMS for any strongly extendable model type T .

Theorem 2. Let T be a strongly (f(|M |, δ), g(|M |, |C|))-
extendable model-type. Then, T-MMS can be solved in time
O((f(s, δ))s(g(s, |C|) + |E|s)).

Algorithm 1: Generic Algorithm for finding a minimum
model of size at most s for any strongly extendable model-
type T .

Input: CI C = (E,F, τ) and integer s.
Output: return a minimum model for C of type T and size at most

s (or nil if no such model exists).
1: function FINDOPTMODELSTR(C, s)
2: return FINDOPTEXTSTR(C, s, nil)

3: function FINDOPTEXTSTR(C, s, (M,A))
4: if M is a model for C then
5: return M
6: if |M | ≥ s then
7: return nil

8: e← any example not correctly classified by M
9: M← FINDSTRICTEXTSSTR(C, (M,A), e)

10: B ← nil

11: for (M ′, A′) ∈M do
12: if |M ′| ≤ s then
13: A← FINDOPTEXTSTR(C, s, (M ′, A′))
14: if A ̸= nil and (B = nil or |B| > |A|) then
15: B ← A
16: return B

Proof. We solve T-MMS by the bounded-depth branching
algorithm illustrated in Algorithm 1. The main part of the
algorithm is the function FINDOPTEXTSTR(C, s, (M,A)),
which, when called initially with the empty annotated model
(nil) returns the required result. In general, the function
FINDOPTEXTSTR(C, s, (M,A)) does the following: given
a CI C, an integer s, and an annotated model (M,A), it out-
puts a minimum model M ′ for C of size at most s that ex-
tends (M,A) if such a model exists; otherwise it will output
nil. To achieve this, the function first checks whether M
is already a model for C and if so returns M . Otherwise, it
checks whether M is already too large to be extended, i.e.,
if |M | ≥ s, and if so returns nil. If this is not the case,
the function takes any example e ∈ E that is not correctly
classified by M and calls the model-type specific function
FINDSTRICTEXTSTR(C, (M,A), e) to obtain a full set E of
strict extensions for (M,A) and e. Finally, the function then
calls itself recursively for every annotated model (M ′, A′)
in E and returns the best model found for any such strict
extension.

Towards showing the correctness of the algorithm first
note that if the algorithm returns a model M , then this is
indeed a model for C (because of Line 4 of the algorithm)
of size at most s (because of Line 12 of the algorithm).

So suppose that there is indeed a model M ′ for C of
type T and size at most s. We will show that the algo-
rithm considers every such model and therefore returns one
of those models of minimum size. To achieve this it suffices
to show that M ′ extends nil and whenever M ′ extends the
current annotated model (M,A), then it will also extend one
of the strict extensions in E computed in Line 9 of the algo-
rithm. The former clearly holds because of (P1). Towards
showing the latter, let e be the example assigned in Line 8 of
the algorithm. Then, M does not correctly classify e but M ′

does (since it is a model for C), and therefore it holds that
M ′ is an extension of M that correctly classifies e. There-

fore, M ′ is an extension of some annotated model in the full
set of strict extensions E for (M,A) and e, as required.

Let us now consider the running-time of the algorithm.
Because T is strongly (f(|M |, δ), g(|M |, |C|))-extendable,
it holds that the function FINDSTRICTEXTSSTR(C, (M,A),
e) called in Line 9 requires time at most O(g(|M |, |C|)) and
returns at most f(|M |, δ) ≤ f(s, δ) strict extensions. There-
fore, the branching factor of the algorithm is at most f(s, δ)
and since the size of the considered partial annotated mod-
els increases by at least one (P2) in each recursive call, we
obtain that the recursion depth of the algorithm is at most
s. Therefore, the algorithm does at most (f(s, δ))s recur-
sive calls. Moreover, the time required for each recursive
call is dominated by the call to FINDSTRICTEXTSSTR(C,
(M,A), e) in Line 8, which is g(|M |, |C|) ≤ g(s, |C|),
the check whether M is already a model in Line 4, and
finding an example e that is not correctly classified by M
in Line 8, which because of (P0) can be achieved in time
O(|E|s). Therefore, the total run-time of the algorithm is at
most O((f(s, δ))s(g(s, |C|) + |E|s)).

We show next that strong extendability is even sufficient
to efficiently learn ensembles.

Theorem 3. Let T be a strongly (f(|M |, δ), g(|M |, |C|))-
extendable model-type. Then, T-MEMS can be solved
in time O(bss(g(s, δ) + |E|)), where b = f(0, δ) +∑

(M,A)∈E f(|M |, δ).

Extendability

In this section, we will introduce and develop our framework
for extendable models, which as we will see later include
all forms of BDDs as well as BDD-ensembles. In contrast
to strong extendable models, it will no longer be necessary
to annotate the models but instead we need to be able to
deal with ”partial” models, which for the purposes of the
framework can be thought of incomplete models that can be
extended to a model.

We are now ready to provide a formal definition of ex-
tendable models. A full set of strict extensions for a par-
tial model M is a set E of strict extensions of M such
that for every model M ′ of minimum size for C that is
an extension of M it holds that M ′ is also an extension
of some partial model in E . We say that a model-type T
is (f(|M |, δ), g(|M |, |C|))-extendable for some computable
functions f(|M |, δ) and g(|M |, |C|) if there is an algorithm
running in time O(g(|M |, |C|)) that given a CI C and a par-
tial model M of type T such that M is not a model for C
and |M | computes a full set E of strict extensions for M with
|E| ≤ f(|M |, δ).

Note that the main difference to the case of strongly ex-
tendable models is that the full set of strict extensions does
no longer need to address a specific example, but instead it
is merely required that one of the strict extensions is part
of some optimum model. While this makes the framework
applicable to more general models (such as BDDs), it also
comes with a cost. Indeed, without the example as a guide to
further restrict the number of possible extensions, the num-
ber of strict extensions becomes potentially much larger; we
will later see that this indeed applies in the case of BDDs.

Algorithm 2: Generic Algorithm for finding a minimum
model of size at most s for any extendable model-type T .

Input: CI C = (E,F, τ) and integer s.
Output: return a minimum model for C of type T and size at most

s (or nil if no such model exists).
1: function FINDOPTMODEL(C, s)
2: return FINDOPTEXT(C, s, nil)

3: function FINDOPTEXT(C, s, (M,A))
4: if M is a model for C then
5: return M
6: if |M | ≥ s then
7: return nil

8: M← FINDSTRICTEXTS(C, s, (M,A))
9: B ← nil

10: for (M ′, A′) ∈M do
11: if |M ′| ≤ s then
12: A← FINDOPTEXT(C, s, (M ′, A′))
13: if A ̸= nil and (B = nil or |B| > |A|) then
14: B ← A
15: return B

Furthermore, the extension of the framework to ensembles
of models seems no longer possible as it specifically requires
to find extensions that can be used to classify a specific ex-
ample and more importantly the models in an ensemble are
not required to be models for the CI. Nevertheless, we will
show that the latter disadvantage can be overcome by show-
ing that also BDD-ensemble models are extendable.

The following theorem now provides an algorithm for
T-MMS for any extendable model type T . The bounded-
depth search algorithm behind the theorem is illustrated in
Algorithm 2.

Theorem 4. Let T be a (f(|M |, δ), g(|M |, |C|))-extendable
model-type. Then, T-MMS can be solved in time
O((f(s, δ))s(g(s, |C|) + |E|s)).

Decision Sets, Decision Lists, and Decision

Trees

Due to space reasons, we are only able to illustrate our ap-
proach for DLs and leave the description of the correspond-
ing results for DSs and DTs to the full version of the paper.

In the case of DLs an annotated DL is simple a pair (L,A),
where L is a decision list and A : L → E is the annotation
function that assigns one example to every rule in L. The
idea of the annotation is that if a rule is annotated by an
example, then we only consider extensions of the rule that
agree with the example.

We say that an injective function α : L → L′ between two
DLs L and L′ is order-preserving if for every two distinct
l, l′ ∈ L, it holds that l is ordered before l′ in L if and only
if α(l) is ordered before α(l′) in L′.

We say that a DL L′ is an extension of a DL L if there
is an injective and order-preserving function α : L → L′

such that for every r = (t, b) ∈ L with (t′, b′) = α(r), it
holds that b′ = b and t ⊆ t′. We say that a DL L′ is an
extension of an annotated DL (L,A) if there is an injective
order-preserving function α : L → L′ such that for every
r = (t, b) ∈ L with r′ = (t′, b′) = α(r), it holds that b′ = b,

Algorithm 3: Algorithm for finding a full set of strict exten-
sions for DLs.

Input: A CI C = (E,F, τ), an annotated DL (L,A), and an ex-
ample e ∈ E that is not correctly classified by L.

Output: An full set of strict extensions for (L,A) and e.
1: function FINDSTRICTEXTSSTR(C, (L,A), e)
2: X ← ∅
3: if no rule in L applies to e then
4: for p ∈ [0, |L|] do
5: r ← (∅, τ(e))
6: A′ ← extension of A by A′(r) = e
7: L′ ← obtained from L after inserting r at p
8: X ← X ∪ {(L′, A′)}

9: r′ = (t′, 1− τ(e))← first rule in L that applies to e
10: p′ ← position of r′ in L
11: r ← (∅, τ(e))
12: A′ ← extension of A with {A′(r) = e}
13: for p ∈ [0, p′ − 1] do
14: L′ ← obtained from L after inserting r at p
15: X ← X ∪ {(L′, A′)}

16: e′ ← A(r′)
17: for f ∈ δ(e′, e) do
18: r ← (t′ ∪ {(f = e′(f))}, 1− τ(e))
19: L′ ← list obtained from L after replacing r with r′

20: X ← X ∪ {(L′, A)}

21: return X

t ⊆ t′, and r′ is the first rule in L′ that agrees with A(r).
We say that an annotated DL (L′, A′) is an extension of an
annotated DL (L,A) if there is an injective order-preserving
function α : L → L′ such that for every r = (t, b) ∈ L
with r′ = (t′, b′) = α(r), it holds that b′ = b, t ⊆ t′,
and A′(r′) = A(r). Finally, we say that an annotated DL

(L′, A′) is a strict extension of an annotated DL (L,A) if it
is an extension and additionally (L′, A′) ̸= (L,A); note that
this also implies that |L′| > |L|.

Lemma 5. Decision Lists are strongly (δ+ |L|+1, |L|+δ)-
extendable.

Proof. We claim that Algorithm 3 shows the result, i.e., we
need to show that Algorithm 3 runs in time O(|L| + δ) and
given a CI C = (E,F, τ), an annotated DL (L,A), and an
example e such that L does not correctly classify e computes
a full set of strict extensions E for (L,A) and e with |E| ≤
δ + |L|+ 1.

The main ideas behind Algorithm 3 are as follows. If no
rule in L applies to e, then the algorithm considers all ex-
tensions (L′, A′) obtained from (L,A) after inserting a new
(empty) rule (∅, τ(e)) annotated by e at any possible posi-
tion in L. Otherwise, let r′ = (t′, 1 − τ(e)) be the first rule
that applies to e in L and let p′ be its position. The algorithm
then adds all extensions (L′, A′) obtained from (L,A) after
inserting a new (empty) rule r = (∅, τ(e)) annotated by e
at any possible position before p′ in L, to the initially empty
set X of extensions. Finally, the algorithm returns X after
additionally adding to it all extensions of (M,A) obtained
by adding the literal f = e′(f) to the the term t′ of rule r′

for every f ∈ δ(e′, e).
Towards showing the correctness of Algorithm 3, we first

note that the algorithm always outputs a set of strict exten-
sions of (L,A), i.e., in every case L is extended by some
rule or some rule of L is extended by some literal, and that
the number of those strict extensions is at most δ + |L|+ 1.
It remains to show that the set of strict extensions returned
by the algorithm is indeed a full set of strict extensions for
(L,A) and e. To see this let Le be a DL that extends (L,A)
and correctly classifies e. We need to show that Le is an ex-
tension of some strict extension returned by the algorithm.
We distinguish the following cases.

If no rule in L applies to e, i.e., the case corresponding
to Line 3 of the algorithm, then because Le correctly classi-
fies e, it holds that Le \L must contain a new rule, say r that
can be inserted at some position p ∈ {0, |L|} in L and that
applies to e. W.l.o.g. we assume that r is the first rule in Le

that applies to e, which will allow us to annotate r with e.
Therefore, we obtain that Le extends (L′, A′), where L′ is
obtained by adding the new rule r at position p to L and set-
ting A′ = A ∪ {A(r) = e}. Since the algorithm considers
all those cases in the for-loop in Line 4, this shows that (in
the case that no rule in L applies to e) Le is an extension of
some annotated DL returned by the algorithm in Line 8.

Otherwise, let p′ be the position of the first rule r′ =
(t′, 1 − τ(e)) in L that applies to e (see also Line 9 of the
algorithm). Then, because Le correctly classifies e, it holds
that either Le \ L must contain a new rule, say r that can
be inserted at some position p ∈ {0, p′ − 1} in L and that
applies to e (and that can therefore be annotated with e) or
α(r′) does not apply to e. In the former case, we obtain that
Le is an extension of (L′, A′), where L′ is obtained from
L after adding the new rule r annotated by e at position p
and the algorithm considers all those cases in the for-loop in
Line 13. In the latter case, since Le is an extension of (L,A),
it follows that α(r′) is the first rule of L′ that applies to e′.
Therefore, Le is an extension of some (L′, A), where L′ is
obtained after adding some literal f = e′(f) to t′ for some
feature f ∈ δ(e′, e) and the algorithm considers all those
cases in the for-loop of Line 17.

Combining Lemma 5 with Theorem 2, we obtain the fol-
lowing.

Corollary 6. DL-MMS can be solved in time O((δ + s +
1)s|E|s) and is therefore fixed-parameter tractable param-
eterized by s+ δ.

Combining Lemma 5 with Theorem 3, we obtain the fol-
lowing.

Corollary 7. DL-MEMS can be solved in time O((1 + s+
sδ)s|E|s) and is therefore fixed-parameter tractable param-
eterized by s+ δ.

Binary Decision Diagrams

For space reasons, we will only illustrate the main ideas be-
hind the proof for BDDs and leave the full proof as well as
the proof for BDD-ensemble to the full version of the paper.

Let C = (E,F, τ) be a CI. A partial BDD S is a pair
S = (D, ρ) where D is a directed acyclic graph with two
special vertices t0 and t1 such that:

• t0 and t1 are sinks,

• every vertex except t0 and t1 has out-degree at most 2
and more specifically it has at most one 0-out-neighbor
and at most one 1-out-neighbor.

• it can (but does not have to have) a specified root vertex,
which is not allowed to have any in-neighbors,

• ρ is a function that associates a feature in F to every node
except t0 and t1.

Informally, a partial BDD is obtained by inducing a BDD on
some subset of its inner nodes. That is, a partial BDD S =
(D, ρ) is any pair for which there exists a BDDB′ = (D′, ρ′)
such that B′[D] = S, where B′[D] = (D′[V (D)], ρ′|V (D))

and ρ′|V (D) is equal to the function ρ′ restricted to the ver-

tices in D.
We say that a (partial) BDD B′ = (D′, ρ′) is an extension

of a partial BDD B = (D, ρ) if B = B′[D]. We say that
B′ is a strict extension of B if B′ is an extension of B and
additionally B′ ̸= B or equivalently |D′| > |D|. We say
that B′ is a simple extension of B if B′ is an extension of B
and additionally |D′| = |D|+ 1.

For a partial BDD B = (D, ρ) and a subset F ′ ⊆ F of
features, we denote by SExt(B,F ′) the set of all simple ex-
tensions B′ = (D′, ρ′) of B such that the unique vertex
v in V (D′) \ V (D) satisfies that ρ(v) ∈ F ′, i.e., we only
consider simple extension of B, whose new nodes use only
features from F ′. The following lemma now shows that if
we could bound the number of features that need to be con-
sidered by any strict extension in SExt(B) = SExt(B,F),
then we could also bound the size of SExt(B).

Lemma 8. Let C = (E,F, τ) be a CI, let B = (D, ρ)
be a partial BDD, and let F ′ ⊆ F . Then, SExt(B,F ′)
can be computed in time O(|F ′|(∥B∥ + 1)23∥B∥−2) and

|SExt(B,F ′)| ≤ 2|F ′|(∥B∥+ 1)23∥B∥−2.

Using an approach that is very similar to the approach
employed by Ordyniak and Szeider (2021), in particular the
notion of useful sets, we are now able to bound the number
of features that have to be considered for the computation of
SExt(B) and obtain the following lemma.

Lemma 9. Let C = (E,F, τ) be a CI and let B = (D, ρ) be
a partial BDD that is not a BDD for C. There is a polynomial-
time algorithm that given C and B outputs a set of features
F ′ ⊆ F of size at most n + 2n2δ(C), where n = |F (B)|,
such that every BDD of minimum size for C that is an exten-
sion of B also extends some partial BDD in SExt(B,F ′).

Lemma 10. BDDs are
(2(s+ 2s2δ)(s+ 1)23s−2, 2O(s)nO(1))-extendable.

Proof. Let B = (D, ρ) be a partial BDD of size at most s.
Then, because of Lemma 9, the set SExt(B,F ′) is a full
set of strict extensions for B, where F ′ is the set of fea-
tures of size at most s + 2s2δ that can be computed in
polynomial-time. Moreover, it follows from Lemma 8 that
given B and F ′, the set SExt(B,F ′) has size at most

2|F ′|(∥B∥ + 1)23∥B∥−2 and can be computed in time

O(|F ′|(∥B∥ + 1)23∥B∥−2) = 2O(s). Therefore, SExt(B)
has size at most 2(s + 2s2δ)(s + 1)23s−2 and can be

computed in time 2O(s)nO(1), which shows that BDDs are

(2(s+ 2s2δ)(s+ 1)23s−2, 2O(s)nO(1))-extendable.

Combining Lemma 10 with Theorem 4, we obtain the fol-
lowing.

Corollary 11. BDD-MMS and is fixed-parameter tractable
parameterized by s+ δ.

We also obtain the following result for BDD-ensembles.

Lemma 12. BDD-ensembles are (2(s+2s2δ)(s+1)23s−2+
3, 2O(s)nO(1))-extendable.

Combining Lemma 12 with Theorem 4, we obtain the fol-
lowing.

Corollary 13. BDD-MEMS is fixed-parameter tractable
parameterized by s+ δ.

Completing the Parameterized Complexity

Landscape

In this section, we provide complementary hardness results.
In particular, we will show that finding a minimum size
model is W[2]-hard parameterized by s alone for all model
types considered in this paper. This is already known in the
case of DTs, but not for DSs, DLs, and BDDs. We will then
consider replacing s by weaker but natural parameters. In
particular, we will consider the parameters number of terms
as well as the maximum size of any term as a parameter re-
placing size for DSs and DLs. Surprisingly, we will show
that even finding a DS (or DL) with only one term (or al-
ternatively with terms of maximum size 1) is NP-hard even
if δ is equal to 2. Our hardness results are based on a sim-
ple reduction from the the well-known HITTING SET (HS)
problem, which has previously been employed by Ordyniak
and Szeider (2021) to show hardness results for DTs.

Theorem 14. T-MMS is NP-hard and W[2]-hard parame-
terized by s for every T ∈ {DS,DL,DT,BDD}.

Theorem 15. Given a CI C = (E,F, τ) with δ(C) = 2
and an integer k. It is NP-hard to decide whether there is a
DS/DL for C with at most k literals that either:

• uses at most one term/rule (plus a default rule) or

• uses at most one literal per term.

Conclusion

We present a general framework for learning small (ensem-
bles of) models (parameterized by s+ δ) and show its appli-
cability to DSs, DLs, DTs, and BDDs. Since our algorithm
enumerates all minimum BDDs, it can also be applied to
more restrictive variants of BDDs, such as free and ordered
BDDs. While we provide our framework only for CIs with
Boolean domain features, all our tractability results can be
easily extended to features with unbounded domains as long
as the domains are ordered and the maximum size of the do-
main is taken as an additional parameter. We leave it open,
however, whether the recent tractability result for learning
small DTs without domain as a parameter (Eiben et al. 2023)
can be extended to BDDs or even DSs or DLs, and we con-
jecture that this is not the case. Another interesting question
is whether it is possible to show that the dependency on the
parameters of our algorithms is the best possible or whether,
in particular, our algorithm for BDDs can be significantly im-
proved.

Acknowledgments

Sebastian Ordyniak acknowledges support from the Engi-
neering and Physical Sciences Research Council (EPSRC,
project EP/V00252X/1). Stefan Szeider acknowledges sup-
port from the Austrian Science Fund (FWF, projects P36420
and P36688), and from the Vienna Science and Technology
Fund (WWTF, project ICT19-065).

References

Eiben, E.; Ordyniak, S.; Paesani, G.; and Szeider, S. 2023.
Learning Small Decision Trees with Large Domain. Proc.
IJCAI 2023, to appear.

Gunning, D. 2019. DARPA’s explainable artificial intelli-
gence (XAI) program. Proc. IUI 2019.

Ignatiev, A.; and Marques-Silva, J. 2021. SAT-Based Rigor-
ous Explanations for Decision Lists. Proc. SAT 2021, 12831:
251–269.

Kobourov, S. G.; Löffler, M.; Montecchiani, F.; Pilipczuk,
M.; Rutter, I.; Seidel, R.; Sorge, M.; and Wulms, J. 2023.
The Influence of Dimensions on the Complexity of Com-
puting Decision Trees. Proc. AAAI 2023, 8343–8350.

Komusiewicz, C.; Kunz, P.; Sommer, F.; and Sorge, M.
2023. On Computing Optimal Tree Ensembles. Proc. ICML
2023, 202: 17364–17374.

Molnar, C. 2022. Interpretable Machine Learning. 2 edition.

Narodytska, N.; Ignatiev, A.; Pereira, F.; and Marques-Silva,
J. 2018. Learning Optimal Decision Trees with SAT. Proc.
IJCAI 2018, 1362–1368.

Ordyniak, S.; and Szeider, S. 2021. Parameterized Com-
plexity of Small Decision Tree Learning. Proc. IJCAI 2021,
6454–6462.

Rudin, C. 2019. Stop explaining black box machine learning
models for high stakes decisions and use interpretable mod-
els instead. Nature Machine Intelligence, 1(5): 206–215.

Schidler, A.; and Szeider, S. 2021. SAT-based Decision Tree
Learning for Large Data Sets. Proc. AAAI 2021, 3904–3912.

Shati, P.; Cohen, E.; and McIlraith, S. A. 2021. SAT-Based
Approach for Learning Optimal Decision Trees with Non-
Binary Features. Proc. CP 2021, 210(50): 1–16.

