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Clustering identifies endotypes of traumatic 
brain injury in an intensive care cohort: 
a CENTER-TBI study
Cecilia A. I. Åkerlund1,2*, Anders Holst2, Nino Stocchetti3, Ewout W. Steyerberg4, David K. Menon5, Ari Ercole5,6, 
David W. Nelson1 and the CENTER-TBI Participants and Investigators 

Abstract 

Background: While the Glasgow coma scale (GCS) is one of the strongest outcome predictors, the current 
classification of traumatic brain injury (TBI) as ‘mild’, ‘moderate’ or ‘severe’ based on this fails to capture enormous 
heterogeneity in pathophysiology and treatment response. We hypothesized that data-driven characterization of TBI 
could identify distinct endotypes and give mechanistic insights.

Methods: We developed an unsupervised statistical clustering model based on a mixture of probabilistic graphs for 
presentation (< 24 h) demographic, clinical, physiological, laboratory and imaging data to identify subgroups of TBI 
patients admitted to the intensive care unit in the CENTER-TBI dataset (N = 1,728). A cluster similarity index was used 
for robust determination of optimal cluster number. Mutual information was used to quantify feature importance and 
for cluster interpretation.

Results: Six stable endotypes were identified with distinct GCS and composite systemic metabolic stress profiles, 
distinguished by GCS, blood lactate, oxygen saturation, serum creatinine, glucose, base excess, pH, arterial partial 
pressure of carbon dioxide, and body temperature. Notably, a cluster with ‘moderate’ TBI (by traditional classification) 
and deranged metabolic profile, had a worse outcome than a cluster with ‘severe’ GCS and a normal metabolic profile. 
Addition of cluster labels significantly improved the prognostic precision of the IMPACT (International Mission for 
Prognosis and Analysis of Clinical trials in TBI) extended model, for prediction of both unfavourable outcome and 
mortality (both p < 0.001).

Conclusions: Six stable and clinically distinct TBI endotypes were identified by probabilistic unsupervised 
clustering. In addition to presenting neurology, a profile of biochemical derangement was found to be an important 
distinguishing feature that was both biologically plausible and associated with outcome. Our work motivates refining 
current TBI classifications with factors describing metabolic stress. Such data-driven clusters suggest TBI endotypes 
that merit investigation to identify bespoke treatment strategies to improve care.

Trial registration

The core study was registered with ClinicalTrials.gov, number NCT02 210221, registered on August 06, 2014, with 
Resource Identification Portal (RRID: SCR_015582).
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Background
Traumatic brain injury (TBI) is a heterogeneous disease 

with a wide variety of injury mechanisms and tissue 

pathologies, affecting people at all stages of life. It is 

one of the leading causes of mortality and morbidity in 

young individuals globally, with a leading global cause 

being road traffic incidents (RTI) [1]. Additionally, the 

incidence of TBI in older patients is increasing as this 

multi-morbid and fall-prone population increases in 

prevalence [2].

Although mortality from TBI has decreased over the 

last 30 years, the proportion of patients with favourable 

outcomes have remained relatively unchanged [2–4], 

despite developments such as intracranial pressure (ICP) 

monitoring [5]. A recent report identified large variation 

in TBI management in a European multi-centre cohort, 

without a corresponding variation in outcomes [6]. 

While it is possible that these management variations 

truly had no impact on outcome, this result could also 

be due to a substantial heterogeneity of the disease 

masking treatment effect in relevant subgroups. Due to 

lack of high-quality evidence, variations in treatment 

strategies are based largely on local strategies rather than 

mechanistically aligned to injury types [7–9]. A better 

characterization of patients could allow discrimination 

into more specific and biologically relevant sub-groups 

based on clinical, biomarker, pathoanatomic, and 

physiological features.

This approach could provide a basis for determining 

whether specific treatments and interventions might 

be more effective in some of these sub-groups [7, 9–

11]. However, implementation of such individualized 

treatment strategies relies on the identification of 

robust and relevant endotypes. Endotypes are subtypes 

of a clinical condition or syndrome, which can be 

characterized by distinct pathophysiology, and have an 

implicit likelihood of variation in response to therapies. 

This approach was first used to describe subgroups in 

asthma [12], but has now been used in other conditions 

[13]. Recently, unsupervised machine learning methods 

have been successful in discovering subgroups and 

endotypes with specific treatment-responses in diseases 

such as acute respiratory distress syndrome (ARDS) and 

sepsis in the intensive care unit (ICU) [14, 15].

The current classification of TBI simply as ‘mild’, 

‘moderate’ and ‘severe’ is based on the level of 

consciousness at presentation, assessed using the 

Glasgow coma scale (GCS). While this is well known 

to be an important predictor of outcome and easy to 

operationalize, it is also clearly an overly simplistic 

description of such a complex disease and unlikely to 

be aligned with underlying pathobiology. As such, this 

simple classification provides a poor substrate from 

which to individualise care. Furthermore, it limits 

research into personalised medicine as populations 

stratified in this way retain biological heterogeneity 

and therefore are likely to be diverse in terms of their 

treatment response.

Instead, we hypothesize the existence of distinct 

clinically and/or physiologically determinable endotypes 

in patients with TBI requiring ICU treatment and that 

these may be described not only by canonical measures 

of injury severity, such as Glasgow Coma Scale (GCS), 

but also by pathophysiology. We further hypothesize 

that these parameters might present complex or 

nonlinear relationships to disease course and outcome, 

so that unsupervised/machine learning methods may 

be required to reveal underlying relationships between 

parameters. The aim of this study is not primarily 

to describe endotypes associated with outcome, but 

to describe endotypes that could motivate tailored 

treatments in the future, and potentially lead to improved 

outcome in patients with TBI.

Methods
Patient and feature selection

All patients over 18 years old enrolled in the multinational 

study Collaborative European Neuro Trauma 

Effectiveness Research in TBI (CENTER-TBI) ICU 

cohort (N = 2006) were included in the study, between 

2014 and 2018 [4, 10], Additional file  1: Fig S1. All 

patients met the general inclusion criteria for CENTER-

TBI (clinical diagnosis of TBI, presentation at hospital 

within 24 h from injury, and a clinical need for a CT scan) 

and were admitted to the ICU immediately after hospital 

admission. More than 2000 parameters were collected for 

each patient. Of these, a total of 35 early features were 

selected, including those in the core IMPACT prediction 

model for TBI [16] and features identified to be of 

clinical interest. The data and variables in the CENTER-

TBI database were based on the synthesis of current 

knowledge of TBI in concert with much of European and 

Northern American expertise. The variables chosen for 

this analysis were early features with known or plausible 

relations with outcome, or deranged physiology (Table 1) 

as judged by clinicians with extensive neurointensive 

Keywords: Traumatic brain injury, Endotypes, Intensive care unit, Critical care, Unsupervised clustering, Machine 
learning
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care experience. CT characteristics were extracted from 

a central imaging review. All selected features were 

recorded at presentation, i.e., either prehospital, during 

emergency room (ER) admission or early within the 

ICU, but no later than 24 h post-injury. Both GCS total 

and motor sub-score were included, as the total score is 

of clinical interest and the motor sub-score have shown 

prediction ability in the IMPACT model. Outcome was 

represented by the eight-point Glasgow outcome scale 

extended, (GOS-E) score, where GOS-E 1 = dead and 

GOS-E 8 = full recovery.

Version 3.0 of the CENTER-TBI dataset was used for 

this work. Models were created using proprietary low-

level code in C ++ and all other analyses were performed 

using R version 1.1.453 [17].

The clustering model

We used a mixture of probabilistic graph models to 

construct an unsupervised classifier suitable for dealing 

with the mix of discrete and continuous features with 

missingness. The univariate probability distributions 

for all features were modelled as a product model, and 

compensating factors for each pair of strongly correlated 

features were included.

To first determine which features were correlated and 

therefore would need to be considered jointly, linear 

correlations between features were examined graphically 

using the R package corrplot (version 0.84), Fig.  1 [18]. 

Pairs of strongly correlated features (pH and base excess, 

pH and arterial partial pressure of carbon dioxide 

 (PaCO2), GCS motor and total score, Rotterdam CT 

score and midline shift, Rotterdam CT score and Fisher 

classification, GCS motor score and pupil response, age 

and ASA PS-class (American Society of Anesthesiologists 

physical status classification), and age and anticoagulants 

at baseline) were modelled as bivariate joint Gaussian 

distributions. Completeness of data is presented in, 

Additional file 2: Table S1.

To estimate the parameters and cluster membership 

probabilities in our graph mixture model, we used an 

expectation maximisation (EM) algorithm [19, 20]. This 

is a generalization of the maximum likelihood estimation 

of incomplete data and offers a principled, probabilistic 

approach to the unsupervised clustering of large 

multivariable datasets without the need for imputation 

when missingness is present [20]. Conceptually, the 

EM algorithm is a two-step iterative algorithm: in 

the expectation (E) step, the probability distribution 

over all clusters for each patient is calculated from the 

given parameters of the features in the cluster (i.e., the 

probability for cluster membership for each patient), 

and the maximization (M) step is the re-estimation of 

parameter distributions in all clusters. These steps are 

repeated until convergence, giving the most probable 

separation of clusters given the chosen number of 

clusters and predictor features. Further mathematical 

details are described in Additional file 3.

Determination of number of clusters

We used a cluster stability to robustly determine the 

most appropriate number of clusters to choose [21]. 

Numbers from three to fifteen clusters were evaluated 

for stability. This selection was a clinical trade off – too 

many clusters might not be clinically relevant, despite 

the risk that they may represent potentially important 

separation of phenotypes. However, within this range a 

methodologically principled optimum may be identified.

For each number of clusters considered, we created 

ten different models, using different random seeds. The 

log-likelihood for each model was calculated, and the 

model with the highest log-likelihood was selected. This 

process was repeated twenty times (Fig.  2) and cluster 

similarity was quantified using a cluster similarity 

index (CSI) defined as the fraction of patients who were 

assigned to the same cluster in two models [21]. CSI 

was calculated between all pairs of the models of the 

same number of clusters, and median and interquartile 

range (IQR) was calculated. As the CSI, when numbers 

of clusters < < number of patients, by nature is higher 

for lower number of clusters, a penalty for the number 

of clusters was added by subtracting 1/n clusters from 

all median CSI. The optimal clustering was defined 

as number of clusters with the highest median CSI 

Table 1 Features included in the model

All values were collected at admission

ASA-PS American society of anesthesiologists physical status classification; BMI 
body mass index; GCS Glasgow coma scale; MAP mean arterial pressure; SpO2 
oxygen saturation; PaO2 arterial partial pressure of oxygen; PaCO2 arterial partial 
pressure of carbon dioxide; TAI traumatic axonal injury; EDH epidural hematoma; 
aSDH acute subdural hematoma

*Feature included in the IMPACT core model

Age* Hypotension Sodium

Sex MAP Platelet count

ASA-PS classification Heart rate Creatinine

Anticoagulant or anti-
platelet treatment pre-
injury

Body temperature Haemoglobin

BMI at arrival SpO2 Rotterdam CT score

Type of injury pH Fisher classification

Cause of injury Base excess Midline shift (mm)

Pupillary reactivity* PaO2 TAI

GCS motor score* PaCO2 EDH

GCS total score Lactate aSDH

Hypoxia Glucose Contusion
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(representing the most stable number of clusters). When 

describing the clusters, the model of the optimal number 

of clusters with the highest log-likelihood was chosen to 

represent our model.

Evaluation of the clusters

To investigate the importance of each feature for the 

model, the mutual information (MI) was calculated 

between each feature and the cluster labels. The MI 

represents how well the cluster label is determined by 

a feature, with respect to how the distributions differ 

between the clusters. Features were considered to be of 

value if the MI > 0.1. A descriptive analysis of the clusters 

using these features was undertaken. Univariable logistic 

regression analysis was performed to determine the 

pseudo-explained variance between cluster label and 
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Fig. 1 Linear correlation between all pairs of features. To visualize the strength of linear correlation between each pair of features, the value of the 
Pearson correlation coefficient is represented by the size and colour of the dots in the matrix. Strongly correlated features (pH and base excess, pH 
and arterial partial pressure of carbon dioxide  (PaCO2), GCS motor and total score, Rotterdam CT score and midline shift, Rotterdam CT score and 
Fisher classification, GCS motor score and pupil response, age and ASA PS-class (American Society of Anesthesiologists physical status classification), 
and age and anticoagulants at baseline) were modelled as bivariate joint Gaussian distributions. GCS, Glasgow coma scale; ISS, injury severity 
score;  SpO2, oxygen saturation;  PaO2, arterial partial pressure of oxygen;  PaCO2, arterial partial pressure of carbon dioxide; BMI, body mass index; 
TAI, traumatic axonal injury; EDH, epidural hematoma; aSDH, acute subdural hematoma; tSAH, traumatic subarachnoid haemorrhage; MAP, mean 
arterial pressure; ICP, intracranial pressure; TIL, therapy intensity level



Page 5 of 15Åkerlund et al. Critical Care          (2022) 26:228  

outcome, and a multivariable regression analysis was 

performed to investigate if the cluster label could improve 

predicted outcome over the “International Mission 

for Prognosis and Analysis of Clinical Trials in TBI” 

(IMPACT) variables which have been well characterised 

as predictors in TBI [16]. For the outcome prediction 

(but not the clustering), missing values were imputed 

using the multiple imputation with chained equations 

(MICE) algorithm in R [22]. The observed mortality 

and unfavourable outcome (defined as GOS-E < 5) 

frequencies in all clusters was compared to the IMPACT 

predicted outcome.

Results
Patient characteristics

278 patients were excluded due to missing Glasgow 

outcome scale extended (GOS-E) score at 6  months, 

leaving 1728 patients for the analysis. The mean age was 

50.4  years (SD 19.3) and 1269 (73.4%) were male. The 

most common causes of injury were RTIs (46.5%) and 

falls (43.7%). The overall mortality in the cohort was 

22%, and 45% had unfavourable outcomes (defined as 

Upper Severe Disability or worse according to the GOS-E 

outcome scale) 6  months post-injury. Based on the 

IMPACT core model, the overall analysis cohort had a 

predicted mortality of 31%, and a predicted unfavourable 

outcome of 51%.

Optimal number of clusters

Applying a penalty of 1/n from the median CSI of each 

number of clusters revealed a peak in median CSI, 

indicating the highest cluster stability, for 6 clusters, 

Fig.  3. Cluster assignments in twenty randomly 

generated models of 6 clusters are presented in Fig.  4, 

demonstrating the robust reproducibility of our model. 

The number of patients in the clusters was 48, 262, 360, 

343, 218, and 497, respectively.

Importance of features included in the model

GCS motor score, GCS total score, lactate, oxygen 

saturation  (SpO2), creatinine, glucose, base excess, pH, 

 PaCO2 and body temperature were identified as the 

most important features in our model with respect to 

MI. Median values in all clusters are presented in Fig. 5, 

Table 2, and a full list of MI and cluster medians for all 

features is provided in, Additional file  4: Table  S2. A 

description of cluster characteristics is given in Fig.  6 

and Table 3. The results were interpreted by the authors 

with extensive academic and clinical neurointensive care 

experience. The six clusters may generally be described 

by combinations of GCS score and degrees or patterns 

of deranged metabolism. Outcome predictions and 

parameters, as well as injury severity and treatment 

features which were not used in the clustering, are 

presented in Table 4.

Relation of clusters to outcome

Outcome information was not included in the clustering 

process. In all clusters except Clusters B and C, the 

IMPACT model overestimated mortality with over-

estimation ranging from 4 to 7%, but underestimated 

functional outcome in four of the six clusters, with 

an underestimation ranging from −  2 to −  15%. By 

adding the cluster label to the IMPACT extended 

model variables (age, GCS motor score, pupil reactivity, 

Rotterdam CT score, presence of traumatic subarachnoid 

haemorrhage, intraventricular haemorrhage, epidural 

hematoma, hypoxia, and hypotension), predictions 

for mortality as well as unfavourable outcome were 

improved with a small but statistically significant increase 

Fig. 2 Ten models of each number of clusters between three to fifteen were created. The model with the highest log likelihood was chosen as 
the best model. This was repeated twenty times. Median, minimum, and maximum cluster similarity index (CSI, defined as the fraction of patients 
assigned to the same cluster in two models), of the twenty models were calculated. The median CSI is presented in Fig. 3
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of Nagelkerke pseudo-R2 from 0.42 to 0.44 and from 

0.36 to 0.38, respectively (p = 0.001 and p = 2.9 ×  10–5, 

respectively). The improvement in explained variance 

was comparable to that achieved by the addition of 

laboratory values within the original IMPACT model for 

mortality prediction (Nagelkerke pseudo-R2 0.42 to 0.44, 

p = 3.6 ×  10–5), and prediction of unfavourable outcome 

(Nagelkerke pseudo-R2 of 0.36 to 0.37, p = 2.1 ×  10–4). 

These clusters, therefore, appear to represent groups 

with outcomes that differ in both directions from current 

prediction models. The relationships of clusters to 

outcomes and IMPACT predicted outcomes are seen in 

Table 4.

Discussion
We have used an EM clustering approach, based on early 

clinical and laboratory data, that identified six distinct 

potential clusters of TBI patients admitted to the ICU. 

These clusters exhibited distinct systemic metabolic 

profiles defined by combinations of plasma lactate, 

 SpO2, creatinine, glucose, base excess, pH,  PaCO2, and 

body temperature, which in combination with GCS, 

characterizes 6 clinically distinct patient endotypes.

Profiles of metabolic derangement may be readily 

recognized clinically, and arguably contribute to our 

impression of severity state in TBI patients in the 

ICU. However, except for blood glucose, the identified 

features are not incorporated into current formal 

0.3
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Fig. 3 Median, minimum, and maximum cluster similarity index (CSI) of 20 models for each number of clusters. A penalty for the number of clusters 
was added by subtracting 1/n clusters from the CSI values. Median CSI = 1 indicates perfect match, 0 indicates no matches between different 
models
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definitions of TBI severity or outcome prediction 

models, although earlier publications have reported 

improved accuracy adding physiology-based prediction 

scores, such as APACHE II score (Acute Physiology and 

Chronic Health Evaluation II) [23, 24].

We hypothesize there to be several diverging 

mechanisms leading to deranged metabolism in TBI 

patients that are not fully captured by conventional 

ICU disease severity metrics, such as APACHE II 

scores. These may include interplay of secondary and 

extracranial injury, and concurrent comorbidities. 

This is the rationale for defining metabolic profiles 

using several features highly correlated to pH– base 

excess,  PaCO2, and lactate that may reflect several 

intrinsic mechanisms. In Cluster C, a deranged 

metabolic picture appears to reflect a general stress 

response, with high lactate and high blood glucose in 

more elderly patients prone to insulin resistance. In 

contrast, Cluster E is representative of younger patients 

displaying tachycardia and relative hypotension, in 

whom the cause of metabolic compromise is more 

likely to reflect a state of systemic shock, which is more 

likely to be related to extracranial injury. It must be 

noted that the endotype with a general stress response 

is a relatively small subset of patients (N = 48) but may 

nevertheless be of clinical importance as it seems likely 

to result from a distinct pathology. These two metabolic 

pictures may easily be distinguished clinically and likely 

benefit from different treatment approaches allowing 

for articulation of broad strategies of care and overall 

management in endotypic groups.

Although GCS has been shown to be one of the 

most principal factors in classification of TBI [16], the 

weakness of GCS alone as a classifier of TBI severity 

becomes apparent in this study. In Cluster A, comprising 

28% (N = 497) of the total number of patients TBI 

severity would be classified as ‘mild’ based on GCS. This 

group was in general characterized by patients who were 

older with comorbidities and receiving anticoagulant or 

antiplatelet treatments pre-injury and the cause of ICU 

admission did not seem to be explained by extracranial 

injuries, Table  4, but may rather have been motivated 

by a need for clinical observation, something which was 

highlighted in a previous CENTER-TBI sub-study [6]. 

However, the morbidity and treatment burden in this 

group is substantial: 45% of patients in this cluster were 

intubated, 15% had ICP monitoring, and 7% died within 

6 months post-injury. In addition, Cluster C, the cluster 

with deranged metabolism, had the largest deviation in 

outcome prediction in comparison with the IMPACT 
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Fig. 5 Features with highest mutual information (MI) for all clusters. The axes range from minimum to maximum of cluster averages for each 
feature. GCS, Glasgow coma scale;  PaCO2, arterial partial pressure of carbon dioxide;  SpO2, oxygen saturation

Table 2 Cluster medians and mutual information (MI) for features with MI > 0.1

Data presented as median (interquartile range)

GCS, glasgow coma scale; SpO2, oxygen saturation; PaCO2, arterial partial pressure of carbon dioxide; MI, mutual information

Cluster All patients A B C D E F MI

N patients 1728 497 262 48 343 360 218

GCS motor 
Score

5 (1–6) 6 (6–6) 5 (2.5–5) 5 (3.5–5) 4 (2–5) 1 (1–1) 4 (1–5) 1.44

GCS total Score 9 (4–14) 15 (14–15) 9 (6–12) 9 (6.75–13) 7.5 (6–10) 3 (3–3) 7 (4–10) 1.29

Lactate 
[mmol/L]

2.2 (1.4–3.4) 2.0 (1.2–2.7) 2.3 (1.4–3.4) 4.9 (2.3–8.1) 1.7 (1.2–2.4) 2.2 (1.4–3.4) 5.3 (2.9–10) 0.88

SpO2 [%] 99 (96–100) 98 (96–100) 98 (96–100) 98 (95–100) 100 (99–100) 99 (97–100) 95 (85–98) 0.69

Creatinine 
[µmol/L]

75 (62–89) 76 (64–88) 70 (58–86) 106 (64–257) 71 (60–83) 74 (59–91) 83 (71–101) 0.63

Glucose 
[mmol/L]

7.7 (6.5–9.4) 7.2 (6.3–8.4) 8.0 (6.7–9.3) 8.5 (6.9–14.3) 7.3 (6.3–8.6) 8.1 (6.8–10.5) 9.1 (6.9–11.8) 0.25

Base Excess 
[mmol/L]

− 2.9 (− 
5.7–0.9)

− 1.7 (− 3.7 to 
− 0.2)

− 3.15 (− 5.3 
to − 1.1)

− 3.9 (− 
12.1–0.6)

− 2.3 (− 4 to 
− 1)

− 3.6 (− 6.6 
to − 1)

− 5 (− 7.9 to 
− 2)

0.23

pH 7.35 (7.28–7.39) 7.37 (7.32–7.41) 7.35 (7.31–7.4) 7.27 (7.09–7.4) 7.36 (7.32–7.39) 7.32 (7.25–7.39) 7.29 (7.20–7.36) 0.23

PaCO2 [kPa] 5.5 (4.8–6.2) 5.3 (4.8–6) 5.3 (4.7–6) 5.3 (4.4–5.8) 5.4 (5–6) 5.6 (4.8–6.7) 5.9 (5–7.2) 0.14

Body 
temperature [°C]

36.0 (35.4–36.7) 36.5 (35.9–36.9) 36.2 (35.5–36.7) 35.7 (34.3–36.6) 36 (35.4–36.6) 35.9 (35.0–36.6) 35.8 (34.8–36.4) 0.12
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model. When compared to Cluster D (which comprises 

patients with severe TBI but without such metabolic 

derangement), Cluster C had a worse outcome, which 

further supports the impact of assessing the metabolic 

profile in TBI patients, beyond derangements that 

are simply explained by extracranial injuries. It may 

also reflect an increased vulnerability of the brain in 

older patients which is not captured in other factors 

associated with severity of brain damage, such as GCS. 

Although they did not have as complete a description 

of biochemical derangements in their dataset, Folweiler 

et al. elegantly showed TBI clustering that did not relate 

well to ‘mild’, ‘moderate’ or ‘severe’ descriptions of TBI 

[25]. In our study again, although GCS is here shown 

to be an important component of endotypes in an ICU 

cohort, metabolic profiles may add additional, clinically 

Fig. 6 Description of the 6 clusters. The six identified clusters can, in general, be seen as distinguished by GCS and degree of metabolic 
derangement. The percentage of patients in each cluster with unfavourable outcome and cluster mortality is indicated as well. RTIs, road traffic 
incidents; DC, decompressive craniectomy; TAI, traumatic axonal injury

Table 3 Narrative description of typical physiological and clinical features of the clusters identified

TBI traumatic brain injury; DC decompressive craniectomy; GCS glasgow coma scale; RTI road traffic incident; TAI traumatic axonal injury

Cluster Cluster description Other typical characteristics Mortality %

A Mild TBI. No metabolic derangements Older patients with anticoagulation. Falls/RTIs. No midline shift 7

B Moderate TBI. No metabolic derangements Older females with anticoagulation. Fall injuries. Midline shift 
requiring DC commonly present

29

C Moderate TBI. High glucose, high lactate, acidotic, 
hypothermic

Older males with anticoagulation. Fall injuries. Most midline 
shift but mostly not requiring DC

40

D Severe TBI. No metabolic derangements Younger patients. RTIs. Good pupil reactivity, severe TBI. No 
secondary insults

18

E Severe TBI. Very low GCS at arrival. Slightly acidotic, 
hypothermic

Younger patients. RTIs. High Rotterdam CT score, midline 
shift leading to DC in 20% of patients. Extracranial injuries. 
Secondary insults

38

F Severe TBI. High lactate, hypoxic, acidotic, hypoventilation. 
Metabolic and respiratory acidosis. Hypothermic

Younger patients in shock with extracranial injuries and 
secondary insults. TAI. No midline shift

28
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important, information as descriptors of TBI severity, 

and perhaps identify patient groups in which treatment 

should be individualized.

Surprisingly, neither our model nor earlier endotypic 

multidimensional descriptions of TBI patients generated 

by unsupervised machine learning methods have 

identified the type of intracranial injuries and CT 

characteristics as relevant for describing endotypes [25, 

26]. However, a recent study could identify clusters based 

solely on CT characteristics [27], supporting that these 

factors may play an essential role in understanding the 

type of injury and determining the need for intracranial 

surgery, and prediction models using CT findings such 

as the Marshall, Rotterdam, Helsinki and Stockholm CT 

scores do discriminate outcome [28–31]. These findings 

are less evident in multivariable analyses when including 

GCS and other IMPACT variables as covariates, then 

contributing approximately only 5% additional pseudo-

variance toward outcome [31, 32]. This covariance 

may be a possible explanation as to why we could not 

identify CT characteristics as one of the most important 

discriminative factors between the clusters.

Unsupervised learning is appealing from the point 

of view of objectivity, but cannot be performed entirely 

without making certain choices, and requires subsequent 

interpretation. The number of clusters is a trade-off 

between not being overwhelmed by multitudes of 

clusters with small sizes that cannot be interpreted, and 

very few clusters inherently containing little discriminant 

information. The identification of six clusters of TBI 

patients was supported by both the maximal and stable 

reproducibility represented by a CSI of 80%, as well as 

a suggestion of clinical relevance. Most clusters were 

relatively stable across different random initializations 

of the clustering, with the exception of cluster B and 

C, both representing patients with intermediate GCS, 

Fig.  4. By nature, more extreme patient characteristics 

and their corresponding clusters tend to be more stable 

while the intermediate level characteristics and clusters 

are less stable. Most patients were clearly assigned to a 

stable cluster, as seen in, Additional file  1: Fig. S2. It is 

Table 4 Injury severity, outcome and predicted outcome with the IMPACT lab model

Data presented as median (IQR) or N (%) if not else is stated

ISS injury severity score; ICP intracranial pressure; TIL therapy intensity level; GOS-E glasgow outcome scale extended; IMPACT  international mission on prognosis and 
clinical trial design in TBI

All patients A B C D E F

Age 52 (33–67) 53 (36–67) 56.5 (42–69) 58 (48–74.5) 52 (29–67) 47.5 (32–62) 44 (29–62)

Male sex 1269 (73.4) 370 (74.4) 177 (67.6) 40 (83.3) 241 (70.3) 277 (76.9) 164 (75.2)

Decompressive Craniectomy 216 (12.5) 22 (4.4) 48 (18.3) 7 (14.6) 40 (11.7) 73 (20.3) 26 (11.9)

ISS 29 (25–41) 25 (16–34) 26 (25–38) 29.5 (25–41.5) 29 (25–41) 38 (25–52.5) 38 (25–50)

Head ISS 25 (16–25) 16 (9–16) 25 (16–25) 25 (16–25) 25 (16–25) 25 (25–25) 25 (16–25)

Highest extracranial ISS 9 (0–16) 4 (0–16) 4 (0–9) 9 (0–10.75) 9 (0–16) 9 (0–16) 9 (0.25–16)

Intubation 1334 (78.9) 218 (45.7) 224 (85.8) 39 (84.8) 314 (93.2) 347 (97.5) 192 (89.7)

ICP monitoring 757 (44.2) 76 (15.6) 153 (58.4) 19 (40.4) 177 (51.8) 225 (62.7) 107 (49.5)

Median daily TIL 2 (0–5.5) 0.5 (0–1.5) 3.5 (0.5–8) 2 (0–3.25) 3 (1–5) 4.5 (2–8.5) 3 (1–5.625)

GOS-E at 6 months

1 388 (22.5) 34 (6.8) 77 (29.4) 19 (39.6) 62 (18.1) 135 (37.5) 61 (28)

2 or 3 268 (15.5) 40 (8) 50 (19.1) 5 (10.4) 70 (20.4) 68 (18.9) 35 (16.1)

4 123 (7.1) 31 (6.2) 19 (7.3) 6 (12.5) 27 (7.9) 21 (5.8) 19 (8.7)

5 241 (13.9) 71 (14.3) 34 (13) 5 (10.4) 49 (14.3) 47 (13.1) 35 (16.1)

6 214 (12.4) 70 (14.1) 31 (11.8) 5 (10.4) 51 (14.9) 29 (8.1) 28 (12.8)

7 229 (13.3) 107 (21.5) 24 (9.2) 2 (4.2) 40 (11.7) 37 (10.3) 19 (8.7)

8 265 (15.3) 144 (29) 27 (10.3) 6 (12.5) 44 (12.8) 23 (6.4) 21 (9.6)

Mortality, % 22 7 29 40 18 38 28

Unfavourable outcome, % 45 21 56 63 46 62 53

IMPACT predicted mortality, mean (SD) 27 13 (8) 27 (18) 30 (23) 24 (16) 45 (18) 32 (22)

IMPACT predicted unfavourable outcome, mean (SD) 45 26 (15) 46 (24) 48 (27) 43 (22) 70 (18) 51 (26)

Difference between predicted and observed mortality, 
%

5 6 − 2 − 10 6 7 4

Difference between predicted and observed 
unfavourable outcome, %

0 5 − 10 − 15 − 3 8 − 2
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unrealistic to expect perfectly stable cluster assignment 

in heterogenous real world data with any method, 

particularly with random assignment to initial clusters. 

We believe our evaluation of model robustness to be an 

important and generalisable strength of our work.

In this study we are naturally limited by the variables 

collected. These represent nevertheless the compound 

experience and knowledge of a large cohort of leading 

TBI researchers and clinicians during the planning 

of the study. However, additional variables such as 

future biomarkers and genetic profiles may be needed 

to sufficiently describe patient heterogeneity in TBI. 

Furthermore, despite that the object of clustering is to 

identify reproducible compound and complex patterns, 

it does not weigh variables toward severity as would 

for example an experienced clinician and represents a 

general limitation of unsupervised leaning.

The aim of this study was not primarily to create 

clusters of TBI patients toward outcome prediction, but 

to identify clinically relevant and distinct endotypes of 

patients, which could potentially infer personalization 

of future treatment strategies. Current TBI therapy 

is based on limited high-level evidence, leading to 

between-centre treatment variability beyond that of 

case mix [7, 9, 33]. Further discrimination of patient 

heterogeneity has been identified as necessary to 

further the field [7, 9]. Prediction of both mortality and 

functional outcome using the IMPACT extended model 

was significantly improved by adding cluster labels. 

That the metabolic cluster profiles identified in this 

study are significantly associated with outcome, despite 

an unsupervised clustering method (not including 

outcome), supports a biological underpinning and 

motivates further investigation. A natural progression 

will be to investigate if the clusters described in this 

study exhibit a different temporal trajectories in the 

ICU or, in analogy with work within the field of ARDS 

[14] respond differently to treatments in earlier RCTs.

Conclusions
While GCS is a strong predictor of TBI outcome, an 

admission metabolic profile incorporating hypothermia, 

lactatemia, blood glucose,  SpO2,  PaCO2, pH, base excess 

and creatinine allows for a more holistic description 

of patients with TBI who require ICU care. Synthesis 

of these data using an unsupervised clustering method 

reveals six distinct and stable subgroups of TBI patients. 

Although not a key objective of the analysis, we found 

that clusters contain information that can provide a 

significantly better explanation of outcome beyond that 

provided by variables used in current outcome prediction 

models. The addition of biomarkers and genetics may 

improve this endotypic classification further. Future 

studies should address replication and validation of this 

approach, but our work provides an important starting 

point from which to devise and prospectively investigate 

therapeutic strategies individualised to more biologically 

relevant groups or TBI patients.
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