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A B S T R A C T

In hot polycrystalline materials, when a vertical flat grain boundary meets a horizontal surface
the grain boundary forms a groove in the surface. Mathematically modelling features of
such thermal grooving mechanism is therefore very important in characterizing polycrystalline
materials composed of tiny grains intersecting an external free surface. With this aim in mind,
we formulate and investigate a novel inverse problem of reconstructing the unknown time-
dependent source term entering the fourth-order parabolic equation of thermal grooving by
surface diffusion from a given integral observation. We formulate and prove in Theorems 2.3–
2.7 that this linear inverse problem is well-posed. However, in practice, the ideal regularity of
data under which the inverse source problem is stable is never satisfied due to the inherent
non-smoothness of the measurement. Consequently, this leads to the inverse problem with
raw data becoming ill-posed. In order to obtain accurate and stable solutions, we develop
and compare two numerical methods, namely, a time-discrete method and an optimization
method. We obtain error estimates and convergence rates for the time-discrete method. For the
optimization method, an objective functional, which is proved to be Fréchet differentiable, is
introduced and the conjugate gradient method (CGM), regularized by the discrepancy principle,
is developed to compute the minimizer yielding the source term. The results of two numerical
tests illustrate the performance of the two methods for both exact and noisy measured data.

1. Introduction

Fourth-order parabolic partial differential equations are utilized to explain the quantitative theory of thermal grooving through
surface diffusion mechanism [1], the free vibration in beams and shafts [2], the epitaxial thin film growth [3], the long range effect
of insects dispersal [4], etc. They are also applied in image processing to balance the trade-off between noise removal and edge
preservation [5].

Higher 2𝑚-order parabolic inverse source problems given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡 + (−1)𝑚𝑎(𝑥, 𝑡)𝜕2𝑚𝑥 𝑢 = 𝑔(𝑥, 𝑡)𝑓 (𝑥, 𝑡) + ℎ(𝑥, 𝑡), (𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇 ) =∶ 𝑄𝑇 ,

𝜕𝑗𝑥𝑢|𝑥∈{0,1} = 0, 𝑗 = 0, 𝑚 − 1, 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ (0, 1),

(1.1)
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where 𝑚 ∈ N∗, were considered to determine the unknown time-dependent source term 𝑓 (𝑥, 𝑡) = 𝑓 (𝑡) in [6] or space-dependent
ource term 𝑓 (𝑥, 𝑡) = 𝑓 (𝑥) in [7], from a given integral observation. Under certain assumptions, the authors proved the well-posedness
f the weak solutions to both these inverse problems even in the degenerate case when the coefficient 𝑎(𝑥, 𝑡) may vanish on a zero-

measure set. The determination of the unknown source term in fourth-order hyperbolic equations has also been investigated. For
instance, the time- or space-dependent load in a vibrating Euler–Bernoulli beam was reconstructed from boundary measurements
in [8,9] and from final time overdetermination in [10,11], respectively. Also, the shear force in an Euler–Bernoulli cantilever
beam was obtained from measured boundary deflection or bending moment in [12,13], respectively. We finally mention that the
identification of the both space- and time-dependent force 𝑓 (𝑥, 𝑡) in the Euler–Bernoulli equation from its space boundary values
nvestigated in [14] is too much to hope for since the inverse problem in this general case is seriously underdetermined.

As a practical application related to characterizing the strength and stability of polycrystalline materials, we consider the study
f a groove that forms when a vertical grain boundary meets a horizontal surface, which occurs, e.g., in the thermal treatment
nd metallization of electronic components of power modules, [15]. Recently, the time-dependent Mullins’ coefficient 𝑎(𝑡) in such
problem modelled by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡 + 𝑎(𝑡)𝑢𝑥𝑥𝑥𝑥(𝑥, 𝑡) = ℎ(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝑢𝑥(0, 𝑡) = 𝑢𝑥(1, 𝑡) = 𝑢𝑥𝑥𝑥(0, 𝑡) = 𝑢𝑥𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ (0, 1),

(1.2)

was reconstructed along with 𝑢(𝑥, 𝑡) from the measurement of the profile 𝑢(𝑥0, 𝑡) = 𝐸(𝑡) for 𝑡 ∈ [0, 𝑇 ] at a selected fixed point
𝑥0 ∈ [0, 1], see [16], or from the total mass integral condition ∫ 1

0 𝑢(𝑥, 𝑡)𝑑𝑥 = E(𝑡) for 𝑡 ∈ [0, 𝑇 ], see [17]. Also, the identification of
the pair (𝑝(𝑡), 𝑢(𝑥, 𝑡)) satisfying the inverse problem

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢𝑡 + 𝑎(𝑡)𝑢𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 𝑝(𝑡)𝑢 + ℎ(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝑢𝑥(0, 𝑡) = 𝑢(1, 𝑡) = 𝑢𝑥𝑥𝑥(0, 𝑡) = 𝑢𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) + ∫ 𝑇0 𝑢(𝑥, 𝑡)𝑑𝑡 = 𝜙(𝑥), 𝑥 ∈ (0, 1),

𝑢(0, 𝑡) = 𝜈(𝑡), 𝑡 ∈ [0, 𝑇 ],

(1.3)

was investigated theoretically and numerically in [18,19], respectively.
In this paper, the thermal grooving coefficient 𝑎 = 𝐷𝑠𝛾𝑠𝜔𝑉 ∕(𝑘𝐵T), where 𝐷𝑠 is the surface diffusivity, 𝛾𝑠 is the surface energy,

𝜔𝑉 is the atomic volume, T is the absolute temperature and 𝑘𝐵 is the Boltzmann constant, is assumed to be known and constant,
and, for simplicity, taken to be equal to unity. Instead, the right-hand side of the governing equation is assumed to contain a heat
source whose time-dependent intensity is unknown and has to be determined. We consider therefore the mathematical model for
thermal grooving given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥 = 𝑓 (𝑡)𝑔(𝑥, 𝑡) + ℎ(𝑥, 𝑡) =∶ F(𝑥, 𝑡) (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 𝑢𝑥𝑥(0, 𝑡) = 𝑢𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ (0, 1),

(1.4)

where 𝑓 , 𝑔 and ℎ are the source term components, and 𝜙 is the initial profile from which the groove grows. The boundary conditions
in (1.4) are those associated to simply-supported beams, but clamped-beam boundary conditions may also be considered [20].

As mentioned before, the fourth-order partial differential equation in (1.4) models the grain boundary small grooving by surface
diffusion which occurs at moderate temperature when a vertical flat grain boundary meets a horizontal flat surface [1,21,22]. Surface
diffusion is also the principal mechanism of mass transport at certain metal (e.g. gold) surfaces [23]. The simpler mased transport
based on evaporation-condensation at the surface of other metals (e.g. magnesium) is not considered herein. More details on the
physical background of thermal grooving can be found in [24].

The direct problem (1.4) consists of obtaining the thermal grooving profile 𝑢(𝑥, 𝑡) when the source terms and initial status are
specified. In contrast, the inverse source problem consists of obtaining both 𝑢(𝑥, 𝑡) and the time-dependent source term 𝑓 (𝑡) in (1.4)
from the integral observation of the mass/energy of the system, given by

∫

1

0
𝜔(𝑥)𝑢(𝑥, 𝑡)𝑑𝑥 = 𝜓(𝑡), 𝑡 ∈ (0, 𝑇 ), (1.5)

where 𝜔(𝑥) is a given weight function. Such non-local mass/energy specification was previously considered in many studies in heat
transfer for the parabolic heat equation [25–29]. Of course, one cannot identify the most general source 𝐹 (𝑥, 𝑡) in (1.4) from the time-
dependent measurement (1.5) since we can always add the function �̃�(𝑥, 𝑡) = 𝑡𝑥3(1 − 𝑥)3 cos(𝜋𝑥)∕𝜔(𝑥), (assuming 𝐶4[0, 1] ∋ 𝜔(𝑥) ≠ 0
for all 𝑥 ∈ [0, 1]) to 𝑢(𝑥, 𝑡) and obtain a new solution (𝑢(𝑥, 𝑡) + �̃�(𝑥, 𝑡), 𝐹 (𝑥, 𝑡) + �̃�𝑡(𝑥, 𝑡) + �̃�𝑥𝑥𝑥𝑥(𝑥, 𝑡)) to (1.4) and (1.5).

In this paper, the significant contribution to the literature is that we fully solve in terms of both theory and numerics the newly
formulated inverse source problem given by Eqs. (1.4) and (1.5). This problem needs to be solved in order to identify the unknown
internal forces acting on a heated polycrystal and understand better the thermal grooving formation. Based on the arguments
in [6,30], we investigate the existence and uniqueness of the solution using the contraction mapping theorem. Afterwards, the
2
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continuous dependence of 𝑓 (𝑡) on the measurement and input data (1.5) is proved and a stability estimate is established. Some
alternative arguments are also possible based on the semi-group theory [30] for the fourth-order linear partial differential operator
𝜕𝑡 + 𝜕𝑥𝑥𝑥𝑥 defined in (1.4).

We next consider the numerical determination of the unknown source term 𝑓 (𝑡) from the integral observation (1.5). The time-
iscrete method [31] is introduced to obtain the unknown source term. We first obtain error estimates for this method for exact
easured data. Then, using the cubic spline function method [32], error estimates for noisy data are also obtained. As a second
ethod, the conjugate gradient method (CGM) is developed for minimizing the Tikhonov regularization functional in order to obtain
stable solution to the linear but ill-posed inverse source problem. We finally mention that although, due to physical considerations,

he models given in Eqs. (1.2)–(1.4) are one-dimensional in space, mathematically they also make sense in higher dimensions
nd some of the techniques developed in this paper are extendable to these situations; furthermore the unknown coefficients 𝑎(𝑡),
(𝑡) or 𝑓 (𝑡) in (1.2)–(1.4) are time-dependent only and therefore their identifications are, in principle, not affected by the space
ulti-dimensionality.

The paper is organized as follows: the well-posedness of the inverse problem (1.4) and (1.5) is investigated in Section 2. The
ime-discrete method is presented in Section 3 with its error estimate. The minimizer of the objective functional is utilized to
pproximate its solution in Section 4, and the CGM is established based on the Fréchet derivative. Then two numerical examples
re considered in Section 5. Finally, Section 6 highlights the conclusions of this paper.

. Mathematical analysis

Denote 𝑉 ∶= 𝐻2(0, 1) ∩𝐻1
0 (0, 1) and 𝑊 ∶= {𝑤 ∈ 𝐻4(0, 1) ∣ 𝑤(0) = 𝑤(1) = 𝑤′′(0) = 𝑤′′(1) = 0}.

2.1. Direct problem

Using [33, Proposition 2.1] we obtain the following theorem giving the well-posedness of the direct problem (1.4).

Theorem 2.1. Let 𝑓 ∈ 𝐿2(0, 𝑇 ), 𝑔 ∈ 𝐿∞(0, 𝑇 ;𝐿2(0, 1)) and ℎ ∈ 𝐿2(𝑄𝑇 ).
(i) If 𝜙 ∈ 𝐿2(0, 1), then the direct problem (1.4) has a unique solution 𝑢 ∈ 𝐶([0, 𝑇 ];𝐿2(0, 1)) ∩𝐿2(0, 𝑇 ;𝑉 ) =∶  . Moreover, there exists

𝐶 = 𝐶(𝑇 ) > 0 such that

‖𝑢‖𝐿∞(0,𝑇 ;𝐿2(0,1))∩𝐿2(0,𝑇 ;𝑉 ) ≤ 𝐶
(

‖𝑓𝑔 + ℎ‖𝐿2(𝑄𝑇 ) + ‖𝜙‖𝐿2(0,1)

)

. (2.1)

(ii) If 𝜙 ∈ 𝑉 , then the direct problem (1.4) has a unique solution 𝑢 ∈ 𝐶([0, 𝑇 ];𝑉 ) ∩𝐿2(0, 𝑇 ;𝑊 ). Moreover, there exists 𝐶 = 𝐶(𝑇 ) > 0 such
that

‖𝑢‖𝐿∞(0,𝑇 ;𝑉 )∩𝐿2(0,𝑇 ;𝑊 ) ≤ 𝐶
(

‖𝑓𝑔 + ℎ‖𝐿2(𝑄𝑇 ) + ‖𝜙‖𝑉
)

. (2.2)

Remark 2.1. Theorem 2.1 for the problem (1.4) with homogeneous boundary conditions can be extended to the problem with
inhomogeneous boundary conditions given by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥 = 𝑓 (𝑡)𝑔(𝑥, 𝑡) + ℎ(𝑥, 𝑡) =∶ F(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝑢(0, 𝑡) = 𝜇1(𝑡), 𝑢(1, 𝑡) = 𝜇2(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢𝑥𝑥(0, 𝑡) = 𝜇3(𝑡), 𝑢𝑥𝑥(1, 𝑡) = 𝜇4(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ (0, 1),

(2.3)

where (𝜇𝑖)𝑖=1,4 are the boundary data.

heorem 2.2. Letting the assumptions of Theorem 2.1 be satisfied along with 𝜙 ∈ 𝐿2(0, 1), and supposing that 𝜇𝑖 ∈ 𝐻1(0, 𝑇 ) for 𝑖 = 1, 4,
then there exists a unique solution 𝑢 ∈ 𝐶([0, 𝑇 ];𝐿2(0, 1)) ∩𝐿2(0, 𝑇 ;𝐻2(0, 1)) =∶ ̃ to the direct problem (2.3), which moreover satisfies the
following estimate:

‖𝑢‖𝐿∞(0,𝑇 ;𝐿2(0,1))∩𝐿2(0,𝑇 ;𝐻2(0,1)) ≤ 𝐶
(

‖𝑓𝑔 + ℎ‖𝐿2(𝑄𝑇 ) + ‖𝜙‖𝐿2(0,1) + ‖(𝜇1, 𝜇2, 𝜇3, 𝜇4)‖[𝐻1(0,𝑇 )]4
)

. (2.4)

Proof. We extend the proof of [33, Proposition 2.4]. Consider the auxiliary (or lifting, or satisfier) function

𝜌(𝑥, 𝑡) ∶= (1 − 𝑥)𝜇1(𝑡) + 𝑥𝜇2(𝑡) +
(

−𝑥
3

6
+ 𝑥2

2
− 𝑥

3

)

𝜇3(𝑡) +
(

𝑥3

6
− 𝑥

6

)

𝜇4(𝑡), (2.5)

hich satisfies the boundary conditions of the problem (2.3). Defining

𝑣 ∶= 𝑢 − 𝜌, 𝐿2(0, 1) ∋ 𝜑 ∶= 𝜙 − 𝜌(𝑥, 0), 𝐿2(𝑄 ) ∋ F ∶= F − 𝜓 , (2.6)
3

𝑇 1 𝑡
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problem (2.3) recasts as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑣𝑡 + 𝑣𝑥𝑥𝑥𝑥 = F1(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢𝑥𝑥(0, 𝑡) = 0, 𝑢𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝜑(𝑥), 𝑥 ∈ (0, 1).

(2.7)

From part (i) of Theorem 2.1 it follows that the direct problem (2.7) has a unique solution 𝑣 ∈ 𝐶([0, 𝑇 ];𝐿2(0, 1))∩𝐿2(0, 𝑇 ;𝑉 ), which
satisfies

‖𝑣‖𝐿∞(0,𝑇 ;𝐿2(0,1))∩𝐿2(0,𝑇 ;𝑉 ) ≤ 𝐶
(

‖F1‖𝐿2(𝑄𝑇 ) + ‖𝜑‖𝐿2(0,1)

)

. (2.8)

Since 𝜓 satisfies the inhomogeneous boundary conditions in (2.3), it follows that 𝑣 + 𝜌 = 𝑢 ∈ 𝐶([0, 𝑇 ];𝐿2(0, 1)) ∩𝐿2(0, 𝑇 ;𝐻2(0, 1)) is
a solution to problem (2.3). Now, because of the continuous injection 𝐻1(0, 𝑇 ) ↪ 𝐿∞(0, 𝑇 ), it can be obtained that

‖F1‖𝐿2(𝑄𝑇 ) ≤ 𝐶
(

‖F‖𝐿2(𝑄𝑇 ) + ‖(𝜇1, 𝜇2, 𝜇3, 𝜇4)‖[𝐻1(0,𝑇 )]4
)

,

‖𝜑‖𝐿2(0,1) ≤ 𝐶
(

‖𝜙‖𝐿2(0,1) + ‖(𝜇1, 𝜇2, 𝜇3, 𝜇4)‖[𝐻1(0,𝑇 )]4
)

,

which combined with (2.8) yield (2.4). Finally, inequality (2.1) and the linearity of the problem yields the uniqueness of solution. □

2.2. Inverse problem

The existence and uniqueness of the solution to the inverse problem given by Eqs. (1.4) and (1.5) can be obtained under the
following conditions:

(a) 𝜔 ∈ 𝑊 ;
(b) 𝜓 ∈ 𝐻1(0, 𝑇 ) satisfies the compatibility condition ∫ 1

0 𝜔(𝑥)𝜙(𝑥)𝑑𝑥 = 𝜓(0);
(c) there exists a positive constant 𝑔0 satisfying |

|

|

∫ 1
0 𝜔(𝑥)𝑔(𝑥, 𝑡)𝑑𝑥

|

|

|

≥ 𝑔0 > 0 for all 𝑡 ∈ (0, 𝑇 ).

Theorem 2.3. Suppose conditions (a)–(c) and the assumptions of Theorem 2.1 hold, and that 𝜙 ∈ 𝐿2(0, 1). Then, there exists a unique
solution (𝑢, 𝑓 ) ∈  ×𝐿2(0, 𝑇 ) to the inverse problem given by Eqs. (1.4) and (1.5). Moreover, 𝑓 depends continuously upon the observation
𝜓(𝑡) and the input data ℎ(𝑥, 𝑡) and 𝜙(𝑥), and satisfies the estimate

‖𝑓‖𝐿2(0,𝑇 ) ≤
𝐾
𝑔0

∞
∑

𝑛=0

𝜅𝑛𝑇 𝑛∕2

(𝑛!)1∕2
, (2.9)

here 𝐾 and 𝜅 are two positive constants explicitly given by

𝐾 = (𝑇 ‖𝜔′′′′
‖𝐿2(0,1) + ‖𝜔‖𝐿2(0,1))‖ℎ‖𝐿2(𝑄𝑇 ) +

√

𝑇 ‖𝜔′′′′
‖𝐿2(0,1)‖𝜙‖𝐿2(0,1) + ‖𝜓‖𝐻1(0,𝑇 ),

𝜅 =

√

𝑇
𝑔0

‖𝑔‖𝐿∞(𝑄𝑇 )‖𝜔
′′′′

‖𝐿2(0,1).

roof. Multiplying the first equation in (1.4) by 𝜔(𝑥), integrating the result over [0, 1] and using the homogeneous boundary
conditions and conditions (a) and (b), we obtain

𝑓 (𝑡) = 1
𝐺(𝑡)

(

∫

1

0
𝜔′′′′(𝑥)𝑢(𝑥, 𝑡)𝑑𝑥 + 𝜓 ′(𝑡) −𝐻(𝑡)

)

(2.10)

where

𝐺(𝑡) = ∫

1

0
𝜔(𝑥)𝑔(𝑥, 𝑡)𝑑𝑡, 𝐻(𝑡) = ∫

1

0
𝜔(𝑥)ℎ(𝑥, 𝑡)𝑑𝑥. (2.11)

The approach of transferring derivatives to the weight function 𝜔 in (1.5) originates back to [30] and it has been used elsewhere
in [34,35].

Based on (2.11), let us introduce the operator  ∶ 𝐿2(0, 𝑇 ) → 𝐿2(0, 𝑇 ) by the formula

(𝑓 ) = 1
𝐺(𝑡)

(

∫

1

0
𝜔′′′′𝑢(𝑓 )𝑑𝑥 + 𝜓 ′(𝑡) −𝐻(𝑡)

)

, (2.12)

where 𝑢 = 𝑢(𝑓 ) ∈  is the unique solution of the direct problem (1.4) for a given 𝑓 ∈ 𝐿2(0, 𝑇 ), which implies that (2.10) can be
written as the following fixed point operator equation:

𝑓 = (𝑓 ). (2.13)
4
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We now prove that there exists a positive integer 𝑛0 for which the operator 𝑛0 is a contraction operator on 𝐿2(0, 𝑇 ). For this,
let 𝑓 (1), 𝑓 (2) ∈ 𝐿2(0, 𝑇 ), and let 𝑢(1)(𝑥, 𝑡), 𝑢(2)(𝑥, 𝑡) be the solutions to the direct problem (1.4) corresponding to 𝑓 (1), 𝑓 (2), respectively.
Then, the differences 𝑤(𝑥, 𝑡) ∶= 𝑢(1)(𝑥, 𝑡) − 𝑢(2)(𝑥, 𝑡) and 𝐹 (𝑡) ∶= 𝑓 (1)(𝑡) − 𝑓 (2)(𝑡) satisfy the following problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤𝑡 +𝑤𝑥𝑥𝑥𝑥 = 𝐹 (𝑡)𝑔(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝑤(0, 𝑡) = 𝑤(1, 𝑡) = 𝑤𝑥𝑥(0, 𝑡) = 𝑤𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑤(𝑥, 0) = 0, 𝑥 ∈ (0, 1).

(2.14)

By part (i) of Theorem 2.1, there exists a unique solution 𝑤(𝑥, 𝑡) ∈  to the problem (2.14). Multiplying the first equation in (2.14)
by 𝑤(𝑥, 𝑡), and integrating the result over (0, 1), we have

1
2
𝑑
𝑑𝑡

‖𝑤(⋅, 𝑡)‖2
𝐿2(0,1)

+ ‖𝑤𝑥𝑥(⋅, 𝑡)‖2𝐿2(0,1)
= ∫

1

0
𝐹 (𝑡)𝑔(𝑥, 𝑡)𝑤(𝑥, 𝑡)𝑑𝑥 ≤ |𝐹 (𝑡)|‖𝑔(⋅, 𝑡)‖𝐿2(0,1)‖𝑤(⋅, 𝑡)‖𝐿2(0,1), 𝑡 ∈ [0, 𝑇 ], (2.15)

hich implies that
𝑑
𝑑𝑡

‖𝑤(⋅, 𝑡)‖𝐿2(0,1) ≤ |𝐹 (𝑡)|‖𝑔(⋅, 𝑡)‖𝐿2(0,1), 𝑡 ∈ [0, 𝑇 ].

This inequality yields that

‖𝑤(⋅, 𝑡)‖𝐿2(0,1) ≤ ‖𝑔‖𝐿∞(0,𝑇 ;𝐿2(0,1)) ∫

𝑡

0
|𝐹 (𝜏)|𝑑𝜏, 𝑡 ∈ [0, 𝑇 ]. (2.16)

Consequently, for any 𝑡 ∈ [0, 𝑇 ], using (2.16), we obtain

‖(𝑓 (1)) −(𝑓 (2))‖𝐿2(0,𝑡) =

(

∫

𝑡

0

|

|

|

|

|

1
𝐺(𝜏) ∫

1

0
𝜔′′′′(𝑥)𝑤(𝑥, 𝜏)𝑑𝑥

|

|

|

|

|

2

𝑑𝜏

)1∕2

≤ 1
𝑔0

‖𝜔′′′′
‖𝐿2(0,1)

(

∫

𝑡

0
‖𝑤(⋅, 𝜏)‖2

𝐿2(0,1)
𝑑𝜏

)1∕2

≤ 𝜅
(

∫

𝑡

0
‖𝐹‖2

𝐿2(0,𝜏)
𝑑𝜏

)1∕2

≤ 𝜅
√

𝑡‖𝑓 (1) − 𝑓 (2)
‖𝐿2(0,𝑡). (2.17)

Then, for any 𝑛 ∈ N∗, using mathematical induction and (2.17), we can obtain that

‖𝑛(𝑓 (1)) −𝑛(𝑓 (2))‖𝐿2(0,𝑇 ) ≤
(

𝜅2𝑛𝑇 𝑛

𝑛!

)1∕2
‖𝑓 (1) − 𝑓 (2)

‖𝐿2(0,𝑇 ), (2.18)

where the origin of 𝑛! in the denominator of (2.17) comes from integrating 𝑡𝑛−1∕(𝑛− 1)! from 0 to 𝑡, in the induction process. Since
there exists a positive integer 𝑛0 such that

𝜅2𝑛0𝑇 𝑛0
𝑛0!

< 1, (2.19)

his yields that the operator 𝑛0 is a contraction operator on 𝐿2(0, 𝑇 ). Then the operator 𝑛0 has a unique fixed point 𝑓 ∈ 𝐿2(0, 𝑇 ).
From this and using that 𝑛0 ((𝑓 )) = 𝑛0+1(𝑓 ) = (𝑛0 (𝑓 )) = (𝑓 ), it follows that (𝑓 ) = 𝑓 , hence has the fixed point 𝑓 .

niqueness of this fixed point also follows immediately.
For any initial guess 𝑓 0 ∈ 𝐿2(0, 𝑇 ), we can use the method of successive approximations given by 𝑓 𝑛+1 = (𝑓 𝑛) for 𝑛 ∈ N. We

ewrite 𝑛 as 𝑛 = 𝑚𝑛0 + 𝑛1 and 0 ≤ 𝑛1 ≤ 𝑛0 − 1 is an integer, then 𝑚→ ∞ implies that 𝑛→ ∞. Using 𝑛0 (𝑓 ) = 𝑓 , (2.18) and (2.19) we
et

‖𝑓 𝑛 − 𝑓‖𝐿2(0,𝑇 ) = ‖𝑓𝑚𝑛0+𝑛1 − 𝑓‖𝐿2(0,𝑇 ) = ‖(𝑓𝑚𝑛0+𝑛1−1) −𝑛0 (𝑓 )‖𝐿2(0,𝑇 )

= ⋯ = ‖𝑛0 (𝑓 (𝑚−1)𝑛0+𝑛1 ) −𝑛0 (𝑓 )‖𝐿2(0,𝑇 ) ≤
(

𝜅2𝑛0𝑇 𝑛0
𝑛0!

)1∕2
‖𝑓 (𝑚−1)𝑛0+𝑛1 − 𝑓‖𝐿2(0,𝑇 )

≤ ⋯ ≤
(

𝜅2𝑛0𝑇 𝑛0
𝑛0!

)𝑚∕2
‖𝑓 𝑛1 − 𝑓‖𝐿2(0,𝑇 ) → 0, 𝑚→ ∞,

which means the sequence {𝑓 𝑛}𝑛∈N converges to 𝑓 in the 𝐿2-norm, and 𝑓 ∈ 𝐿2(0, 𝑇 ) is the solution to the inverse problem given
by Eqs. (1.4) and (1.5). Choosing 𝑓 0 = 0 and using that 𝑓 𝑛 = 𝑛(𝑓 0), we obtain

‖𝑓‖𝐿2(0,𝑇 ) = lim
𝑛→∞

‖𝑓 𝑛 − 𝑓 0
‖𝐿2(0,𝑇 ) = lim

𝑛→∞
‖(𝑓 𝑛−1) − 𝑓 0

‖𝐿2(0,𝑇 )

= lim
𝑛→∞

‖(𝑓 𝑛−1) −(𝑓 𝑛−2) +(𝑓 𝑛−2) −(𝑓 𝑛−3) +⋯ +(𝑓 0) − 𝑓 0
‖𝐿2(0,𝑇 )

≤
∞
∑

𝑛=1
‖𝑛−1((𝑓 0)) −𝑛−1(𝑓 0)‖𝐿2(0,𝑇 ) ≤

∞
∑

𝑛=0

(

𝜅2𝑛𝑇 𝑛

𝑛!

)1∕2
‖(𝑓 0) − 𝑓 0

‖𝐿2(0,𝑇 )

=
∞
∑

(

𝜅2𝑛𝑇 𝑛

𝑛!

)1∕2
‖(0)‖𝐿2(0,𝑇 ). (2.20)
5

𝑛=0
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Multiplying the first equation of (1.4) by 𝑢(0) (denoting the solution of (1.4) with 𝑓 = 𝑓 0 = 0), and integrating over [0, 1], we have
1
2
𝑑
𝑑𝑡

‖𝑢(0)(⋅, 𝑡)‖2
𝐿2(0,1)

+ ‖𝑢𝑥𝑥(0)(⋅, 𝑡)‖2𝐿2(0,1)
≤ ‖ℎ(⋅, 𝑡)‖𝐿2(0,1)‖𝑢(0)(⋅, 𝑡)‖𝐿2(0,1), 𝑡 ∈ [0, 𝑇 ], (2.21)

hich yields that
𝑑
𝑑𝑡

‖𝑢(0)(⋅, 𝑡)‖𝐿2(0,1) ≤ ‖ℎ(⋅, 𝑡)‖𝐿2(0,1), 𝑡 ∈ [0, 𝑇 ].

By the initial data in (1.4), we have

‖𝑢(0)(⋅, 𝑡)‖𝐿2(0,1) ≤
√

𝑡‖ℎ‖𝐿2(0,𝑡;𝐿2(0,1)) + ‖𝜙‖𝐿2(0,1), 𝑡 ∈ [0, 𝑇 ].

Thus, we obtain

‖𝑢(0)‖𝐿2(𝑄𝑇 ) ≤ 𝑇 ‖ℎ‖𝐿2(𝑄𝑇 ) +
√

𝑇 ‖𝜙‖𝐿2(0,1). (2.22)

rom (2.11), (2.12), (2.22) and condition (c), and using the triangle inequality, we have

‖(0)‖𝐿2(0,𝑇 ) ≤
1
𝑔0

(

‖

‖

‖

‖

‖

∫

1

0
𝜔′′′′(𝑥)𝑢(0)𝑑𝑥

‖

‖

‖

‖

‖𝐿2(0,𝑇 )
+ ‖𝜓 ′

‖𝐿2(0,𝑇 ) + ‖𝐻‖𝐿2(0,𝑇 )

)

≤ 1
𝑔0

(

‖𝜔′′′′
‖𝐿2(0,1)‖𝑢(0)‖𝐿2(𝑄𝑇 ) + ‖𝜓‖𝐻1(0,𝑇 ) + ‖𝜔‖𝐿2(0,1)‖ℎ‖𝐿2(𝑄𝑇 )

)

= 𝐾
𝑔0
. (2.23)

ence, (2.20) and (2.23) yield the estimate (2.9). It is easy to check using the ratio test that the series in the right-hand side of
2.9) is absolutely convergent.

Finally, we consider the continuous dependence of 𝑓 upon the integral observation 𝜓(𝑡), and the input data ℎ(𝑥, 𝑡) and 𝜙(𝑥). Let
𝑢(𝑖)(𝑥, 𝑡), 𝑓 (𝑖)(𝑡)) ∈  × 𝐿2(0, 𝑇 ) for 𝑖 = 1, 2 be the solutions of the following two inverse problems:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢(𝑖)𝑡 + 𝑢(𝑖)𝑥𝑥𝑥𝑥 = 𝑓 (𝑖)(𝑡)𝑔(𝑥, 𝑡) + ℎ(𝑖)(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝑢(𝑖)(0, 𝑡) = 𝑢(𝑖)(1, 𝑡) = 𝑢(𝑖)𝑥𝑥(0, 𝑡) = 𝑢(𝑖)𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑖)(𝑥, 0) = 𝜙(𝑖)(𝑥), 𝑥 ∈ (0, 1),

∫ 1
0 𝜔(𝑥)𝑢

(𝑖)(𝑥, 𝑡)𝑑𝑥 = 𝜓 (𝑖)(𝑡), 𝑡 ∈ (0, 𝑇 ).

(2.24)

hen, the difference 𝑢(𝑥, 𝑡) ∶= 𝑢(1)(𝑥, 𝑡) − 𝑢(2)(𝑥, 𝑡) satisfies the problem

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥 = (𝑓 (1)(𝑡) − 𝑓 (2)(𝑡))𝑔(𝑥, 𝑡) + ℎ(1)(𝑥, 𝑡) − ℎ(2)(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 𝑢𝑥𝑥(0, 𝑡) = 𝑢𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝜙(1)(𝑥) − 𝜙(2)(𝑥), 𝑥 ∈ (0, 1),

∫ 1
0 𝜔(𝑥)𝑢(𝑥, 𝑡)𝑑𝑥 = 𝜓 (1)(𝑡) − 𝜓 (2)(𝑡), 𝑡 ∈ (0, 𝑇 ).

(2.25)

Using the estimate (2.9), we obtain

‖𝑓 (1) − 𝑓 (2)
‖𝐿2(0,𝑇 ) ≤

𝐾1
𝑔0

∞
∑

𝑛=0

𝜅𝑛𝑇 𝑛∕2

(𝑛!)1∕2
,

here

𝐾1 ∶=(𝑇 ‖𝜔′′′′
‖𝐿2(0,1) + ‖𝜔‖𝐿2(0,1))‖ℎ

(1) − ℎ(2)‖𝐿2(𝑄𝑇 ) +
√

𝑇 ‖𝜔′′′′
‖𝐿2(0,1)‖𝜙

(1) − 𝜙(2)
‖𝐿2(0,1) + ‖𝜓 (1) − 𝜓 (2)

‖𝐻1(0,𝑇 ).

his inequality implies the continuous dependence of 𝑓 upon the measurement 𝜓(𝑡), and the input data ℎ(𝑥, 𝑡) and 𝜙(𝑥). The proof
f the theorem is complete. □

heorem 2.4. Let the conditions in Theorem 2.1 hold and 𝜙 ∈ 𝐿2(0, 1). Let also the conditions (b) and (c) hold and 𝜔 ∈ 𝑉 . Suppose
inally that

�̃� ∶=

√

𝑇
𝑔0

‖𝜔′′
‖𝐿2(0,1)‖𝑔‖𝐿∞(0,𝑇 ;𝐿2(0,1)) < 1. (2.26)

Then, there exists a unique solution (𝑢, 𝑓 ) ∈  × 𝐿2(0, 𝑇 ) to the inverse problem given by Eqs. (1.4) and (1.5). Moreover, 𝑓 depends
continuously upon the observation 𝜓(𝑡), and the input data ℎ(𝑥, 𝑡) and 𝜙(𝑥), and satisfies the estimate

‖𝑓‖𝐿2(0,𝑇 ) ≤
𝑒𝑇 ∕2‖𝜔‖𝐻2(0,1)�̃� + ‖𝜓‖𝐻1(0,𝑇 )

(1 − �̃�)𝑔0
, (2.27)

here �̃� = ‖ℎ‖ + ‖𝜙‖ .
6

𝐿2(𝑄𝑇 ) 𝐿2(0,1)
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Proof. Multiplying the first equation in (1.4) by 𝜔(𝑥), and integrating the result over [0, 1] using the homogeneous boundary
conditions, 𝜔(0) = 𝜔(1) = 0 and condition (b), we obtain

𝑓 (𝑡) = 1
𝐺(𝑡)

(

∫

1

0
𝜔′′(𝑥)𝑢𝑥𝑥(𝑥, 𝑡)𝑑𝑥 + 𝜓 ′(𝑡) −𝐻(𝑡)

)

(2.28)

where 𝐺(𝑡) and 𝐻(𝑡) are given by (2.11). This implies the following operator equation:

𝑓 = (𝑓 ), (2.29)

where  ∶ 𝐿2(0, 𝑇 ) → 𝐿2(0, 𝑇 ) is the operator defined as

(𝑓 ) = 1
𝐺(𝑡)

(

∫

1

0
𝜔′′(𝑥)𝑢𝑥𝑥(𝑓 )𝑑𝑥 + 𝜓 ′(𝑡) −𝐻(𝑡)

)

. (2.30)

By using similar arguments as in the proof of Theorem 2.3, let 𝑢(1)(𝑥, 𝑡) and 𝑢(2)(𝑥, 𝑡) ∈  be the solutions to the direct problem
(1.4) corresponding to the sources 𝑓 (1) and 𝑓 (2) ∈ 𝐿2(0, 𝑇 ), respectively. Then, 𝑤(𝑥, 𝑡) = 𝑢(1)(𝑥, 𝑡) − 𝑢(2)(𝑥, 𝑡) and 𝐹 (𝑡) = 𝑓 (1)(𝑡) − 𝑓 (2)(𝑡)
satisfy the problem (2.14). Applying (2.15), we have

‖𝑤𝑥𝑥‖𝐿2(𝑄𝑇 ) ≤
√

𝑇 ‖𝐹‖𝐿2(0,𝑇 )‖𝑔‖𝐿∞(0,𝑇 ;𝐿2(0,1)).

Hence, the above estimate and (2.30) yield that

‖(𝑓 (1)) − (𝑓 (2))‖𝐿2(0,𝑇 ) =

(

∫

𝑇

0

|

|

|

|

|

1
𝐺(𝑡) ∫

1

0
𝜔′′(𝑥)𝑤𝑥𝑥(𝑥, 𝑡)𝑑𝑥

|

|

|

|

|

2

𝑑𝑡

)1∕2

≤ 1
𝑔0

‖𝜔′′
‖𝐿2(0,1)‖𝑤𝑥𝑥‖𝐿2(𝑄𝑇 ) ≤ �̃�‖𝑓 (1) − 𝑓 (2)

‖𝐿2(0,𝑇 ). (2.31)

Then, the condition (2.26) implies that  is a contraction operator on 𝐿2(0, 𝑇 ), which has a unique fixed point, i.e., the inverse
problem given by Eqs. (1.4) and (1.5) has a unique solution (𝑢, 𝑓 ) ∈  × 𝐿2(0, 𝑇 ). Meanwhile, for any 𝑓 0 ∈ 𝐿2(0, 𝑇 ), the solution 𝑓
can be approximated by the successive approximations given by 𝑓 𝑛+1 = (𝑓 𝑛) for 𝑛 ∈ N, and the sequence {𝑓 𝑛}𝑛∈N converges to 𝑓
in 𝐿2(0, 𝑇 ). Using the condition (2.26), applying the method used in (2.20) and (2.31), and taking 𝑓 0 = 0, we can obtain that

‖𝑓‖𝐿2(0,𝑇 ) ≤
∞
∑

𝑛=0
�̃�𝑛‖(0)‖𝐿2(0,𝑇 ) =

1
1 − �̃�

‖(0)‖𝐿2(0,𝑇 ). (2.32)

Multiplying the first equation of (1.4) by 𝑢(0) and integrating over [0, 1], we have

1
2
𝑑
𝑑𝑡

‖𝑢(0)(⋅, 𝑡)‖2
𝐿2(0,1)

+ ‖𝑢𝑥𝑥(0)(⋅, 𝑡)‖2𝐿2(0,1)
≤ 1

2
‖ℎ(⋅, 𝑡)‖2

𝐿2(0,1)
+ 1

2
‖𝑢(0)(⋅, 𝑡)‖2

𝐿2(0,1)
, 𝑡 ∈ [0, 𝑇 ]. (2.33)

pplying the Gronwall’s inequality and integrating over [0, 𝑇 ] we obtain

‖𝑢(0)‖2
𝐿2(𝑄𝑇 )

≤ 𝑒𝑇 (‖ℎ‖2
𝐿2(𝑄𝑇 )

+ ‖𝜙‖2
𝐿2(0,1)

) ≤ 𝑒𝑇 �̃�2. (2.34)

lso, integrating (2.33) with respect to time and using (2.34) we obtain

‖𝑢𝑥𝑥(0)‖2𝐿2(𝑄𝑇 )
≤ 1

2
‖ℎ‖2

𝐿2(𝑄𝑇 )
+ 1

2
𝑒𝑇 �̃�2 ≤ 𝑒𝑇 �̃�2. (2.35)

onsequently, we have

‖(0)‖𝐿2(0,𝑇 ) ≤
1
𝑔0

(

‖

‖

‖

‖

‖

∫

1

0
𝜔′′(𝑥)𝑢𝑥𝑥(0)𝑑𝑥

‖

‖

‖

‖

‖𝐿2(0,𝑇 )
+ ‖𝜓 ′

‖𝐿2(0,𝑇 ) + ‖𝐻‖𝐿2(0,𝑇 )

)

≤ 1
𝑔0

(

‖𝜔′′
‖𝐿2(0,1)‖𝑢𝑥𝑥(0)‖𝐿2(𝑄𝑇 ) + ‖𝜓‖𝐻1(0,𝑇 ) + ‖𝜔‖𝐿2(0,1)‖ℎ‖𝐿2(𝑄𝑇 )

)

≤ 1
𝑔0

(

𝑒𝑇 ∕2‖𝜔‖𝐻2(0,1)�̃� + ‖𝜓‖𝐻1(0,𝑇 )
)

. (2.36)

The estimate (2.27) can now be derived from (2.32) and (2.36). In addition, the continuous dependence of 𝑓 (𝑡) upon 𝜓(𝑡), ℎ(𝑥, 𝑡)
nd 𝜙(𝑥) can be verified by applying the analogous arguments utilized in Theorem 2.3, and the proof is complete. □

emark 2.2. Theorem 2.3 gives that the inverse problem given by Eqs. (1.4) and (1.5) is well-posed globally under the hypotheses
a)–(c) and conditions of Theorem 2.1, whilst Theorem 2.4, due to the restrictive condition (2.26), ensures only the local well-
osedness, i.e. for 0 < 𝑇 < 𝑇 ∗ ∶=

𝑔20
‖𝜔′′‖2

𝐿2(0,1)
‖𝑔‖2

𝐿∞(0,𝑇 ;𝐿2(0,1))

. However, the unique solution to Eqs. (1.4) and (1.5) actually holds

lobally under the conditions of Theorem 2.4 without the assumption (2.26), as given and proved in the following theorem.

heorem 2.5. Let the assumptions in Theorem 2.4 hold except for (2.26). Then, there exists a unique solution (𝑢, 𝑓 ) ∈  × 𝐿2(0, 𝑇 ) to
7

he inverse problem given by Eqs. (1.4) and (1.5).
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Proof. From Remark 2.2 we only need to consider the case 𝑇 ∗ ≤ 𝑇 . Taking

𝑡∗ = 𝑇 ∗

4
=

𝑔20
4‖𝜔′′

‖

2
𝐿2(0,1)

‖𝑔‖2
𝐿∞(0,𝑇 ;𝐿2(0,1))

≤
𝑔20

4‖𝜔′′
‖

2
𝐿2(0,1)

‖𝑔‖2
𝐿∞(0,𝑡∗;𝐿2(0,1))

,

then by using the same method applied above in Theorem 2.4, we have

‖(𝑓 (1)) − (𝑓 (2))‖𝐿2(0,𝑡∗) =

(

∫

𝑡∗

0

|

|

|

|

|

1
𝐺(𝑡) ∫

1

0
𝜔′′(𝑥)𝑤𝑥𝑥(𝐹 )(𝑥, 𝑡)𝑑𝑥

|

|

|

|

|

2

𝑑𝑡

)1∕2

≤
√

𝑡∗

𝑔0
‖𝜔′′

‖𝐿2(0,1)‖𝑔‖𝐿∞(0,𝑡∗;𝐿2(0,1))‖𝑓
(1) − 𝑓 (2)

‖𝐿2(0,𝑡∗) ≤
1
2
‖𝑓 (1) − 𝑓 (2)

‖𝐿2(0,𝑡∗),

and thus there exists a unique solution to the inverse problem given by Eqs. (1.4) and (1.5) for 0 ≤ 𝑡 ≤ 𝑡∗. Next, for 𝑡 ≥ 𝑡∗, we
consider the inverse problem on the time interval (𝑡∗, 2𝑡∗) with the initial data 𝜙(𝑥) = 𝑢(𝑥, 𝑡∗), since 𝑡∗ is independent of 𝜙(𝑥). Hence,
nalogous arguments imply that the solution to the inverse problem given by Eqs. (1.4) and (1.5) exists uniquely for 𝑡∗ ≤ 𝑡 ≤ 2𝑡∗.
epeating the above method a finite number of times [𝑇 ∕𝑡∗] + 1, we conclude that the inverse problem has a unique solution in
0, 𝑇 ). □

We now consider the inverse problem (2.3) with inhomogeneous boundary conditions to recover 𝑓 (𝑡) from the given integral
bservation (1.5). Using (2.5), (2.6) and the notations

ℎ̃ ∶= ℎ − 𝜌𝑡 − 𝜌𝑥𝑥𝑥𝑥, 𝛹 ∶= 𝜓 − ∫

1

0
𝜔(𝑥)𝜌(𝑥, 𝑡)𝑑𝑥,

he inverse problem given by Eqs. (1.5) and (2.3) is transformed into the inverse problem of determining (𝑣, 𝑓 ) with homogeneous
oundary data given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑣𝑡 + 𝑣𝑥𝑥𝑥𝑥 = 𝑓 (𝑡)𝑔(𝑥, 𝑡) + ℎ̃(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝑣(0, 𝑡) = 𝑣(1, 𝑡) = 𝑣𝑥𝑥(0, 𝑡) = 𝑣𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑣(𝑥, 0) = 𝜑(𝑥), 𝑥 ∈ (0, 1),

(2.37)

nd the integral observation

∫

1

0
𝜔(𝑥)𝑣(𝑥, 𝑡)𝑑𝑥 = 𝛹 (𝑡), 𝑡 ∈ (0, 𝑇 ). (2.38)

emark 2.3. For the inverse problem given by Eqs. (1.5) and (2.3), using the result for the direct problem in Theorem 2.2 and
pplying the approach used in the proof of Theorem 2.3, we can obtain the following well-posedness results.

heorem 2.6. Suppose conditions (a)–(c) and the assumptions of Theorem 2.2 hold. Then, the inverse problem given by Eqs. (1.5) and
2.3) has a unique solution (𝑢, 𝑓 ) ∈ ̃ × 𝐿2(0, 𝑇 ). Moreover, 𝑓 depends continuously upon the observation 𝜓(𝑡), and the input data ℎ(𝑥, 𝑡),
𝑖(𝑡) for 𝑖 = 1, 4, and 𝜙(𝑥), and satisfies the estimate:

‖𝑓‖𝐿2(0,𝑇 ) ≤
𝐾𝜇
𝑔0

∞
∑

𝑛=0

𝜅𝑛𝑇 𝑛∕2

(𝑛!)1∕2
, (2.39)

here 𝐾𝜇 ∶= 𝐾 + ‖𝜔′′′′
‖𝐿2(0,1)‖(𝜇1, 𝜇2, 𝜇3, 𝜇4)‖[𝐻1(0,𝑇 )]4 .

Theorem 2.7. Let the assumptions of Theorem 2.2 hold. Let also the conditions (b) and (c) hold, 𝜔 ∈ 𝑉 and (2.26) be satisfied. Then,
there exists a unique solution (𝑢, 𝑓 ) ∈ ̃ ×𝐿2(0, 𝑇 ) to the inverse problem given by Eqs. (1.5) and (2.3). Moreover, 𝑓 depends continuously
upon the observation 𝜓(𝑡), and the input data ℎ(𝑥, 𝑡), 𝜇𝑖(𝑡) for 𝑖 = 1, 4, and 𝜙(𝑥), and satisfies the estimate

‖𝑓‖𝐿2(0,𝑇 ) ≤
𝑒𝑇 ∕2‖𝜔‖𝐻2(0,1)�̃�𝜇 + ‖𝜓‖𝐻1(0,𝑇 )

(1 − �̃�)𝑔0
, (2.40)

nd �̃�𝜇 = �̃� + ‖(𝜇1, 𝜇2, 𝜇3, 𝜇4)‖[𝐻1(0,𝑇 )]4 . Furthermore, as in Theorem 2.5, the existence and uniqueness also hold globally without the
restriction (2.26).

From Theorems 2.3–2.7, we can see that the well-posed solution to the inverse problem given by Eqs. (1.4) and (1.5) can be
obtained if 𝜓 ∈ 𝐻1(0, 1), and under such condition, the unknown source term 𝑓 (𝑡) can be calculated directly by using the formulation
(2.10) or (2.28). However, the integral measurement 𝜓 in (1.5) contains noise such that the noisy data 𝜓𝜖 ∈ 𝐿2(0, 𝑇 ) satisfies

‖𝜓 − 𝜓𝜖‖𝐿2(0,𝑇 ) ≤ 𝜖, (2.41)

where 𝜖 ≥ 0 represents the level of noise. The differentiation of the noisy measurement 𝜓𝜖 is mildly ill-posed, i.e. small perturbations
n the measured data can produce large effects on its derivative, which indicates that the formulation (2.10) or (2.28) cannot
8
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be applied to numerically obtain 𝑓 (𝑡) directly. Therefore, when 𝜓 is replaced by its noisy measurement 𝜓𝜖 , the time-discrete
approximation along with the cubic spline function method [32] (Section 3), and the well-known Tikhonov regularization method
together with the conjugate gradient method (CGM) (Section 4), will be employed to numerically obtain a stable approximation of
the unknown source term 𝑓 (𝑡).

3. Time-discrete approximation in case 𝒈(𝒙, 𝒕) = 𝒈(𝒙)

Divide the time interval [0, 𝑇 ] into a uniform grid 𝑡𝑘 = (𝑘−1)𝛥𝑡 for 𝑘 = 1, 𝐾, with a time-step 𝛥𝑡 = 𝑇
𝐾−1 and 2 ≤ 𝐾 ∈ N time steps.

Under the assumption (a) on the weight function 𝜔 ∈ 𝑊 and using (2.10), the unknown source term 𝑓 (𝑡) in the inverse problem
given by Eqs. (1.4) and (1.5) with the space-dependent source component 𝑔(𝑥, 𝑡) = 𝑔(𝑥) can be approximated by the following
ime-discrete scheme:

𝑓 1 =
∫ 1
0 𝜔

′′′′(𝑥)𝜙(𝑥)𝑑𝑥 + (𝜓 ′)1 − ∫ 1
0 𝜔(𝑥)ℎ

1(𝑥)𝑑𝑥

∫ 1
0 𝜔(𝑥)𝑔(𝑥)𝑑𝑥

,

𝑓𝑘 =
∫ 1
0 𝜔

′′′′(𝑥)𝑢𝑘−1(𝑥)𝑑𝑥 + (𝜓 ′)𝑘 − ∫ 1
0 𝜔(𝑥)ℎ

𝑘(𝑥)𝑑𝑥

∫ 1
0 𝜔(𝑥)𝑔(𝑥)𝑑𝑥

, 𝑘 = 2, 𝐾, (3.1)

here 𝑓𝑘 ∶= 𝑓 (𝑡𝑘), 𝑢𝑘(𝑥) ∶= 𝑢(𝑥, 𝑡𝑘), 𝑢1(𝑥) = 𝜙(𝑥), (𝜓 ′)𝑘 ∶= 𝜓 ′(𝑡𝑘), ℎ𝑘(𝑥) ∶= ℎ(𝑥, 𝑡𝑘) and the function 𝑢𝑘(𝑥) solves the problem:

⎧

⎪

⎨

⎪

⎩

𝛿𝑡𝑢𝑘 + 𝑢𝑘𝑥𝑥𝑥𝑥 = 𝑓𝑘𝑔 + ℎ𝑘, 𝑘 = 2, 𝐾,

𝑢𝑘(0) = 𝑢𝑘(1) = 𝑢𝑘𝑥𝑥(0) = 𝑢𝑘𝑥𝑥(1) = 0, 𝑘 = 2, 𝐾,
(3.2)

here 𝛿𝑡𝑢𝑘 =
𝑢𝑘−𝑢𝑘−1

𝛥𝑡 .
The well-posedness of the system (3.1) and (3.2) is given in the following two lemmas.

Lemma 3.1. Suppose that 𝜙 ∈ 𝐿2(0, 1), 𝑔 ∈ 𝐿2(0, 1), ℎ ∈ 𝐶(0, 𝑇 ;𝐿2(0, 1)), 𝜓 ∈ 𝐶1(0, 𝑇 ), 𝜔 ∈ 𝑊 and ∫ 1
0 𝜔(𝑥)𝑔(𝑥)𝑑𝑥 ≠ 0. Then, there

exists a unique function pair (𝑢𝑘, 𝑓𝑘) ∈ 𝑉 × R satisfying (3.1) and (3.2).

Proof. For the fourth-order elliptic problem (3.2), its variational formulation can be obtained by using Green’s theorem,

𝑎(𝑢𝑘, 𝜒) ∶= 1
𝛥𝑡 ∫

1

0
𝑢𝑘𝜒𝑑𝑥 + ∫

1

0
𝑢𝑘𝑥𝑥𝜒𝑥𝑥𝑑𝑥 = 1

𝛥𝑡 ∫

1

0
𝑢𝑘−1𝜒𝑑𝑥 + ∫

1

0
(𝑓𝑘𝑔 + ℎ𝑘)𝜒𝑑𝑥 =∶ 𝑘(𝜒),

or any 𝜒 ∈ 𝑉 . Clearly, 𝑎(u, 𝜒) is bilinear and

|𝑎(u, 𝜒)| ≤ 1
𝛥𝑡

‖u‖𝐿2(0,1)‖𝜒‖𝐿2(0,1) + ‖u𝑥𝑥‖𝐿2(0,1)‖𝜒𝑥𝑥‖𝐿2(0,1) ≤ 𝐶‖u‖𝑉 ‖𝜒‖𝑉 ,

𝑎(u, u) = 1
𝛥𝑡

‖u‖2
𝐿2(0,1)

+ ‖u𝑥𝑥‖2𝐿2(0,1)
≥ 𝐶‖u‖2𝑉 .

ence 𝑎(⋅, ⋅) is a bilinear, continuous and coercive functional on 𝑉 . We also have

|𝑘(𝜒)| ≤ 𝐶
(

‖𝑢𝑘−1‖𝐿2(0,1) + |𝑓𝑘| + 1
)

‖𝜒‖𝑉 , 𝑘 = 2, 𝐾,

|𝑓𝑘| ≤ 𝐶
(

‖𝜓‖𝐶1(0,𝑇 ) + ‖𝑢𝑘−1‖𝐿2(0,1) + 1
)

, 𝑘 = 2, 𝐾,

and 𝑘(⋅) is a linear functional on 𝑉 .
For 𝑘 = 2, it is easy to find that |𝑓 2

| is bounded, which implies the unique existence of 𝑢2(𝑥) ∈ 𝑉 due to the Lax–Milgram
theorem. Using the above arguments with recursion for 𝑘 = 3, 𝐾, we can obtain the boundness of 𝑓𝑘, i.e. 𝑓𝑘 ∈ R, and the unique
xistence of 𝑢𝑘(𝑥) ∈ 𝑉 to (3.1) and (3.2). □

As in [34], we obtain the following lemma.

emma 3.2. Let the assumptions of Lemma 3.1 hold. Assume further that 𝜙 ∈ 𝑉 . Then there exist positive constants 𝐶 and 𝛥𝑡0 such that
or any 𝛥𝑡 ≤ 𝛥𝑡0 and 𝑗 = 2, 𝐾,

max
𝑗=2,𝐾

‖𝑢𝑗‖2
𝐿2(0,1)

+
𝑗
∑

𝑘=2
‖𝑢𝑘 − 𝑢𝑘−1‖2

𝐿2(0,1)
+ 𝛥𝑡

𝑗
∑

𝑘=2
‖𝑢𝑘𝑥𝑥‖

2
𝐿2(0,1)

≤ 𝐶, (3.3)

𝛥𝑡
𝑗
∑

𝑘=2
‖𝛿𝑡𝑢

𝑘
‖

2
𝐿2(0,1)

+ max
𝑗=2,𝐾

‖𝑢𝑗𝑥𝑥‖
2
𝐿2(0,1)

+
𝑗
∑

𝑘=2
‖𝑢𝑘𝑥𝑥 − 𝑢

𝑘−1
𝑥𝑥 ‖

2
𝐿2(0,1)

≤ 𝐶, (3.4)

max |𝑓 𝑗 |2 ≤ 𝐶. (3.5)
9

𝑗=2,𝐾
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Proof. Multiplying by 𝑢𝑘𝛥𝑡 the first equation in (3.2) and integrating over [0, 1], we have

∫

1

0
(𝑢𝑘 − 𝑢𝑘−1)𝑢𝑘𝑑𝑥 + 𝛥𝑡‖𝑢𝑘𝑥𝑥‖

2
𝐿2(0,1)

= ∫

1

0
(𝑓𝑘𝑔 + ℎ𝑘)𝑢𝑘𝑑𝑥𝛥𝑡, 𝑘 = 2, 𝐾.

or every 𝑗 = 2, 𝐾, we sum the above result up for 𝑘 = 2, 𝑗 and have

𝑗
∑

𝑘=2
∫

1

0
(𝑢𝑘 − 𝑢𝑘−1)𝑢𝑘𝑑𝑥 + 𝛥𝑡

𝑗
∑

𝑘=2
‖𝑢𝑘𝑥𝑥‖

2
𝐿2(0,1)

= 𝛥𝑡
𝑗
∑

𝑘=2
∫

1

0
(𝑓𝑘𝑔 + ℎ𝑘)𝑢𝑘𝑑𝑥.

Using Abel’s lemma, we have

𝑗
∑

𝑘=2
∫

1

0
(𝑢𝑘 − 𝑢𝑘−1)𝑢𝑘𝑑𝑥 = 1

2

(

‖𝑢𝑗‖2
𝐿2(0,1)

− ‖𝜙‖2
𝐿2(0,1)

+
𝑗
∑

𝑘=2
‖𝑢𝑘 − 𝑢𝑘−1‖2

𝐿2(0,1)

)

.

Young’s inequality implies that

|

|

|

|

|

|

𝑗
∑

𝑘=2
∫

1

0
(𝑓𝑘𝑔 + ℎ𝑘)𝑢𝑘𝑑𝑥

|

|

|

|

|

|

≤ 1
2

𝑗
∑

𝑘=2

(

|𝑓𝑘|2‖𝑔‖2
𝐿2(0,1)

+ ‖ℎ‖2
𝐶(0,𝑇 ;𝐿2(0,1))

)

+ 1
2

𝑗
∑

𝑘=2
‖𝑢𝑘‖2

𝐿2(0,1)
.

Thus, we have

(1 − 𝐶𝛥𝑡)‖𝑢𝑗‖2
𝐿2(0,1)

+
𝑗
∑

𝑘=2
‖𝑢𝑘 − 𝑢𝑘−1‖2

𝐿2(0,1)
+ 𝛥𝑡

𝑗
∑

𝑘=2
‖𝑢𝑘𝑥𝑥‖

2
𝐿2(0,1)

≤ 𝐶

(

1 + 𝛥𝑡
𝑗
∑

𝑘=2
|𝑓𝑘|2 + 𝛥𝑡

𝑗−1
∑

𝑘=2
‖𝑢𝑘‖2

𝐿2(0,1)

)

(3.6)

here 𝐶 is a positive constant dependent on 𝑔, ℎ and 𝜙. Choosing 𝛥𝑡 ≤ 𝛥𝑡0 =
1

𝐶+1 > 0, then 1 − 𝐶𝛥𝑡 ≥ 1 − 𝐶𝛥𝑡0 > 0 and

‖𝑢𝑗‖2
𝐿2(0,1)

+
𝑗
∑

𝑘=2
‖𝑢𝑘 − 𝑢𝑘−1‖2

𝐿2(0,1)
+

𝑗
∑

𝑘=2
‖𝑢𝑘𝑥𝑥‖

2
𝐿2(0,1)

≤ 𝐶𝛥𝑡
1 − 𝐶𝛥𝑡0

𝑗−1
∑

𝑘=2

(

‖𝑢𝑘‖2
𝐿2(0,1)

+
𝑘
∑

𝑖=2
‖𝑢𝑖 − 𝑢𝑖−1‖2

𝐿2(0,1)
+ 𝛥𝑡

𝑘
∑

𝑖=2
‖𝑢𝑖𝑥𝑥‖

2
𝐿2(0,1)

)

+ 𝐶
1 − 𝐶𝛥𝑡0

(

1 + 𝛥𝑡
𝑗
∑

𝑘=2
|𝑓𝑘|2

)

.

he discrete Gronwall lemma implies that

max
𝑗=2,𝐾

‖𝑢𝑗‖2
𝐿2(0,1)

+
𝑗
∑

𝑘=2
‖𝑢𝑘 − 𝑢𝑘−1‖2

𝐿2(0,1)
+ 𝛥𝑡

𝑗
∑

𝑘=2
‖𝑢𝑘𝑥𝑥‖

2
𝐿2(0,1)

≤ 𝐶𝛥𝑡
1 − 𝐶𝛥𝑡0

𝑗
∑

𝑘=2
|𝑓𝑘|2 + 𝐶2𝛥𝑡

(1 − 𝐶𝛥𝑡0)2
𝑒

𝐶𝑇
1−𝐶𝛥𝑡0

𝑗−1
∑

𝑘=2

(

1 + 𝛥𝑡
𝑘
∑

𝑖=1
|𝑓𝑘|2

)

≤ 𝐶1 + 𝐶1𝛥𝑡
𝑗
∑

𝑘=2
|𝑓𝑘|2,

here 𝐶1 =
(

𝐶
1−𝐶𝛥𝑡0

+ 𝐶2𝑇
(1−𝐶𝛥𝑡0)2

𝑒
𝐶𝑇

1−𝐶𝛥𝑡0

)

> 0 depends on 𝑔, ℎ, 𝜙, 𝜓 and 𝑇 . From (3.1), (3.3) and the above inequality, we get

|𝑓 𝑗 |2 ≤ 𝐶
(

1 + ‖𝑢𝑗−1‖2
𝐿2(0,1)

)

≤ 𝐶 + 𝐶𝛥𝑡
𝑗−1
∑

𝑘=2
|𝑓𝑘|2,

hich yields (3.5) by using the discrete Gronwall lemma. Consequently, (3.3) can be derived.
Multiplying (3.2) by 𝛿𝑡𝑢𝑘𝛥𝑡 and using integration by parts, we have

𝛥𝑡
𝑗
∑

𝑘=2
‖𝛿𝑡𝑢

𝑘
‖

2
𝐿2(0,1)

+
𝑗
∑

𝑘=2
∫

1

0
𝑢𝑘𝑥𝑥(𝑢

𝑘
𝑥𝑥 − 𝑢

𝑘−1
𝑥𝑥 )𝑑𝑥 = 𝛥𝑡

𝑗
∑

𝑘=2
∫

1

0
(𝑓𝑘𝑔 + ℎ𝑘)𝛿𝑡𝑢𝑘𝑑𝑥,

nd, via similar arguments, we get

𝑗
∑

𝑘=2
∫

1

0
𝑢𝑘𝑥𝑥(𝑢

𝑘
𝑥𝑥 − 𝑢

𝑘−1
𝑥𝑥 )𝑑𝑥 = 1

2

(

‖𝑢𝑗𝑥𝑥‖
2
𝐿2(0,1)

− ‖𝜙′′
‖

2
𝐿2(0,1)

+
𝑗
∑

𝑘=2
‖𝑢𝑘𝑥𝑥 − 𝑢

𝑘−1
𝑥𝑥 ‖

2
𝐿2(0,1)

)

,

10
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f

w

T

T
p

P

S

a

a

T

F

and
|

|

|

|

|

|

𝑗
∑

𝑘=2
∫

1

0
(𝑓𝑘𝑔 + ℎ𝑘)𝛿𝑡𝑢𝑘𝑑𝑥

|

|

|

|

|

|

≤ 1
2

𝑗
∑

𝑘=2

(

|𝑓𝑘|2‖𝑔‖2
𝐿2(0,1)

+ ‖ℎ‖2
𝐶(0,𝑇 ;𝐿2(0,1))

)

+ 1
2

𝑗
∑

𝑘=2
‖𝛿𝑡𝑢

𝑘
‖

2
𝐿2(0,1)

.

Hence, the estimate (3.4) can be derived by using the discrete Gronwall inequality. The proof is complete. □

Based on Lemma 3.2, we can obtain an approximation for the time-dependent source, as given by Theorem 3.1. For this, let us
irst define piecewisely the following functions:

𝑢𝐾 (𝑥, 𝑡) = 𝑢𝑘−1(𝑥) + (𝑡 − 𝑡𝑘−1)𝛿𝑡𝑢𝑘(𝑥), 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘], 𝑘 = 2, 𝐾,

�̄�𝐾 (𝑥, 𝑡) = 𝑢𝑘(𝑥), 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘], 𝑘 = 2, 𝐾

and

𝑓𝐾 (𝑡) =
∫ 1
0 𝜔

′′′′(𝑥)�̄�𝐾 (𝑥, 𝑡 − 𝛥𝑡)𝑑𝑥 + �̄� ′
𝐾 (𝑡) − ∫ 1

0 𝜔(𝑥)ℎ̄𝐾 (𝑥, 𝑡)𝑑𝑥

∫ 1
0 𝜔(𝑥)𝑔(𝑥)𝑑𝑥

, 𝑡 ∈ (0, 𝑇 ], (3.7)

here �̄�𝐾 (𝑡) and ℎ̄𝐾 (𝑥, 𝑡) are defined by

�̄�𝐾 (0) = 𝜓(0), �̄�𝐾 (𝑡) = 𝜓(𝑡𝑘), 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘], 𝑘 = 2, 𝐾,

ℎ̄𝐾 (𝑥, 0) = ℎ(𝑥, 0), ℎ̄𝐾 (𝑥, 𝑡) = ℎ(𝑥, 𝑡𝑘), 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘], 𝑘 = 2, 𝐾.

hen, we have that
{

∫ 1
0 (𝑢𝐾 )𝑡(𝑥, 𝑡)𝜒(𝑥)𝑑𝑥 + ∫ 1

0 (�̄�𝐾 )𝑥𝑥(𝑥, 𝑡)𝜒
′′(𝑥)𝑑𝑥 = ∫ 1

0 (𝑓𝐾 (𝑡)𝑔(𝑥) + ℎ̄𝐾 (𝑥, 𝑡))𝜒(𝑥)𝑑𝑥, 𝑡 ∈ (0, 𝑇 ], ∀𝜒 ∈ 𝑉 ,

𝑢𝐾 (𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ (0, 1).
(3.8)

heorem 3.1. Let the assumptions of Lemma 3.2 hold. Assume further that ℎ ∈ 𝐻1(0, 𝑇 ;𝐿2(0, 1)) and 𝜓 ∈ 𝐻2(0, 𝑇 ). Then there exist
ositive constants 𝐶 and 𝛥𝑡0 such that for any 𝛥𝑡 ≤ 𝛥𝑡0

∫

𝑇

0
|

|

𝑓𝐾 (𝑡) − 𝑓 (𝑡)||
2 𝑑𝑡 ≤ 𝐶𝛥𝑡. (3.9)

roof. Subtracting (2.10) from (3.7), we have

𝑓𝐾 (𝑡) − 𝑓 (𝑡) =
∫ 1
0 𝜔

′′′′(𝑥)(�̄�𝐾 (𝑥, 𝑡 − 𝛥𝑡) − 𝑢(𝑥, 𝑡))𝑑𝑥 + (�̄� ′
𝐾 (𝑡) − 𝜓

′(𝑡)) − ∫ 1
0 𝜔(𝑥)(ℎ̄𝐾 (𝑥, 𝑡) − ℎ(𝑥, 𝑡))𝑑𝑥

∫ 1
0 𝜔(𝑥)𝑔(𝑥)𝑑𝑥

. (3.10)

ince 𝜓 ∈ 𝐻2(0, 1) and ℎ ∈ 𝐻1(0, 𝑇 ;𝐿2(0, 1)), we have

∫

𝑡

0
|�̄� ′
𝐾 (𝜏) − 𝜓

′(𝜏)|2𝑑𝜏 ≤
𝐾
∑

𝑘=2
∫

𝑡𝑘−1

𝑡𝑘

|

|

|

|

|

∫

𝑡𝑘

𝜏
𝜓 ′′(𝜁 )𝑑𝜁

|

|

|

|

|

2

𝑑𝜏 ≤ 𝐶𝛥𝑡,

∫

𝑡

0

|

|

|

|

|

∫

1

0
𝜔(𝑥)(ℎ̄𝐾 (𝑥, 𝜏) − ℎ(𝑥, 𝜏))𝑑𝑥

|

|

|

|

|

2

𝑑𝜏 ≤𝐶 ∫

𝑡

0
‖ℎ̄𝐾 (⋅, 𝜏) − ℎ(⋅, 𝜏)‖2𝐿2(0,1)

𝑑𝜏 ≤ 𝐶
𝐾
∑

𝑘=2
∫

𝑡𝑘−1

𝑡𝑘

‖

‖

‖

‖

‖

∫

𝑡𝑘

𝜏
ℎ𝜁𝑑𝜁

‖

‖

‖

‖

‖

2

𝐿2(0,1)
𝑑𝜏 ≤ 𝐶𝛥𝑡.

For the first term of the right-hand side of (3.10), we obtain
|

|

|

|

|

∫

1

0
𝜔′′′′(𝑥)(�̄�𝐾 (𝑥, 𝑡 − 𝛥𝑡) − 𝑢(𝑥, 𝑡))𝑑𝑥

|

|

|

|

|

≤
|

|

|

|

|

∫

1

0
𝜔′′′′(𝑥)(�̄�𝐾 (𝑥, 𝑡 − 𝛥𝑡) − �̄�𝐾 (𝑥, 𝑡))𝑑𝑥

|

|

|

|

|

+
|

|

|

|

|

∫

1

0
𝜔′′′′(𝑥)(�̄�𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡))𝑑𝑥

|

|

|

|

|

,

nd (3.4) yields

∫

𝑡

0

|

|

|

|

|

∫

1

0
𝜔′′′′(𝑥)(�̄�𝐾 (𝑥, 𝜏 − 𝛥𝑡) − �̄�𝐾 (𝑥, 𝜏))𝑑𝑥

|

|

|

|

|

2

𝑑𝜏 ≤ 𝐶 ∫

𝑡

0
‖�̄�𝐾 (⋅, 𝜏 − 𝛥𝑡) − �̄�𝐾 (⋅, 𝜏)‖2𝐿2(0,1)

𝑑𝜏 ≤ 𝐶(𝛥𝑡)2
𝐾
∑

𝑘=2
‖𝛿𝑡𝑢

𝑘
‖

2
𝐿2(0,1)

𝛥𝑡 ≤ 𝐶(𝛥𝑡)2,

nd

∫

𝑡

0

|

|

|

|

|

∫

1

0
𝜔′′′′(𝑥)(�̄�𝐾 (𝑥, 𝜏) − 𝑢(𝑥, 𝑡))𝑑𝑥

|

|

|

|

|

2

𝑑𝜏 ≤ 𝐶 ∫

𝑡

0
‖

‖

�̄�𝐾 (⋅, 𝜏) − 𝑢(⋅, 𝜏)‖‖
2
𝐿2(0,1) 𝑑𝜏 ≤ 𝐶

(

(𝛥𝑡)2 + ∫

𝑡

0
‖

‖

𝑢𝐾 − 𝑢‖
‖

2
𝐿2(0,1) 𝑑𝜏

)

.

herefore, we obtain that

∫

𝑡

0
|

|

𝑓𝐾 (𝜏) − 𝑓 (𝜏)||
2 𝑑𝜏 ≤ 𝐶

(

𝛥𝑡 + ∫

𝑡

0
‖

‖

𝑢𝐾 (⋅, 𝜏) − 𝑢(⋅, 𝜏)‖‖
2
𝐿2(0,1) 𝑑𝜏

)

. (3.11)

or any 𝜒 ∈ 𝑉 , the problem (1.4) with 𝑔(𝑥, 𝑡) = 𝑔(𝑥) satisfies the following identity:
{

∫ 1
0 𝑢𝑡(𝑥, 𝑡)𝜒(𝑥)𝑑𝑥 + ∫ 1

0 𝑢𝑥𝑥(𝑥, 𝑡)𝜒
′′(𝑥)𝑑𝑥 = ∫ 1

0 (𝑓 (𝑡)𝑔(𝑥) + ℎ(𝑥, 𝑡))𝜒(𝑥)𝑑𝑥, 𝑡 ∈ (0, 𝑇 ],
(3.12)
11

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ (0, 1).
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w

For each frozen 𝑡 ∈ (0, 𝑇 ], we take 𝜒(𝑥) = 𝑢𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡) in (3.8) and (3.12), subtract, unfreeze 𝑡 and integrate with respect to 𝑡
over (0, 𝜃) with 𝜃 ∈ (0, 𝑇 ], to obtain

∫

𝜃

0 ∫

1

0
[𝑢𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)]𝑡[𝑢𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)]𝑑𝑥𝑑𝑡 + ∫

𝜃

0
‖[𝑢𝐾 (⋅, 𝑡) − 𝑢(⋅, 𝑡)]𝑥𝑥‖2𝐿2(0,1)

𝑑𝑡

= ∫

𝜃

0 ∫

1

0
[𝑓𝐾 (𝑡) − 𝑓 (𝑡)]𝑔(𝑥)[𝑢𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)]𝑑𝑥𝑑𝑡 + ∫

𝜃

0 ∫

1

0
[ℎ̄𝐾 (𝑥, 𝑡) − ℎ(𝑥, 𝑡)][𝑢𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)]𝑑𝑥𝑑𝑡

−∫

𝜃

0 ∫

1

0
[�̄�𝐾 (𝑥, 𝑡) − 𝑢𝐾 (𝑥, 𝑡)]𝑥𝑥[𝑢𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)]𝑥𝑥𝑑𝑥𝑑𝑡. (3.13)

It is obvious that

∫

𝜃

0 ∫

1

0
[𝑢𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)]𝑡[𝑢𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)]𝑑𝑥𝑑𝑡 =

1
2
‖

‖

𝑢𝐾 (⋅, 𝜃) − 𝑢(⋅, 𝜃)‖‖
2
𝐿2(0,1) .

Using (3.11) and Young inequality, we have
|

|

|

|

|

∫

𝜃

0 ∫

1

0
[𝑓𝐾 (𝑡) − 𝑓 (𝑡)]𝑔(𝑥)[𝑢𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)]𝑑𝑥𝑑𝑡

|

|

|

|

|

≤𝐶
(

∫

𝜃

0
|𝑓𝐾 (𝑡) − 𝑓 (𝑡)|

2𝑑𝑡 + ∫

𝜃

0
‖𝑢𝐾 (⋅, 𝑡) − 𝑢(⋅, 𝑡)‖2𝐿2(0,1)

𝑑𝑡
)

≤ 𝐶
(

𝛥𝑡 + ∫

𝜃

0
‖𝑢𝐾 (⋅, 𝑡) − 𝑢(⋅, 𝑡)‖2𝐿2(0,1)

𝑑𝑡
)

, (3.14)

and similarly,
|

|

|

|

|

∫

𝜃

0 ∫

1

0
[ℎ̄𝐾 (𝑥, 𝑡) − ℎ(𝑥, 𝑡)][𝑢𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)]𝑑𝑥𝑑𝑡

|

|

|

|

|

≤ 𝐶
(

𝛥𝑡 + ∫

𝜃

0
‖𝑢𝐾 (⋅, 𝑡) − 𝑢(⋅, 𝑡)‖2𝐿2(0,1)

𝑑𝑡
)

.

For the third term in the right-hand side of (3.13), the Young and Cauchy inequalities and the estimate (3.4) imply that
|

|

|

|

|

∫

𝜃

0 ∫

1

0
[�̄�𝐾 (𝑥, 𝑡) − 𝑢𝐾 (𝑥, 𝑡)]𝑥𝑥[𝑢𝐾 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)]𝑥𝑥𝑑𝑥𝑑𝑡

|

|

|

|

|

≤𝐶
𝜀 ∫

𝜃

0
‖[�̄�𝐾 (⋅, 𝑡) − 𝑢𝐾 (⋅, 𝑡)]𝑥𝑥‖2𝐿2(0,1)

𝑑𝑡 + 𝜀∫

𝜃

0
‖[𝑢𝐾 (⋅, 𝑡) − 𝑢(⋅, 𝑡)]𝑥𝑥‖2𝐿2(0,1)

𝑑𝑡 ≤ 𝐶
𝜀
𝛥𝑡 + 𝜀∫

𝜃

0
‖[𝑢𝐾 (⋅, 𝑡) − 𝑢(⋅, 𝑡)]𝑥𝑥‖2𝐿2(0,1)

𝑑𝑡,

for any 𝜀 > 0. Hence, (3.13) becomes

‖

‖

𝑢𝐾 (⋅, 𝜃) − 𝑢(⋅, 𝜃)‖‖
2
𝐿2(0,1) + ∫

𝜃

0
‖[𝑢𝐾 (⋅, 𝑡) − 𝑢(⋅, 𝑡)]𝑥𝑥‖2𝐿2(0,1)

𝑑𝑡

≤𝐶
𝜀

(

𝛥𝑡 + ∫

𝜃

0
‖𝑢𝐾 (⋅, 𝑡) − 𝑢(⋅, 𝑡)‖2𝐿2(0,1)

𝑑𝑡
)

+ 𝜀∫

𝜃

0
‖[𝑢𝐾 (⋅, 𝑡) − 𝑢(⋅, 𝑡)]𝑥𝑥‖2𝐿2(0,1)

𝑑𝑡.

This yields that

max
𝜃∈[0,𝑇 ]

‖𝑢𝐾 (⋅, 𝜃) − 𝑢(⋅, 𝜃)‖
2
𝐿2(0,1) ≤ 𝐶𝛥𝑡,

by applying the Gronwall inequality and taking 𝜀 = 1. Meanwhile, from (3.11) this implies (3.9) and the proof of the theorem is
complete. □

3.1. The cubic spline method

As previously discussed at the end of Section 2, we actually need to recover 𝑓 (𝑡) from the noisy data 𝜓𝜖 . The conventional
finite-difference scheme to compute the derivative of 𝜓𝜖 can only be applied for exact data 𝜓 or when 𝜖 is very small, due to the
ill-posed process of numerical differentiating the noisy 𝜓𝜖 . In order to obtain a stable derivative of the measured data 𝜓𝜖 , the cubic
spline function method [32] is employed. The natural cubic spline function 𝑠(𝑡) is constructed as follows:

(i) 𝑠(𝑡) is a twice differentiable natural cubic spline of time mesh grid 𝑡𝑘:

𝑠(𝑡𝑘+) = 𝑠(𝑡𝑘−), 𝑠′(𝑡𝑘+) = 𝑠′(𝑡𝑘−), 𝑠′′(𝑡𝑘+) = 𝑠′′(𝑡𝑘−), 𝑘 = 2, 𝐾 − 1,

here 𝑠(𝑡𝑘+) = lim𝑡→𝑡𝑘+ 𝑠(𝑡) and 𝑠(𝑡𝑘−) = lim𝑡→𝑡𝑘− 𝑠(𝑡);
(ii) 𝑠′′(0) = 𝑠′′(𝑇 ) = 0;
(iii) The third-order derivative of 𝑠(𝑡) at the time instant 𝑡 = 𝑡𝑘 satisfies the following conditions:

𝑠′′′(𝑡𝑘+) − 𝑠′′′(𝑡𝑘−) =
𝛥𝑡
𝛼
(𝜓𝜖(𝑡𝑘) − 𝑠(𝑡𝑘)), 𝑘 = 2, 𝐾 − 1,

where 𝛼 > 0 is a regularization parameter.

Lemma 3.3 ([32, Theorem 2.5]). Suppose that 𝜓 and 𝜓𝜖 ∈ 𝐿∞(0, 𝑇 ) satisfy ‖𝜓𝜖 − 𝜓‖𝐿∞(0,𝑇 ) ≤ 𝜖. Suppose further that 𝜓 ∈ 𝐻2(0, 𝑇 ).
Then, the function 𝑠(𝑡) obtained by the above process (i)–(iii) satisfies the following estimates:

‖𝑠′ − 𝜓 ′
‖ 2 ≤

(

2𝛥𝑡 + 4𝛼1∕4 + 𝛥𝑡)
‖𝑠′′‖ 2 + 𝛥𝑡 𝛼

1∕2
+ 2𝜖 . (3.15)
12

𝐿 (0,𝑇 ) 𝜋 𝐿 (0,𝑇 ) 𝜖 𝛼1∕4
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(

a

w

a

w

f

With the choice 𝛼 = 𝜖2, the estimate (3.15) yields

‖𝑠′ − 𝜓 ′
‖𝐿2(0,𝑇 ) ≤

(

2𝛥𝑡 + 4
√

𝜖 + 𝛥𝑡
𝜋

)

‖𝑠′′‖𝐿2(0,𝑇 ) + 𝛥𝑡 + 2
√

𝜖 = (𝛥𝑡 +
√

𝜖). (3.16)

Therefore, the unknown quantity 𝑓 (𝑡) can be determined from the cubic spline 𝑠(𝑡) generated above from 𝜓𝜖 . Also, the system
3.1) and (3.2) can be rewritten as:

𝑓 1
𝑠 =

∫ 1
0 𝜔

′′′′(𝑥)𝜙(𝑥)𝑑𝑥 + (𝑠′)1 − ∫ 1
0 𝜔(𝑥)ℎ

1(𝑥)𝑑𝑥

∫ 1
0 𝜔(𝑥)𝑔(𝑥)𝑑𝑥

,

𝑓𝑘𝑠 =
∫ 1
0 𝜔

′′′′(𝑥)𝑢𝑘−1𝑠 (𝑥)𝑑𝑥 + (𝑠′)𝑘 − ∫ 1
0 𝜔(𝑥)ℎ

𝑘(𝑥)𝑑𝑥

∫ 1
0 𝜔(𝑥)𝑔(𝑥)𝑑𝑥

, 𝑘 = 2, 𝐾, (3.17)

nd the function 𝑢𝑘𝑠 (𝑥) solves the problem

⎧

⎪

⎨

⎪

⎩

𝛿𝑡𝑢𝑘𝑠 + (𝑢𝑘𝑠 )𝑥𝑥𝑥𝑥 = 𝑓𝑘𝑠 𝑔(𝑥) + ℎ
𝑘(𝑥), 𝑘 = 2, 𝐾,

𝑢𝑘𝑠 (0) = 𝑢𝑘𝑠 (1) = (𝑢𝑘𝑠 )𝑥𝑥(0) = (𝑢𝑘𝑠 )𝑥𝑥(1) = 0, 𝑘 = 2, 𝐾,
(3.18)

here 𝛿𝑡𝑢𝑘𝑠 = 𝑢𝑘𝑠−𝑢
𝑘−1
𝑠

𝛥𝑡 , 𝑢1𝑠 (𝑥) = 𝜙(𝑥) and (𝑠′)𝑘 = 𝑠′(𝑡𝑘). Like the definitions of functions 𝑓𝐾 , 𝑢𝐾 and �̄�𝐾 , we can define the functions
𝑓𝐾𝑠, 𝑢𝐾𝑠 and �̄�𝑘𝑠 in the same way, respectively. Similar to Theorem 3.1 we obtain the following theorem.

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied and assume further that 𝜓 ∈ 𝐿∞(0, 𝑇 ). Then choosing 𝛼 = 𝜖2, there exist
positive constants 𝐶 and 𝛥𝑡0 such that for any 𝛥𝑡 ≤ 𝛥𝑡0,

∫

𝑇

0
|

|

𝑓𝐾𝑠(𝑡) − 𝑓 (𝑡)||
2 𝑑𝑡 ≤ 𝐶(𝛥𝑡 + 𝜖). (3.19)

Proof. Denoting by 𝑑𝑘 ∶= 𝑓𝑘𝑠 − 𝑓𝑘, 𝑤𝑘(𝑥) ∶= 𝑢𝑘𝑠 (𝑥) − 𝑢
𝑘(𝑥) and 𝑆𝑘 ∶= (𝑠′)𝑘 − (𝜓 ′)𝑘, from (3.1), (3.2) and (3.17), (3.18), we have

𝑑1 = 𝑆1

∫ 1
0 𝜔(𝑥)𝑔(𝑥)𝑑𝑥

, 𝑑𝑘 =
∫ 1
0 𝜔

′′′′(𝑥)𝑤𝑘−1(𝑥)𝑑𝑥 + 𝑆𝑘

∫ 1
0 𝜔(𝑥)𝑔(𝑥)𝑑𝑥

, 𝑘 = 2, 𝐾, (3.20)

nd
⎧

⎪

⎨

⎪

⎩

𝛿𝑡𝑤𝑘 +𝑤𝑘𝑥𝑥𝑥𝑥 = 𝑑𝑘𝑔(𝑥), 𝑘 = 2, 𝐾,

𝑤𝑘(0) = 𝑤𝑘(1) = 𝑤𝑘𝑥𝑥(0) = 𝑤𝑘𝑥𝑥(1) = 0, 𝑘 = 2, 𝐾,
(3.21)

ith 𝑤1(𝑥) = 0. Applying the approaches used to prove Lemma 3.2, for every 𝑗 = 2, 𝐾, we can establish that

max
𝑗=2,𝐾

‖𝑤𝑗‖2
𝐿2(0,1)

+
𝑗
∑

𝑘=2
‖𝑤𝑘 −𝑤𝑘−1‖2

𝐿2(0,1)
+ 𝛥𝑡

𝑗
∑

𝑘=2
‖𝑤𝑘𝑥𝑥‖

2
𝐿2(0,1)

≤ 𝐶, (3.22)

𝛿𝑡
𝑗
∑

𝑘=2
‖𝑤𝑘‖2

𝐿2(0,1)
𝛥𝑡 + max

𝑗=2,𝐾
‖𝑤𝑗𝑥𝑥‖

2
𝐿2(0,1)

+
𝑗
∑

𝑘=2
‖𝑤𝑘𝑥𝑥 −𝑤

𝑘−1
𝑥𝑥 ‖

2
𝐿2(0,1)

≤ 𝐶, (3.23)

max
𝑗=2,𝐾

|𝑑𝑗 |2 ≤ 𝐶. (3.24)

We define functions 𝑤𝐾 (𝑥, 𝑡) and �̄�𝐾 (𝑥, 𝑡) similarly to the definition of 𝑢𝐾 (𝑥, 𝑡) and �̄�𝐾 (𝑥, 𝑡). Then, (3.20) and (3.21) become

𝑑𝐾 (𝑡) = 𝑓𝐾𝑠(𝑡) − 𝑓𝐾 (𝑡) =
∫ 1
0 𝜔

′′′′(𝑥)�̄�𝐾 (𝑥, 𝑡 − 𝛥𝑡)𝑑𝑥 + �̄�𝐾 (𝑡)

∫ 1
0 𝜔(𝑥)𝑔(𝑥)𝑑𝑥

, (3.25)

where �̄�𝐾 (𝑡) is defined by

�̄�𝐾 (0) = 𝑆1, �̄�𝐾 (𝑡) = 𝑆(𝑡𝑘), 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘], 𝑘 = 2, 𝐾,

and
{

∫ 1
0 (�̄�𝐾 )𝑡(𝑥, 𝑡)𝜒(𝑥)𝑑𝑥 + ∫ 1

0 (�̄�𝐾 )𝑥𝑥(𝑥, 𝑡)𝜒
′′(𝑥)𝑑𝑥 = ∫ 1

0 𝑑𝐾 (𝑡)𝑔(𝑥)𝜒(𝑥)𝑑𝑥, 𝑡 ∈ (0, 𝑇 ],

�̄�𝐾 (𝑥, 0) = 0, 𝑥 ∈ (0, 1),
(3.26)

or all 𝜒 ∈ 𝑉 . For the right-hand side of (3.25), we have

𝑡 |
|

|

1
𝜔′′′′(𝑥)�̄�𝐾 (𝑥, 𝜏 − 𝛥𝑡)𝑑𝑥

|

|

|

2

𝑑𝜏 ≤ 𝐶
𝑡
‖�̄�𝐾 (⋅, 𝜏 − 𝛥𝑡)‖2 2 𝑑𝜏
13

∫0 |

|

∫0 |

|

∫0 𝐿 (0,1)
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a

T

t

≤ 𝐶 ∫

𝑡

0
‖�̄�𝐾 (⋅, 𝜏) −𝑤𝐾 (⋅, 𝜏)‖2𝐿2(0,1)

𝑑𝜏 + 𝐶 ∫

𝑡

0
‖𝑤𝐾 (⋅, 𝜏)‖2𝐿2(0,1)

𝑑𝜏 ≤ 𝐶(𝛥𝑡)2 + 𝐶 ∫

𝑡

0
‖𝑤𝐾 (⋅, 𝜏)‖2𝐿2(0,1)

𝑑𝜏, (3.27)

nd the estimate (3.16) in Lemma 3.3 implies that

∫

𝑡

0
|�̄�𝐾 (𝜏)|

2𝑑𝜏 ≤∫

𝑡

0
|𝑠′(𝜏) − 𝜓 ′(𝜏)|2𝑑𝜏 + ∫

𝑡

0
|

|

�̄�𝐾 (𝜏) − (𝑠′(𝜏) − 𝜓 ′(𝜏))|
|

2 𝑑𝜏

=∫

𝑡

0
|𝑠′(𝜏) − 𝜓 ′(𝜏)|2𝑑𝜏 +

𝐾
∑

𝑘=2
∫

𝑡𝑘

𝑡𝑘−1
|[(𝑠′)𝑘 − 𝑠′(𝜏)] − [(𝜓 ′)𝑘 − 𝜓 ′(𝜏)]|2𝑑𝜏

≤𝐶((𝛥𝑡)2 + 𝜖) +
𝐾
∑

𝑘=2
∫

𝑡𝑘

𝑡𝑘−1

(

|

|

|

|

|

∫

𝑡𝑘

𝜏
𝑠′′(𝜁 )𝑑𝜁

|

|

|

|

|

2

+
|

|

|

|

|

∫

𝑡𝑘

𝜏
𝜓 ′′(𝜁 )𝑑𝜁

|

|

|

|

|

2)

𝑑𝜏 ≤ 𝐶(𝛥𝑡 + 𝜖).

hus, we obtain

∫

𝑡

0
|𝑑𝐾 (𝜏)|

2𝑑𝜏 ≤ 𝐶(𝛥𝑡 + 𝜖) + 𝐶 ∫

𝑡

0
‖𝑤𝐾 (⋅, 𝜏)‖2𝐿2(0,1)

𝑑𝜏. (3.28)

For each frozen 𝑡 ∈ (0, 𝑇 ], we take 𝜒(𝑥) = 𝑤𝐾 (𝑥, 𝑡) in (3.26), unfreeze 𝑡 and integrate with respect to 𝑡 over (0, 𝜃) with 𝜃 ∈ (0, 𝑇 ],
o obtain

∫

𝜃

0 ∫

1

0
(𝑤𝐾 )𝑡(𝑥, 𝑡)𝑤𝐾 (𝑥, 𝑡)𝑑𝑥𝑑𝑡 + ∫

𝜃

0
‖(𝑤𝐾 )𝑥𝑥(⋅, 𝑡)‖2𝐿2(0,1)

𝑑𝑡

=∫

𝜃

0
𝑑𝐾 (𝑡)

(

∫

1

0
𝑔(𝑥)𝑤𝐾 (𝑥, 𝑡)𝑑𝑥

)

𝑑𝑡 − ∫

𝜃

0 ∫

1

0
(�̄�𝐾 −𝑤𝐾 )𝑥𝑥(𝑥, 𝑡)(𝑤𝐾 )𝑥𝑥(𝑥, 𝑡)𝑑𝑥𝑑𝑡.

Clearly,

∫

𝜃

0 ∫

1

0
(𝑤𝐾 )𝑡(𝑥, 𝑡)𝑤𝐾 (𝑥, 𝑡)𝑑𝑥𝑑𝑡 =

1
2
‖𝑤𝐾 (⋅, 𝜃)‖2𝐿2(0,1)

,

|

|

|

|

|

∫

𝜃

0 ∫

1

0
(�̄�𝐾 −𝑤𝐾 )𝑥𝑥(𝑥, 𝑡)(𝑤𝐾 )𝑥𝑥(𝑥, 𝑡)𝑑𝑥𝑑𝑡

|

|

|

|

|

≤ 𝐶𝛥𝑡 + ∫

𝜃

0
‖(𝑤𝐾 )𝑥𝑥(𝑥, 𝑡)‖2𝐿2(0,1)

𝑑𝑡.

and (3.28) yields that
|

|

|

|

|

|

∫

𝜃

0
𝑑𝐾 (𝑡)

(

∫

1

0
𝑔(𝑥)𝑤𝐾 (𝑥, 𝑡)𝑑𝑥

)

𝑑𝑡
|

|

|

|

|

|

≤ 𝐶
(

∫

𝜃

0
|𝑑𝐾 (𝑡)|

2𝑑𝑡 + ∫

𝜃

0
‖𝑤𝐾 (⋅, 𝑡)‖2𝐿2(0,1)

𝑑𝑡
)

≤ 𝐶
(

𝛥𝑡 + 𝜖 + ∫

𝜃

0
‖𝑤𝐾 (⋅, 𝑡)‖2𝐿2(0,1)

)

.

Hence, we obtain that

‖𝑤𝐾 (⋅, 𝜃)‖2𝐿2(0,1)
≤ 𝐶

(

𝛥𝑡 + 𝜖 + ∫

𝜃

0
‖𝑤𝐾 (⋅, 𝑡)‖2𝐿2(0,1)

𝑑𝑡
)

,

and Gronwall inequality leads to

max
𝜃∈[0,𝑇 ]

‖𝑤𝐾 (⋅, 𝜃)‖2𝐿2(0,1)
≤ 𝐶(𝛥𝑡 + 𝜖).

Using (3.28), we immediately obtain (3.19), which concludes the proof of the theorem. □

The above theorem indicates that the time-discrete scheme (3.17) and (3.18) can be used to determine 𝑓 (𝑡). However, there are
some limitations of such method as we had to further assume that: (i) the data 𝜓 ∈ 𝐿∞(0, 𝑇 ) ∩𝐻2(0, 𝑇 ); (ii) the source term 𝑔 is
time-independent; (iii) the time-step 𝛥𝑡 should be small enough.

In order to solve the general inverse problem given by Eqs. (1.4) and (1.5) under the more general conditions of Theorem 2.5,
the optimization method based on the CGM is developed in the next section.

4. Optimization method

In the context of Theorem 2.1, assuming 𝜙 ∈ 𝐿2(0, 1), 𝑔 ∈ 𝐿∞(0, 𝑇 ;𝐿2(0, 1)) and ℎ ∈ 𝐿2(𝑄𝑇 ), let 𝑉 ∋ 𝑢(𝑥, 𝑡; 𝑓 ) (or 𝑢(𝑓 )) denote
the unique solution of the problem (1.4) for a particular function 𝑓 (𝑡) ∈ 𝐿2(0, 𝑇 ). Then the inverse problem of recovering 𝑓 (𝑡) can
be reformulated as an operator equation given by

𝑙(𝑓 )(𝑡) ∶= ∫

1

0
𝜔(𝑥)𝑢(𝑥, 𝑡; 𝑓 )𝑑𝑥 = 𝜓𝜖(𝑡), 𝑡 ∈ [0, 𝑇 ], (4.1)

here 𝑙 maps 𝐿2(0, 𝑇 ) into 𝐿2(0, 𝑇 ). Note that the measurement 𝜓𝜖 may simulate the measured data at the point 𝑥 = 𝑥0 ∈ (0, 1),
namely,

𝑢(𝑥0, 𝑡) = 𝜓𝜖(𝑡), 𝑡 ∈ [0, 𝑇 ]. (4.2)

if we take 𝜔(𝑥) = 𝛿(𝑥−𝑥0), where 𝛿(⋅) is the Dirac delta function. However, since in this section the solution 𝑢 to the direct problem
(1.4) is defined in the weak sense, the pointwise value of 𝑢(𝑥 , 𝑡) does not make sense. Therefore, we consider the determination
14

0
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of the unknown source term 𝑓 (𝑡) from (4.1) rather than from (4.2). Assume further that 𝜔 ∈ 𝑉 and that conditions (b) and (c)
are satisfied. Then, according to Theorem 2.5, there exists a unique solution (𝑢, 𝑓 ) ∈  × 𝐿2(0, 𝑇 ) of the inverse problem given by
Eqs. (1.4) and (1.5).

The Tikhonov regularization can be utilized to solve the operator Eq. (4.1). This is based on minimizing the objective functional
𝐽 ∶ 𝐿2(0, 𝑇 ) ↦ R+ defined as:

𝐽 (𝑓 ) ∶= 1
2
‖𝑙(𝑓 ) − 𝜓𝜖‖2

𝐿2(0,𝑇 )
+
𝛽
2
‖𝑓‖2

𝐿2(0,𝑇 )
= 1

2 ∫

𝑇

0

|

|

|

|

|

∫

1

0
𝜔(𝑥)𝑢(𝑥, 𝑡; 𝑓 )𝑑𝑥 − 𝜓𝜖(𝑡)

|

|

|

|

|

2

𝑑𝑡 +
𝛽
2
‖𝑓‖2

𝐿2(0,𝑇 )
, (4.3)

where 𝛽 ≥ 0 is the regularization parameter, and 𝑢(𝑥, 𝑡) is the weak solution to the problem (1.4) satisfying the identity

− ∫𝑄𝑇
𝑢𝜂𝑡𝑑𝑥𝑑𝑡 + ∫𝑄𝑇

𝑢𝑥𝑥𝜂𝑥𝑥𝑑𝑥𝑑𝑡 = ∫𝑄𝑇
(𝑓𝑔 + ℎ)𝜂𝑑𝑥𝑑𝑡 + ∫

1

0
𝜙(𝑥)𝜂(𝑥, 0)𝑑𝑥, (4.4)

for all 𝜂 ∈ 𝐻1(0, 𝑇 ;𝐻2(0, 1)) with 𝜂|𝑥∈{0,1} = 0 and 𝜂|𝑡=𝑇 = 0.
According to Theorem 2.1 and the estimate (2.1), for any 𝑓 ∈ 𝐿2(0, 𝑇 ), we have

‖𝑙(𝑓 )‖𝐿2(0,𝑇 ) ≤ ‖𝜔‖𝐿2(0,1)‖𝑢‖𝐿2(𝑄𝑇 ) ≤ 𝐶‖𝜔‖𝐿2(0,1)

(

‖𝑓𝑔 + ℎ‖𝐿2(𝑄𝑇 ) + ‖𝜙‖𝐿2(0,1)

)

.

In summary, the operator 𝑙 ∶ 𝑓 ↦ ∫ 1
0 𝜔(𝑥)𝑢(𝑥, 𝑡; 𝑓 )𝑑𝑥 is linear and bounded from 𝐿2(0, 𝑇 ) to 𝐿2(0, 𝑇 ).

We next prove that the objective functional 𝐽 (𝑓 ) is Fréchet differentiable. For this, we introduce the adjoint problem given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝜆𝑡 + 𝜆𝑥𝑥𝑥𝑥 = 𝜔(𝑥)
(

∫ 1
0 𝜔(𝑥)𝑢(𝑥, 𝑡)𝑑𝑥 − 𝜓

𝜖(𝑡)
)

, (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝜆(0, 𝑡) = 𝜆(1, 𝑡) = 𝜆𝑥𝑥(0, 𝑡) = 𝜆𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝜆|𝑡=𝑇 = 0, 𝑥 ∈ [0, 1].

(4.5)

The problem (4.5) has a solution 𝜆 ∈  by Theorem 2.1, since 𝜔 ∈ 𝐿2(0, 1), 𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻2(0, 1)) ↪ 𝐿2(0, 𝑇 ;𝐿∞(0, 1)) and
𝜓𝜖 ∈ 𝐿2(0, 𝑇 ).

Theorem 4.1. Let the assumptions of Theorem 2.5 hold. Then, the objective functional 𝐽 (𝑓 ) given by (4.3) is Fréchet differentiable, and
the Fréchet derivative at 𝑓 ∈ 𝐿2(0, 𝑇 ) is given by

𝐽 ′(𝑓 ) = ∫

1

0
𝜆(𝑥, 𝑡)𝑔(𝑥, 𝑡)𝑑𝑥 + 𝛽𝑓 , (4.6)

where 𝜆 satisfies the adjoint problem (4.5). Moreover, the gradient 𝐽 ′(𝑓 ) is Lipschitz continuous.

Proof. For 𝑓 ∈ 𝐿2(0, 𝑇 ) take any increment 𝛿𝑓 ∈ 𝐿2(0, 𝑇 ) and denote 𝛿𝑢 ∶= 𝑢(𝑓 +𝛿𝑓 )−𝑢(𝑓 ). Then, 𝛿𝑢 satisfies the following problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝛿𝑢)𝑡 + (𝛿𝑢)𝑥𝑥𝑥𝑥 = 𝛿𝑓 (𝑡)𝑔(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝛿𝑢(0, 𝑡) = 𝛿𝑢(1, 𝑡) = (𝛿𝑢)𝑥𝑥(0, 𝑡) = (𝛿𝑢)𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝛿𝑢(𝑥, 0) = 0, 𝑥 ∈ (0, 1).

(4.7)

Applying Theorem 2.1 it follows that the problem (4.7) has a unique solution 𝛿𝑢 ∈  . Multiplying (4.7) by 𝛿𝑢 and integrating over
(0, 1), we get

1
2
𝑑
𝑑𝑡

‖𝛿𝑢(⋅, 𝑡)‖2
𝐿2(0,1)

+ ‖(𝛿𝑢)𝑥𝑥(⋅, 𝑡)‖2𝐿2(0,1)
≤ 1

2
‖𝛿𝑓 (𝑡)𝑔(⋅, 𝑡)‖2

𝐿2(0,1)
+ 1

2
‖𝛿𝑢(⋅, 𝑡)‖2

𝐿2(0,1)
, 𝑡 ∈ [0, 𝑇 ].

Then, Gronwall’s inequality implies that

‖𝛿𝑢‖𝐿2(𝑄𝑇 ) ≤ 𝑒𝑇 ∕2‖𝛿𝑓𝑔‖𝐿2(𝑄𝑇 ) ≤ 𝑒𝑇 ∕2‖𝛿𝑓‖𝐿2(0,𝑇 )‖𝑔‖𝐿∞(0,𝑇 ;𝐿2(0,1)). (4.8)

Denoting 𝛿𝐽 ∶= 𝐽 (𝑓 + 𝛿𝑓 ) − 𝐽 (𝑓 ) and using (4.3), we have

𝛿𝐽 =∫

𝑇

0 ∫

1

0
𝜔(𝑥)𝛿𝑢(𝑥, 𝑡)

(

∫

1

0
𝜔(𝑥)𝑢(𝑥, 𝑡)𝑑𝑥 − 𝜓𝜖(𝑡)

)

𝑑𝑥𝑑𝑡

+ 𝛽 ∫

𝑇

0
𝑓 (𝑡)𝛿𝑓 (𝑡)𝑑𝑡 + 1

2

‖

‖

‖

‖

‖

∫

1

0
𝜔(𝑥)𝛿𝑢(𝑥, 𝑡)𝑑𝑥

‖

‖

‖

‖

‖

2

𝐿2(0,𝑇 )
+
𝛽
2
‖𝛿𝑓‖2

𝐿2(0,𝑇 )
.

Using integration by parts in the first term and the homogeneous boundary conditions to the problems (4.5) and (4.7), we obtain

∫

𝑇

∫

1
𝜔(𝑥)𝛿𝑢(𝑥, 𝑡)

(

∫

1
𝜔(𝑥)𝑢(𝑥, 𝑡)𝑑𝑥 − 𝜓𝜖(𝑡)

)

𝑑𝑥𝑑𝑡 = ∫

𝑇

∫

1
𝜆((𝛿𝑢)𝑡 + (𝛿𝑢)𝑥𝑥𝑥𝑥)𝑑𝑥𝑑𝑡 = ∫

𝑇

∫

1
𝛿𝑓𝜆𝑔𝑑𝑥𝑑𝑡, (4.9)
15
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Then, using the inequality (4.8), the third term satisfies the estimate

‖

‖

‖

‖

‖

∫

1

0
𝜔(𝑥)𝛿𝑢(𝑥, 𝑡)𝑑𝑥

‖

‖

‖

‖

‖

2

𝐿2(0,𝑇 )
≤ ‖𝜔‖2

𝐿2(0,1)
‖𝛿𝑢‖2

𝐿2(𝑄𝑇 )
≤ 𝑒𝑇 ‖𝜔‖2

𝐿2(0,1)
‖𝛿𝑓‖2

𝐿2(0,𝑇 )
‖𝑔‖2

𝐿∞(0,𝑇 ;𝐿2(0,1))
.

Consequently, we have

𝛿𝐽 = ∫

𝑇

0
𝛿𝑓

(

∫

1

0
𝜆𝑔𝑑𝑥 + 𝛽𝑓

)

𝑑𝑡 + (‖𝛿𝑓‖2
𝐿2(0,𝑇 )

), (4.10)

which means that the Fréchet derivative 𝐽 ′(𝑓 ) is given by (4.6).
Using (4.6), we have

𝐽 ′(𝑓 + 𝛿𝑓 ) − 𝐽 ′(𝑓 ) = ∫

1

0
�̄�𝑔𝑑𝑥 + 𝛽𝛿𝑓 ≤ ‖�̄�(⋅, 𝑡)‖𝐿2(0,1)‖𝑔(⋅, 𝑡)‖𝐿2(0,1) + 𝛽𝛿𝑓 , (4.11)

where �̄� satisfies the problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−�̄�𝑡 + �̄�𝑥𝑥𝑥𝑥 = 𝜔(𝑥) ∫ 1
0 𝜔(𝑥)𝛿𝑢(𝑥, 𝑡)𝑑𝑥, (𝑥, 𝑡) ∈ 𝑄𝑇 ,

�̄�(0, 𝑡) = �̄�(1, 𝑡) = �̄�𝑥𝑥(0, 𝑡) = �̄�𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

�̄�|𝑡=𝑇 = 0, 𝑥 ∈ [0, 1],

(4.12)

where 𝛿𝑢(𝑥, 𝑡) is the solution of the problem (2.14). By (4.8), the solution �̄� to (4.12) satisfies the estimate

‖�̄�‖𝐿2(𝑄𝑇 ) ≤ 𝑒𝑇 ∕2‖𝜔‖2
𝐿2(0,1)

‖𝛿𝑢‖𝐿2(𝑄𝑇 ) ≤ 𝑒𝑇 ‖𝜔‖2
𝐿2(0,1)

‖𝛿𝑓‖𝐿2(0,𝑇 )‖𝑔‖𝐿∞(0,𝑇 ;𝐿2(0,1)).

Applying the above inequality, then (4.11) satisfies the estimate

‖𝐽 ′(𝑓 + 𝛿𝑓 ) − 𝐽 ′(𝑓 )‖𝐿2(0,𝑇 ) ≤ ‖𝑔‖𝐿∞(0,𝑇 ;𝐿2(0,1))‖�̄�‖𝐿2(𝑄𝑇 ) + 𝛽‖𝛿𝑓‖𝐿2(0,𝑇 ) ≤ 𝐿‖𝛿𝑓‖𝐿2(0,𝑇 ),

where 𝐿 = 𝑒𝑇 ‖𝜔‖2
𝐿2(0,1)

‖𝑔‖2
𝐿∞(0,𝑇 ;𝐿2(0,1))

+ 𝛽 > 0 is a positive constant independent of 𝑓 and 𝛿𝑓 . Thus the gradient 𝐽 ′(𝑓 ) is Lipschitz
continuous and the proof is complete. □

Theorem 4.2. Suppose that 𝑓 , 𝑓 + 𝛿𝑓 ∈ 𝐿2(0, 𝑇 ), then the Fréchet gradient (4.6) of the objective functional (4.3) satisfies

⟨

𝐽 ′(𝑓 + 𝛿𝑓 ) − 𝐽 ′(𝑓 ), 𝛿𝑓
⟩

𝐿2(0,𝑇 ) =
‖

‖

‖

‖

‖

∫

1

0
𝜔(𝑥)𝛿𝑢(𝑥, 𝑡)𝑑𝑥

‖

‖

‖

‖

‖

2

𝐿2(0,𝑇 )
+ 𝛽‖𝛿𝑓‖2

𝐿2(0,𝑇 )
, (4.13)

where 𝛿𝑢 satisfies the problem (4.7), and ⟨⋅, ⋅⟩𝐿2(0,𝑇 ) indicates the inner product in 𝐿2(0, 𝑇 ).

Proof. Using the Fréchet derivative (4.6) and the problem (4.12), for any 𝑓 , 𝑓 + 𝛿𝑓 ∈ 𝐿2(0, 𝑇 ), we have
⟨

𝐽 ′(𝑓 + 𝛿𝑓 ) − 𝐽 ′(𝑓 ), 𝛿𝑓
⟩

𝐿2(0,𝑇 ) = ∫𝑄𝑇
�̄�𝑔𝛿𝑓𝑑𝑥𝑑𝑡 + 𝛽‖𝛿𝑓‖2

𝐿2(0,𝑇 )
. (4.14)

From (4.7), we get

∫𝑄𝑇
�̄�𝑔𝛿𝑓𝑑𝑥𝑑𝑡 = ∫𝑄𝑇

�̄�((𝛿𝑢)𝑡 + (𝛿𝑢)𝑥𝑥𝑥𝑥)𝑑𝑥𝑑𝑡.

By the initial and boundary conditions of problems (4.7) and (4.12), and using integration by parts, we have

∫𝑄𝑇
�̄�𝑔𝛿𝑓𝑑𝑥𝑑𝑡 = ∫𝑄𝑇

𝛿𝑢(−�̄�𝑡 + �̄�𝑥𝑥𝑥𝑥)𝑑𝑥𝑑𝑡 = ∫𝑄𝑇
𝛿𝑢

(

𝜔(𝑥)∫

1

0
𝜔(𝑥)𝛿𝑢(𝑥, 𝑡)𝑑𝑥

)

𝑑𝑥𝑑𝑡 =
‖

‖

‖

‖

‖

∫

1

0
𝜔(𝑥)𝛿𝑢(𝑥, 𝑡)𝑑𝑥

‖

‖

‖

‖

‖

2

𝐿2(0,𝑇 )
.

Therefore, (4.13) can be derived by combining the above result with (4.14). □

Remark 4.1. For 𝛽 > 0, expression (4.13) implies that the functional (4.3) is strictly convex, hence it has a unique minimizer,
which is given by [36, Theorem 2.12],

𝐿2(0, 𝑇 ) ∋ 𝑓 𝛽𝜖 = (𝑙∗𝑙 + 𝛽𝐼)−1𝑙∗𝜓𝜖 , (4.15)

where 𝑙∗ ∶ 𝐿2(0, 𝑇 ) ↦ 𝐿2(0, 𝑇 ) is the adjoint operator of 𝑙.

Remark 4.2. For the problem (2.3) with inhomogeneous boundary conditions, we can also define the objective functional 𝐽 (𝑓 )
given by (4.3) to transfer the inverse problem into an optimization problem, and by the same arguments illustrated in the above
16

theorem, the functional is Fréchet differentiable and shares the same form of gradient (4.6).
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Since the solution of the inverse problem given by Eqs. (1.4) and (1.5) can be approximated by the minimizer of the objective
unctional 𝐽 (𝑓 ) defined by (4.3), then the following iteration process based on the CGM is used to recover the source term 𝑓 (𝑡) by
inimizing 𝐽 (𝑓 ):

𝑓 𝑛+1 = 𝑓 𝑛 + 𝛼𝑛𝑑𝑛, 𝑛 ∈ N, (4.16)

here the subscript 𝑛 denotes the number of iterations, 𝑓 0(𝑡) is the initial guess for the coefficient 𝑓 (𝑡), 𝛼𝑛 is the search step size,
lso known as the learning rate, in passing from iteration 𝑛 to 𝑛 + 1, and 𝑑𝑛 is the search direction given by:

𝑑0 = −𝐽 ′(𝑓 0), 𝑑𝑛 = −𝐽 ′(𝑓 𝑛) + 𝛾𝑛𝑑𝑛−1, 𝑛 ∈ N∗, (4.17)

nd 𝛾𝑛 is the conjugate coefficient given by:

𝛾𝑛 =
‖𝐽 ′(𝑓 𝑛)‖𝐿2(0,𝑇 )

‖𝐽 ′(𝑓 𝑛−1)‖𝐿2(0,𝑇 )
, 𝑛 ∈ N∗, (4.18)

nd the search step size 𝛼𝑛 is determined by

𝛼𝑛 = argmin
𝛼≥0

𝐽 (𝑓 𝑛 + 𝛼𝑑𝑛).

n order to obtain 𝛼𝑛, we consider the objective functional (4.3) with 𝑓 𝑛+1, i.e.

𝐽 (𝑓 𝑛+1) = 1
2 ∫

𝑇

0

|

|

|

|

|

∫

1

0
𝜔(𝑥)𝑢(𝑓 𝑛 + 𝛼𝑛𝑑𝑛)(𝑥, 𝑡)𝑑𝑥 − 𝜓𝜖(𝑡)

|

|

|

|

|

2

𝑑𝑡 +
𝛽
2
‖𝑓 𝑛 + 𝛼𝑛𝑑𝑛‖2

𝐿2(0,𝑇 )
.

Then, we have
𝜕𝐽 (𝑓 𝑛+1)
𝜕𝛼𝑛

= lim
𝛿𝛼→0

𝐽 (𝑓 𝑛 + (𝛼𝑛 + 𝛿𝛼)𝑑𝑛) − 𝐽 (𝑓 𝑛 + 𝛼𝑛𝑑𝑛)
𝛿𝛼

=∫

𝑇

0

(

∫

1

0
𝜔𝑢𝑛𝑑𝑥 − 𝜓𝜖

)

∫

1

0
𝜔𝛿𝑢𝑛𝑑𝑥𝑑𝑡 + 𝛽 ∫

𝑇

0
𝑓 𝑛𝑑𝑛𝑑𝑡𝛼𝑛

‖

‖

‖

‖

‖

∫

1

0
𝜔𝛿𝑢𝑛𝑑𝑥

‖

‖

‖

‖

‖

2

𝐿2(0,𝑇 )
+ 𝛼𝑛𝛽‖𝑑𝑛‖2

𝐿2(0,𝑇 )
,

where 𝑢𝑛 ∶= 𝑢(𝑓 𝑛), and 𝛿𝑢𝑛 satisfies the following sensitivity problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝛿𝑢𝑛)𝑡 + (𝛿𝑢𝑛)𝑥𝑥𝑥𝑥 = 𝑑𝑛𝑔(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝛿𝑢𝑛(0, 𝑡) = 𝛿𝑢𝑛(1, 𝑡) = (𝛿𝑢𝑛)𝑥𝑥(0, 𝑡) = (𝛿𝑢𝑛)𝑥𝑥(1, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝛿𝑢𝑛(𝑥, 0) = 0, 𝑥 ∈ (0, 1).

(4.19)

Using (4.9) with 𝑑𝑛 = 𝛿𝑓 , we have

∫

𝑇

0

(

∫

1

0
𝜔𝑢(𝑓 𝑛)𝑑𝑥 − 𝜓𝜖

)

∫

1

0
𝜔𝛿𝑢𝑛𝑑𝑥𝑑𝑡 = ∫

𝑇

0 ∫

1

0
𝑑𝑛𝜆(𝑓 𝑛)𝑔𝑑𝑥𝑑𝑡.

This identity and the gradient 𝐽 ′(𝑓 ) given by (4.6) imply that

𝜕𝐽 (𝑓 𝑛+1)
𝜕𝛼𝑛

= ∫

𝑇

0
𝐽 ′(𝑓 𝑛)𝑑𝑛𝑑𝑡 + 𝛼𝑛

‖

‖

‖

‖

‖

∫

1

0
𝜔𝛿𝑢𝑛𝑑𝑥

‖

‖

‖

‖

‖

2

𝐿2(0,𝑇 )
+ 𝛼𝑛𝛽‖𝑑𝑛‖2

𝐿2(0,𝑇 )
.

Setting 𝜕𝐽 (𝑓𝑛+1)
𝜕𝛼𝑛 = 0, we obtain

𝛼𝑛 = −
⟨𝐽 ′(𝑓 𝑛), 𝑑𝑛⟩𝐿2(0,𝑇 )

‖

‖

‖

∫ 1
0 𝜔𝛿𝑢𝑛𝑑𝑥

‖

‖

‖

2

𝐿2(0,𝑇 )
+ 𝛽‖𝑑𝑛‖2

𝐿2(0,𝑇 )

, 𝑛 ∈ N.

Using (4.10) with 𝛿𝑓 = 𝛼𝑛𝑑𝑛, we have
𝜕𝐽 (𝑓 )
𝜕𝛼𝑛

= lim
𝛼𝑛→0

𝐽 (𝑓 + 𝛼𝑛𝑑𝑛) − 𝐽 (𝑓 )
𝛼𝑛

= lim
𝛼𝑛→0

1
𝛼𝑛

(

∫

𝑇

0
𝛼𝑛𝑑𝑛

(

∫

1

0
𝜆(𝑓 )𝑔𝑑𝑥 + 𝛽𝑓 𝑛

)

𝑑𝑡 + (‖𝛼𝑛𝑑𝑛‖2
𝐿2(0,𝑇 )

)

)

=
⟨

𝐽 ′(𝑓 ), 𝑑𝑛
⟩

𝐿2(0,𝑇 ) ,

nd thus
𝜕𝐽 (𝑓 𝑛+1)
𝜕𝛼𝑛

=
⟨

𝐽 ′(𝑓 𝑛+1), 𝑑𝑛
⟩

𝐿2(0,𝑇 ) = 0.

Then, using (4.17), we obtain that

𝛼𝑛 =
‖𝐽 ′(𝑓 𝑛)‖2

𝐿2(0,𝑇 )

‖

‖∫ 1 𝜔𝛿𝑢𝑛𝑑𝑥‖‖
2

+ 𝛽‖𝑑𝑛‖2
, 𝑛 ∈ N. (4.20)
17

‖

0
‖𝐿2(0,𝑇 ) 𝐿2(0,𝑇 )
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In case 𝛽 = 0, for achieving regularization, the iteration process is stopped when the following discrepancy criterion is satisfied:

𝐽 (𝑓 𝑛) ≤ 𝜏𝜖2∕2, (4.21)

here 𝜏 is a safeguarding constant greater than one.
In summary, the CGM iterative algorithm for numerically reconstructing of the unknown source term 𝑓 (𝑡) is as follows:
Step 1. Set 𝑛 = 0 and choose an arbitrary initial guess 𝑓 0 ∈ 𝐿2(0, 𝑇 ).
Step 2. Solve the direct problem (1.4) for 𝑢(𝑓 𝑛) and calculate the objective functional 𝐽 (𝑓 𝑛) given by (4.3).
Step 3. Solve the adjoint problem (4.5) (changing also 𝑡 ↦ 𝑇 − 𝑡) to obtain 𝜆(𝑓 𝑛) and the derivative 𝐽 ′(𝑓 𝑛) by (4.6). Compute

he conjugate coefficient 𝛾𝑛 by (4.18) and the search direction 𝑑𝑛 in (4.17).
Step 4. Solve the sensitivity problem (4.19) to obtain 𝛿𝑢𝑛 numerically with 𝑑𝑛, and calculate the search direction 𝛼𝑛 by (4.20).
Step 5. Update 𝑓 𝑛+1 by (4.16).
Step 6. In case 𝛽 = 0, if the stopping criterion (4.21) is satisfied, then go to Step 7. Else set 𝑛 = 𝑛 + 1, and go to Step 2.
Step 7. End.

emark 4.3. In case of no noise, i.e. 𝜖 = 0 in (2.41), if the exact data 𝜓 belongs to the range of the operator defined in (4.1), then
he CGM with 𝛽 = 0, described above, converges to the unique solution of the inverse problem given by Eqs. (1.4) and (1.5), [37,
heorem 7.9].

emark 4.4. If 𝛽 = 0, it is obvious that 𝐽 ′(𝑓 )(𝑇 ) = 0 from (4.5) and (4.6). This shows that if the terminal time value 𝑓 0(𝑇 ) is not
specified as the true value of 𝑓 (𝑇 ), the numerical results of 𝑓 (𝑡) will deviate from the exact values near the final time 𝑡 = 𝑇 . In order
to avoid such shortcoming, we shall record data (1.5) a little longer, say, up to 𝑡 = �̄� > 𝑇 .

5. Numerical results and discussions

In this section, we consider the numerical determination of 𝑓 (𝑡) by utilizing the time-discrete method prescribed in Section 3 and
the CGM prescribed in Section 4, combined with the finite-difference scheme. Thus, we first establish the finite-difference method
(FDM) to obtain the numerical solution of the following direct initial–boundary value problem:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥 = 𝐹 (𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝑢(0, 𝑡) = 𝜇1(𝑡), 𝑢(1, 𝑡) = 𝜇2(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢𝑥𝑥(0, 𝑡) = 𝜇3(𝑡), 𝑢𝑥𝑥(1, 𝑡) = 𝜇4(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ (0, 1).

(5.1)

The main dependent variable to be determined is the function 𝑢(𝑥, 𝑡). When the source term 𝐹 is given by 𝐹 (𝑥, 𝑡) = 𝑓 (𝑡)𝑔(𝑥, 𝑡)+ℎ(𝑥, 𝑡),
the problem (5.1) becomes the direct problem (1.4) when 𝜇1(𝑡) = 𝜇2(𝑡) = 𝜇3(𝑡) = 𝜇4(𝑡) = 0.

Divide the domain [0, 1] × [0, 𝑇 ] into the uniform grid:

𝑥𝑖 = (𝑖 − 1)𝛥𝑥, 𝑖 = 1, 𝐼, 𝑡𝑘 = (𝑘 − 1)𝛥𝑡, 𝑘 = 1, 𝐾,

where the space and time mesh step sizes are given by 𝛥𝑥 = 1
𝐼−1 and 𝛥𝑡 = 𝑇

𝐾−1 , and denote the values of 𝑢(𝑥, 𝑡), 𝐹 (𝑥, 𝑡), 𝜇𝑖(𝑡) for
= 1, 4, and 𝜙(𝑥) at the node (𝑖, 𝑘) by:

𝑢𝑘𝑖 = 𝑢(𝑥𝑖, 𝑡𝑘), 𝐹 𝑘𝑖 = 𝐹 (𝑥𝑖, 𝑡𝑘), 𝜙𝑖 = 𝜙(𝑥𝑖), 𝜇𝑘1 = 𝜇1(𝑡𝑘), 𝜇𝑘2 = 𝜇2(𝑡𝑘), 𝜇𝑘3 = 𝜇3(𝑡𝑘), 𝜇𝑘4 = 𝜇4(𝑡𝑘).

Also, denote

𝐹
𝑘− 1

2
𝑖 =

𝐹 𝑘𝑖 + 𝐹 𝑘−1𝑖
2

, 𝛿𝑡𝑢
𝑘− 1

2
𝑖 =

𝑢𝑘𝑖 − 𝑢
𝑘−1
𝑖

𝛥𝑡
, 𝛿2𝑥𝑢

𝑘
𝑖 =

𝑢𝑘𝑖−1 − 2𝑢𝑘𝑖 + 𝑢
𝑘
𝑖+1

(𝛥𝑥)2
, 𝛿4𝑥𝑢

𝑘
𝑖 = 𝛿2𝑥(𝛿

2
𝑥𝑢
𝑘
𝑖 ).

Then, the Crank–Nicolson scheme for the initial–boundary value problem (5.1) is given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝑡𝑢
𝑘− 1

2
𝑖 + 1

2 (𝛿
4
𝑥𝑢
𝑘
𝑖 + 𝛿

4
𝑥𝑢
𝑘−1
𝑖 ) = 𝐹

𝑘− 1
2

𝑖 , 𝑖 = 2, 𝐼 − 1, 𝑘 = 2, 𝐾,

𝑢𝑘1 = 𝜇𝑘1 , 𝑢𝑘𝐼 = 𝜇𝑘2 , 𝑘 = 2, 𝐾,

𝑢1𝑖 = 𝜙𝑖, 𝑖 = 1, 𝐼,

(5.2)

where, for 𝑖 = 3, 𝐼 − 2:

𝛿4𝑥𝑢
𝑘
𝑖 = 𝛿2𝑥(𝛿

2
𝑥𝑢
𝑘
𝑖 ) = 𝛿2𝑥

(

1
(𝛥𝑥)2

(𝑢𝑘𝑖−1 − 2𝑢𝑘𝑖 + 𝑢
𝑘
𝑖+1)

)

1
(𝛥𝑥)4

(𝑢𝑘𝑖−2 − 4𝑢𝑘𝑖−1 + 6𝑢𝑘𝑖 − 4𝑢𝑘𝑖+1 + 𝑢
𝑘
𝑖+2), 𝑘 = 2, 𝐾, (5.3)

or 𝑖 = 2:

𝛿4𝑢𝑘 = 1 (𝛿2𝑢𝑘 − 2𝛿2𝑢𝑘 + 𝛿2𝑢𝑘) = 1 (𝜇𝑘 − 2𝛿2𝑢𝑘 + 𝛿2𝑢𝑘) = 1 ((𝛥𝑥)2𝜇𝑘 − 2𝑢𝑘 + 5𝑢𝑘 − 4𝑢𝑘 + 𝑢𝑘), 𝑘 = 2, 𝐾, (5.4)
18

𝑥 2 (𝛥𝑥)2 𝑥 1 𝑥 2 𝑥 3 (𝛥𝑥)2 3 𝑥 2 𝑥 3 (𝛥𝑥)4 3 1 2 3 4
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and for 𝑖 = 𝐼 − 1:

𝛿4𝑥𝑢
𝑘
𝐼−1 =

1
(𝛥𝑥)2

(𝛿2𝑥𝑢
𝑘
𝐼−2 − 2𝛿2𝑥𝑢

𝑘
𝐼−1 + 𝛿

2
𝑥𝑢
𝑘
𝐼 ) =

1
(𝛥𝑥)2

(𝛿2𝑥𝑢
𝑘
𝐼−2 − 2𝛿2𝑥𝑢

𝑘
𝐼−1 + 𝜇

𝑘
4 )

= 1
(𝛥𝑥)4

(𝑢𝑘𝐼−3 − 4𝑢𝑘𝐼−2 + 5𝑢𝑘𝐼−1 − 2𝑢𝑘𝐼 + (𝛥𝑥)2𝜇𝑘4 ), 𝑘 = 2, 𝐾. (5.5)

rom (5.3)–(5.5), the difference system (5.2) can be reformulated as a (𝐼 − 2) × (𝐼 − 2) system of linear algebraic equations of the
orm:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝐮𝑘 = 𝐵𝐮𝑘−1 + 𝐅𝑘−1, 𝑘 = 2, 𝐾,

𝑢𝑘1 = 𝜇𝑘1 , 𝑢𝑘𝐼 = 𝜇𝑘2 , 𝑘 = 2, 𝐾,

𝐮1 =
[

𝜙1, 𝜙2,… , 𝜙𝐼
]T ,

(5.6)

here 𝐮𝑘 =
[

𝑢𝑘2 , 𝑢
𝑘
3 ,… , 𝑢𝑘𝐼−1

]T,

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + 5𝑟 −4𝑟 𝑟

−4𝑟 1 + 6𝑟 −4𝑟 𝑟

𝑟 −4𝑟 1 + 6𝑟 −4𝑟 𝑟

⋱ ⋱ ⋱ ⋱

𝑟 −4𝑟 1 + 6𝑟 −4𝑟 𝑟

𝑟 −4𝑟 1 + 6𝑟 −4𝑟

𝑟 −4𝑟 1 + 5𝑟

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 5𝑟 4𝑟 −𝑟

4𝑟 1 − 6𝑟 4𝑟 −𝑟

−𝑟 4𝑟 1 − 6𝑟 4𝑟 −𝑟

⋱ ⋱ ⋱ ⋱ ⋱

− 𝑟 4𝑟 1 − 6𝑟 4𝑟 −𝑟

−𝑟 4𝑟 1 − 6𝑟 4𝑟

−𝑟 4𝑟 1 − 5𝑟

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

nd

𝐅𝑘−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝑡𝐹
𝑘− 1

2
2 + 2𝑟(𝜇𝑘−11 + 𝜇𝑘1 ) − 𝑟(𝛥𝑥)

2(𝜇𝑘−13 + 𝜇𝑘3 )

𝛥𝑡𝐹
𝑘− 1

2
3 − 𝑟(𝜇𝑘−11 + 𝜇𝑘1 )

𝛥𝑡𝐹
𝑘− 1

2
4

⋯

𝛥𝑡𝐹
𝑘− 1

2
𝐼−3

𝛥𝑡𝐹
𝑘− 1

2
𝐼−2 − 𝑟(𝜇𝑘−12 + 𝜇𝑘2 )

𝛥𝑡𝐹
𝑘− 1

2
𝐼−1 + 2𝑟(𝜇𝑘−12 + 𝜇𝑘2 ) − 𝑟(𝛥𝑥)

2(𝜇𝑘−14 + 𝜇𝑘4 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where 𝑟 = 𝛥𝑡
2(𝛥𝑥)4 . The finite-difference scheme (5.6) to numerically solve the initial–boundary value problem (5.1) is consistent

and convergent of second-order ((𝛥𝑡)2 + (𝛥𝑥)2) in both space and time. Higher-order convergence can be obtained by employing
semi-discrete time-dependent compact schemes [38].

The direct, sensitivity and adjoint problems (1.4), (4.5) and (4.19), respectively, involved in the CGM are solved by using the FDM
(5.6) under the assumption that their classical strong solutions exist; otherwise, the finite element method becomes an applicable
alternative [39]. The trapezoidal rule is employed to deal with all the integrals involved. In addition, the accuracy error, as a
function of the iteration number 𝑛, is defined as

𝐸(𝑓 𝑛) = ‖𝑓 − 𝑓 𝑛‖𝐿2(0,𝑇 ), (5.7)

here 𝑓 𝑛 is the 𝑛th iterate and 𝑓 is the true source term, if available. The noisy integral observation 𝜓𝜖 is simulated by adding to
he exact data 𝜓exact errors given by

𝜓𝜖 = 𝜓exact + 𝜎 × random(1), (5.8)

here 𝜎 = 𝑝
100 ×max𝑡∈[0,𝑇 ] |𝜓exact(𝑡)| is the standard deviation, 𝑝% represents the percentage of noise and random(1) generates random

alues from a Gaussian normal distribution with zero mean and standard deviation equal to unity. Next, two numerical examples
re considered to reconstruct the unknown source term 𝑓 (𝑡) from the integral observation (5.8).

xample 1. In this example, we consider the input data

𝑔(𝑥, 𝑡) = 𝜋4 sin(𝜋𝑥), ℎ(𝑥, 𝑡) = 𝑒𝑡 sin(𝜋𝑥), 𝜙(𝑥) = sin(𝜋𝑥), 𝜔(𝑥) = sin(𝜋𝑥), 𝜇𝑖(𝑡) = 0, 𝑖 = 1, 4, 𝜓(𝑡) = 𝑒𝑡∕2.

ith this data the analytical solution to the inverse problem (1.4) and (1.5) is given by

𝑓 (𝑡) = 𝑒𝑡, 𝑢(𝑥, 𝑡) = 𝑒𝑡 sin(𝜋𝑥). (5.9)

t is obvious that 𝜔 satisfies condition (a). We take the terminal time 𝑇 = 1, and the mesh sizes 𝛥𝑥 = 0.01 and 𝛥𝑡 = 0.0001.
19
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Fig. 1. The exact and numerical results for 𝑓 (𝑡) obtained using (a) the time-discrete method and (b) the CGM, for 𝑝 ∈ {0, 2, 4, 6} noise, for Example 1.

We first apply the time-discrete method described in Section 3 regularized by the cubic spline function method to recon-
truct 𝑓 (𝑡). The numerical results for 𝑓 (𝑡) obtained with 𝛼 = 𝜖2 are presented in Fig. 1(a). The accuracy errors are 𝐸(𝑓 ) ∈
0.0053, 0.0332, 0.0902, 0.1678} for the percentages of noise 𝑝% ∈ {0, 2, 4, 6}%, respectively.

Secondly, we apply the CGM. We take �̄� = 1.2 > 𝑇 = 1 to avoid the stagnation at the final time. We also take 𝛽 = 0 in (4.3)
and employ the discrepancy principle criterion (4.21) (with 𝜏 ≈ 1) for stopping the iterations. The initial guess is chosen arbitrary,
ay 𝑓 0(𝑡) = 2. Fig. 1(b) shows the numerical solutions for 𝑓 (𝑡) at the stopping iteration numbers 𝑛∗ ∈ {20, 2, 2, 2} for 𝑝 ∈ {0, 2, 4, 6},

respectively. In the case of no noise 𝑝 = 0, the exact and numerical solutions overlap, which are graphically undistinguishable. The
accuracy errors are 𝐸(𝑓 𝑛∗ ) ∈ {0.0005, 0.0171, 0.0257, 0.0355} with 𝑝 ∈ {0, 2, 4, 6} noise, respectively. From Fig. 1 it can be seen that
stable and accurate solutions are obtained for the unknown source term 𝑓 (𝑡).

Compared with the time-discrete method, the weight function 𝜔(𝑥) or the mesh size 𝛥𝑡 can be chosen arbitrary in the CGM. For
instance, for 𝑝 = 0, the accuracy error is 𝐸(𝑓 20) ∈ {5.2347 × 10−4, 5.2109 × 10−4, 5.2300 × 10−4, 5.6716 × 10−4} with the weights
𝜔(𝑥) ∈ {1, 𝑥, 𝑥2, 𝑒𝑥}, respectively. Also, for 𝑝 = 0, for the mesh size 𝛥𝑡 ∈ {0.01, 0.005, 0.001, 0.0005, 0.0001} and 𝛥𝑥 = 0.01, the
corresponding accuracy errors {0.0013, 6.0157×10−4, 5.6810×10−4, 5.1657×10−4, 4.9899×10−4} for the CGM obtained after 20 iterations
are lower than the errors {0.4322, 0.2823, 0.0664, 0.0281, 0.0053} of the time-discrete method. From Figs. 1(a) and 1(b), it can be seen
that the numerical approximations for the time-discrete method are smooth since they are based on cubic splines, whilst for the
CGM, the approximate solution given in (4.15) is only in 𝐿2(0, 𝑇 ) and hence it is expected to be non-smooth for random noisy data
(5.8).

Example 2. The inverse problem given by Eqs. (1.5) and (2.3) with inhomogeneous boundary conditions is considered to reconstruct
a piecewise continuous source term 𝑓 (𝑡). We take

𝑔(𝑥, 𝑡) = 𝑒−𝑡(𝜋4(sin(𝜋𝑥) + cos(𝜋𝑥)) − 3) ×

⎧

⎪

⎨

⎪

⎩

1, 𝑡 ∈
[

1
4 ,

3
4

]

−1, otherwise,

ℎ(𝑥, 𝑡) = −𝑒−𝑡(sin(𝜋𝑥) + cos(𝜋𝑥)), 𝜙(𝑥) = sin(𝜋𝑥) + cos(𝜋𝑥) + 3, 𝜔(𝑥) = 1,

𝜇1(𝑡) = 4𝑒−𝑡, 𝜇2(𝑡) = 2𝑒−𝑡, 𝜇3(𝑡) = −𝜋2𝑒−𝑡, 𝜇4(𝑡) = 𝜋2𝑒−𝑡, 𝜓(𝑡) =
(

3 + 2
𝜋

)

𝑒−𝑡.

he analytical solution to the inverse problem given by Eqs. (1.5) and (2.3) is given by

𝑓 (𝑡) =

⎧

⎪

⎨

⎪

⎩

1, 𝑡 ∈
[

1
4 ,

3
4

]

−1, otherwise,
𝑢(𝑥, 𝑡) = 𝑒−𝑡(sin(𝜋𝑥) + cos(𝜋𝑥) + 3). (5.10)

Compared with the previous Example 1, the inverse problem considered in this example is more severe since the source term
o be retrieved is a discontinuous function at the time instants 𝑡 = 1∕4 and 𝑡 = 3∕4. We only use the CGM based on minimizing
4.3) with 𝛽 = 0, to reconstruct 𝑓 (𝑡) with mesh sizes 𝛥𝑥 = 𝛥𝑡 = 0.01 and �̄� = 1.2. Here the initial guess for determining 𝑓 (𝑡)
20
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Fig. 2. (a) The objective functional 𝐽 (𝑓 𝑛) given by (4.3) with 𝛽 = 0 and (b) the accuracy error 𝐸(𝑓 𝑛) defined by (5.7), for 𝑝 ∈ {0, 1, 2} noise, for Example 2.

Fig. 3. The exact and numerical results for the source 𝑓 (𝑡), for 𝑝 ∈ {0, 1, 2} noise, for Example 2.

is chosen as 𝑓 0(𝑡) = 0. For the choices of the weight function 𝜔(𝑥) ∈ {𝑥, 𝑥2, 𝑒𝑥, sin(𝜋𝑥)} and 𝑝 = 0 noise, we calculate the error
𝐸(𝑓 50) ∈ {0.0053, 0.0065, 0.0042, 0.0045} after 50 iteration numbers.

The behaviour of the objective functional 𝐽 (𝑓 𝑛) defined by (4.3) with 𝛽 = 0 to determine the unknown source 𝑓 (𝑡), treated as a
function of the iteration number 𝑛, is presented in Fig. 2(a) for the noise level 𝑝 ∈ {0, 1, 2}. It is easy to observe that the objective
functional is a monotonic decreasing function of the iteration number 𝑛, which converges to a small positive value rapidly. By
utilizing the discrepancy principle (4.21) (with 𝜏 ≈ 1) and 𝜖2

2 ∈ {1.3 × 10−8, 8.9590 × 10−4, 0.0036}, we obtain the stopping iteration
numbers 𝑛∗ ∈ {50, 3, 3} for 𝑝 ∈ {0, 1, 2}, respectively. The accuracy error 𝐸(𝑓 𝑛) defined by (5.7), as a function of 𝑛, is displayed
n Fig. 2(b), with the values {0.0045, 0.1424, 0.2298} for 𝑝 ∈ {0, 1, 2} noise, respectively. The numerical solutions for the unknown

source term 𝑓 (𝑡) are presented in Fig. 3 at the stopping iteration numbers 𝑛∗ with 𝑝 ∈ {0, 1, 2}. From this figure it can be seen that
the numerical solutions are stable and reasonably accurate bearing in mind the severely discontinuous source term.

6. Conclusion

In this paper, the determination of a time-dependent source term in a fourth-order parabolic problem related to thermal grooving
by surface diffusion has been investigated from a given integral measurement. Based on the Fourier method of separating variables
and the contraction mapping theorem, we obtain the well-posedness of the weak solution to the inverse problem for smooth data
21
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(1.5). However, in practice the measured data is seldom smooth and therefore, the problem is still ill-posed in reality. To overcome
the instability of numerically differentiating a noisy function, we first use the time-discrete method with cubic splines to obtain
stably the unknown source term. The error estimate is also obtained under rigorous analysis. Another approach is the Tikhonov
regularization method. Based on the Fréchet derivative of the objective functional, the CGM is applied to obtain the solution of
the source term. Error estimates are possible based on the approach described in [40] for determining the source for the parabolic
second-order heat equation.

Two numerical examples for continuous and discontinuous source term have been presented, and the discussion highlights that
easonably accurate and stable solutions of the time-dependent source term have been achieved by both methods. Error estimates
or the numerical solutions when the data (1.5) is noisy are not established herein but we refer to the recent paper of Neubauer [41]
here optimal convergence rates in the presence of discretizations and modelling errors have been obtained.

Future work will consider inverse problems for groove growth by surface subdiffusion modelled by fourth-order fractional
quations [42].
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