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Abstract 

This study aimed to develop and test algorithms to determine the individual relevance of two 

psychotherapeutic change processes (i.e., mastery and clarification) for outcome prediction. 

We measured process and outcome variables in a naturalistic outpatient sample treated with 

an integrative treatment for a variety of diagnoses (n=608) during the first ten sessions. We 

estimated individual within-patient effects of each therapist-evaluated process of change on 

patient-evaluated subsequent outcomes on a session-by-session basis. Using patients baseline 

characteristics, we trained machine learning algorithms on a randomly selected subsample 

(n= 407) to predict the effects of patients’ process variables on outcome. We subsequently 

tested the predictive capacity of the best algorithm for each process on a hold-out subsample 

(n= 201). We found significant within-patient effects of therapist perceived mastery and 

clarification on subsequent outcome. In the hold-out subsample, the best-performing 

algorithms resulted in significant but small-to-medium correlations between the predicted and 

observed relevance of therapist perceived mastery (r=.18) and clarification (r=.16). Using the 

algorithms to create criteria for individual recommendations, in the hold-out sample we 

identified patients for whom mastery (14%) or clarification (18%) were indicated. In the 

mastery-indicated group, a greater focus on mastery was moderately associated with better 

outcome (r=.33, d=.70), while in the clarification-indicated group the focus was not related to 

outcome (r=-.05, d=.10). Results support the feasibility of performing individual predictions 

regarding mastery process relevance that can be useful for therapist feedback and treatment 

recommendations. However, results will need to be replicated with prospective experimental 

designs.  

 

Keywords: machine learning; outcome prediction; processes and mechanisms of change; 

mastery and clarification, algorithm 

  



MACHINE LEARNING FOR PROCESSES EFFECTS 

4 

 

Using machine learning algorithms to predict the effects of change processes in psychotherapy: 

Towards process-level treatment personalization 

Although psychotherapy is an effective treatment for a number of mental disorders, not all 

patients respond successfully (Barkham & Lambert, 2021; Cuijpers et al., 2021). It is estimated 

that between 60% and 69% of treated patients improve during treatment, while the rest do not 

benefit or even deteriorate during therapy (Barkham & Lambert, 2021). Thus, there is still 

considerable room for improvement in psychotherapy outcomes.  

Even though bona fide psychotherapies have been shown to produce fairly equivalent 

results across various mental health conditions (i.e., Cuijpers et al., 2021; Podina et al., 2019; 

Wampold & Imel, 2015), recent empirical studies have observed differential treatment effects 

based on patient baseline characteristics (e.g., Cohen et al., 2020; Gomez Penedo et al., 2019; 

Newman et al., 2017). In the field of depression, for example, there is meta-analytic evidence of 

heterogeneity of treatment response (Kaiser et al., 2022). This means that although - on average - 

patients will have similar responses to different treatments, individual patients might benefit more 

from one treatment than another (Friedl et al., 2020).  

To enhance outcomes in psychotherapy and taking into account the emerging evidence of 

treatment response heterogeneity, there has been an increased focus on the development and 

implementation of evidence-based personalized treatment strategies in the last decade (Cohen et 

al., 2021; Delgadillo & Lutz, 2020). These approaches aim to optimize psychotherapy by 

identifying clinically relevant patient characteristics and making individually tailored treatment 

recommendations based on these characteristics (Lutz et al., 2019). Using feedback systems, this 

information could be provided to the therapists before therapy starts, supporting them in the 

decision-making process for each individual treatment (Lutz et al., 2021).  

In recent years, the application of machine learning (ML) algorithms as an alternative to 

more traditional statistical methods (e.g., general linear model) is increasingly being used to 
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develop tools for psychotherapy personalization (Delgadillo & Lutz, 2020). ML is a promising 

way to achieve more accurate clinical prediction models based on large datasets (Rutledge et al., 

2019). This is particularly interesting because it is a statistical analysis methodology that adjusts 

its predictions adaptively and flexibly to data with complex patterns (e.g., with a lot of between-

patient variability) and large numbers of variables with potential multicollinearity (Friedman et 

al., 2010; B. Schwartz et al., 2021). Some ML learning methods are also capable of modelling 

nonlinear associations between variables in a data-driven way, without a need for a-priori 

specification of expected relationships. Furthermore, ML strategies apply methods to minimize 

overfitting issues (i.e., enhancing generalizability), by using techniques such as resampling and 

regularization (e.g., Delgadillo, 2021).  

In the field of psychotherapy personalization, the use of ML techniques has grown rapidly 

particularly for treatment selection (Aafjes-van Doorn et al., 2021). In this area, algorithms have 

been developed to model differential effects of at least two different treatments (e.g., cognitive-

behavioral therapy [CBT] versus psychodynamic therapy), identifying the optimal therapy for 

each individual patient (see e.g., Cohen et al., 2020; Friedl et al., 2020; Schwartz et al., 2021). 

Although this approach has shown promising findings, pushing forward the field of treatment 

personalization, it also has some relevant shortcomings when translating this knowledge into 

clinical practice (Lorenzo-Luaces et al., 2021). One of the main limitations is that, in order to 

implement these algorithms in practice, it will be necessary to have clinicians trained in different 

bona fide treatments (e.g., CBT and psychodynamic therapy) or outpatient clinics with 

professionals from the different theoretical orientations.  

As an alternative to treatment selection, some studies have used ML to predict the 

differential effects of trans-theoretical therapeutic change processes instead of ‘treatment 

packages’. Identifying the more fine-grained processes that lead to individual change would allow 

clinicians to target the psychotherapy processes that are best suited to the particularities of each 
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patient (e.g., Rubel et al., 2017) independently of the theoretical framework used by the 

psychotherapist (Rubel et al., 2020). Developing algorithms at the trans-theoretical process level 

could potentially help to generate methods of personalization that are easier to implement in 

routine care.  

One of the most well-known frameworks to conceptualize trans-theoretical process of 

change (also known as mechanisms of change) in therapy is the model developed by Klaus Grawe 

(1997, 2004). Besides the well-established process of the alliance (Flückiger et al., 2018), 

grounded on a meta-analysis on empirical findings Grawe (1997) identified four additional 

processes of change: [1] problem actuation (i.e., patients experiencing their problems in session); 

[2] resource activation (i.e., patients experiencing themselves as someone with resources and 

strengths to cope with their problems); [3] mastery (i.e., the patients’ ability to cope with their 

problems); and [4] clarification (i.e., the patients’ understanding of the sources and consequences 

of his or her own problematic behaviors and experiences). From these four change processes, 

mastery and clarification have been the two with strong trans-theoretical  (e.g., Allemand & 

Flückiger, 2017) as well as empirical attention in recent years, with several studies showing that 

they are significantly associated with psychotherapy outcome (i.e., Gómez Penedo et al., 2022, 

2023; Rubel et al., 2017; C. Schwartz et al., 2018).   

When predicting process-outcome associations using ML, the first attempts focused on 

predicting therapeutic alliance effects on outcome (Rubel et al., 2020; Zilcha-Mano et al., 2018). 

Zilcha-Mano et al. (2018) used ML to identify interpersonal patient characteristics that 

differentially predicted the effects of alliance on outcome in CBT. An overall greater level of 

alliance was associated with better outcome in patients with lower problems of being overly cold 

and higher problems of being exploitable in their relationships. Furthermore, improvements of 

alliance during treatment were more strongly associated with better outcome when patients had 

higher problems of being overly cold and lower problems of being intrusive. In another study, 
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Rubel et al. (2020) used ML algorithms to predict alliance effects in CBT based on patients 

baseline sociodemographic and clinical characteristics. Although the model found 11 reliable 

predictors (e.g., overall symptom severity, depression severity, interpersonal distress, emotional 

functioning), in the hold-out sample the correlations between the observed and estimated (i.e., by 

the algorithm) alliance-outcome effects of the algorithms ranged from r = -.07 to r = .05.  

Besides these initial efforts predicting alliance-outcome associations using ML, some 

studies also tried to predict clarification and mastery effects in psychotherapy (e.g., Gómez Penedo 

et al., 2022; Lutz et al., 2019, 2022). Considering the high correlations between clarification and 

mastery when self-reported by patients (r= .65; Flückiger et al., 2010), as one solution proposed 

in the literature (Rubel et al., 2017), these studies had merged mastery and clarification processes 

into a broader intrapersonal change process named problem coping experiences (i.e., the degree 

in which the patient works on finding solutions to their problems or understanding their sources). 

Based on this strategy and using the nearest neighbors methodology on a naturalistic sample, Lutz 

et al. (2019, 2022) created and prospectively tested an algorithm to determine the most suitable 

treatment strategy for each patient comparing an alliance building approach, a problem coping 

focused approach, and a mixed approach. Results showed that when therapists followed the 

algorithmic recommendations during the first 10 sessions, effect sizes were better than if they did 

not follow the respective recommendation (~ d = 0.30). Additionally, Gómez Penedo et al. (2022) 

applied different ML algorithms using patients’ baseline characteristics to predict problem coping 

experience effects on outcome during the first ten sessions of therapy. The best fitting algorithm 

in the training set presented adequate and stable results in the test set (R2 =.15, d = 0.84)1.  

Going one step further, developing process-specific algorithms for mastery and 

clarification effects separately, rather than for problem coping experiences (i.e., a broader 

 
1 Note that an R2 = .138 would be the minimum R2 associated with a large effect size following Cohen’s d 
criteria (i.e., d = .80) (J. Cohen, 1988).  
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construct that includes both), might provide more fine-grained evidence regarding what processes 

would be more suitable for each individual patient. This information could enhance personalized 

psychotherapy evidence-based recommendations, creating practical knowledge more easily to 

implement within naturalistic settings, compared to treatment selection approaches.  

In order to build separate algorithms for mastery and clarification, an alternative to 

addressing the above-mentioned constructs’ collinearity when self-reported by the patient, would 

be to use the therapists’ perceptions of the therapy processes oriented towards mastery and 

clarification (Gómez Penedo et al., 2023). When analyzing therapist reports, correlations between 

these processes have been considerably lower (i.e., r=.11). However, using therapist reports, rather 

than evaluating patient in-session experiences, implies analyzing therapists' self-perceptions 

regarding  the degree to which they have used interventions aiming to foster mastery and 

clarification in the patient. Besides allowing to deal with the collinearity issue, analyzing and 

predicting the effects of therapist level actions might provide more actionable clinical evidence 

than previous studies in this direction. The information based on therapist self-perception of their 

actions could be implemented in clinical practice in a more direct way than other process-outcome 

predictions (e.g., algorithms predicting alliance) by providing therapists with feedback about how 

they might need to intervene to maximize the likelihood of positive outcome for the individual 

patient.  

In this context, the aim of this study was to develop ML algorithms to perform 

individual predictions regarding the effects of the trans-theoretical therapy change processes 

of mastery and clarification as measured by therapist reports (i.e., their perception of using 

interventions that target mastery and clarification). As a first step, we examined if both 

mastery and clarification therapy change processes during the first ten sessions of treatment 

significantly predicted subsequent treatment outcomes in terms of patients overall well-being. 

As a second step, we developed ML algorithms to predict those individual effects using 
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patients’ baseline information and tested them on a hold-out sample. Finally, we created and 

evaluated therapist recommendation criteria derived from the algorithms trained. Our study 

focused on the first ten sessions of therapy, following previous efforts to enhance the 

implementation of pre-treatment recommendations (Gómez Penedo et al., 2022; Lutz et al., 

2019, 2022). 

Methods 

This retrospective cohort study was based on the analysis of archival data routinely 

collected at the outpatient clinic of the University of Bern, Switzerland. The data were 

gathered from the years 2001 to 2011 as part of the regular procedures of the clinic. The 

Ethics Committee of the Canton of Bern approved the use of routine assessment data for 

research (KEK 139/15). All participants signed a written informed consent form. Full 

methods of the study were documented at the open science framework (OSF; osf.io/mv7kd) 

(Gómez Penedo, Meglio, et al., 2022). 

Participants  

To be included in the sample, patients needed to have a maximum of 30% of missing 

data in the targeted baseline, process, and outcome measures. After excluding cases without 

enough information, 608 patients were included in the sample. Patients were mostly females 

(59%) with a mean age of 35.65 years (SD= 12.22 years). The most frequent diagnoses in the 

sample were depressive disorders (37.3%), followed by anxiety disorders (26.8%), and 

adjustment disorders (9.2%). Full diagnostic information is presented in Table 1SM in the 

supplemental material.  

Treatment 

The patients included in the study received psychotherapeutic treatment at the 

outpatient clinic of the University of Bern. Patients were routinely treated with an integrative 

cognitive behavioral therapy (CBT) developed by Klaus Grawe (2004) known as 
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Psychological Therapy. This treatment approach integrates empirically supported 

interventions from humanistic, systemic, and emotion-focused approaches with cognitive-

behavioral interventions following explicit individual case formulations within an 

overarching theoretical framework regarding human functioning and mechanisms of change 

in psychotherapy (Caspar et al., 2023; Caspar & grosse Holtforth, 2010; Grawe et al., 1990). 

The overarching theoretical framework is consistency theory (Grawe, 2004) and case 

formulations are made using Plan Analysis (Caspar, 2022). According to consistency theory, 

inconsistency in human functioning (i.e., the tension resulting from discrepancies between 

needs and reality as well as from internal conflicts) centrally contributes to the development 

and maintenance of mental disorders and problems (Grawe, 2004). Individual case 

formulations based on Plan Analysis focus on means‐end relationships within intra- and 

interpersonal functioning, as well as on the therapeutic relationship (Caspar, 2022). In Plan 

Analysis, therapists analyse the patient’s verbal and nonverbal behavior and infer the 

instrumentality of behavior and experience, i.e., hypothetically underlying unconscious and 

conscious Plans. Based on Plan Analysis, case formulations explicate hypotheses about the 

individual etiology of the development and maintenance of patient problems and symptoms, 

including factors leading to inconsistency, patients’ (lacking) resources (e.g., strengths, 

preferences, favorable circumstances, etc.), as well as problems and potentials for the 

therapeutic relationship. In the treatment plan, the therapist explicates ways to implement 

transdiagnostic change factors, i.e., mastery, clarification, resource activation, and problem 

activation (Grawe, 1997; Probst et al., 2018). In this integrative CBT approach the therapist is 

free to choose between a whole range of standard CBT interventions as described in manuals 

as well as select other empirically supported interventions, as long as they are compatible 

with the requirements of the individual case and the therapeutic relationship (Grawe et al., 

1990; grosse Holtforth et al., 2008, 2011).  
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Effectiveness of this integrative CBT has been confirmed in a randomized controlled 

trial (Grawe et al., 1990). Another trial that compared this integrative therapy with traditional 

cognitive behavioral therapy, demonstrated similar results, but superior effects in patients 

with higher levels of symptom distress (grosse Holtforth et al., 2011). 

Measures 

Baseline measures 

Symptom severity. To measure symptom severity, we used the Brief Symptom 

Inventory (BSI; Derogatis, 1993). The BSI is a 53-item self-reported measure that assess nine 

different dimensions of psychological distress (i.e., anxiety, depression, hostility, phobic 

anxiety, somatization, obsessive-compulsive, interpersonal sensitivity, paranoid ideation, and 

psychoticism). Items are rated on a 5-point Likert-like scale ranging from 0 (never) to 4 

(many times). Higher scores represent greater severity. The German version of the BSI used 

in this study presented adequate psychometric properties (Franke, 2000). In the current 

sample, the BSI showed good internal consistency with αs ranging from .66 (i.e., hostility 

symptoms and psychoticism symptoms) to .85 (i.e., depressive symptoms).  

Interpersonal problems. To measure interpersonal difficulties we used the Inventory 

of Interpersonal Problems 64 (IIP-64; Horowitz, Alden, Wiggins et al., 2000). The IIP-64 

evaluates interpersonal excesses (i.e., “I do too much X”) and inhibitions (i.e., “I have a hard 

time doing X”). The items are self-reported on a 5-point Likert scale ranging from 0 (not at 

all) to 4 (extremely). The items of the IIP-64 are organized in eight subscales representing 

different types of interpersonal problems (i.e., domineering, intrusive, overly nurturant, 

exploitable, submissive, socially avoidant, cold, and vindictive). The subscales enable the 

calculation of two meaningful (orthogonal) interpersonal dimensions of communion (i.e., the 

degree in which someone seeks close relationships, ranging from detached to overly nurturant 

behaviours) and agency (i.e., the degree in which someone seeks to be dominated by or to 
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dominate others, ranging from submissive to domineering behaviours). Furthermore, an 

overall interpersonal distress index can be computed based on the sum score of all the items, 

with higher scores representing greater interpersonal distress. The German version of the IIP-

64 is psychometrically valid and reliable (Horowitz et al., 2000). In the sample of the study, 

the overall interpersonal distress showed adequate internal consistency (α= .93). 

Emotion regulation. We used the Emotion Regulation Questionnaire (EMOREG; 

Znoj & Grawe, 2000), a 24-item self-report scale which measures the adaptive outcomes of 

well-functioning emotion regulation (i.e., different coping strategies). The items are rated on 

a 6-point Likert-type rating scale ranging from 1 (very untrue of me) to 6 (very true of me) 

and are organized into two subscales of adaptive forms of emotion management (emotional 

expression and emotional self-control; e.g., "When experiencing emotionally overwhelming 

situations, I often talk in depth about emotionally important topics") and two subscales of 

maladaptive forms of emotion regulation (emotional avoidance and emotional distort; e.g., 

"When experiencing emotionally overwhelming situations, often I am a person who moves 

and acts restlessly as a way of avoiding unpleasant thoughts and feelings"). The German 

version of the EMOREG showed good psychometric properties (Znoj & Grawe, 2000). In the 

present sample, the EMOREG showed adequate internal consistency ranging with alphas 

from .58 (e.g., emotional avoidance) to .82 (e.g., emotional self-control). 

Change expectations and fears. To measure expectations of psychotherapy 

outcomes, we used the Patient Questionnaire on Therapy Expectation and Evaluation 

(PATHEV; Schulte, 2005). The PATHEV is an 11-item questionnaire rated on 5-point 

Likert-like scales ranging from 1 (not true at all) to 5 (absolutely true). This self-report scale 

has three subscales: Hope of recovery (e.g., "I believe my problems can finally be solved"), 

fear of change (e.g., "From time to time I worry about all the things that will change once my 

problems have vanished"), and treatment suitability (e.g., "I've found the right therapy"). 



MACHINE LEARNING FOR PROCESSES EFFECTS 

13 

 

Positive perception of an adequate treatment, together with the hope for recovery and less 

fear of change are indications that the patient has a high expectation for his or her treatment. 

As in this sample we used the PATHEV as a baseline (i.e., pre-treatment) measure, we did 

not include the items of treatment suitability in the assessment. The German version of the 

PATHEV is psychometrically valid and reliable (Schulte, 2005). In the current sample, the 

PATHEV presented adequate internal consistency on Hope for change (𝛼 = .81) and Fear of 

change (𝛼 = .69). 

Processes measure 

Mastery and clarification. To measure therapist perceived mastery and clarification, 

we used the Bern-Post Session Report – Therapists Form (BPSR-T; Flückiger et al., 2010). 

The BPSR-T is evaluates psychotherapy processes immediately after a session based on 

Grawe’s model of change (Grawe, 1997). Items are rated on a 5-point Likert scale ranging 

from 0 (not at all) to 4 (exactly right). The BPSR-T includes subscales for mastery and 

clarification, assessed by three items each.  Sample items are: “Today I worked specifically to 

try to improve the patient's coping skills” (i.e., mastery) and “Today I have actively worked 

towards the patient being able to see his/her problems in new contexts” (i.e., clarification). 

Although there is a patient form of the BPSR, we decided to use the therapist version based 

on empirical studies showing lack of discriminant validity between mastery and clarification 

scales, when measured by the patient form (Rubel et al., 2017). Based on a function 

developed by Zimmermann (2015) to calculate multilevel reliability, the mastery and 

clarification subscales showed adequate internal consistency both at the between-patient (α 

mastery= .97, α clarification= .90) and at the within-patient level (α mastery= .89, α 

clarification= .68). 

Outcome measure 
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Well-being. The primary outcome measure for this study was the Bern Pre-Session 

Report (Tschacher & Ramseyer, 2009), the only outcome variable with session-by-session 

repeated measures available in this naturalistic sample. This self-reported measure, completed 

by the patient immediately before each session, has 11 items rated on a 7-point Likert scale 

ranging from -3 (not at all) to 3 (yes, exactly right). Items are distributed in two factors: 

patients’ wellbeing and patients’ motivation. The first factor (i.e., patients wellbeing) 

includes items such as “My symptoms / problems have improved since the last session” and 

“I feel better overall than I did at the time of the last therapy session”, and its considered a 

measure of micro-outcome (Tschacher & Ramseyer, 2009). For this study we used this 

subscale of patients’ wellbeing as the outcome variable for the models. In the current sample, 

the well-being measurement showed excellent internal consistency at the between-patient (α= 

.95) and the within-patient level (α= .84) (Zimmermann, 2015).  

Procedures 

Patients completed the baseline measures (i.e., BSI, IIP-64, EMOREG, PATHEV) 

during the initial assessment process. Then, during the first ten sessions of therapy, patients 

completed the Bern Pre-Session Report (i.e., including the well-being subscale) before each 

therapeutic session, while therapists completed the Bern Post-Session Report after each 

session (i.e., including the mastery and clarification subscales). 

Analytic strategy 

The analysis was conducted using a three-step approach, informed by previous 

literature on process-outcome prediction models (e.g., Gómez Penedo et al., 2022; Rubel et 

al., 2020). As a first step, we estimated patient-specific effects of each process (i.e., therapist 

perceived mastery and clarification) on outcome (i.e., well-being) during the first 10 sessions 

of treatment. As a second step, we trained different ML algorithms to predict those effects 

based on patients’ baseline characteristics. The rationale for this second step is to see if it is 
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possible to predict for each patient before they start therapy, which process may be most 

relevant to target. In the final step, we evaluated the potential clinical utility of the ML 

algorithms in a statistically independent test sample (hold-out sample). 

Estimating the effect of processes on outcome (step 1) 

To estimate the individual processes’ effects on outcome, we used Dynamic Structural 

Equation Models (DSEM; Asparouhov et al., 2018) within the software Mplus 8.8 (Muthén 

& Muthén, 1998-2022). DSEM is a generalization of time-series strategies to multilevel data. 

By using structural equation modelling and Bayesian estimation procedures, this method 

decomposes longitudinal data creating latent models for both between-patient components 

(i.e., comparing patients’ average scores across time) and within-patient components (i.e., 

modelling each patient’s fluctuations from their own average across time) (Hamaker et al., 

2018). At the within-patient level, it is possible to estimate lagged relationships between 

variables, both in terms of auto-regressive and cross-lagged effects (Hamaker et al., 2018).  

Thus, to estimate the processes effects on outcome, we followed recent literature that 

applied DSEM, computing separate models for each process (Gómez Penedo et al., 2022; 

Gómez Penedo et al., 2021; Rubel et al., 2019). In these models, at the within-patient level, 

variations in outcome in a given session are predicted by outcome variations in the previous 

session (i.e., auto-regressive effects) and process variations in the previous session (i.e., 

cross-lagged effects). On the other hand, process variations in a given session are predicted 

by process variations in the previous session (i.e., auto-regressive effects) and outcome 

variations in the same session (i.e., contemporaneous effect). The inclusion of this 

contemporaneous effect, rather than a cross-lagged effect of outcome on process, is usual 

when running DSEM in psychotherapy research due to the timing when process (i.e., after the 

session) and outcome (i.e., before the session) are usually measured (Rubel et al., 2019). 

Thus, equations of the models at the within-patient level were as follows:  
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Outcomeit = α1 + γ1 Outcomeit-1 + γ2 Processit-1 + ζOutcomeit  

Processit = α2 + γ3 Outcomeit + γ4 Processit-1+ ζProcessit 

Outcome variations for patient i at time t (Outcomeit) were predicted by patient i’s 

scores at time t-1 in both outcome (γ1) and mechanism (γ2), while the mechanism variations 

for patient i at time t (Processit) were predicted by patient i’s scores at time t in outcome (γ3) 

and by patient i’s scores at time t – 1 process (γ4). α1 and α2 represents the intercept from 

outcome and process equations, respectively.   

The inclusion of latent between-patients components in the models as covariates, 

allowed us to rule-out potential effects of stable patient characteristics as confounding 

variables when estimating the within-patients effects. Thus, this feature enhances the 

approximation to causal inferences when estimating the cross-lagged effect of the process on 

outcome.  

To perform Bayesian estimations, we used Mplus default non-informative priors, so 

that results were exclusively determined by empirical data (Rubel et al., 2019). Following 

procedures applied by Hamaker et al. (2018), to conduct the DSEM we used 50,000 iterations 

and two chains (i.e., first half of the chains were used for burn-in process and then discarded). 

Furthermore, we used a thinning of 10 iterations (i.e., 10% of the iterations were saved), 

meaning that results reported were based on 5000 iterations. The use of the first 10 sessions 

of treatment allowed us to reach the minimum of repeated measures required to conduct 

DSEM (see Schultzberg & Muthén, 2018). Considering that multilevel models reliably 

accommodate for missing data, mimicking an intent-to-treat approach, we did not need to 

impute data for DSEM in cases of missingness.  

The analysis provides mean estimates for each parameter (i.e., point estimates) and 

95% credibility intervals based on the posterior distribution to determine the significance of 

the parameters (i.e., when zero is not included within the interval). As effect sizes (ES) for 
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the cross-lagged effects, we used within-patient standardized coefficients interpreted based 

on Orth et al.'s (2022) norms: small ES = 0.03, medium ES = 0.07, and large ES = 0.12. Full 

Mplus script for the DSEM analyses are presented at OSF (osf.io/mv7kd). 

Developing algorithms to predict process effects on outcome (step 2) 

Once the DSEM models were performed, we extracted patient-specific estimations of 

each process’s effects on outcome which we refer to as relevance indices (i.e., indexing how 

relevant each process is for each patient’s progress), and which were then used as the 

dependent variable in the subsequent ML analyses.  

To develop and test the ML algorithms, we used the caret package (Kuhn, 2020) from 

the free software package R (R Core Team, 2022). These algorithms aimed to predict the 

relevance indices for therapist perceived mastery and clarification based on baseline patient 

characteristics. Although more baseline predictors were measured at the clinic, based on the 

sample size available for the study and a power calculation based on the method proposed by 

Riley et al., (2019), we set the amount of predictors to 29 (i.e., Age, Sex, Diagnoses 

[depressive disorder, anxiety disorder, adjustment disorder, eating disorder, posttraumatic-

stress disorder, obsessive-compulsive disorder, eating disorder, substance use disorder, 

personality disorder, other disorders], symptoms severity from BSI subscales [somatization, 

obsessive-compulsive, depressive, anxiety, hostility, phobic anxiety, paranoid ideation, 

psychoticism, interpersonal sensitivity, IIP-64 indexes [interpersonal distress, interpersonal 

agency, interpersonal communion], PATHEV subscales [hope for change, and fear of 

change], and EMOREG subscales [emotional expression, emotional self-control, emotional 

avoidance, and emotional distort]). Before running the models, all categorical predictors were 

dichotomised as -0.5 or 0.5, while all continuous variables were z-standardized. Considering 

that ML cannot handle missing data, in cases with missingness we applied a Random Forest 
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nonparametric imputation strategy, using the R package missForest (Stekhoven & Buhlmann, 

2012).  

As a common procedure in machine learning, before developing the algorithm we 

randomly split the sample in two sets: a training set comprising 2/3 of the total sample (n= 

407) and a test set consisting of the other 1/3 (n= 201). Algorithms were developed only in 

the training set, while the test set was held-out from this process, in order to use it to evaluate 

the performance of the algorithm in a sample that was not used to develop it (i.e., evaluating 

the generalizability of the algorithm and protecting against overfitting), the hold-out sample.  

To train the algorithms, we applied specific ML algorithm from different families of 

ML models: linear models (i.e., support vector machines), regularization models (i.e., elastic 

net), neural networks (i.e., neural networks), bayesian models (i.e., bayesian neural 

networks), and decision trees (i.e., random forest, model trees and extreme gradient 

boosting). To train the algorithms we used a resampling method called leave-one-out cross-

validation (LOOCV) strategy. In this internal cross-validation strategy, all the cases except 

one are used to train the algorithm and validate it in the hold-out case. The procedure is then 

iteratively repeated for all cases of the training set, estimating the average error of the model. 

To select the final algorithm for both processes, we compared the root mean square error 

(RMSE) of each model and selected the most parsimonious (i.e., best performing and less 

complex algorithm). Finally, the selected algorithms were then evaluated on the test set, by 

calculating Pearson's correlations between the estimated relevance indices predicted by the 

algorithm and the relevance indices computed with DSEM. The full R script to develop the 

ML algorithms is available in the OSF (osf.io/mv7kd). 

Evaluation of clinical utility (step 3) 

In order to evaluate the potential clinical utility of the ML algorithms, we developed a 

targeted prescription rule to establish whether the focus on mastery or clarification processes 
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may be advantageous for each patient. First, the final ML algorithms to predict the mastery-

outcome association (mastery relevance index) and the clarification-outcome association 

(clarification relevance index) were applied in the test sample cases to output two relevance 

indices for each patient. Second, a process relevance index (therapist perceived mastery vs. 

clarification) was computed by subtracting the mastery relevance index from the clarification 

relevance index. In this index that was standardized, negative values favoured a focus on the 

process of clarification and positive values favoured a focus on the process of mastery. Third, 

we applied the 1 standard deviation rule, following prior literature on targeted prescription 

(Delgadillo & Gonzalez Salas Duhne, 2019), in order to segment the distribution of the 

process relevance index into three groups: [a] a group of outliers where a focus on mastery 

would be indicated (a process relevance index at least 1 SD above the mean level); [b] a 

group of outliers where a focus on clarification would be indicated (a process relevance index 

at least 1 SD below the mean level); and [c] the group of cases closest to the mean (a process 

relevance index within 1 SD above/below mean), for whom a single process would not be 

strongly indicated. Finally, to check if the processes indicated were particularly relevant in 

the groups for which they were recommended (i.e., groups [a] and [b]), we calculated an 

empirical treatment focus index using the scores of therapists in the BPSR-T, across the first 

10 sessions of treatment. To calculate this empirical treatment focus index, we subtracted the 

standardized average level of clarification from the standardized average level of mastery 

(i.e., treatment focus index = Average level of mastery used – Average level of clarification 

used). This index, after standardization, represents the extent to which the focus of therapy 

mostly emphasized mastery (positive index) or clarification (negative index). Once we 

created this empirical treatment focus index, we tested if patients for whom one process was 

recommended, the use of that process (vs. the other) was associated with outcome. On the 

one hand, we tested if in patients for whom mastery was recommended (i.e., group [a]), there 
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was a significant positive correlation between treatment focus index and outcome (i.e., 

implying that greater use of mastery-oriented interventions was associated with better 

outcome in this group). Furthermore, we tested if in patients for whom clarification was 

recommended (i.e., group [b]), there was a significant negative correlation between treatment 

focus index and outcome (i.e., implying that greater use of clarification-oriented interventions 

were associated with better outcome in this group).To test these hypotheses, we used partial 

correlations, testing the association between treatment focus index with the outcome variable 

(i.e., well-being) at the end of session 10 and adjusting for baseline levels, separately for 

groups [a] and [b] which were classified using the ML-based targeted prescription rule.  

Results 

Sample descriptives 

In Table 1, we present means and standard deviations of all the continuous baseline 

predictors included in the models (with the exception of age, reported above). Regarding the 

processes of change, across the first ten sessions there was a mean therapist perceived 

mastery score of 2.10 (SD= 0.97) and a mean therapist perceived clarification score of 2.46 

(SD= 0.81) (theoretical ranges= 0 to 4). Additionally, across the first ten sessions of treatment 

patients had an average well-being (i.e., outcome) score of 0.40 (SD= 1.02) (theoretical range 

= -3 to 3). Across the first 10 sessions of therapy studied in this paper, the correlation 

between the therapy processes of mastery and clarification as measured from therapists’ 

perspective was r=.21. 

Mastery and clarification effects on outcome  

In the DSEM models with mastery as a covariate of outcome, we found a significant 

within-patient effect of therapist perceived mastery on subsequent outcome, Masteryt → 

Outcomet+1= 0.20, SD= 0.02, 95%CI [0.17, 0.23], p < .001. A positive deviation in mastery 

was associated with positive deviation in subsequent outcome. This magnitude of the effect of 

mastery on outcome (standardized at the within-patient level) represents a large effect size for 
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cross-lagged estimates (Orth et al., 2022). Furthermore, the contemporaneous effect of outcome 

on therapist perceived mastery was not statistically significant, Outcome t → Masteryt= 0.03, 

SD= 0.02, 95%CI [-0.001, 0.06], p = .054. The model explained 22% variance in outcome and 

23% variance in mastery. Unstandardized posterior means and credible intervals of the fixed 

and random effects of the DSEM with mastery as a predictor are presented in Table 2SM in 

the supplemental material.  

In the DSEM models with clarification as a covariate of outcome, we found a significant 

within-patient effect of therapist perceived clarification on subsequent outcome, Clarificationt 

→ Outcomet+1= 0.04, SD= 0.02, 95%CI [0.01, 0.07], p = .014. A positive deviation in 

clarification was associated with positive deviation in subsequent outcome. This magnitude of 

the effect of clarification, also standardized at the within-patient level, represented a small-to-

medium effect size (Orth et al., 2022). Additionally, the contemporaneous effect of outcome 

on therapist perceived clarification was not statistically significant, Outcomet → Clarificationt 

= 0.03, SD= 0.02, 95%CI [-0.003, 0.06], p = .068. The model explained 20% variance on 

outcome and 12% variance on clarification. Unstandardized posterior means and credible 

intervals of the fixed and random effects of the DSEM with clarification as a predictor are 

presented in Table 3SM in the supplemental material. 

Algorithms to predict mastery and clarification effects 

In Table 4SM from the supplemental material, we present the performance of the 

different algorithm-building strategies to predict patient-specific mastery and clarification 

effects on outcome during the first ten sessions of treatment in the training set. Considering 

that the difference in errors between the two best performing algorithms was very small, we 

selected elastic net (i.e., the second best-performing algorithm across both mechanisms) as 

the final model because it provides a more parsimonious and interpretable solution than 

Bayesian regularized neural network (i.e., the best-performing algorithm).  

When predicting therapist perceived mastery effects on outcome, the internal cross-

validation resulted on a final elastic net model with parameters α = 1 and λ = 0.003. In elastic 
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net, the parameter α sets the type of penalty while the parameter λ sets the strength of 

regularization (Friedman et al., 2010). An α = 1 implies that a L1 penalization was used 

consistent with a least absolute shrinkage and selection operator (LASSO) solution 

(Tibshirani, 2011). LASSO penalization shrinks some coefficients while it sets others to zero. 

Thus, it provides a parsimonious solution with less predictors than the ones included to 

develop the model. The final algorithm developed for mastery effects, included the following 

predictors: Anxiety-disorder diagnoses, adjustment disorder diagnoses, obsessive-compulsive 

disorder diagnoses, substance use disorder diagnoses, depressive symptoms [BSI], 

somatization symptoms [BSI], hope for change [PATHEV], emotional self-control 

[EMOREG], and emotional expression [EMOREG].  

When predicting therapist perceived clarification effects on outcome, the internal 

cross-validation resulted in a final elastic net model with parameters α = 1 and λ = 0.002, also 

consistent with LASSO solution. The predictors included in the final model were: Age, sex, 

eating disorder diagnoses, posttraumatic stress disorder diagnoses, personality disorder 

diagnoses, depressive disorder diagnoses, obsessive-compulsive disorder diagnoses, 

substance use disorder diagnoses, depressive symptoms [BSI], anxiety symptoms [BSI], 

somatization symptoms [BSI], obsessive-compulsive symptoms [BSI], phobic anxiety 

symptoms [BSI], paranoid ideation symptoms [BSI], emotional self-control [EMOREG], 

emotional distort [EMOREG], interpersonal distress [IIP-64], interpersonal communion [IIP-

64] and interpersonal agency [IIP-64]. 

When evaluating the performance of these algorithms in the test set, we found 

significant weak-to-moderate correlations between the predicted and the observed within-

patient effects of therapist perceived mastery (r=.18, p < .001) and clarification (r= .16, p= 

.02). 

Evaluation of clinical utility of the algorithms 
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To evaluate the clinical utility of the models, based on the individual relevance 

indices derivate from the algorithms, we developed a targeted prescription rule to establish 

whether the focus on mastery and/or clarification processes may be advantageous for each 

patient. Within the test set, in patients for whom the mastery process was indicated (14% of 

the sample) the treatment focus index was positively correlated with adjusted well-being at 

the end of session 10, with a medium effect size (r = .33, d = .70). As the treatment focus 

index represents the extent to which the focus of therapy mostly emphasized mastery 

(positive index) or clarification (negative index), this means that in the group where mastery 

was recommended a great emphasized on mastery (compared to the level of clarification) was 

associated with better outcome. On the other hand, in the group of patients for whom the 

algorithm indicated clarification (18% of the sample), there was a small but negative 

correlation of the treatment focus index with outcome (r = -.05, d = .10). Thus, although the 

association had a small effect size, the results showed that in the group where clarification 

was indicated, a greater level of clarification (compared to the level of mastery) was related 

to better outcome. 

Discussion 

The aim of this study was to develop a targeted prescription rule to recommend a 

focus on mastery or clarification therapy processes for each individual patient during the first 

ten sessions of psychotherapy. Results of the study showed significant effects for both, 

therapist perceived mastery and clarification on outcome during the first ten sessions of 

therapy. Elastic net algorithms with LASSO-consistent parameters, were selected as the final 

model, being parsimonious to predict both, the relevance index for mastery and clarification. 

When the algorithms were applied for treatment recommendations on the test set, the level of 

the processes used (i.e., mastery versus clarification levels during the first ten sessions) were 

differentially associated with treatment outcome when comparing the two recommendation 
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groups (i.e., mastery versus clarification indicated), although the best performance was 

presented in the mastery indicated group.   

The significant effects of both mastery and clarification found in this paper are 

consistent with previous studies reporting effects of these processes on psychotherapy 

outcome (i.e., Gómez Penedo et al., 2022, 2023; Rubel et al., 2017; C. Schwartz et al., 2018). 

Nevertheless, previous studies mostly focused on measuring these processes from the 

perspective of patients (e.g., C. Schwartz et al., 2018), and mainly used a compound construct 

(e.g., problem coping experiences) that merges mastery and clarification (e.g., Gómez Penedo 

et al., 2022; Rubel et al., 2017). In contrast, this study focused on mastery and clarification 

from the perspective of therapists, thus being conceptualized as a therapist-reported process 

of change. Consequently, this study provided evidence to support both, mastery and 

clarification-oriented interventions as change processes in psychotherapy. This means that 

therapists should generally use interventions aiming to enhance patients’ ability to cope with 

their problems (i.e., mastery) and their understanding of the sources and consequences of 

their problems (i.e., clarification). However, there was considerable between-patient 

heterogeneity in the effect size attributable to these different processes. 

In the development of the ML algorithm for therapist perceived mastery and 

clarification effects, the final algorithms selected (i.e., elastic net with parameters consistent 

with a LASSO model;  Tibshirani, 2011), has been widely used in psychotherapy research 

recent years (e.g., Delgadillo et al., 2017; 2022; Furukawa et al., 2020; Kilcullen et al., 2021). 

As LASSO shrinks the coefficients of some of the predictors to zero, it enables the 

development of a parsimonious (i.e., less complex) algorithm, enhancing interpretability and 

further implementation. The variables selected as predictors of mastery relevance included 

diagnostic information, symptom severity, hope for change, and emotion regulation 

capacities, while the algorithms for clarification relevance included demographic 
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information, diagnostic information, clinical severity, emotion regulation and interpersonal 

problems. The different variables included in both algorithms implied that the patient level 

characteristics that might be relevant to predict mastery and clarification effects varies 

between processes.  

Although the results of the study showed that both algorithms resulted in significant 

correlations between the observed and estimated effect of the processes, the size of the 

correlations computed on the test set were weak-to-moderate. This finding raises concerns 

regarding the performance of the algorithm and generalizability of the results, leaving room 

for improvement. Future research might need to find assessment, methodological, and 

analytical alternatives to enhance the predictive precision of these process-level algorithms.  

Other than the studies by Lutz, Deisenhofer, et al. (2022) and Gómez Penedo et al. 

(2022), which developed algorithms to predict problem coping experiences, we are not aware 

of other studies that predict specifically mastery and clarification effects on psychotherapy 

outcome. The present study extends beyond earlier research by developing individual 

algorithms for each process of change. Furthermore, the two processes were measured from 

the therapists’ perspective (i.e., not from the patient’s perspective). Thus, the prediction 

models might provide relevant information for treatment personalization. This strategy might 

represent an easier to implement alternative compared to other treatment selection models 

that are conceptualized at the “package” level rather than technique or process level (e.g., 

Cohen et al., 2020), considering that the therapist could draw from common interventions 

used in different theoretical frameworks without the need of being extensively trained in 

diverse treatment packages. This approach could enhance precision in mental health and data-

informed psychological therapy (Lutz, Schwartz, et al., 2022).  

To create recommendation criteria, we used the two algorithms to compute individual 

relevance indices for the processes, while we computed an empirical treatment focus index to 
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test it. Although overall results suggest the clinical utility of the algorithms to provide 

treatment recommendations at the process level, they seem to be specifically relevant for 

mastery recommendations. Thus, as mastery-oriented interventions were recommended for a 

small group of participants of the whole test set (i.e., 14%), the clinical utility of the 

algorithms should be interpreted cautiously. The small correlation of the treatment focus 

index with outcome in the clarification-indicated group, might also suggest that mastery is a 

common process across most patients. Thus, in this group clarification-oriented interventions 

might be recommended but in combination with mastery-oriented interventions.   

This study has a number of limitations that would need to be addressed in future 

research. First, reliability of some of the measures used for baseline (e.g., subscales of BSI, 

EMOREG and PATHEV) and process assessment (e.g., clarification measure at the within-

patient level) were low, increasing the potential noise in the models and undermining their 

precision. Second, the process variables were measured using self-reports by the therapists, 

rather than using observer-based measures. Although the therapist version of the BPSR has 

shown evidence of concurrent validity correlating with patients reports (Flückiger et al., 

2010), there are no previous studies determining how it correlates with observer-based 

measures. Furthermore, the use of therapist reports might raise concerns regarding potential 

self-perception biases and call for replications of this study using raters to code therapists’ 

activities. However, the information based on therapist perspective might also have 

advantages in terms of implementation (e.g., enhancing therapists’ belief and adherence to 

recommendations). Third, to establish processes effects we did not use an experimental 

design but rather naturalistic data routinely collected at an outpatient clinic (see e.g., 

Allemand & Flückiger, 2020). Although this design might enhance the ecological validity of 

the study, it does not provide the necessary evidence to support strong causal inferences 

regarding mastery and clarification effects on outcome. Nevertheless, in this study we used 
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cross-lagged DSEM models that are currently considered the most suitable strategy to 

approximate causal inferences in the context of observational data (Falkenström et al., 2022; 

Hamaker et al., 2018). Forth, as so far DSEM does not support three-level models (but only 

two-level models), we were not able to account for therapist effects when estimating mastery 

and clarification effects. This might raise concerns for the estimations of the parameters. 

Nevertheless, a simulation study had also suggested that in models focused on within-patient 

processes effects, including therapist effects does not improve model performance and might 

even increase bias of the estimates (Falkenström et al., 2020). Furthermore, the 

randomization to create the training and test set was done at the patient level, not accounting 

for the treating therapists. This might also had the risk of biases in the algorithms developed, 

even though both the predictors (patient characteristics) and the dependent variable (patient 

individual process-outcome association) in the models were patient-specific, with small to 

null contributions expected from therapists variables. Fifth, there might be some relevant 

predictors of mastery versus clarification effects that were not included within the initial 

screening and, thus, on the algorithms. Finally, a recent simulation study had shown that 

using individual estimates derived from multilevel models as predictors in a two-step 

approach, might reduce reliability of the estimates compared to a one-step approach (Liu et 

al., 2021). Although in this study we used these individual estimates as an outcome variable 

rather than as a predictor, there might be still concerns about the reliability of these individual 

coefficients. However, in the current state-of-the-art there are only few ML algorithms that 

can be conducted in a multilevel context (e.g., Fokkema et al., 2021) to run the models of the 

study on a single step. A greater development of ML within multilevel approaches might be 

necessary to develop and test different ML algorithms in a single step method, enhancing the 

predictive capacity and generalizability of the final algorithms. Nevertheless, the complexity 

of these models might make them too computational insensitive, thus being unfeasible.  
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Besides these limitations, the present study provides evidence to support the use of 

ML algorithms to predict differential processes effects of therapist perceived mastery and 

clarification in psychotherapy. These findings might help to develop and implement 

personalization criteria to assist therapists with different backgrounds and theoretical 

frameworks to base their decision-making regarding the use of mastery and clarification 

interventions.  
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Table 1      

Descriptive results of the average scores of the different baseline scales 

and subscales that were included as predictors (n = 608). 

 

 Measures         

       Scales/Subscales Mean (SD)    
       

 BSI 
    

     Somatization symptoms 0.72 (0.75)   

     Obsessive-compulsive symptoms 1.37 (0.88)   

     Depressive symptoms  1.35 (0.95)   

     Anxiety symptoms 1.18 (0.88)   

     Hostility  0.94 (0.70)   

     Phobic anxiety symptoms 0.70 (0.86)   

     Paranoid ideation  0.86 (0.77)   

     Psychoticism  0.90 (0.75)   

     Interpersonal sensitivity 1.39 (0.95)   

 IIP-64 
  

 
  

     Interpersonal distress 1.50 (0.49)   

     Interpersonal agency -0.52 (0.45)   

     Interpersonal communion 0.24 (0.46)   

 PATHEV 
  

 
  

     Hope for of change 3.92 (0.75)   

     Fear of change 1.71 (0.78)   

 EMOREG 
  

 
  

     Emotional expression 3.75 (1.28)   

     Emotional self-control 3.21 (0.86)   

     Emotional avoidance 3.27 (0.87)   

     Emotional distort  3.47 (1.05)   

Note. SD = Standard Deviation; BSI = Brief Symptom Inventory; IIP64 
= Inventory of Interpersonal Problems - 64-item version; PATHEV = 
Patients' Therapy Expectation and Evaluation Questionnaire; EMOREG 
= Emotion Regulation Questionnaire. 
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