
This is a repository copy of UTP, Circus, and Isabelle.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/207862/

Version: Accepted Version

Proceedings Paper:
Woodcock, Jim orcid.org/0000-0001-7955-2702, Cavalcanti, Ana orcid.org/0000-0002-
0831-1976, Foster, Simon orcid.org/0000-0002-9889-9514 et al. (3 more authors) (2023) 
UTP, Circus, and Isabelle. In: Lecture Notes in Computer Science (including subseries 
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Lecture Notes 
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics) . Springer Science and Business Media Deutschland 
GmbH , pp. 19-51. 

https://doi.org/10.1007/978-3-031-40436-8_2

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



UTP, Circus, and Isabelle

Jim Woodcock1[0000−0001−7955−2702], Ana Cavalcanti1[0000−0002−0831−1976],
Simon Foster1[0000−0002−9889−9514], Marcel Oliveira3[0000−0002−3023−2748],

Augusto Sampaio2[0000−0001−9870−6893], and Frank Zeyda4[0009−0009−4251−4740]

1 The University of York, UK
{jim.woodcock,ana.cavalcanti,simon.foster}@york.ac.uk

www-users.york.ac.uk/~{jw524,alcc500,sf786}/
2 Universidade Federal de Pernambuco, Brazil
acas@cin.ufpe.br www.cin.ufpe.br/~acas/

3 Universidade Federal de do Rio Grande do Norte, Brazil
marcel@dimap.ufrn.br www.dimap.ufrn.br/~marcel/

4 Independent Researcher, Mexico
frank.zeyda@gmail.com www.linkedin.com/in/frank-zeyda/

Abstract. We dedicate this paper with great respect and friendship to
He Jifeng on the occasion of his 80th birthday. Our research group owes
much to him. The authors have over 150 publications on unifying theories
of programming (UTP), a research topic Jifeng created with Tony Hoare.
Our objective is to recount the history of Circus (a combination of Z,
CSP, Dijkstra’s guarded command language, and Morgan’s reőnement
calculus) and the development of Isabelle/UTP. Our paper is in two
parts. (1) We őrst discuss the activities needed to model systems: we
need to formalise data models and their behaviours. We survey our work
on these two aspects in the context of Circus. (2) Secondly, we describe
our practical implementation of UTP in Isabelle/HOL. Mechanising UTP
theories is the basis of novel veriőcation tools. We also discuss ongoing
and future work related to (1) and (2). Many colleagues have contributed
to these works, and we acknowledge their support.

Keywords: Circus · CSP · Isabelle/HOL · Isabelle/UTP · reőnement
calculus · UTP · Unifying theories of programming · He Jifeng · Z

1 Dedication

Jim Woodcock met He Jifeng in Oxford in the early 1980s. Jim was working for
GEC Hirst Research Centre and regularly visited Oxford to teach courses for in-
dustry. He collaborated with Jifeng in teaching Z, program refinement, and CSP.
This collaboration continued after Jifeng moved to the United Nations University
in Macau, where Jim became a visiting professor. In 2013, with Zhiming Liu and
Huibiao Zhu, Jim helped to celebrate Jifeng’s 70th birthday, organising a collec-
tion of essays [65], an international training school on UTP [66], and a colloquium
on theoretical computer science [64]. Jim’s research groups at the Universities of
Oxford, Kent, and York took their intellectual basis from the sound foundations



2 Jim Woodcock et al.

of the Z notation, data refinement, CSP, functional programming, and unifying
theories of programming. Jifeng made significant contributions in each of these
areas. We were delighted when Jifeng accepted an Honorary Doctorate conferred
by the University of York at a ceremony in Beijing on 17 April 2010. All au-
thors are grateful for the inspiration, good taste, and mathematical excellence
he provided and continues to provide, which greatly influences our work.

Thank you, Jifeng!

2 Introduction

We describe in this paper our work since 2000 inspired by He Jifeng and Tony
Hoare and their unifying theories of programming (UTP). We watched the ori-
gins of UTP. Jim recalls enthusiastic but puzzling meetings over lunch in the
common room in Oxford with Tony and Jifeng mysteriously discussing ok ′,
wait ′, and the tradeoff between different fixed points. Tony left Oxford in 1998
and Jifeng shortly afterwards. The UTP book [59] was launched at Tony’s re-
tirement symposium, where we gave a copy to every participant. Tony and Jim
gave a short course on UTP at the symposium. This was the origin of Jim’s
long-standing course. We describe UTP and its development in [116].

UTP is particularly well suited as a basis for writing and reasoning about het-
erogeneous models, capturing various aspects of a system: data, reaction, time,
architecture, and so on. In UTP, we found the theoretical basis for cyber-physical
systems (CPS). In a CPS, computer-based algorithms control and monitor a
physical device; potentially, humans interact with networked physical devices. A
CPS senses and changes the physical world. Modelling a CPS requires hetero-
geneous notations: discrete programming models for control; continuous models
for physical dynamics, including hydraulics, mechatronics, and others; protocols
for human interaction; and continuous and probabilistic models for assumptions
about an uncertain environment. The diversity of the heterogeneous semantics
required for CPS requires a unifying theory of semantics: UTP.

This paper describes our work, past, present, and future, on Circus, a multi-
paradigm modelling language. Circus is a concrete realisation of UTP.

In Sect. 3, we discuss our research work on Circus. It makes the choices for
designing a language suitable for UTP semantics with parsers, type-checkers,
static and dynamic analysers, model checkers, theorem provers, and code gen-
erators. In Sect. 4, we discuss our implementation of UTP and Circus in the
Isabelle/UTP theorem prover. Additional exciting projects that use Circus but
did not involve our research group are briefly described in Section 5. Section 6
describes ongoing and future directions for research on Circus, Isabelle/UTP and
their applications, and Section 7 summarises our work.

3 Circus

Two activities needed to model a system are formalising its data model and be-
haviour. Model-oriented languages like Z [62,109,102,112] describe state-based



UTP, Circus, and Isabelle 3

aspects, and process algebras like CSP [58] describe behavioural patterns. We
add a third dimension for system development: a refinement calculus [76]. Com-
bining these three aspects motivates Circus, where a system process groups data
and control constructs and the behaviours of all implementations are specified.

Dijkstra, Back, Morris, and Morgan used predicate transformers [31] as the
basis of semantic models for imperative refinement calculi [6,77,76]. Hoare and
Roscoe use different models as the basis of theories of refinement for CSP, the
failures-divergences model [58,95,92]. Fischer surveyed some of the work that
combines the two approaches [38]. Fischer and Smith [39,101] both provide a
failures-divergences model for Object-Z classes to present the semantics for com-
binations of Object-Z and CSP. Although they consider data refinement for these
combinations, they do not give refinement laws.

Woodcock et al. [122] use the failures model to give behavioural semantics
to abstract data types. The semantics of Circus requires a model combining the
notions of refinement for CSP and imperative programs. UTP [59] is a framework
that makes this combination possible by unifying the programming discipline
across many different computational paradigms.

The semantic setting provided by UTP is the theory of alphabetised rela-
tions. Interesting sub-theories are built by defining mappings corresponding to
healthiness conditions capturing different aspects of the sub-theory. Hoare and
He [59] first create a sub-theory of precondition-postcondition pairs within the
relational calculus. This is the theory of designs (see [120] for a tutorial intro-
duction to designs and Harwood et al. [56] for an introduction to Galois con-
nections). Next, they build a theory of reactive processes that is disjoint from
the theory of designs. Finally, they use reactive healthiness conditions to em-
bed designs within the theory of reactive processes. The result is the theory of
CSP processes (see [29] for a tutorial account of this embedding and connections
between it and Roscoe’s semantics based on the failures-divergences model).

In what follows, we survey the main contributions that led to the design,
formalisation, extension, and application of Circus.

3.1 A Concurrent Language for Refinement [113,117]

We start by describing the origin of Circus. In 2000, Jim Woodcock visited Ana
Cavalcanti in Brazil while on sabbatical from Oxford. They formed a reading
group with Augusto Sampaio to study Hoare and He’s textbook on UTP [59].
Chapter 8 describes a unifying theory for communication in process algebras.
The book considers ACP, CCS, CSP, and the data-flow language SDL.

In the reading group, we were inspired particularly by Theorem 8.2.2 in
the book (Closure of CSP Processes). It states two properties: (1) The UTP
theory for CSP processes defines a complete lattice that is closed under sequential
composition. (2) The lattice also contains R(x := e), where x is any list of stored
program variables, e is a corresponding list of well-defined expressions, and R
is the healthiness function for reactive processes (see [59, Theorem 8.0.2, p.208]
for the definition of the reactive healthiness conditions). The proof of the first



4 Jim Woodcock et al.

conclusion follows from the following fact:

P is a CSP process iff

P = R(¬ P [false, false/wait , ok ′] ⊢ P [false, true/wait , ok ′]) [†]

The predicate P [false, false/wait , ok ′] describes the divergences of the CSP pro-
cess P . The process P has been properly started: wait = true explicitly and
ok = true implicitly, since we are in the precondition: before the ⊢. We select
divergence: ok ′ = false. The complement ¬ P [false, false/wait , ok ′] describes the
situations where P does not diverge. In the postcondition, after ⊢, the predicate
P [false, true/wait , ok ′] describes the conditions under which P reaches a stable
state: wait = true and ok ′ = true. It describes the stable failures of P .

Two things snagged our attention here. First, the property marked [†] states
that every CSP process can be expressed as a reactive design. Every CSP pro-
cess behaves as described by a reactive assumption-commitment pair. In our
subsequent work on Circus, we used this property to give uniform, specification-
oriented semantics to the operators of Circus, establishing a way of specifying
Circus processes as contracts. Second, the reactive assignment reminded us that
the UTP semantics for CSP is state-rich. The UTP semantics of CSP describes
the representation of states that react to the same input differently depending
on the current state value recorded in program variables.

So the reading group asked itself the question:

What if we used the Z notation to specify abstract data types to accom-

pany CSP definitions of processes?

This question is the origin of the Circus notation.
We presented Circus for the first time at a workshop at Trinity College

Dublin [117]. Our formulation of the language gave a calculational approach
to writing programs that are similar to occam [60] and Handel-C [68]. Our pa-
per [117] describes the language, the rationale for its design, and a case study in
its use: a reactive ring buffer with a cached head, which became a famous case
study for showing off the features of Circus. The ring acts as a bounded buffer
in the formal sense that it has the following properties:

1. The ring is a fifo queue.
2. If the ring has spare capacity, it cannot refuse an input.
3. If the ring is not empty, it cannot refuse to output.

Each cell in the buffer is modelled as an active process. To ensure no (perceived)
refusal of output (3), we cache the head of the buffer. This avoids the delay
required to fetch the head so that it is immediately available.

3.2 The Steam Boiler in Circus [118]

Another well-known case study is the steam-boiler problem, which has become
a standard benchmark in modelling and verification. It was first proposed by



UTP, Circus, and Isabelle 5

Bauer [11] and subsequently popularised by Jean-Raymond Abrial as the subject
of a Dagstuhl workshop [2]. The workshop proceedings contain the problem
description and 22 solutions. Abrial’s solution is published separately [1].

The problem is to program the control system for a steam boiler. The control
software exists within a physical environment with the following elements: (1) the
steam boiler; (2) a sensor to detect the level of the water in the boiler; (3) a valve
to evacuate the boiler; (4) a sensor to measure the quantity of steam being pro-
duced; (5) four pumps supplying the boiler with water; (6) four pump controllers;
(7) an operator’s desk; and (8) a message transmission system. Our solution to
the problem consists of four processes operating in parallel. (1) The Timer en-
sures the cycle begins every five seconds. (2) The Analyser inputs messages from
the physical units and analyses their content. (3) Once the analysis is complete,
it offers an information service to the Controller , which decides on the actions to
be taken. (4) It generates outputs for the Reporter , which offers a reporting ser-
vice to the Controller by gathering its outputs and packaging them for dispatch
to the physical units. It then signals the completion of the cycle.

Our solution structure was guided by the drive to efficiently use the FDR
model checker [53]. We had to overcome two obstacles: the state explosion prob-
lem and the use of loose constants. The latter complicates model checking be-
cause loose constants must be given specific values that define a concrete finite
model. An argument is then required to extrapolate these specific values to ar-
bitrary ones (a small model theorem). The steam boiler depends on several of
these constants. Any practical instantiation leads to a massive number of states.

Our solution separates the Controller and its finite-state machine from the
Analyser and the rich state it constructs from input message history. The Analyser

digests the incoming messages and makes this digest available to the Controller

as abstract events. This makes the Controller amenable to fully automatic model
checking using FDR. Significantly, the Analyser ’s abstract events correspond to
concepts in the requirements, so they help validate the Analyser ’s behaviour.
Extrapolation from the abstract behaviour of the Controller to the concrete
realities of the requirements is provided by the Analyser . It is like a retrieve
function from the concrete details of the state to an abstract interpretation of
those details, in the sense of data refinement [112].

3.3 The Semantics of Circus [119]

The semantics of Circus provides a model for processes and their components.
In [119], we use a Z specification to describe the semantics of Circus processes
and of Circus actions, which have an imperative state, as relations. The process
model is a Z specification, and the action model is a Z schema. We used Z as
a concrete notation for UTP’s relational calculus because we could parse and
type-check it and prove various consistency results.

Circus includes support to define imperative assignments, conditionals, loops,
and the reactive behaviour of communication, parallelism, and internal and ex-
ternal choice. All combinations of model-based formalisms and process algebras



6 Jim Woodcock et al.

that had been published before we defined the semantics of Circus describe con-
current programs as communicating abstract datatypes. For example, this is the
case with CSPZ [38] and CSP ∥ B [97]. Communicating abstract datatype is a
valuable but limited design pattern. We took a different approach and did not
identify events with datatype operations. The result is a programming language
suitable for developing concurrent programs in a more general style.

Our goals in designing the semantics of Circus were: (1) ease of use for
those familiar with Z and CSP; (2) encapsulation of the process model; and
(3) the possibility of reusing existing theories, techniques, and tools. We had
to decide how best to formulate the semantics. Imperative refinement calculi
like those of Back [6], Morgan [76], and Morris [77], are normally given pred-
icate transformer semantics. Theories of refinement for CSP are based on the
failures-divergences model [58,95]. A connection between weakest preconditions
and CSP exists [75], and a sound and complete refinement theory has been de-
veloped based on it [123]. We use a fourth approach: UTP, where both state
and communication aspects of concurrent systems are integrated with a state-
based failures-divergences model described pointwise. This leads to a simple and
elegant definition of refinement and a sound foundation for refinement calculi.

3.4 Refinement in Circus [96,25,26]

Having set out the semantics of Circus, our next step was to define its refine-
ment relation [96]. Each Circus process has a state and accompanying actions
that define both internal state transitions and changes in control flow during ex-
ecution. We explained the meaning of refinement for processes and their actions
and proposed a sound data refinement technique. Refinement laws for CSP and
Z are directly relevant and applicable to Circus, but our focus was on new laws
for processes that integrate state and control. We presented new results about
the distribution of data refinement through CSP operators adopted in Circus.

We illustrated our ideas with the development of a distributed system of
cooperating processes. We proposed a refinement approach whose typical starting
point is a centralised specification of an application. The development process
moves towards a distributed solution. The approach is supported by two families
of laws (for algorithmic and data refinement) that allow the incremental splitting
of Circus processes using parallelism. The overall approach is illustrated by a case
study (the reactive buffer again) that, although simple, is interesting enough to
demonstrate the proposed strategy in all its relevant details.

A Circus system describes a set of processes. Each process encapsulates a local
state and has its reactive behaviour defined by actions in that state. In [25], we
present refinement laws to support the development of these actions from more
abstract descriptions. These laws form the basis of a systematic development
strategy for Circus based on formal refinement, addressing all the language’s
constructs. It complements the work in [96] by proposing laws of actions, includ-
ing the laws of CSP [58,92] and of ZRC [27], a refinement calculus for Z.

In addition, since Circus allows us to specify actions using a mixture of Z
schemas and CSP constructs, we require new laws. For example, there are novel



UTP, Circus, and Isabelle 7

laws to introduce parallelism and external choice from Z schema expressions.
These laws are added to a comprehensive set of refinement laws of CSP to sup-
port program development in Circus. The work extends the forward simulation
laws proposed for Circus [96] to address all the action operators of Circus. It
illustrates how these laws can be proved from the semantics of Circus. Parts of
the development of the distributed cached-head ring buffer from its centralised
specification are used to illustrate the laws of actions and forward simulation.

In [26], we present a refinement strategy for Circus. The strategy unifies the
theories of refinement for processes and their constituent actions and provides
a coherent technique for stepwise refinement of concurrent and distributed pro-
grams involving rich data structures. This kind of development is carried out
using Circus’s refinement calculus. We describe some of its laws for the simul-
taneous refinement of state and control behaviour, including splitting a process
into parallel components. We illustrate the strategy and the laws using a case
study that shows the complete development of a distributed program.

3.5 Predicate Transformers in the Semantics of Circus [28]

One of the main objectives of the Circus work is the definition of refinement
methods for concurrent programs. The original semantic model for Circus is
defined using UTP, expressed in Z. In [28], we present equivalent semantics
based on predicate transformers. With this new model, we provide an adequate
basis for formalising refinement and verification-condition generation rules.

This new framework makes it possible to include logical variables and angelic
nondeterminism in Circus, neither of which are straightforward in the relational
setting. The consistency of the relational and predicate transformer models gives
us confidence in their accuracy. Only much later did we study angelic nondeter-
minism in a relational setting [24]. The work to define a UTP theory to study
Circus processes and angelic nondeterminism was led by Pedro Ribeiro [87,88,89].

We present in [28] a new predicate transformer: the weakest reactive precon-
dition. It characterises the weakest precondition that guarantees that a given
condition holds in all later observable, not necessarily final, states of a reactive
program. We define the weakest reactive precondition of a unifying theory rela-
tion that defines a reactive system. From this, we calculate the weakest reactive
precondition semantics for Circus. This new semantic model is a convenient step
towards the complete justification of our extension to an existing refinement
calculus for Z [27] that includes all Circus constructs.

Roscoe and Hoare [93] present laws that completely characterise occam and
that are cast in terms of the occam’s denotational semantics [91], although
no proof of equivalence was carried out. The laws presented in that work are
equality-based algebraic semantics. Unlike our work, they are not intended to
support the development of programs by refinement.



8 Jim Woodcock et al.

3.6 A Circus Semantics for Ravenscar Protected Objects [5]

Burns et al.’s Ravenscar profile [13] is a subset of the Ada 95 tasking model [9].
The Ravenscar profile does not allow Ada’s rendezvous construct for task com-
munication. Instead, tasks in Ravenscar communicate through shared variables,
usually encapsulated inside protected objects. This makes protected objects fun-
damental building blocks in Ravenscar programs, providing a safe mechanism
for accessing the shared data between various tasks.

The Ravenscar profile is intended to be certifiable and deterministic, to sup-
port schedulability analysis, and to meet tight memory constraints and perfor-
mance requirements. With Atiya and King [5], we give semantics to protected
objects using Circus and prove several of its essential properties: consistency,
determinism, deadlock-freedom, livelock-freedom, totality, and non-stopping be-
haviour. This was the first time that these properties had been verified. Interest-
ingly, all the proofs are conducted in Z, even those concerning reactive behaviour.
A compliance notation for concurrent systems [4] provides a cost-effective tech-
nique for verifying Ravenscar programs based on this formal semantics.

Lundqvist et al. [69] provide an alternative formal model of Ravenscar’s pro-
tected objects in UPPAAL [12]. Their model deals specifically with the timing of
calls to protected objects. Model checking is used to verify the protected object
model considering only a few tasks: three. No statement was made about the
model’s validity for more tasks. Our proofs are valid for any number of tasks.

3.7 Using Circus for Safety-critical Applications [114]

In [114], we illustrate the use of Circus via the example of the steam boiler dis-
cussed in Sect. 3.2. We focus on an interesting semantic gap between synchroni-
sation in CSP and, therefore, Circus, and in programs: a kind of abstract event.
In CSP, an abstraction is sometimes used in which atomic synchronisations can
be system-wide, between many processes, rather than being restricted to only
two participants. In [114], we deal with a simple instance of this phenomenon of
multi-synchronisation, which shows the power of Circus’s calculational approach
to reasoning about reactive systems via refinement of abstract models.

We base our model of the steam boiler controller here on O’Halloran’s de-
scription [79] that expresses its functional requirements as firing rules. These
are in the form if a then b, where event a enables event b, subject to environ-
mental constraints. The implicit inference engine defined by these firing rules is
non-monotonic, as it must forget previously inferred facts as the system evolves.
The result is a valuable design pattern for synthesising reactive controllers.

A suitable language to implement this model as a controller for an actual
steam boiler is occam [60], given its close relationship with CSP. We might likely
choose Communicating Sequential Processes for Java (JCSP), a Java class library
that implements CSP processes and process combinators [108]. We immediately,
however, face the semantic gap mentioned above. CSP allows the synchronisa-
tion of events between many processes, but occam and JCSP restrict this, for



UTP, Circus, and Isabelle 9

efficiency reasons, to just two participants. In our paper [114], we apply Circus’s
refinement calculus to bridge this semantic gap.

In this work, we consider a collection of parallel processes indexed over I ,
each repeatedly executing some individual transaction, represented by the event
t .i , with i ∈ I and synchronising the transactions by alternating them with a
globally shared event m. The Circus process models this:

(∥
m

i : I • (µX • m → t .i → X )) \ {m}

Every process participates in the multi-way synchronisation on m, whereas only
the i -th process participates in the independent event t .i . The event m is hidden
from the environment, so crucially for this development, we know the identities
of all of m’s participants. If the membership were dynamic, then we would need
to develop a protocol to manage its membership.

We use Circus’s refinement calculus to derive a protocol equivalent to this
system of parallel processes, but where there is no multi-way synchronisation.
Our first step is to convert the i -th process into an action system [7]. We then re-
introduce parallelism to create a simple protocol that synchronises transactions.
It is now at the code level of occam or JCSP.

A more interesting problem occurs when the multi-way synchronisation is
part of an external choice, and our solution above is not applicable in such a
situation. We have calculated efficient two-phase commit protocols to deal with
these synchronisation patterns. Although these programs are much more com-
plex than the one calculated in this paper, the same development strategy is
used. The abstract program is reduced to a normal form, which contains no
multi-way synchronisations since it is sequential. This normal form is then par-
titioned into new parallel processes that implement a protocol for synchronising
individual transactions. This approach is later adopted in [50] in the context of
an automated strategy for translation from Circus to JCSP.

3.8 Formal Development of Industrial-scale Systems in Circus [82]

In [81], we present the use of the Circus refinement strategy to derive a concrete
distributed fire-control system from an abstract centralised Circus specification.
This real-world system is one of the most significant case studies on the Circus

refinement strategy [26] and translation rules [82].
The fire-control system considers two building areas, each divided into two

zones. Two extra zones are used for detection only. Fire detection happens in a
zone, and a gas discharge may occur in the area that contains that zone. The
system includes a display panel with lamps to indicate whether the system is on
or off, system faults, whether a fire has been detected, whether the alarm has
been silenced, and the need to replace actuators and gas discharges. The system
can be in one of three modes: manual, automatic, or disabled.

In manual mode, an alarm sounds when a fire is detected, and the corre-
sponding detection lamp is lit on the display. The alarm can be silenced, and the
system returns to normal when the reset button is pressed. In manual mode, a



10 Jim Woodcock et al.

gas discharge needs to be manually initiated. In automatic mode, fire detection
is followed by the alarm being sounded; however, if a fire is detected in the sec-
ond zone of the same area, the second stage alarm is sounded, and a countdown
starts. When the countdown finishes, the gas is discharged, and the circuit fault
lamp is illuminated in the display; the system mode is switched to disabled.
In disabled mode, the system only indicates the need to replace the actuators,
identify relevant faults, and reset. The system returns to its normal mode after
the actuators are replaced, and the reset button is pressed.

The motivation for the fire-control system refinement is the distribution of the
control for efficiency. In [81], we use the refinement strategy in [22] to develop
a concrete distributed system using three refinement iterations: the first one
splits the system into an internal controller and a controller for the areas. In the
second iteration, the internal controller is subdivided into two further controllers,
separating a controller just for the display. Finally, the third iteration splits the
controller’s areas into individual controllers for each area.

The result of refining a Circus specification is a Circus program written in a
combination of CSP and guarded commands. We, therefore, need a link between
Circus and a practical programming language to implement this program.

In [82], we present rules to translate Circus programs to Java programs that
use JCSP (see [108] and the discussion in Sect. 3.7). These rules can be used as
a complement to the Circus algebraic refinement technique or as a guideline for
implementation. They link the results of refinement in the context of Circus and
a practical programming language in current use. The rules can also be used as
the basis for a tool that mechanises translation [50,10]. In [82], we demonstrate
the application of the rules using the industrial fire-control system.

The main objective of that work was to provide a translation strategy for im-
plementing Circus programs in a widely used language. Using the JCSP [108,107]
library and a rule-based approach ensures that the obtained programs can be
traced back to the Circus model. The rules justify and generalise our develop-
ment of the fire-control system. With this work, we provide empirical evidence
of the expressive power of Circus and that the refinement strategy in [26] and
the translation to Java apply to industrial systems.

3.9 A Denotational Semantics for Circus [83,84]

Although usable for reasoning about Circus specifications, the semantics in [119]
is not appropriate to prove properties of Circus itself. This is because it is a shal-
low embedding in which Circus constructs are defined as a Z specification. Yet
another language is used as a metalanguage to define the semantics. The main
drawback is that we can not use shallow embedding to prove the laws of Cir-

cus’s distinguishing development technique. In [83], we present an alternative: a
definitive reference for the denotational semantics using UTP.

We redefined the Circus semantics. We mechanised it using ProofPower-
Z [63], a commercial HOL-based theorem prover for Z. We implemented the
UTP theories needed for the semantics of state-rich CSP (relations, designs,
reactive processes, and the CSP healthiness conditions) [85,86]. Our semantics



UTP, Circus, and Isabelle 11

for Circus is then given using reactive designs. We proved over 90% of the 146
proposed refinement laws. These proofs range over the structure of the language
and include all the data simulation laws. Their proofs can be found in [80].

We used a simple strategy to prove P = Q or P ⊑ Q . (1) Flatten P to
a single reactive design R(preP ⊢ postP ). (2) Flatten Q to a single reactive
design R(preQ ⊢ postQ). (3) Use lemmas and theorems from the ProofPower
UTP library and predicate calculus to transform the first reactive design into
the second one (in case of refinement, an inverse implication is the required
result). Flattening the programs involves definitions and theorems that transform
program structures into a single reactive design. For instance, if P is the sequence
P1 ; P2, the following lemma transforms it into a single reactive design.

Lemma 1.

R(P1 ⊢ Q1) ; R(P2 ⊢ Q2) =

R(P1 ∧ ¬ ((okay ′ ∧ ¬ wait ′ ∧ Q1) ; ¬ P2)
⊢
((wait ′ ∧ Q1) ∨ (okay ′ ∧ ¬ wait ′ ∧ Q1 ; Q2)) )

for P1 not mentioning dashed variables and P1, Q1, P2, and Q2 all R2-healthy.

The result of our mechanisation is a definitive reference for the denotational
semantics of Circus using UTP and reactive designs.

Finally, we note that Circus also has an operational semantics [121,51]. In [51],
there are considerations on a formal link to the denotational semantics. Further-
more, as we have already explained, the algebraic laws have been proved from
the denotational semantics, establishing the usual links suggested by UTP.

3.10 Time and Synchronicity in Circus [99,15]

CircusTime Action (CTA) is a timed version of Circus, explored by Sherif and
others, including He Jifeng [98,99]. It introduces discrete-time slots of event
sequences. CTA provides a two-tier view of history. The top-level records history
as a sequence of time slots. The bottom-level records history as an event sequence
within a given slot. This is reminiscent of super-dense time, an important tool
for modelling simultaneity in discrete-event simulations. The slots model events
separated in time, whilst each slot models simultaneous but ordered events.

We worked with Andrew Butterfield on a synchronous version of Circus. Our
work in [15] takes inspiration from CTA and is compatible with the general struc-
ture of the Circus language. We develop a generic framework of UTP theories
for describing systems whose behaviour is characterised by regular (top-level)
time slots. The slotted-Circus framework is parametrised by how event histories
are observable within a slot (the bottom level). We instantiate this bottom-
level history in a variety of ways: as simple traces or multisets of events or as
the more complex micro-slot structures used in our operational semantics for
Handel-C (a high-level programming language that targets low-level hardware,
most commonly used in the programming of FPGAs) [17].



12 Jim Woodcock et al.

One of the original motivations behind this work was to re-cast existing
semantics for Handel-C into the UTP framework so that Circus can be used
as a specification language. Using this time-slot model, the Handel-C denota-
tional [16] and operational semantics are defined. Still, the slot structure has
varying complexity, depending on which language constructs we wish to sup-
port. The slotted-Circus framework is a foundation for formulating the common
parts of these models, making it easier to explore the key differences.

3.11 The Miracle of Reactive Programming [115]

UTP uses Tarski’s relational calculus, with theories defined by complete lattices
of predicates ordered under refinement. Roscoe’s semantics for CSP uses a com-
plete partial order (CPO) [95]. So UTP offers an exciting addition: the reactive
miracle, the top of the lattice. In [115], we present two simple properties of reac-
tive miracles: prefixing a miracle with an event and offering an external choice
between a process and a miracle. Both processes have interesting properties:
each violates an essential axiom of the standard failures-divergences model for
CSP. Of course, that is why the reactive miracle is not in Roscoe’s CPO.

All three UTP theories involved in modelling CSP processes are complete
lattices rather than the CPOs of the standard models for CSP. As complete
lattices, they each have a top element. The top of the design lattice is the familiar
miracle from the refinement calculus: w : [true, false] [76]. This design is always
guaranteed to terminate if it is started (precondition true), and when it does
terminate, it achieves the impossible (it makes false true).

Morgan demonstrates a specific application of miracles [74]. He shows that
a miracle can enable conditional data refinement even when the condition in-
volves concrete variables. Some reasoning is then needed at the concrete level to
eliminate the miracle, which can never be executed. Morgan illustrates another
use for miracles: a naked guarded command can be given weakest precondition
semantics. For guard G , command com, and postcondition α, the weakest pre-
condition for the guarded command wp(G → com, α) is G ⇒ wp(com, α).
We note that a guarded command does not satisfy the Law of the Excluded
Miracle [31]: wp(com, false) = false; for example, wp(G → com, false) is
G ⇒ wp(com, false), which is different from false. In [75], Morgan uses this
definition to give semantics to an action system [7] (see also [123]).

The tops of the reactive and the CSP lattices in UTP were unexplored when
we wrote [115]. The reactive miracle is ⊤ = R1(true ⊢ wait ∧ II). This is
reactive-healthy but infeasible (miraculous) if properly started. We proved the
following result for an external choice between a prefixed process and a miracle:

a → Skip ✷ ⊤ = (true ⊢ (II 2 wait 3 ¬ wait ′ ∧ tr ′ = tr ⌢ ⟨a⟩ ∧ v ′ = v))

This process terminates immediately, having performed the event a. There is
no state in which the process is waiting for the environment to perform a: it
happens instantly. This makes the event a urgent.

In [115], we explore some applications of miracles. We show how to make two
events a and b simultaneous, but ordered: we prune away the state between a



UTP, Circus, and Isabelle 13

and b. Next, we show how to implement deadlines. For example, if b must occur
within 10 time units, we can model this using a new deadline operator: we write
b deadline 10 =̂ (b → Skip) ▷10 ⊤, where ▷10 is the timeout operator. In
this process, there are no states 10 time units from initiation in which b has not
happened. This captures a very strong requirement: there is no alternative to
meeting the deadline. Further applications of miracles are explored in [105,106].

Reactive miracles have proved indispensable to provide a sound semantic
basis for real-time extensions of Circus. A real-time variant of Circus has, for
instance, been used to give an architectural infrastructure model [73] of Safety-
Critical Java (JRS 302) [67] — a subset of Java tailored for the engineering
of safety-critical real-time systems. Nelson already realised that, despite their
unimplementability, miracles are useful in refinement-based systems develop-
ment, much like complex numbers in solving differential equations. Our work
rediscovers and reiterates this claim in the context of reactive programming in
general, and Circus in particular, with UTP giving us the right framework and
vocabulary to make this integration as smooth as possible.

4 Isabelle/UTP

We describe Isabelle/UTP5, our practical implementation of UTP that can be
used to mechanise UTP theories and turn them into verification tools. We cover
the history of Isabelle/UTP and motivate the design decisions behind its devel-
opment: in each section, we account for a major step in the Isabelle/UTP design
as it evolved. Isabelle/UTP was born out of necessity to support UTP-based
software engineering, and this continues to be our motivation to this day.

4.1 Beginnings

Isabelle/UTP [46] is a shallow embedding of the UTP in Isabelle. Its develop-
ment began in 2012, during the COMPASS project6. Nevertheless, Isabelle/UTP
is a natural development of previous UTP mechanisation, notably by Marcel
Oliveira [86] and Abderrahmane Feliachi [32,36] (with Burkhart Wolff).

COMPASS created a sophisticated toolset for modelling and verifying “sys-
tems of systems”. We developed a modelling language, CML (COMPASS Mod-
elling Language), with formal UTP semantics, a task led by Jim Woodcock.
Thus, an applicable verification tool for UTP was needed. Simon Foster’s task
was to develop a theorem prover for UTP and CML based on Isabelle/HOL.

As envisioned, this tool needed to combine two important characteristics. On
the one hand, it needed to provide the fidelity necessary to express refinement
laws, including side conditions, which often imposed syntactic constraints. On
the other hand, it needed to be suitable for scalable verification. Whilst these had
been separately achieved in the mechanisation of Oliveira and Feliachi, they had

5 Isabelle/UTP Website: http://isabelle-utp.york.ac.uk
6 Comprehensive Modelling for Advanced Systems of Systems, EU FP7 Project

287829.



14 Jim Woodcock et al.

not been achieved in either work. Oliveira’s mechanisation [86], as a relatively
deep embedding, had fidelity but lacked the automation necessary to make it
scalable. Feliachi’s mechanisation [32,36] had automation and scalability as a
shallow embedding but could not express syntactic side conditions.

4.2 Laws and Side Conditions, and the Deep Model

We consider the well-known assignment commutativity law:

(x := e ; y := f ) = (y := f ; x := e) provided x ̸= y , x /∈ fv(f ), y /∈ fv(e)

To express this law, as written, we need to (1) compare different program
variables and (2) check the variables mentioned in an expression. However, a
function like fv, which determines the free variables of an expression, is meta-

logical since it allows us to make arguments based on the syntactic structure of a
term. It exists in Isabelle and most other provers but as a function in Isabelle/ML
inaccessible from HOL. This is important because if fv were an Isabelle function,
then equality would cease to be useful, as we could not, for instance, prove that
x · 0 = 0 (for x ∈ R), since fv(x · 0) = {x} ≠ {} = fv(0).

At the same time, formal methods are awash with laws that use such side
conditions. Another example is the frame rule from separation logic:

{P}C {Q}
mod(C ) ∩ fv(R)

{P ∗ R}C {Q ∗ R}

This likewise requires that we calculate the free variables in R and the set of
variables that command C modifies. We seem to have hit a roadblock — we
cannot have fv and similar syntax functions without breaking our logic.

However, Oliveira [86] discovered a neat solution. He created a function
UnrestVar : REL PRED → PNAME, which calculates the set of names (i.e.
variables) that a predicate does not depend on, i.e. those that are “unrestricted”.
Unlike fv, UnrestVar is a semantic rather than a syntactic function. It does not
compute the syntactically present names but those that have some bearing on
the predicate’s meaning. For example, x · 0 does not depend on x since it always
evaluates to 0. Thus, UnrestVar(x · 0) = NAME, since this expression does not
depend on any variable: it is semantically equivalent to 0.

It turns out that UnrestVar is sufficient to express the side conditions of our
assignment law and similar laws. This function has a much older pedigree: an
analogue is found in Tarski’s famous Cylindric Algebra [57], an algebraic basis
for first-order logic with equality. In this setting, we can express UnrestVar as
the greatest set A of names such that (∃A.P) = P . Quantifying the names in
A does not change P because P does not depend on them.

Oliveira’s solution avoids the need for fv. However, there is still a problem
because UnrestVar requires that we formalise names and, as later realised in the
work of Zeyda [126], types. The problem is that names and types are also meta-
logical. If we formalise them, we cut ourselves off from the proof assistant’s



UTP, Circus, and Isabelle 15

representation of names and types, with a resulting loss of algorithms like α-
renaming and type checking. We have to implement these ourselves.

So, when we first developed Isabelle/UTP, we followed Oliveira [86] and
Zeyda [126] in building our representation of names, types, and a value uni-
verse [45]. We call this a “deep model”, rather than a “deep embedding” because
we do not formalise a syntax tree for predicates, just for the underlying value
universe. In this approach, a predicate is denoted as a set of functions record-
ing the possible values of the correct type that a variable can take. We must,
therefore, formalise names, types, values, and the typing relation.

In HOL, types are bounded by a given cardinal, and so the value universe is
technically limited to a strict subset of the possible types constructible in HOL.
Thus, we needed to exhibit an explicit injection into our universe whenever we
wanted to use a type in a UTP predicate or program. We did find a way of
automating it somewhat, but this did not work well. Though we retained the
fidelity of Oliveira’s model, we could not match the automation of Feliachi. This
became obvious even for small examples in CML. Our technique did not scale
to allow model verification. This was all too painfully pointed out in Wolff’s
gracious and factual review of our UTP 2014 paper [45].

Nevertheless, whilst we could not support verification, our techniques sub-
stantially benefited from Isabelle’s proof automation. Using automated theorem
provers, through the sledgehammer interface, we proved many more theorems
with much less effort than Oliveira with ProofPower-Z. However, we must credit
Oliveira’s achievement, for he went remarkably far in mechanising UTP, with
some proof scripts running hundreds of lines. We learned valuable lessons, but a
new foundation for Isabelle/UTP was needed.

4.3 Lenses

Burkhart pointed out that our value universe injections could be expressed more
generically using lenses [40]. This was vital for the next version [49]. Lenses
are simple algebraic structures: for a set S of states and V of values, a lens
x : V ⇒ S is a pair of functions get : S → V and put : V → S → S , which obey
three intuitive algebraic laws, such as get (put x s) = x . Lenses are ubiquitous in
the foundations of computer science; for example, Back and von Wright [6] use
a similar algebraic structure to characterise variables.

We have described lenses in Isabelle/UTP at length [46]. We use them to
model program variables and their mutations for a given state. Every variable
x of type A in a given state space S is allocated a lens x : V ⇒ S . Lenses
can also be used to characterise sets of variables using a combinator x ⊕ y that
produces a lens of type A × B ⇒ S with a product view. Thus, we can also
model a program’s frame (or “footprint”), part of the state space that a program
can modify. Crucially, lenses allow us to escape the need to formalise names and
types. Each variable name is in the host logic, and its type is given by its view.

Lenses can be semantically compared in various ways, providing a means to
express side conditions. We have the independence relation x ▷◁ y , which means



16 Jim Woodcock et al.

that x and y refer to different parts of the state, and it is algebraically char-
acterised as the commutativity of the put functions. A preorder a ⪯ b states
that a characterises a smaller region than b; for example, x ⪯ x ⊕ y . If we con-
sider lenses a and b as “sets”, then ⪯ is the subset relation, and ⊕ is the set
union operator. Finally, we have an equivalence formed by the cycle of ⪯, that is
x ≈ y = (x ⪯ y ∧ y ⪯ x ), which allows us to characterise laws like x ⊕y ≈ y⊕x .

These relations do not compare lenses based on their (meta-logical) names
but their semantics. The use of lenses, therefore, allows us to reuse all the host
logic facilities for manipulating names. Moreover, this approach avoids the alias-
ing problem. Even if we have two variables with different names, they will not
be independent if they point to the same store region.

UnrestVar also finds an elegant characterisation with lenses. First, we note
that program expressions and assertions are modelled as functions as usual in a
shallow embedding. An expression operating over store S with type V is a total
function S → V . An expression like x + y > 5 can be modelled, using lenses, as
λ s. getx (s)+ gety(s) > 5, though this translation was facilitated through a deep
expression syntax. We can then ask whether such an expression semantically de-
pends on a particular lens. If an expression’s output value does not change when
we change a variable, then clearly, there is no dependence on it. We therefore
define x ♯ e ⇔ (∀ v s.e(putx v s) = e(s)), our version of UnrestVar, which tells us
that x is unrestricted in e. As shown below, this relation is precisely what we
need to characterise the assignment commutativity law and other related laws:

(x := e ; y := f ) = (y := f ; x := e) provided x ▷◁ y , x ♯ f , y ♯ e

In words, the assignments commute provided that (1) the variables are indepen-
dent; (2) f does not depend on x ; and (3) e does not depend on y . This law
and other “laws of programming” are theorems of our definitions [46]. As we see
later, we can also express a variant of the frame rule.

4.4 UTP and Designs

With a scalable foundation for Isabelle/UTP, we could tackle a significant chal-
lenge: mechanisation of the reactive-design hierarchy and the Circus language
with its UTP semantics. During the development of our various versions of Is-
abelle/UTP, Circus served as a baseline, and we had several iterations of the
mechanisation of the operators and healthiness conditions.

Upon our lens-based expression model, we developed UTP’s relational cal-
culus. A (potentially heterogeneous) relation in Isabelle/UTP is an expression
S1 × S2 → B. As in the Z notation, relations typically range over unprimed
(x ) and primed variables (x ′). In Isabelle/UTP, this is achieved using lenses
fst : S1 ⇒ S1 ×S2 and snd : S2 ⇒ S1 ×S2 that project the pre- and post-states.
We distinguish lenses on the “flat state” (S ) from those in the relational state
(S ×S ), a distinction implicit in languages like Z. We then proved the relational
calculus laws found in the UTP book and related publications. This includes
a detailed account of UTP theories, defined by a set of idempotent healthiness
functions, and accompanying theorems, including Knaster-Tarski.



UTP, Circus, and Isabelle 17

We tackled the design theory from here, allowing us to model relational
programs that may exhibit divergence. Our mechanisation raised many questions
about the encoding of the design turnstile notation (P ⊢ Q). Should P and Q

be permitted to refer to the ok variable? Should P be allowed to refer to only
the pre-state or also the post-state? In Isabelle, we can use the type system to
impose restrictions like this by construction. The answer to the first question
became clear: ok is semantic machinery used only by ⊢, so a UTP theory should
not touch it when defining concrete specifications.

The answer to the second question is a little less clear since, in the UTP
theory of reactive designs, the precondition can refer to the post-state value of
the trace tr to express constraints on permitted communications. As a result,
Isabelle/UTP has two turnstile operators: P ⊢r Q , with P : S1 × S2 → B and
p ⊢n Q , with p : S1 → B. The latter is sometimes called a “normal design” [55],
hence the n subscript. The benefit of using this second turnstile operator is that
side conditions in many theorems can be avoided, thanks to the type system.
This improves the efficiency of verification for normal designs.

4.5 UTP Theories

In more detail, a UTP theory consists of (1) a set of observational variables; (2) a
set of healthiness conditions; and (3) a signature for constructing elements of the
theory that satisfy the healthiness conditions. Like classes in object-oriented pro-
gramming, UTP theories are extensible by adding more observational variables
and healthiness conditions. These conditions can be seen as invariants.

Feliachi’s encoding of UTP included an elegant approach to encoding alpha-
bets using extensible records. Each UTP theory is allocated its record type, which
gives the observational variables as fields. Since alphabets are types, using vari-
ables outside the alphabet equates to a type error. Successive extensions of the
UTP theory add fields to the alphabet types. Thanks to Isabelle’s polymorphism,
functions defined and theorems proved in super-theories are then applicable in
sub-theories. For example, a theorem proved in designs is applicable in reactive
designs. Moreover, type inference can determine the hierarchy’s most general
alphabet of a relation. A downside is that multiple inheritance is unsupported
because extensible records are implemented using type variables. Nevertheless,
this limitation can be mitigated if the hierarchy is carefully constructed.

A side effect of lenses is that we could easily adapt and expand on this ap-
proach. We can express constraints on how relations use observational variables
with lenses. For example, the alphabet of a design consists of ok , ok ′, and the
program variables and their dashed counterparts. We model this with a para-
metric alphabet type: a record type α des enriched with lenses, where the type
parameter α can extend the alphabet with the program variables. The health-
iness functions then have types like (α des) hrel → (α des) hrel of functions over
a homogeneous relation whose alphabet contains ok . (The actual type is more
general because we also support heterogeneous relations.)

With this setup, we can mechanise one of the most complex UTP operators
— alphabet extension, which allows us to add (and remove) variables from a



18 Jim Woodcock et al.

relation’s alphabet. Our encoding gives us a special lens: moreL : α ⇒ α des. It
views the part of the alphabet that does not contain ok , which is the program-
variable space or any extension of designs. With this lens, alphabet extension
becomes a kind of type coercion, such as α hrel → (α des) hrel, which lifts a
relation into the theory of designs. This is how we implement the design turnstile
variants ⊢r and ⊢n . Alphabet coercions can become complex. Nevertheless, these
coercions are invisible in resulting verification tools and improve user experience
by making UTP-based programs and models correct by construction.

4.6 Reactive-Design Hierarchy

With a solid theory of designs in place, we proceeded to mechanise reactive
designs. This was a significant task, and the reactive-design hierarchy is the
most extensive library in Isabelle/UTP, running to about 14,000 lines of Isabelle
code. We now give a summary of the main developments.

We mechanised the theory of reactive processes and several variants [42]
motivated by the mechanisation and Andrew Butterfield’s R3h [14] As required
by the UTP framework, we proved that the healthiness functions are idempotent,
monotonic, continuous, and critical closure results. One crucial design decision
was to collect the program variables in a single alphabet variable st , which
made separating the program space from semantic machinery (encoded via other
alphabet variables such as ok , tr , ref , and so on) more accessible.

We also identified two useful subtheories. Reactive relations express possible
behaviours using the alphabet variables tr and tr ′, recording observed traces,
and st and st ′. Reactive relations are typically used in postconditions. Reactive
conditions have the additional restriction of not referring to st ′ and having the
trace of events tr ′−tr prefix closed. Reactive conditions are used in preconditions.

We generalised reactive processes so that tr is drawn from a “trace alge-
bra” [43,90], a form of a cancellative monoid. The original account has tr as
a sequence of events, but sometimes other trace models are desirable, such as
piecewise-continuous functions for hybrid systems. It turns out that none of the
libraries of laws in [59,23] depend on tr being a sequence, and trace algebra is a
sufficient basis. Having performed the generalisation, Isabelle/UTP reproved all
the laws automatically, illustrating the practical benefits of proof automation. If
we had done this on paper, it would have taken weeks instead of minutes.

We then created reactive designs by combining designs and reactive pro-
cesses. After that, the subsequent significant development, from a verification
standpoint, was the introduction of the reactive-contract notation [P ⊢ Q | R],
which is a core constructor of the reactive-design theory [42]. It consists of a
precondition P , a postcondition R, and a “pericondition” Q , a new concept sug-
gested by Canham [18]. The precondition is a reactive condition that describes
initial states and communicating behaviour that the contract is willing to accept.
Violation of the precondition leads to divergence. The pericondition Q and post-
condition R describe quiescent (or “intermediate”) and terminating behaviours.
In the context of Circus and CSP, P corresponds to the complement of the di-
vergences, Q to the set of failure traces, and R to the set of terminating traces.



UTP, Circus, and Isabelle 19

A significant result is that any reactive design can be expressed as a reactive
contract.

There are at least two benefits to the use of reactive contracts. Firstly, it al-
lows us to give uniform denotational semantics to all Circus operators. Secondly,
it will enable us to automate refinement proofs about Circus models [44]. We
have a refinement law that weakens the precondition and strengthens the peri-
and postconditions. This is combined with a calculational proof strategy that
allows us to compile any combination of reactive contracts using Circus operators
into a single reactive contract, which can then be subjected to proof.

4.7 Optimisation and Modularisation

The development of the reactive-designs hierarchy and a Circus verification tool
served to justify the overall design decisions of Isabelle/UTP. However, sev-
eral components, notably the expression model, were suboptimal and hampered
automation and usability. As we developed Isabelle/UTP, our knowledge of Is-
abelle/HOL grew, and we improved the design decisions.

Moreover, there was the question of how researchers outside of York could
adopt Isabelle/UTP. The original development model was monolithic, with an
ever-growing collection of Isabelle theories with many cross-dependencies. There
could be little reuse of the components. Isabelle/UTP was a combination of
design decisions you either accepted in full or did not.

For example, the library imposes a relational program model (P(S1 × S2)),
although this is not universally popular. An alternative is a state transformer
model, S1 → P(S2), which though mathematically equivalent, has the advantage
of forming a monad. In truth, several parts of Isabelle/UTP do not need to be
wedded to this program model, notably the lens and expression library.

As a result, we set out on a campaign of optimisation and modularisation.
The resulting components, defined as Isabelle libraries, are as follows.

Optics This is where the theory of lenses is defined and contains several related
algebraic structures, notably symmetric lenses and prisms. These give an ab-
stract characterisation to channels analogously to lenses. The Optics library also
contains user commands, such as alphabet and chantype to create alphabet
and channel types. This library continues to be under active development.

Shallow Expressions As explained in Section 4.3, the original monolithic theory
contained an expression model that mimics a deep embedding by introducing
constructors for expressions. The motivation was to allow reasoning with the
same granularity as a deep embedding. For example, we could encode laws like
(P ∧ Q)[e/x ] = (P [e/x ] ∧ Q [e/x ]) and (∃ x .P)[e/y ] = (∃ x .P [e/y ]) if x ▷◁ y .
However, this was a substantial overhead since we had to use the simplifier to
execute substitutions. It also turned out to be unnecessary since we can directly
harness Isabelle’s internal λ-calculus-based substitution mechanisms.



20 Jim Woodcock et al.

Thus, the Shallow-Expressions library, instead of having deep abstract syntax,
lifts expressions containing lenses (for example, assertions) to pure HOL expres-
sions; for instance, x + y becomes λ s. getx (s) + gety(s) using Isabelle’s syntax
translation mechanism to perform the conversion. Nevertheless, as explained in
Section 4.3, we can still execute substitutions and evaluate unrestriction condi-
tions, so we retain the benefits of Oliveira’s deep model. We also get a natural
representation of ghost variables: they are simply the logical variables provided
by HOL, as distinguished from program variables. Finally, with the shallow ex-
pressions, Isabelle/HOL also gives us direct access to sledgehammer and other
proof facilities for reasoning about expressions. This gives us the proof scalability
we need and brings us on par with different shallow embeddings.

Z Toolkit To support Circus and related languages, we need the types, operators,
and laws of Z [102]. This includes types like partial functions, finite functions,
and partial surjections. Whilst the Isabelle/HOL standard library contains some
of these, we preferred to develop our own to have greater control over the design
decisions. Our Z Toolkit library also includes support for code generation so that
we can make some specifications executable. Moreover, we have recently worked
with Makarius Wenzel (Isabelle’s primary developer) to add the complete Z
symbols into the Isabelle Unicode font and symbol library.

UTP The modularisation leaves the main UTP library as a modest development,
formalising predicates, relations, theories, and associated laws. This development
continues, and we plan to have each UTP theory in a separate library.

A result of the modularisation is that we have been able to integrate our
technology into collaborations that do not use UTP (at least knowingly). A
recent development is an Isabelle-based verification tool for hybrid systems [48],
which implements an extended version of Platzer’s differential dynamic logic.
This tool extensively uses the Shallow-Expressions library to support techniques
like differential induction and differential ghosts. A result that we are pleased
with is the inclusion of a separation-logic-style frame rule:

{P}C {Q} C nmodsA −A ♯R

{P ∧ R}C {Q ∧ R}

Here, C nmodsA is a semantic operator, like unrestriction, requiring that C

does not modify any variables in A. We also need the frame invariant R to use
no variables inside A. This requires constructing a lens’s complement using an
algebraic structure called a “scene”, which is ongoing work (see Section 6). This
being the case, we can add R as an invariant for a command C . This shows one
of the real benefits of the UTP: to link concepts (separation logic and hybrid
systems) from apparently very different areas of computer science.

4.8 Interaction Trees

Recently, we have mechanised Interaction Trees (ITrees) in Isabelle/UTP [47,125].
These are coinductive structures that allow symbolic encoding of deterministic



UTP, Circus, and Isabelle 21

labelled transition systems. They can therefore support encoding and reasoning
about operational semantics using coinductive techniques. Crucially, ITrees are
executable, which allows us to take abstract models and programs, generate code
for them, and finally animate them. Though ITrees can be infinite, languages
like Haskell, which supports lazy evaluation, can evaluate them. Thus, we can
use ITrees to animate deterministic Circus processes, for example. This is very
valuable in software development since engineers can obtain prototypes.

Our ITrees library is built on the Shallow-Expressions and Z Toolkit libraries.
Integration with the rest of UTP is underway, allowing us to translate relational
specifications into executable programs. Though ITrees are intrinsically deter-
ministic, we can model nondeterminism with special events, enabling various
strategies for resolving nondeterminism. We have applied this library in the de-
velopment of a tool called Z Machines, which supports system modelling in the
style of Z and B, with both animation and verification support [124].

5 Other contributions

We now consider two projects using Circus that did not involve our research
group: the Xenon project and another theorem prover for Circus.

Freitas and McDermott used Circus in the Xenon project at the Naval Re-
search Laboratory in Washington DC, USA. Xenon is a higher-assurance secure-
separation hypervisor that allows a host computer to support multiple separated
virtual machines that share memory and processing resources. Xenon is based
on re-engineering the well-known Xen open-source hypervisor [71]. Xenon used
formal specifications written in Z, CSP, and Circus [70,52] in security assurance.
Freitas and McDermott modelled the fundamental definition of security, the hy-
percall interface behaviour, and the internal modular design. Security is based
on noninterference expressed as a determinism property [94,71].

The Xenon Project is an industrial-scale application of Circus. The specifi-
cation is 4,500 lines long: a substantial piece of mathematics. Some attractive
technical advantages in modelling security properties in Circus arise from the
combination of state and traces. Usually, proofs of noninterference require an
unwinding theorem relating traces and states (see Goguen and Meseguer [54]).
This is addressed in the definition of the Circus language. Xenon shows how
Circus provides a powerful and natural way to describe state-rich and trace-rich
concurrent behaviour in a single model amenable to refinement calculation.

Felliachi and colleagues developed machine-checked, formal semantics based
on a shallow embedding of Circus in the Isabelle theorem prover [36]. They derive
proof rules from the semantics and implement tactics for refinement of Circus

processes involving data and behavioural aspects. Their proof environment sup-
ports syntax and semantics very close to our presentation of Circus in [83,84].
The theories are available in Isabelle’s Archive of Formal Proofs [37].

Feliachi et al. used their mechanisation of Circus to provide a principled test-
ing environment for concurrent systems [35]. They describe integrating formal
testing in a proof environment as theorem-prover based testing, which takes ad-



22 Jim Woodcock et al.

vantage of the precise semantics of a specific specification language implemented
in the theorem prover. They present a machine-checked formalisation of a testing
theory. They experiment with this theory by testing an industrial case study: a
message monitoring module. The component under test is embedded in 5k lines
of Java code. It binds together various devices, including pacemaker controllers,
using sophisticated data structures and operations, providing the primary source
of complexity when testing. More details about this case study can be found in
Feliachi’s thesis [34] and in a technical report [33].

6 Quo vadis Circus?

Work on Circus and Isabelle/UTP is ongoing and highly active. This section
discusses current research and applications, and future directions (Section 6.1).
We also include a brief industrial roadmap (Section 6.2) of outstanding work for
transitioning Circus to a practical systems engineering and development setting.

6.1 Research directions

Concerning extensions of Circus, we single out the hybrid state-rich process
algebra called CyPhyCircus [41,78,48]. In addition to processes with states (like in
Circus), a CyPhyCircus process can include continuous visible state components.
As expected, its foundation is UTP. It is used in the RoboStar framework [19],
which provides domain-specific notations for modelling robotics control-software
design and simulations, physical platforms, and scenarios. A distinctive feature of
RoboStar is that all these notations have formal semantics that is automatically
generated and integrated via their common UTP foundations.

CyPhyCircus has been used as a formal framework to give the semantics
of RoboSim [19], capturing diagrammatic behavioural models for the platform
and scenarios, and RoboWorld [20], a controlled natural language (CNL) used to
record assumptions about the environment. The semantics of RoboSim diagrams
and RoboWorld documents is a hybrid model due to the platform and environ-
ment’s continuous nature, including quantities of interest such as velocity and
temperature. From the semantics, it is possible, for instance, to generate tests
or check whether the environment assumptions are satisfied by a simulation.

As future work, the main challenges for CyPhyCircus as a hybrid process al-
gebra concern automated reasoning. Notably, for the mechanised reasoning to
scale, we need theorem-proving facilities. In this respect, we can benefit from
the UTP theories and all the encoding already developed in Isabelle/UTP. We
are currently developing bespoke automated proof methods to support verifica-
tion of RoboSim models based on our hybrid verification tool [48]. To further
improve automation, the plan is also to support model checking via translating
CyPhyCircus models to hybrid automata accepted by model checkers [3].

Another exciting research direction is our work on probability. One of its
applications is also in the RoboStar context. More specifically, a probabilistic
denotational semantics is defined in [110] for the RoboStar design notation,



UTP, Circus, and Isabelle 23

called RoboChart [72]. We base our work on the weakest completion semantics,
which is, once more, based on UTP. The work relates standard semantics for a
nondeterministic language with a probabilistic semantic domain via a forgetful
function (from the latter to the former) and its converse for the other way around.
The embedding using the converse of the forgetful function is proved to preserve
the program structure. Finally, the probabilistic choice operator is defined.

In future work, we need to develop techniques for managing uncertainty.
Several promising directions include partially observable Markov decision pro-
cesses [61], dynamic epistemic logic [8], and the epistemic mu-calculus [100]. We
will pursue a unifying theory that includes these and other approaches.

Many machine learning methods approximate a function between inputs and
outputs. Reasoning about these approximate functions requires probabilistic
techniques and presents many challenges. An outline of a probabilistic domain
theory for robotics that includes learning components has been proposed by
Thrun et al. [104]. We propose to formalise this theory.

A mechanised theory of quantum programming will provide a common frame-
work for classical and quantum specifications, quantum program development,
and analysis of program time and space complexity. Applications include quan-
tum cryptographic protocols, where we must use distributed quantum program-
ming with quantum channels. Hehner has established an initial basis for quantum
programming in the UTP style [103]. We propose to continue this work.

Regarding work on Isabelle/UTP, current efforts focus on optimisation and
modularisation (Section 4.7). More specifically, the Optics library defining the
lenses (Section 4.3) contains several related algebraic structures (that is, sym-
metric lenses and prisms) and provides commands such as alphabet to create
alphabet types and chantype to create channel types. In future, we will create
additional commands to ease the creation of formal artifacts to support software
engineering, in particular constructs from RoboChart and RoboSim.

We will also enrich this library with an axiomatic value model [127] that
provides a convenient way to directly inject HOL types into a single given uni-
verse type to model state spaces without the need to instantiate them. We are
considering a sound axiomatisation of higher-order UTP ([59, Chap. 9]) as well.

Our work with Interaction Trees has complemented the UTP relational hi-
erarchy with operational semantic models that can be directly verified and ex-
ecuted. We are exploring using the Isabelle code generator to provide verified
simulations and controller implementations in Haskell. Our Z-Machines tool [124]
is under active development as a usable method for creating and verifying formal
models, and we have a growing library of accompanying examples from [111].

Finally, our work on the Isabelle-based verification tool for hybrid systems
discussed in Section 4.7 is a neat example of using UTP to link concepts from
different computer science areas, separation logic and hybrid systems. Our main
activity here is in development of case studies to validate the tool, and improve
proof automation and scalability. In future, we will extend it to include concur-
rency primitives to support verification of multi-robotic systems such as swarms.



24 Jim Woodcock et al.

6.2 Industrial roadmap

This section describes a roadmap to scale Circus adoption in industry. This
is, in particular, finding ways to integrate Circus into modern workflows for
model-driven development and model-based software engineering, including the
underlying continuous integration, development, and verification pipelines. Our
overarching aim is to make it easier for tool developers to harness the power of
Circus and Isabelle/UTP. Future efforts may include the definition of a meta-
model that can be integrated into common IDEs, such as the Eclipse framework,
and plug-ins that encapsulate various checking and verification tasks on Circus

models by outsourcing them to Isabelle/UTP.
A challenge we will have to face is to ease the learning curve for software

engineers to understand, modify, write, and maintain Circus models as part of
a model-based engineering workflow. AI-powered solutions such as CoPilot [30]
are becoming more prevalent in supporting developers in producing models and
code, from identifying issues to suggesting solutions based on natural-language
queries and requirements. At the same time, projectional editors and low-code
techniques may enable developers to produce design models before attaining
deep and expert knowledge of the low-level modelling notation per se.

Moreover, many tools and IDEs for formal development and verification are
now equipped with mechanisms for giving continuous feedback to the user to flag
possible issues in models and code as soon as changes are made, automatically
keeping verification conditions and proofs in sync with their models. Similar
technology can be developed for Circus to facilitate system-level architectural
engineering and code verification via a contract language that ties in nicely with
commonly used platforms and implementation languages and technology.

We thus envisage an ecosystem of Circus tools that allow us to:

(1) instantiate Circus models based on common modelling patterns that are
geared to particular application domains;

(2) seamlessly interface from IDEs such as Eclipse or Visual Studio Code with
Isabelle/UTP to engineer, validate and refactor Circus models;

(3) support manual, semi-automatic, and automatic refinement through a be-
spoke refinement editor that makes system engineering via Circus amenable
to software architects and industrial software developers;

(4) trace Circus models and their artefacts up the refinement chain: to infor-
mal or semiformal specifications, domain engineering, and product-line en-
gineering models; and down the refinement chain to architectures written in
UML/SysML or AADL, for instance, code-level contracts, and test cases;

(5) use a repository of verified refinement patterns that can be easily instan-
tiated for particular modelling patterns and used to create a skeleton for
implementation activities, including associated code-level contracts;

(6) integrated Circus models into static and run-time testing and verification
activities and popular testing frameworks.

Regarding (1), we have already elicited many such modelling patterns as part of
research targetting the application of Circus to several complementary applica-



UTP, Circus, and Isabelle 25

tion domains, including hybrid and control systems, robotics, and safety-critical
concurrent and real-time implementations in Java and Ada.

Concerning (2), provers such as Isabelle already provide an API and protocols
to communicate with external tools asynchronously. Still, high-level interfaces
must be created on top of those low-level protocols to efficiently deal with changes
to Circus models, and analyse their impact on proofs.

The aim of (3) is to disentangle the application of Circus refinement laws
from a heavyweight proof framework. Once Circus refinement laws are proved
in Isabelle/UTP, we may use a more bespoke and efficient tool to apply them
and carry out large-scale refinements that may take advantage of a versatile
tactic language and user-friendly GUI. Code generation in Isabelle enables us to
potentially derive such a (critical) tool rigorously from proven laws.

Traceability (4) is essential when using model and proof artefacts of a Circus-
based development as certification evidence in assurance cases. We hence require
means to place Circus into the context of large-scale developments that often use
a variety of complementary notations for requirements, architecture, design and
HW/SW implementations, with clear traceability links to Circus models.

For (5), every modelling pattern should provide at least one refinement pat-
tern and a collection of proved laws. Lastly, for (6), tying in with our work with
Gaudel on a testing theory for Circus [21], we can leverage Circus to automate
test-case generation and other testing activities.

The richness of the Circus language, and its UTP foundations, inherently
opens several opportunities for combined verification solutions.

7 Conclusions

This paper reviewed two decades of our research on the stateful process alge-
bra Circus, its UTP foundations, and the Isabelle/UTP theorem prover. Many
colleagues and students have helped us to contribute to this agenda. We have
published over 150 papers on UTP. This paper reviews only a fraction, and we
will take future opportunities to complete the review of all our work.

One point to reflect on is why we have chosen Isabelle to mechanise UTP. The
answer is mainly pragmatic. We want to be able to support scalable verification,
and that means we want the best possible automation we can. This should not
be at the expense of guaranteed soundness or fidelity, which is why we chose a
foundational prover with strong support for automation.

Overall, an extensive body of research has already been carried out to (a) pro-
vide a firm semantic foundation for the Circus family of languages, (b) mechanise
it in theorem provers, and (c) show, by way of examples and case studies drawn
from both academic literature and the industrial realm, how Circus can be used
to tackle the refinement-based development of safety-critical systems. Some cur-
rent and future research directions have been discussed in the previous section,
as well as an industrial roadmap to embody the techniques and tools we have
developed for Circus into practical development environments.



26 Jim Woodcock et al.

Circus continues to attract interest from academia and industry. Its design is
centred on the UTP principles. Jifeng’s joint work with Tony has been the seed
and the beautiful semantic infrastructure of our long-term research on Circus.
We are confident that we will have much more to report in years to come.

Acknowledgements We gratefully acknowledge all our UTP-based research
collaborators, co-authors, and students. Thanks to all of you. This work has re-
cently been funded by the UK EPSRC Grants EP/M025756/1, EP/R025479/1,
EP/V026801/2, EP/S001190/1, and by the Royal Academy of Engineering Grant
No CiET1718/45. Over the years, many other funding sources have been avail-
able to us, as detailed in the cited papers. Thank you.

References

1. Jean-Raymond Abrial. Steam-boiler control speciőcation problem. In Jean-
Raymond Abrial, Egon Börger, and Hans Langmaack, editors, Formal Methods
for Industrial Applications, Specifying and Programming the Steam Boiler Control
(the book grow out of a Dagstuhl Seminar, June 1995), volume 1165 of Lecture
Notes in Computer Science, pages 500ś509. Springer, 1995.

2. Jean-Raymond Abrial, Egon Börger, and Hans Langmaack, editors. Formal Meth-
ods for Industrial Applications, Specifying and Programming the Steam Boiler
Control, volume 1165 of Lecture Notes in Computer Science. Springer, 1996.

3. M. Althoff. An introduction to CORA 2015. In G. Frehse and M. Althoff, edi-
tors, 1st and 2nd International Workshop on Applied Verification for Continuous
and Hybrid Systems, volume 34 of EPiC Series in Computing, pages 120ś151.
EasyChair, 2015.

4. D. M. Atiya and S. King. A compliance notation for verifying concurrent systems.
In Proceedings of the 24th International Conference on Software Engineering,
ICSE ’02, page 731ś732. Association for Computing Machinery, 2002.

5. Diyaa-Addein Atiya, Steve King, and Jim Woodcock. A Circus semantics for
Ravenscar protected objects. In Keijiro Araki, Stefania Gnesi, and Dino Man-
drioli, editors, FME 2003: Formal Methods, International Symposium of Formal
Methods Europe, Pisa, Italy, September 8-14, 2003, Proceedings, volume 2805 of
Lecture Notes in Computer Science, pages 617ś635. Springer, 2003.

6. R. J. R. Back and J. Wright. Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer-Verlag, 1998.

7. Ralph-Johan Back and Reino Kurki-Suonio. Decentralization of process nets with
centralized control. Distributed Comput., 3(2):73ś87, 1989.

8. Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic of public
announcements and common knowledge and private suspicions. In Itzhak Gilboa,
editor, Proceedings of the 7th Conference on Theoretical Aspects of Rationality
and Knowledge (TARK-98), Evanston, IL, USA, July 22-24, 1998, pages 43ś56.
Morgan Kaufmann, 1998.

9. J. Barnes. Programming in Ada 95. Addison-Wesley, 2nd edition, 1998.

10. S. L. M. Barrocas and M. V. M. Oliveira. JCircus 2.0: An extension of an auto-
matic translator from Circus to Java. In Peter H. Welch, Frederick R. M. Barnes,



UTP, Circus, and Isabelle 27

Kevin Chalmers, Jan Bñkgaard Pedersen, and Adam T. Sampson, editors, 34th
Communicating Process Architectures, CPA 2012, organised under the auspices
of WoTUG, Dundee, Scotland, UK, August 26, 2012, pages 15ś36. Open Channel
Publishing Ltd., 2012.

11. J.C. Bauer. Speciőcation for a software program for a boiler water content monitor
and control system. Technical report, Institute of Risk Research, University of
Waterloo, 1993.

12. G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi, and
M. Hendriks. UPPAAL 4.0. In 3rd International Conference on the Quantitative
Evaluation of Systems, pages 125ś126. IEEE Computer Society, 2006.

13. Alan Burns, Brian Dobbing, and George Romanski. The Ravenscar tasking proőle
for high integrity real-time programs. In Lars Asplund, editor, Reliable Software
Technologies - Ada-Europe ’98, 1998 Ada-Europe International Conference on
Reliable Software Technologies, Uppsala, Sweden, June 8-12, 1998, Proceedings,
volume 1411 of Lecture Notes in Computer Science, pages 263ś275. Springer,
1998.

14. A. Butterőeld, P. Gancarski, and J. C. P. Woodcock. State visibility and com-
munication in unifying theories of programming. In W.-N. Chin and S. Qin,
editors, 3rd IEEE International Symposium on Theoretical Aspects of Software
Engineering, pages 47ś54. IEEE Computer Society, 2009.

15. Andrew Butterőeld, Adnan Sherif, and Jim Woodcock. Slotted-Circus: A UTP-
family of reactive theories. In Jim Davies and Jeremy Gibbons, editors, Integrated
Formal Methods, 6th International Conference, IFM 2007, Oxford, UK, July 2-
5, 2007, Proceedings, volume 4591 of Lecture Notes in Computer Science, pages
75ś97. Springer, 2007.

16. Andrew Butterőeld and Jim Woodcock. Semantic domains for Handel-C. In
Sharon Flynn, Ted Hurley, Mícheál Mac an Airchinnigh, Niall Madden, Michael
McGettrick, Michel P. Schellekens, and Anthony Karel Seda, editors, Second Irish
Conference on the Mathematical Foundations of Computer Science and Informa-
tion Technology, MFCSIT 2002, Galway, Ireland, July 18-19, 2002, volume 74 of
Electronic Notes in Theoretical Computer Science, pages 1ś20. Elsevier, 2002.

17. Andrew Butterőeld and Jim Woodcock. prialt in Handel-C: An operational se-
mantics. Int. J. Softw. Tools Technol. Transf., 7(3):248ś267, 2005.

18. Samuel Canham and Jim Woodcock. Three approaches to timed external choice
in UTP. In Unifying Theories of Programming, volume 8963 of LNCS, pages 1ś20.
Springer, 2015.

19. A. L. C. Cavalcanti, W. Barnett, J. Baxter, G. Carvalho, M. C. Filho,
A. Miyazawa, P. Ribeiro, and A. C. A. Sampaio. RoboStar Technology: A
Roboticist’s Toolbox for Combined Proof, Simulation, and Testing, pages 249ś293.
Springer International Publishing, 2021.

20. A. L. C. Cavalcanti, J. Baxter, and G. Carvalho. Roboworld: Where can my robot
work? In R. Calinescu and C. S. Păsăreanu, editors, Software Engineering and
Formal Methods, Lecture Notes in Computer Science, pages 3ś22. Springer, 2021.

21. A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Reőnement in Circus. Acta
Informatica, 48(2):97ś147, 2011.

22. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Reőnement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146ś181, 2003.



28 Jim Woodcock et al.

23. A. L. C. Cavalcanti and J. C. P. Woodcock. A Tutorial Introduction to CSP
in Unifying Theories of Programming. In Refinement Techniques in Software
Engineering, volume 3167 of Lecture Notes in Computer Science, pages 220ś268.
Springer-Verlag, 2006.

24. A. L. C. Cavalcanti, J. C. P. Woodcock, and S. Dunne. Angelic Nondeterminism in
the Unifying Theories of Programming. Formal Aspects of Computing, 18(3):288ś
307, 2006.

25. Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. Reőnement of actions in
Circus. In John Derrick, Eerke A. Boiten, Jim Woodcock, and Joakim von Wright,
editors, BCS FACS Refinement Workshop 2002, Refine 2002, Satellite Event of
FLoC 2002, Copenhagen, Denmark, July 20-21, 2002, volume 70 of Electronic
Notes in Theoretical Computer Science, pages 132ś162. Elsevier, 2002.

26. Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. A reőnement strategy for
Circus. Formal Aspects Comput., 15(2-3):146ś181, 2003.

27. Ana Cavalcanti and Jim Woodcock. ZRC Ð A reőnement calculus for Z. Formal
Aspects Comput., 10(3):267ś289, 1998.

28. Ana Cavalcanti and Jim Woodcock. Predicate transformers in the semantics of
Circus. IEE Proc. Softw., 150(2):85ś94, 2003.

29. Ana Cavalcanti and Jim Woodcock. A tutorial introduction to CSP in Unifying
Theories of Programming. In Ana Cavalcanti, Augusto Sampaio, and Jim Wood-
cock, editors, Refinement Techniques in Software Engineering, First Pernambuco
Summer School on Software Engineering, PSSE 2004, Recife, Brazil, November
23-December 5, 2004, Revised Lectures, volume 3167 of Lecture Notes in Computer
Science, pages 220ś268. Springer, 2004.

30. Copilot. copilot.github.com. Accessed 17th May 2023.

31. Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

32. A. Feliachi, M.-C. Gaudel, and B. Wolff. Unifying theories in Isabelle/HOL. In
UTP 2010, volume 6445 of LNCS, pages 188ś206. Springer, 2010.

33. A. Feliachi, M.-C. Gaudel, and B. Wolff. Exhaustive testing in HOL-
Testgen/CirTa Ð A case study. Technical Report 1562, LRI, July 2013.

34. Abderrahmane Feliachi. Semantics-Based Testing for Circus. (Test basé sur la
sémantique pour Circus). PhD thesis, University of Paris-Sud, Orsay, France,
2012.

35. Abderrahmane Feliachi, Marie-Claude Gaudel, Makarius Wenzel, and Burkhart
Wolff. The Circus testing theory revisited in Isabelle/HOL. In Lindsay Groves
and Jing Sun, editors, Formal Methods and Software Engineering - 15th Inter-
national Conference on Formal Engineering Methods, ICFEM 2013, Queenstown,
New Zealand, October 29 - November 1, 2013, Proceedings, volume 8144 of Lecture
Notes in Computer Science, pages 131ś147. Springer, 2013.

36. Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Is-
abelle/Circus: A process speciőcation and veriőcation environment. In Rajeev
Joshi, Peter Müller, and Andreas Podelski, editors, Verified Software: Theories,
Tools, Experiments - 4th International Conference, VSTTE 2012, Philadelphia,
PA, USA, January 28-29, 2012. Proceedings, volume 7152 of Lecture Notes in
Computer Science, pages 243ś260. Springer, 2012.

37. Abderrahmane Feliachi, Burkhart Wolff, and Marie-Claude Gaudel. Is-
abelle/Circus. Arch. Formal Proofs, 2012, 2012.



UTP, Circus, and Isabelle 29

38. Clemens Fischer. How to combine Z with process algebra. In Jonathan P. Bowen,
Andreas Fett, and Michael G. Hinchey, editors, ZUM ’98: The Z Formal Spec-
ification Notation, 11th International Conference of Z Users, Berlin, Germany,
September 24-26, 1998, Proceedings, volume 1493 of Lecture Notes in Computer
Science, pages 5ś23. Springer, 1998.

39. Clemens Fischer and Heike Wehrheim. Failure-divergence semantics as a formal
basis for an object-oriented integrated formal method. Bull. EATCS, 71:92ś101,
2000.

40. J. Foster. Bidirectional programming languages. PhD thesis, University of Penn-
sylvania, 2009.

41. S. Foster. Hybrid relations in Isabelle/UTP. In 7th International Symposium on
Unifying Theories of Programming, volume 11885 of Lecture Notes in Computer
Science, pages 130ś153. Springer, 2019.

42. S. Foster, A. L. C. Cavalcanti, S. Canham, J. C. P. Woodcock, and F. Zeyda.
Unifying theories of reactive design contracts. Theoretical Computer Science,
802:105 ś 140, 2020.

43. S. Foster, A. L. C. Cavalcanti, J. C. P. Woodcock, and F. Zeyda. Unifying theo-
ries of time with generalised reactive processes. Information Processing Letters,
135:47ś52, 2018.

44. S. Foster, K. Ye, A. L. C. Cavalcanti, and J. C. P. Woodcock. Automated ver-
iőcation of reactive and concurrent programs by calculation. Journal of Logical
and Algebraic Methods in Programming, 121:100681, 2021.

45. S. Foster, F. Zeyda, and J. Woodcock. Isabelle/UTP: A mechanised theory en-
gineering framework. In UTP, volume 8963 of LNCS, pages 21ś41. Springer,
2014.

46. Simon Foster, James Baxter, Ana Cavalcanti, Jim Woodcock, and Frank Zeyda.
Unifying semantic foundations for automated veriőcation tools in Isabelle/UTP.
Sci. Comput. Program., 197:102510, 2020.

47. Simon Foster, Chung-Kil Hur, and Jim Woodcock. Formally Veriőed Simulations
of State-Rich Processes Using Interaction Trees in Isabelle/HOL. In Serge Had-
dad and Daniele Varacca, editors, 32nd International Conference on Concurrency
Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference, volume 203 of
LIPIcs, pages 20:1ś20:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

48. Simon Foster, Jonathan Julián Huerta y Munive, Mario Gleirscher, and Georg
Struth. Hybrid systems veriőcation with Isabelle/HOL: Simpler syntax, bet-
ter models, faster proofs. In FM 2021, volume 13047 of LNCS, pages 367ś386.
Springer, 2021. doi.org/10.1007/978-3-030-90870-6_20.

49. Simon Foster, Frank Zeyda, and Jim Woodcock. Unifying heterogeneous state-
spaces with lenses. In Augusto Sampaio and Farn Wang, editors, Theoretical
Aspects of Computing - ICTAC 2016 - 13th International Colloquium, Taipei,
Taiwan, ROC, October 24-31, 2016, Proceedings, volume 9965 of Lecture Notes
in Computer Science, pages 295ś314, 2016.

50. A. F. Freitas and A. L. C. Cavalcanti. Automatic Translation from Circus to Java.
In J. Misra, T. Nipkow, and E. Sekerinski, editors, Formal Methods, volume 4085
of Lecture Notes in Computer Science, pages 115ś130. Springer-Verlag, 2006.



30 Jim Woodcock et al.

51. L. J. S. Freitas. Model Checking Circus. PhD thesis, University of York, Depart-
ment of Computer Science, 2006.

52. Leo Freitas and John P. McDermott. Formal methods for security in the Xenon
hypervisor. Int. J. Softw. Tools Technol. Transf., 13(5):463ś489, 2011.

53. Thomas Gibson-Robinson, Philip J. Armstrong, Alexandre Boulgakov, and A. W.
Roscoe. FDR3: A parallel reőnement checker for CSP. Int. J. Softw. Tools Tech-
nol. Transf., 18(2):149ś167, 2016.

54. Joseph A. Goguen and José Meseguer. Unwinding and inference control. In
Proceedings of the 1984 IEEE Symposium on Security and Privacy, Oakland,
California, USA, April 29 - May 2, 1984, pages 75ś87. IEEE Computer Society,
1984.

55. W. Guttman and B. Möller. Normal design algebra. Journal of Logic and Alge-
braic Programming, 79(2):144ś173, February 2010.

56. Will Harwood, Ana Cavalcanti, and Jim Woodcock. A theory of pointers for the
UTP. In John S. Fitzgerald, Anne E. Haxthausen, and Hüsnü Yenigün, editors,
Theoretical Aspects of Computing - ICTAC 2008, 5th International Colloquium,
Istanbul, Turkey, September 1-3, 2008. Proceedings, volume 5160 of Lecture Notes
in Computer Science, pages 141ś155. Springer, 2008.

57. L. Henkin, J. Monk, and A. Tarski. Cylindric Algebras, Part I. North-Holland,
1971.

58. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

59. C.A.R. Hoare and He Jifeng. Unifying theories of programming. Prentice Hall,
1998.

60. Geraint Jones and Michael Goldsmith. Programming in occam 2. Prentice Hall
international series in computer science. Prentice Hall, 1985.

61. Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning
and acting in partially observable stochastic domains. Artif. Intell., 101(1-2):99ś
134, 1998.

62. Steve King, lb Holm Sùrensen, and Jim Woodcock. Z, grammar and concrete and
abstract syntaxes. Technical Monograph PRG-68, Oxford University Computing
Laboratory, Programming Research Group, July 1988.

63. Lemma1. www.lemma-one.com/ProofPower/index/index.html.

64. Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors. Theoretical Aspects of
Computing - ICTAC 2013 - 10th International Colloquium, Shanghai, China,
September 4-6, 2013. Proceedings, volume 8049 of Lecture Notes in Computer
Science. Springer, 2013.

65. Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors. Theories of Programming
and Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His 70th
Birthday, volume 8051 of Lecture Notes in Computer Science. Springer, 2013.

66. Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors. Unifying Theories of
Programming and Formal Engineering Methods - International Training School
on Software Engineering, Held at ICTAC 2013, Shanghai, China, August 26-30,
2013, Advanced Lectures, volume 8050 of Lecture Notes in Computer Science.
Springer, 2013.

67. Doug Locke, B. Scott Andersen, Ben Brosgol, Mike Fulton, Thomas Henties,
James J. Hunt, Johan Olmütz Nielsen, Kelvin Nilsen, Martin Schoeberl, Joyce



UTP, Circus, and Isabelle 31

Tokar, Jan Vitek, and Andy Wellings. Safety-Critical Java Technology Specifica-
tion, Public draft. Java Community Process, 2011.

68. Celoxica Ltd. DK3: Handel-C Language Reference Manual, 2002.

69. Kristina Lundqvist, Lars Asplund, and Stephen Mitchell. A formal model of
the Ada Ravenscar tasking proőle: Protected objects. In Michael González Har-
bour and Juan Antonio de la Puente, editors, Reliable Software Technologies -
Ada-Europe ’99, 1999 Ada-Europe International Conference on Reliable Software
Technologies, Santander, Spain, June 7-11, 1999, Proceedings, volume 1622 of
Lecture Notes in Computer Science, pages 12ś25. Springer, 1999.

70. John P. McDermott and Leo Freitas. Using formal methods for security in the
Xenon project. In Frederick T. Sheldon, Stacy J. Prowell, Robert K. Abercrombie,
and Axel W. Krings, editors, Proceedings of the 6th Cyber Security and Informa-
tion Intelligence Research Workshop, CSIIRW 2010, Oak Ridge, TN, USA, April
21-23, 2010, page 67. ACM, 2010.

71. John P. McDermott, James Kirby, Bruce E. Montrose, Travis Johnson, and My-
ong H. Kang. Re-engineering Xen internals for higher-assurance security. Inf.
Secur. Tech. Rep., 13(1):17ś24, 2008.

72. A. Miyazawa, P. Ribeiro, W. Li, A. L. C. Cavalcanti, J. Timmis, and J. C. P.
Woodcock. RoboChart: modelling and veriőcation of the functional behaviour of
robotic applications. Software & Systems Modeling, 18(5):3097ś3149, 2019.

73. Alvaro Miyazawa, Ana Cavalcanti, and Andy J. Wellings. SCJ-Circus: Speciő-
cation and reőnement of safety-critical java programs. Sci. Comput. Program.,
181:140ś176, 2019.

74. Carroll Morgan. Data reőnement by miracles. Inf. Process. Lett., 26(5):243ś246,
1988.

75. Carroll Morgan. Of wp and CSP. In W. H. J. Feijen, A. J. M. van Gasteren,
D. Gries, and J. Misra, editors, Beauty is our business: A birthday salute to Edsger
W. Dijkstra. Springer, 1990.

76. Carroll Morgan. Programming from specifications. Prentice Hall International
series in computer science. Prentice Hall, 2nd edition, 1994.

77. Joseph M. Morris. A theoretical basis for stepwise reőnement and the program-
ming calculus. Sci. Comput. Program., 9(3):287ś306, 1987.

78. J. H. Y. Munive, G. Struth, and S. Foster. Differential Hoare logics and reőnement
calculi for hybrid systems with Isabelle/HOL. In 18th International Conference on
Relational and Algebraic Methods in Computer Science, volume 12062 of Lecture
Notes in Computer Science, pages 169ś186. Springer, 2020.

79. Colin O’Halloran. Identifying critical requirements. Technical report, Systems
Assurance Group. QinetiQ Malvern, 2002.

80. M. V. M. Oliveira. Formal derivation of state-rich reactive programs using Circus.
PhD thesis, University of York, UK, 2005.

81. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Reőning Industrial
Scale Systems in Circus. In I. East, J. Martin, P. Welch, D. Duce, and M. Green,
editors, Communicating Process Architectures, volume 62 of Concurrent Systems
Engineering Series, pages 281ś309. IOS Press, September 2004.

82. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Formal develop-
ment of industrial-scale systems in Circus. Innov. Syst. Softw. Eng., 1(2):125ś146,
2005.



32 Jim Woodcock et al.

83. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. A denotational
semantics for Circus. In Bernhard K. Aichernig, Eerke A. Boiten, John Derrick,
and Lindsay Groves, editors, Proceedings of the 11th Refinement Workshop, Re-
fine@ICFEM 2006, Macao, October 31, 2006, volume 187 of Electronic Notes in
Theoretical Computer Science, pages 107ś123. Elsevier, 2006.

84. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. A UTP semantics
for Circus. Formal Aspects Comput., 21(1-2):3ś32, 2009.

85. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Unifying theories
in ProofPower-Z. Formal Aspects of Computing, 25(1):133ś158, 2013.

86. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Unifying theories
in ProofPower-Z. Formal Aspects Comput., 25(1):133ś158, 2013.

87. P. Ribeiro and A. L. C. Cavalcanti. Designs with angelic nondeterminism. In 7th
International Symposium on Theoretical Aspects of Software Engineering, pages
71ś78. IEEE, 2013.

88. P. Ribeiro and A. L. C. Cavalcanti. Angelicism in the theory of reactive pro-
cesses. In Unifying Theories of Programming, Lecture Notes in Computer Science.
Springer, 2014.

89. P. Ribeiro and A. L. C. Cavalcanti. Angelic processes for CSP via the UTP.
Theoretical Computer Science, 756:19ś63, 2019.

90. Pedro Ribeiro. A unary semigroup trace algebra. In Uli Fahrenberg, Peter Jipsen,
and Michael Winter, editors, Relational and Algebraic Methods in Computer Sci-
ence, pages 270ś285. Springer, 2020.

91. A. W. Roscoe. Denotational semantics for occam. In Stephen D. Brookes, A. W.
Roscoe, and Glynn Winskel, editors, Seminar on Concurrency, Carnegie-Mellon
University, Pittsburg, PA, USA, July 9-11, 1984, volume 197 of Lecture Notes in
Computer Science, pages 306ś329. Springer, 1984.

92. A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science.
Springer, 2010.

93. A. W. Roscoe and C. A. R. Hoare. The laws of occam programming. Theor.
Comput. Sci., 60:177ś229, 1988.

94. A. W. Roscoe, Jim Woodcock, and Lars Wulf. Non-interference through deter-
minism. In Dieter Gollmann, editor, Computer Security - ESORICS 94, Third
European Symposium on Research in Computer Security, Brighton, UK, Novem-
ber 7-9, 1994, Proceedings, volume 875 of Lecture Notes in Computer Science,
pages 33ś53. Springer, 1994.

95. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.

96. Augusto Sampaio, Jim Woodcock, and Ana Cavalcanti. Reőnement in Circus. In
Lars-Henrik Eriksson and Peter A. Lindsay, editors, FME 2002: Formal Methods
- Getting IT Right, International Symposium of Formal Methods Europe, Copen-
hagen, Denmark, July 22-24, 2002, Proceedings, volume 2391 of Lecture Notes in
Computer Science, pages 451ś470. Springer, 2002.

97. Steve A. Schneider and Helen Treharne. CSP theorems for communicating B
machines. Formal Aspects Comput., 17(4):390ś422, 2005.

98. Adnan Sherif and Jifeng He. Towards a time model for Circus. In Chris George
and Huaikou Miao, editors, Formal Methods and Software Engineering, 4th In-
ternational Conference on Formal Engineering Methods, ICFEM 2002 Shanghai,



UTP, Circus, and Isabelle 33

China, October 21-25, 2002, Proceedings, volume 2495 of Lecture Notes in Com-
puter Science, pages 613ś624. Springer, 2002.

99. Adnan Sherif, Jifeng He, Ana Cavalcanti, and Augusto Sampaio. A framework for
speciőcation and validation of real-time systems using Circus actions. In Zhiming
Liu and Keijiro Araki, editors, Theoretical Aspects of Computing - ICTAC 2004,
First International Colloquium, Guiyang, China, September 20-24, 2004, Revised
Selected Papers, volume 3407 of Lecture Notes in Computer Science, pages 478ś
493. Springer, 2004.

100. N.V. Shilov and N.O. Garanina. Combining knowledge and őxpoints. Technical
report preprint n.98, A.P. Ershov Institute of Informatics Systems, Novosibirsk,
2002. www.iis.nsk.su/files/preprints/098.pdf.

101. Graeme Smith. A semantic integration of Object-Z and CSP for the speciőcation
of concurrent systems. In John S. Fitzgerald, Cliff B. Jones, and Peter Lucas, ed-
itors, FME ’97: Industrial Applications and Strengthened Foundations of Formal
Methods, 4th International Symposium of Formal Methods Europe, Graz, Austria,
September 15-19, 1997, Proceedings, volume 1313 of Lecture Notes in Computer
Science, pages 62ś81. Springer, 1997.

102. J. Michael Spivey. Z Notation — A reference manual. Prentice Hall International
Series in Computer Science. Prentice Hall, 2nd edition, 1992.

103. Anya Taŕiovich and Eric C. R. Hehner. Quantum predicative programming. In
Tarmo Uustalu, editor, Mathematics of Program Construction, 8th International
Conference, MPC 2006, Kuressaare, Estonia, July 3-5, 2006, Proceedings, volume
4014 of Lecture Notes in Computer Science, pages 433ś454. Springer, 2006.

104. Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. Intel-
ligent robotics and autonomous agents. MIT Press, 2005.

105. Kun Wei, Jim Woodcock, and Alan Burns. A timed model of Circus with the reac-
tive design miracle. In José Luiz Fiadeiro, Stefania Gnesi, and Andrea Maggiolo-
Schettini, editors, 8th IEEE International Conference on Software Engineering
and Formal Methods, SEFM 2010, Pisa, Italy, 13-18 September 2010, pages 315ś
319. IEEE Computer Society, 2010.

106. Kun Wei, Jim Woodcock, and Alan Burns. Timed Circus: Timed CSP with the
miracle. In Isabelle Perseil, Karin K. Breitman, and Roy Sterritt, editors, 16th
IEEE International Conference on Engineering of Complex Computer Systems,
ICECCS 2011, Las Vegas, Nevada, USA, 27-29 April 2011, pages 55ś64. IEEE
Computer Society, 2011.

107. Peter H. Welch. Process oriented design for Java: Concurrency for all. In Peter
M. A. Sloot, Chih Jeng Kenneth Tan, Jack J. Dongarra, and Alfons G. Hoekstra,
editors, Computational Science - ICCS 2002, International Conference, Amster-
dam, The Netherlands, April 21-24, 2002. Proceedings, Part II, volume 2330 of
Lecture Notes in Computer Science, page 687. Springer, 2002.

108. Peter H. Welch, Jo R. Aldous, and Jon Foster. CSP networking for Java
(JCSP.net). In Peter M. A. Sloot, Chih Jeng Kenneth Tan, Jack J. Dongarra, and
Alfons G. Hoekstra, editors, Computational Science - ICCS 2002, International
Conference, Amsterdam, The Netherlands, April 21-24, 2002. Proceedings, Part
II, volume 2330 of Lecture Notes in Computer Science, pages 695ś708. Springer,
2002.

109. J. C. P. Woodcock. Properties of Z speciőcations. ACM SIGSOFT Softw. Eng.
Notes, 14(5):43ś54, 1989.



34 Jim Woodcock et al.

110. J. C. P. Woodcock, A. L. C. Cavalcanti, S. Foster, A. Mota, and K. Ye. Proba-
bilistic Semantics for RoboChart. In P. Ribeiro and A. C. A. Sampaio, editors,
Unifying Theories of Programming, pages 80ś105. Springer, 2019.

111. J. C. P. Woodcock and J. Davies. Using Z - Specification, Refinement, and Proof.
Prentice-Hall, 1996.

112. J. C. P. Woodcock and Jim Davies. Using Z - specification, refinement, and proof.
Prentice Hall international series in computer science. Prentice Hall, 1996.

113. J.C.P. Woodcock and A.L.C. Cavalcanti. Circus: A concurrent reőnement lan-
guage. Technical report, Oxford University Computing Laboratory, July 2001.

114. Jim Woodcock. Using Circus for safety-critical applications. In Ana Cavalcanti
and Patrícia D. L. Machado, editors, Proceedings of the 6th Brazilian Workshop
on Formal Methods, WMF 2003, Campina Grande, Brazil, October 12-14, 2003,
volume 95 of Electronic Notes in Theoretical Computer Science, pages 3ś22. El-
sevier, 2003.

115. Jim Woodcock. The miracle of reactive programming. In Andrew Butterőeld, ed-
itor, Unifying Theories of Programming, Second International Symposium, UTP
2008, Dublin, Ireland, September 8-10, 2008, Revised Selected Papers, volume
5713 of Lecture Notes in Computer Science, pages 202ś217. Springer, 2008.

116. Jim Woodcock. Hoare and He’s unifying theories of programming. In Cliff B.
Jones and Jayadev Misra, editors, Theories of Programming: The Life and Works
of Tony Hoare, pages 285ś316. ACM / Morgan & Claypool, 2021.

117. Jim Woodcock and Ana Cavalcanti. A concurrent language for reőnement. In
Andrew Butterőeld, Glenn Strong, and Claus Pahl, editors, 5th Irish Workshop
on Formal Methods, IWFM 2001, Dublin, Ireland, 16-17 July 2001, Workshops
in Computing. BCS, 2001.

118. Jim Woodcock and Ana Cavalcanti. The steam boiler in a uniőed theory of Z and
CSP. In 8th Asia-Pacific Software Engineering Conference (APSEC 2001), 4-7
December 2001, Macau, China, pages 291ś298. IEEE Computer Society, 2001.

119. Jim Woodcock and Ana Cavalcanti. The semantics of Circus. In Didier Bert,
Jonathan P. Bowen, Martin C. Henson, and Ken Robinson, editors, ZB 2002:
Formal Specification and Development in Z and B, 2nd International Conference
of B and Z Users, Grenoble, France, January 23-25, 2002, Proceedings, volume
2272 of Lecture Notes in Computer Science, pages 184ś203. Springer, 2002.

120. Jim Woodcock and Ana Cavalcanti. A tutorial introduction to designs in uni-
fying theories of programming. In Eerke A. Boiten, John Derrick, and Graeme
Smith, editors, Integrated Formal Methods, 4th International Conference, IFM
2004, Canterbury, UK, April 4-7, 2004, Proceedings, volume 2999 of Lecture Notes
in Computer Science, pages 40ś66. Springer, 2004.

121. Jim Woodcock, Ana Cavalcanti, and Leonardo Freitas. Operational semantics for
model checking Circus. In John S. Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki,
editors, FM 2005: Formal Methods, International Symposium of Formal Methods
Europe, Newcastle, UK, July 18-22, 2005, Proceedings, volume 3582 of Lecture
Notes in Computer Science, pages 237ś252. Springer, 2005.

122. Jim Woodcock, Jim Davies, and Christie Bolton. Abstract data types and pro-
cesses. In A.W. Roscoe, J. Davies, and J. Woodcock, editors, Proceedings of
the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare, Millennial
perspectives in computer science, pages 391śś405. Palgrave, 2000.



UTP, Circus, and Isabelle 35

123. Jim Woodcock and Carroll Morgan. Reőnement of state-based concurrent sys-
tems. In Dines Bjùrner, C. A. R. Hoare, and Hans Langmaack, editors, VDM
’90, VDM and Z - Formal Methods in Software Development, Third International
Symposium of VDM Europe, Kiel, FRG, April 17-21, 1990, Proceedings, volume
428 of Lecture Notes in Computer Science, pages 340ś351. Springer, 1990.

124. F. Yan, S. Foster, and I. Habli. Automated compositional veriőcation for robotic
state machines using isabelle/hol. In 27th Intl. Conf. on Engineering of Complex
Computer Systems (ICECCS). IEEE, June 2023.

125. Kangfeng Ye, Simon Foster, and Jim Woodcock. Formally veriőed animation for
RoboChart using interaction trees. In Adrián Riesco and Min Zhang, editors,
Formal Methods and Software Engineering - 23rd International Conference on
Formal Engineering Methods, ICFEM 2022, Madrid, Spain, October 24-27, 2022,
Proceedings, volume 13478 of Lecture Notes in Computer Science, pages 404ś420.
Springer, 2022.

126. F. Zeyda and A. L. C. Cavalcanti. Circus Model for the SCJ Framework. Technical
report, University of York, Department of Computer Science, York, UK, 2012.

127. Frank Zeyda, Simon Foster, and Leo Freitas. An axiomatic value model for is-
abelle/utp. In Jonathan P. Bowen and Huibiao Zhu, editors, Unifying Theories of
Programming - 6th International Symposium, UTP 2016, Reykjavik, Iceland, June
4-5, 2016, Revised Selected Papers, volume 10134 of Lecture Notes in Computer
Science, pages 155ś175. Springer, 2016.


	UTP, Circus, and Isabelle 

