
This is a repository copy of The conditional Lyapunov exponents and synchronisation of 
rotating turbulent flows.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/207837/

Version: Published Version

Article:

Li, J., Tian, M., Li, Y. orcid.org/0000-0001-7907-5176 et al. (2 more authors) (2024) The 
conditional Lyapunov exponents and synchronisation of rotating turbulent flows. Journal of 
Fluid Mechanics, 983. A1. ISSN 0022-1120 

https://doi.org/10.1017/jfm.2024.72

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



J. Fluid Mech. (2024), vol. 983, A1, doi:10.1017/jfm.2024.72

The conditional Lyapunov exponents and
synchronisation of rotating turbulent flows

Jian Li1, Mengdan Tian1, Yi Li2,†, Wenwen Si1 and

Huda Khaleel Mohammed3

1School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, PR China
2School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
3Department of System and Control Engineering, College of Electronics Engineering, Ninevah University,
Iraq

(Received 16 August 2023; revised 3 November 2023; accepted 15 January 2024)

The synchronisation between rotating turbulent flows in periodic boxes is investigated
numerically. The flows are coupled via a master–slave coupling, taking the Fourier
modes with wavenumber below a given value km as the master modes. It is found that
synchronisation happens when km exceeds a threshold value kc, and kc depends strongly
on the forcing scheme. In rotating Kolmogorov flows, kcη does not change with rotation
in the range of rotation rates considered, η being the Kolmogorov length scale. Even
though the energy spectrum has a steeper slope, the value of kcη is the same as that
found in isotropic turbulence. In flows driven by a forcing term maintaining constant
energy injection rate, synchronisation becomes easier when rotation is stronger. Here, kcη

decreases with rotation, and it is reduced significantly for strong rotations when the slope
of the energy spectrum approaches −3. It is shown that the conditional Lyapunov exponent
for a given km is reduced by rotation in the flows driven by the second type of forcing, but it
increases mildly with rotation for the Kolmogorov flows. The local conditional Lyapunov
exponents fluctuate more strongly as rotation is increased, although synchronisation occurs
as long as the average conditional Lyapunov exponents are negative. We also look for
the relationship between kc and the energy spectra of the Lyapunov vectors. We find that
the spectra always seem to peak at approximately kc, and synchronisation fails when the
energy spectra of the conditional Lyapunov vectors have a local maximum in the slaved
modes.
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1. Introduction

For some chaotic systems, one may couple two realisations of the system in specific ways
to synchronise the states of the two realisations, in the sense that the two realisations
remain chaotic, but the difference between them decays over time and approaches zero
asymptotically. This phenomenon is called (complete) chaos synchronisation, which was
first discussed in Fujisaka & Yamada (1983) and attracted wide attention after Pecora &
Carroll (1990) (see e.g. Pecora & Carroll (2015) for a historical account). The phenomenon
has applications in e.g. secure communication and parameter estimation, and is used as a
paradigm to understand a wide range of phenomena. The research into these applications,
as well as the principles behind the phenomenon and other forms of chaos synchronisation,
is reviewed in Pecora & Carroll (2015), Eroglu, Lamb & Pereira (2017) and Boccaletti et al.

(2002).
In turbulent simulations, chaos synchronisation is closely linked to data assimilation,

a practice where observational or measurement data are synthesised with simulation to
produce more accurate predictions of turbulent flows. If the aim of data assimilation
is to recover the chaotic instantaneous turbulent fields, then it becomes a problem of
chaos synchronization. For isotropic turbulence, typically two flows can be synchronised
completely by replacing Fourier modes with wavenumbers less than km from one flow with
those in the other, and synchronisation is achieved only if km is larger than a threshold
value kc. To the best of our knowledge, Henshaw, Kreiss & Ystróm (2003) are the first
to investigate the synchronisation of turbulent flows, where a theoretical estimate of kc

is derived but numerical experiments are conducted to show that synchronisation can
be achieved with far fewer Fourier modes. Another early work is Yoshida, Yamaguchi
& Kaneda (2005), where it was established numerically that kcη ≈ 0.2, with η the
Kolmogorov length scale. Lalescu, Meneveau & Eyink (2013) investigate a similar
problem with a different forcing scheme as well as anisotropic grids, and kcη ≈ 0.15 is
found.

When km is smaller than kc, Vela-Martin (2021) shows that partial synchronisation
can be obtained and that the velocity fields in domains with strong vorticity are
better synchronised than those with weaker vorticity. This result suggests that the
synchronisation of turbulent flows may have its own specific features pertinent to
the physics of turbulence. In Couette flows, Nikolaidis & Ioannou (2022) show that
synchronization occurs when streamwise Fourier modes with wavenumber exceeding a
threshold value are replicated in the two systems. They also show that synchronisation
happens if the conditional Lyapunov exponent is negative, in line with a result known
from the synchronisation of low-dimensional chaotic systems (Boccaletti et al. 2002).
Channel flows are investigated by Wang & Zaki (2022), where data from layers in
the flow domain with different orientations are used to couple two systems. By doing
so, scaling of the thickness of the layers needed for synchronisation is established,
through numerical experiments as well as analyses of the conditional Lyapunov
exponents.

In the aforementioned research, the coupling of the two flows is always achieved by
replacing part of the velocity field in one flow by the corresponding part of velocity in the
other flow. This type of coupling is termed master–slave coupling. Another common way
to couple the two systems is through nudging, where a linear forcing term is introduced
in either one or both of the flow fields. The forcing term nudges one flow from the other,
hence the name ‘nudging’. Nudging is used in Di Leoni, Mazzino & Biferale (2018, 2020)
to synchronise isotropic turbulence with or without rotation. The efficacy of different
nudging schemes is compared. In rotating turbulence, they find that synchronisation
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Synchronisation of rotating turbulent flows

becomes more effective due to the presence of large-scale coherent vortices, and inverse
cascade can be reconstructed when nudging is applied to small scales.

Going beyond the synchronisation between two simulations with identical system
parameters, Buzzicotti & De Leoni (2020) consider the synchronisation between large
eddy simulations (LES) and direct numerical simulations (DNS), using the nudging
method. Because the two systems are different in this case, complete synchronisation is
unachievable. However, the authors show that the error between the nudged LES velocity
and DNS velocity can be minimised by tuning the parameters in the subgrid-scale models.
Thus chaos synchronisation is used to optimise model parameters. Li, Tian & Li (2022)
investigate the synchronisation between LES and DNS using the master–slave coupling,
with a focus on the threshold wavenumber and the synchronisation error for different
subgrid-scale models. They find that the standard Smagorinsky model under certain
circumstances produces smaller synchronisation error than the dynamic Smagorinsky
model and the dynamic mixed model.

Rotating turbulence, i.e. turbulent flows in a rotating frame of reference, is ubiquitous in
atmospheric, oceanic and industrial flows. Rotating turbulence possesses features distinct
from non-rotating turbulence, including, for example, the emergence of coherent vortices,
steepened energy spectrum, and quasi-two-dimensionalisation of the flow. For detailed
reviews on these phenomena, see e.g. Godeferd & Moisy (2015) and Sagaut & Cambon
(2008). More recently, it is also noted that some features depend strongly on the forcing
scheme (Dallas & Tobias 2016). The synchronisation of rotating turbulence is investigated
in Di Leoni et al. (2018, 2020), as mentioned above. These investigations leave some
interesting questions unanswered. The most important one is how synchronisation depends
on the rate of rotation. For example, how does the threshold wavenumber kc change with
the rotation rate? Also, given the strong effects of the forcing term on the small scales of
rotating turbulence (Dallas & Tobias 2016), how the forcing term affects synchronisation
in rotating turbulence remains unclear. We intend to address these questions in the present
investigation.

We use master–slave coupling instead of nudging. The former does not require
specifying the coupling strength, hence reducing the number of control parameters by one.
To characterise the synchronised state, we calculate the conditional Lyapunov exponents
of the slave system, and quantify their dependence on rotation. Two different forcing
mechanisms are considered, to illustrate the effects of the forcing term. As we will show
later, rotation has significant impacts on the synchronisation behaviours, and the impacts
depend strongly on the forcing term. We believe that these results are a useful addition
to our understanding of rotating turbulence, especially concerning how to enhance its
predictability via simulations equipped with data assimilation functionalities. The impact
of the findings may be found in fields such as numerical weather prediction.

The paper is organised as follows. We introduce the governing equations, the controlling
parameters, and the definition of conditional Lyapunov exponents in § 2. The numerical
methods and a summary of the numerical experiments are presented in § 3, followed by
the results and discussions. Section 4 concludes the paper with the main observations that
we make from the numerical experiments.

2. Governing equations

We consider rotating turbulent flows in a [0, 2π]3 box with x = (x1, x2, x3) = (x, y, z)

representing the spatial coordinates. The flow satisfies the periodic boundary condition
in all three directions. Let Ω ≡ Ω ẑ be the rotation rate of a rotating frame of reference,
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J. Li, M. Tian, Y. Li, W. Si and H.K. Mohammed

where ẑ is the unit vector in the z direction. Let u(x, t) be the velocity field. For an observer
in the rotating frame, the Navier–Stokes equation (NSE) reads (see e.g. Greenspan 1969)

Dtu + 2Ω × u = −∇p + ν ∇2u + f , (2.1)

where

Dt ≡ ∂t + (u · ∇) (2.2)

is the material derivative, with u the velocity, p = p(x, t) the pressure, ν the viscosity, and
f = f (x, t) the forcing term. The density of the flow has been assumed to be unity. The
velocity is assumed to be incompressible, so

∇ · u = 0. (2.3)

Two different forcing terms are considered in this investigation. In the first case,

f ≡ (af cos kf x2, 0, 0), (2.4)

with af = 0.15 and kf = 1. Customarily, the flow driven by forcing terms of this type is
called the Kolmogorov flow (Borue & Orszag 1996), therefore we call this forcing term the
Kolmogorov forcing. Kolmogorov flow in general is inhomogeneous due to the sinusoidal
form of the force, although we do not investigate the effects of the inhomogeneity in
what follows. Kolmogorov forcing does not inject energy directly into turbulent velocity
fluctuations. Rather, its role is to maintain the unstable mean velocity profile that generates
turbulent fluctuations when it loses its stability (Borue & Orszag 1996). The parameter kf

introduces a length scale, which will be at the order of the integral scale of the flow.
A velocity scale can be defined from kf and af , which determines the order of magnitude
of the turbulent kinetic energy of the flow.

In the second case, the forcing term is confined in a range of small wavenumbers in the
Fourier space. Specifically, let û(k, t) be the Fourier transform of u, and let f̂ (k, t) be that
of f , with k being the wavenumber. The force is defined by

f̂ (k, t) =

{

A(t) û(k, t), |k| � kf ,max,

0, |k| > kf ,max,
(2.5)

where kf ,max = 2, and A(t) is given by

A(t) =
ǫf

∑

|k|�kf ,max
û(k, t) û∗(k, t)

, (2.6)

with ǫf = 0.05, and ∗ representing the complex conjugate. This forcing term injects kinetic
energy into the flow field at a constant rate equal to ǫf , via Fourier modes with |k| � kf ,max.
In the stationary stage, the mean energy dissipation rate of the flow would be the same as
ǫf . We call this forcing term ‘constant power forcing’.

Obviously, the two forcing terms are different in many ways, although both are
commonly used in turbulent simulations. As will be shown below, the flow fields driven
by the two forces are also different in many ways. To put this observation in context, we
note that Dallas & Tobias (2016) investigate the effects of the forcing term on the evolution
of rotating turbulence. They used a Taylor–Green forcing with a memory time scale τm.
With different τm, one may obtain different stationary states. For example, the energy
spectrum may display different slopes in different stationary states. In our simulations,
the Kolmogorov forcing term is a constant, therefore has an infinite memory time. The
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Synchronisation of rotating turbulent flows

constant power forcing has a memory time of the order of (ǫf k2
f ,max)

−1/3 ≈ 2. Therefore,
it is not surprising to find significant difference between the flows driven by the two
different forces. The difference allows us to explore how the forcing terms affect the
synchronisability of the flows.

The synchronisation of two flows is investigated by simulating them with same
parameters concurrently. Let u(1) and u(2) be the velocity fields of the two flows,
respectively. The velocity fields are initialised with different initial conditions, then evolve
over time simultaneously according to the NSE. To synchronise the two flows, the Fourier
modes of u(2) with |k| � km are replaced by those of u(1) at each time step. As such,

û(2)(k, t) = û(1)(k, t), (2.7)

for |k| � km at all times. This way of coupling the two flows is usually termed master–slave
coupling (Boccaletti et al. 2002). In this case, u(2) is the slave, whereas u(1) is the master.

It is expected that under suitable conditions, u(1) and u(2) will remain turbulent (chaotic)
but they will synchronise, i.e. u(2) will gradually approach u(1). Let the norm of a generic
vector field w be

‖w‖2 =
1

(2π)3

∫

[0,2π]3
w · w dV. (2.8)

The synchronisation error

∆(t) ≡ ‖u(1) − u(2)‖ (2.9)

will decay exponentially towards zero (Henshaw et al. 2003; Yoshida et al. 2005) when
the two flows synchronise.

The ability to synchronise the two flows depends crucially on km, which we will call the
coupling wavenumber. The Fourier modes in the two velocity fields with |k| > km are the
slaved modes, whereas those with |k| � km are the master modes.

Synchronisation depends on various statistics of the flow field, which will be introduced
briefly next. As u(1) and u(2) are both stationary turbulent flows with identical governing
equations and control parameters, these statistics can be calculated from either of them.
Therefore, we will use only u to indicate the velocity field. Let u′ ≡ u − 〈u〉 be the velocity
fluctuations, where 〈·〉 indicates ensemble average. The mean energy dissipation rate ǫ is
defined as

ǫ = 2ν〈s′
ijs

′
ij〉, (2.10)

where s′
ij = (∂ju

′
i + ∂iu

′
j)/2 is the fluctuating strain rate tensor. The small scales of the

flow are characterised by the Kolmogorov length scale η and the Kolmogorov time scale
τk, which are defined by (see e.g. Pope 2000)

η = (ν3/ǫ)1/4 and τk = (ν/ǫ)1/2, (2.11a,b)

respectively.
When two isotropic turbulent flows are synchronised with the coupling described above,

it has been found (Yoshida et al. 2005; Lalescu et al. 2013; Li et al. 2022) that

∆(t) ∼ exp(αt/τk), (2.12)

where α is the decay rate (note that the error decays only when α < 0). The decay rate α

is a function of kmη. The value of km for which α = 0 is the threshold wavenumber and
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is denoted by kc. The normalised threshold wavenumber kcη is found to be 0.15–0.2 for
isotropic turbulence (Yoshida et al. 2005; Lalescu et al. 2013).

For rotating turbulence, it is expected that the Rossby number will play a role. The
Rossby number can be defined using the small-scale parameters, leading to the micro-scale
Rossby number (Godeferd & Moisy 2015)

Rok =
1

2Ωτk

. (2.13)

The large-scale Rossby number is defined as

Roℓ =
urms

2Ωℓ
, (2.14)

where urms ≡ (〈u′
iu

′
i〉/3)1/2 is the root mean square velocity, and ℓ is the integral length

scale defined (Yoshida et al. 2005) as

ℓ =
π

2u2
rms

∫ ∞

0
k−1 E(k) dk, (2.15)

with E(k) the energy spectrum given by

E(k) =
1

2

∑

k�|k|<k+1

〈û(k, t) · û∗(k, t)〉. (2.16)

Synchronisation of chaotic systems is related to the conditional Lyapunov exponent
(CLE) of the slave system. To introduce the concept, let u be the master velocity field,
and let uδ be an infinitesimal perturbation to the slaved modes of u. Thus, by definition,

ûδ(k, t) = 0 for |k| � km. (2.17)

In the meantime, uδ obeys the linearised NSE

Dtu
δ + (uδ

· ∇)u + 2Ω × uδ = −∇pδ + ν ∇2uδ + f δ, (2.18)

and the continuity equation ∇ · uδ = 0, where pδ and f δ are the pressure perturbation and
the perturbation in the forcing term, respectively.

The CLE, denoted by λ(km), is defined as (Boccaletti et al. 2002; Nikolaidis & Ioannou
2022)

λ(km) = lim
t→∞

1

t
log

‖uδ(x, t + t0)‖

‖uδ(x, t0)‖
, (2.19)

where t0 is the initial time. λ(km) is a function of the coupling wavenumber km, and λ(km =
0) is the traditional (unconditional) Lyapunov exponent. As the unconditional Lyapunov
exponent measures the average growth rate of a generic velocity perturbation over the
turbulent attractor, λ(km) measures the average growth rate of the slaved modes along a
generic orbit u(x, t). It is known that for canonical chaotic systems, synchronisation occurs
only when the CLE is negative (Boccaletti et al. 2002). The same is confirmed for turbulent
channel flows (Nikolaidis & Ioannou 2022). One of the questions to be addressed in the
present investigation is how the CLE λ(km) depends on the Rossby number.

For sufficiently large t, the velocity field uδ gives a measure on the most unstable
perturbation to the slaved modes, thus is also of interest. This velocity field is called the
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Synchronisation of rotating turbulent flows

Lyapunov vector (Ohkitani & Yamada 1989; Bohr et al. 1998), which is another quantity
that we will look into.

An equation for ‖uδ‖ can be deduced from (2.18), which reads

d

dt

‖uδ‖2

2
= P − D + F , (2.20)

where
P ≡ −uδ

i uδ
j sij, D ≡ ν ∂ju

δ
i ∂ju

δ
i , F ≡ f δ

i uδ
i (2.21a,b,c)

are the production term, the dissipation term and the forcing term, respectively, and sij =
(∂jui + ∂iuj)/2 is the strain rate tensor. In the above expressions, the overline represents
spatial average. The periodic boundary condition has been used when deriving (2.20).

By virtue of (2.20), we obtain

γ (km, t) ≡
d

dt
log ‖uδ‖ =

P − D + F

‖uδ‖2
, (2.22)

where γ (km, t) is called the local CLE. Using (2.22), we can write

λ(km) = lim
t→∞

1

t

∫ t+t0

t0

γ (km, t) dt (2.23)

= lim
t→∞

1

t

∫ t+t0

t0

P − D + F

‖uδ‖2
dt. (2.24)

Therefore, the CLE λ(km) is the long-time average of γ (km, t). Whilst λ(km) is a
time-averaged quantity, γ (km, t) fluctuates over time. Its variance contains information
related to the stability of the synchronised state, and as such is also of some interest.

The rotation rate Ω does not appear in (2.24). Therefore, the rotation affects ‖uδ‖ only
indirectly, through its effects on the production and dissipation terms. Insights into the
effects of rotation on λ(km), hence the synchronisation process, can be obtained from
analyses of P , D and F . For example, the production term P depends crucially on the
alignment between uδ and the eigenvectors of the strain rate tensor sij, as well as the
eigenvalues of sij. These aspects will be looked into in our analyses.

The CLEs can be calculated according to (2.19) once uδ and u are available. To find
uδ , one might seek to integrate (2.18) numerically. However, this method suffers from the
fact that uδ normally grows exponentially, so the numerics would fail before a sufficiently
long time sequence of uδ could be obtained (which is needed to calculate λ(km)). We thus
use a common alternative method (Wolf et al. 1985; Boffetta & Musacchio 2017), where
we simulate two coupled flows u(1) and u(2) concurrently in the same way as described
previously, except for two differences. First, u(2) is initialised in such a way that the error
∆(0) (cf. (2.9)) is a small quantity. Second, u(2) is re-initialised repeatedly after each short
time interval t, by rescaling u(2) − u(1) to restore ‖u(2) − u(1)‖ to its initial (small) value.
The interval t is chosen to be short enough such that the evolution of u(2) − u(1) can be
approximated accurately by the linearised NSE. As a result, uδ ≈ u(2) − u(1). Therefore,
we have

γ ≈
1

t
log

‖u(2)(x, t + t) − u(1)(x, t + t)‖

‖u(2)(x, t) − u(1)(x, t)‖
, (2.25)

from which we then can calculate λ according to (2.23). For more details on the algorithm,
see e.g. Boffetta & Musacchio (2017).
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We remark that (2.24) gives us a way to calculate the CLEs via P , D and F , once uδ

has been obtained in the way described above. We used both methods to cross-check the
numerics, and found no difference in the results.

Finally, we note that ∆(t) is the same as ‖uδ‖ when the two flows are synchronised.
However, they are not interchangeable, because they would be significantly different when
the two flows do not synchronise.

3. Numerical simulations and results

Equation (2.1) is integrated numerically in the Fourier space with the pseudo-spectral
method. As is common for the simulation of rotating turbulence, the Fourier component û
is decomposed into helical modes a+(k, t) and a−(k, t), and the equations for a+ and a−

are integrated. Then, û is reconstructed from a± using the helical decomposition. With this
approach, the different components of the Coriolis force are decoupled in the equations for
a±, so that they (as well as the viscous diffusion term) can be treated with an integration
factor that increases the stability of the algorithm.

The advection term is de-aliased according to the two-thirds rule so that the maximum
effective wavenumber is 4π/3N, where N3 is the number of grid points in the simulations.
Time stepping is conducted with an explicit second-order Euler scheme, with a first-order
predictor and a corrector based on the trapezoid rule (Li et al. 2020).

Simulations with N3 = 1283, 1923 and 2563 grid points are conducted. The majority
of the analyses focus on rotation rates Ω = 0.1, 0.5 or 1. For the flows driven by
Kolmogorov forcing, test cases with Ω = 5 are also simulated to demonstrate that
two-dimensionalisation has happened at this rotation rate. Table 1 summarises the
parameters for all the cases. We label the cases with a code of the form ‘FaNbΩcd’ or
‘FaNbΩc’, where letters a to d are numbers. The code records the type of forcing (with
1 for Kolmogorov forcing, and 2 for constant power forcing), the number of grid points,
and the rotation rate of the case. For each case in table 1, sometimes multiple simulations
are conducted with different km. To differentiate these simulations, we append ‘K’ and
the value of km to the end of the code. Thus, for example, case F1N128Ω01K5 is a 1283

simulation driven by Kolmogorov forcing with rotation rate 0.1 and coupling wavenumber
km = 5, whereas case F2N256Ω1K7 is a 2563 simulation driven by constant power forcing
with rotation rate 1 and km = 7.

Multiple realisations of a case are simulated in some cases to obtain convergent statistics
for some quantities (e.g. for the variance of the CLEs shown in figure 16).

Since the main focus of this investigation is on the effects of rotation, the simulations
have only moderate Reynolds numbers. On the other hand, table 1 shows that the
micro-scale Rossby number in some cases is as small as 1.34 and 1.44. Therefore the
range of cases does cover flows where rotation will have significant impacts on the small
scales.

The CLEs are calculated according to the method explained in § 2. The velocity u(1)

is initialised with a fully developed turbulent velocity field, and u(2) is initialised with
u(1) + δu, where δu is composed of random numbers distributed uniformly in the interval
[0, 10−6urms]. When we calculate the CLEs with a threshold wavenumber km, u(2) is
coupled with u(1) such that (2.7) is true at all times. The time interval t between rescaling
the magnitude of u(2) − u(1) is t ≈ 0.1τk. These values are approximately the same as
the ones used in Boffetta & Musacchio (2017).
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Case Force N Ω ν δt urms ǫ λ τk η Rok Reλ ℓ Reℓ

F1N128Ω01 1 128 0.1 0.0060 0.0025 0.44 0.05 0.59 0.36 0.046 14.43 43 1.74 128
F1N128Ω05 1 128 0.5 0.0060 0.0025 0.54 0.10 0.51 0.25 0.038 4.08 46 2.04 183
F1N128Ω1 1 128 1.0 0.0060 0.0025 0.55 0.16 0.41 0.20 0.034 2.58 38 2.18 200
F1N128Ω5 1 128 5.0 0.0060 0.0006 0.58 1.07 0.17 0.08 0.021 1.34 16 2.32 224
F1N192Ω01 1 192 0.1 0.0044 0.0015 0.47 0.05 0.54 0.29 0.036 16.85 58 1.69 181
F1N192Ω05 1 192 0.5 0.0044 0.0015 0.53 0.10 0.43 0.22 0.030 4.77 52 2.00 240
F1N192Ω1 1 192 1.0 0.0044 0.0015 0.53 0.16 0.34 0.17 0.027 3.02 41 2.16 260
F1N192Ω5 1 192 5.0 0.0044 0.0004 0.66 1.04 0.17 0.07 0.017 1.54 26 2.31 347
F1N256Ω01 1 256 0.1 0.0030 0.0013 0.46 0.05 0.44 0.24 0.027 20.41 68 1.63 250
F1N256Ω05 1 256 0.5 0.0030 0.0013 0.49 0.10 0.33 0.17 0.023 5.77 54 1.98 323
F1N256Ω1 1 256 1.0 0.0030 0.0013 0.50 0.16 0.27 0.15 0.020 3.65 45 2.15 358
F2N128Ω01 2 128 0.1 0.0060 0.0025 0.50 0.05 0.67 0.35 0.046 14.43 56 1.66 138
F2N128Ω05 2 128 0.5 0.0060 0.0025 0.38 0.05 0.51 0.35 0.046 2.89 32 2.15 136
F2N128Ω1 2 128 1.0 0.0060 0.0025 0.38 0.05 0.51 0.35 0.046 1.44 32 2.29 145
F2N192Ω01 2 192 0.1 0.0044 0.0015 0.50 0.05 0.57 0.30 0.036 16.85 65 1.57 178
F2N192Ω05 2 192 0.5 0.0044 0.0015 0.40 0.05 0.46 0.30 0.036 3.37 42 2.04 186
F2N192Ω1 2 192 1.0 0.0044 0.0015 0.40 0.05 0.46 0.30 0.036 1.69 42 2.25 204

Table 1. Parameters for the cases: N3 is the number of grid points; Ω is the rotation rate; ν is the viscosity; δt is the time step size; urms is the root mean square velocity; ǫ

is the mean energy dissipation rate; η is the Kolmogorov length scale; λ is the Taylor length scale; τk is the Kolmogorov time scale; Rok is the micro-scale Rossby number;
Reλ ≡ urmsλ/ν is the Taylor micro-scale Reynolds number; ℓ is the integral length scale; and Reℓ ≡ urmsℓ/ν is the integral scale Reynolds number.
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Figure 1. The energy spectra: (a) cases with Kolmogorov forcing; (b) cases with constant power forcing. The
dashed line without symbols indicates the k−2 power law. The dash-dotted line without symbols indicates the
k−3 power law.

3.1. Basic features of the flow fields

We present some results in this subsection to illustrate the basic features of the flow fields.
The energy spectra normalised by Kolmogorov parameters are shown in figure 1. For the
flows driven by Kolmogorov forcing shown in figure 1(a), the normalised spectra collapse
onto a single curve except for the few lowest wavenumbers. At the lowest wavenumbers,
the spectra increase with the rotation rate, which shows increased energetics for the large
scales, consistent with our understanding of rotating turbulence.

The Reynolds number for the flow is relatively small, so no clear inertial range can be
identified. Nevertheless, the spectra appear to be consistent with the k−2 scaling law that
has been reported in previous research (Yeung & Zhou 1998; Dallas & Tobias 2016).

For the flows driven by constant power forcing, similar behaviours are observed for
lower rotation rates, as shown in figure 1(b). However, for Ω = 1, the spectra have steeper
slopes in the mid-wavenumber range, and they appear to be more consistent with the k−3

power law. The spectra in the dissipation range also appear to drop off at a faster rate. The
contrast between figures 1(a) and 1(b) shows that the forcing terms can lead to significant
quantitative differences in the flows.

In both flows, energy pile-up is observed at the lowest wavenumber end of the spectra,
and the pile-up increases slightly with the rotation rate. The pile-up is an indication of
the emergence of large-scale columnar vortices, which is a common feature of rotating
turbulence. Columnar vortices are indeed observable visually in our simulations with the
larger rotation rates, which are illustrated in figures 2(a,b) for two simulations with Ω = 1.
The figures show snapshots of the distribution of |ω| on three horizontal cross-sections of
the flow domain, where ω ≡ ∇ × u is the vorticity. A columnar vortex is visible at the left
corner in both flows. Figure 2(a) shows a simulation with a smaller Reynolds number. In
this case, the diameter of the columnar vortex is roughly half of the size of the domain. For
the flow with a larger Reynolds number (figure 2b), the background vorticity is stronger,
and the columnar vortex appears to be slightly smaller in size but is still clearly visible.
We will not show the results for other rotation rates, but we can confirm that columnar
vortices are also quite prevalent for Ω = 0.5, while they are rare for Ω = 0.1.

The probability density function (p.d.f.) of the vorticity component along the rotation
axis is also of interest because it is well known that the p.d.f. displays a positive skewness
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Figure 2. Snapshots of the |ω| distribution taken at three horizontal layers at the same time t for Ω = 1 with
Kolmogorov forcing: (a) from a case with N = 128; (b) from a case with N = 192.

(Bartello, Mètais & Lesieur 1994; Morize, Moisy & Rabaud 2005) in rotating turbulence,
due to the prevalence of cyclonic vortices over the anticyclonic ones. The skewness
emerges as rotation is introduced, peaks at an intermediate rotation rate, and then decreases
when the rotation rate increases further as the flow is two-dimensionalised under strong
rotation. The p.d.f.s for our simulations are plotted in figure 3. The p.d.f.s are indeed
skewed towards the positive values, with the corresponding skewness given in parentheses.
For flows driven by constant power forcing with N = 128, the skewness for Ω = 1 is
slightly smaller than that for Ω = 0.5. In other cases, the skewness increases with the
rotation rate. These p.d.f.s show, from another angle, that the effects of rotation are clearly
significant.

Table 1 shows that compared with the flows driven by constant power forcing, those
driven by Kolmogorov forcing tend to have larger micro-scale Rossby numbers Rok for a
given rotation rate Ω . In order to obtain even smaller Rok for the latter flows, we computed
a few test cases with Ω = 5, and found that the flows are strongly two-dimensionalised at
this rotation rate. Let E2D(t) be the kinetic energy in the two-dimensional Fourier modes
with kz = 0, and let E(t) be the total kinetic energy, i.e.

E2D(t) =
1

2

∑

{k: kz=0}

û(k, t) · û∗(k, t), E(t) =
1

2

∑

k

û(k, t) · û∗(k, t). (3.1a,b)

The results for E2D(t) and E(t) for the flows with Ω = 5 (i.e. cases F1N128Ω5 and
F1N192Ω5) are shown in figure 4(a). As a comparison, the results for Ω = 1 are
shown in figure 4(b). It can be observed that for Ω = 5, both E(t) and E2D(t) are an
order of magnitude higher than for Ω = 1, and almost all energy is contained in the
two-dimensional modes as E2D(t) deviates from E(t) only slightly. There are regular
periods of time in which E2D(t) is indistinguishable from E(t). These behaviours suggest
that at Ω = 5, the flows are quasi-two-dimensionalised with large-scale, two-dimensional
columnar vortices, where instability sets in periodically, which leads to temporary small
deviation between E2D(t) and E(t). A detailed discussion of this process can be found in
Alexakis (2015). The energy spectra for the flow with Ω = 5 at various times are shown
in figure 4(c) in green lines, together with those for Ω = 1 with both forcing terms (shown
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Figure 3. The p.d.f. of the vorticity component along the rotation axis ωz: (a) cases with Kolmogorov
forcing; (b) cases with constant power forcing.
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Figure 4. (a) Kinetic energy of the flow field and that in the two-dimensional modes for Ω = 5. (b) The same
for cases with Ω = 1 and N = 128. (c) Instantaneous energy spectra for cases with N = 128, plotted every 10τk

for time spanning 300τk. Green lines indicate Ω = 5; red lines indicate Ω = 1 with constant power forcing;
black lines indicate Ω = 1 with Kolmogorov forcing.

in black or red). The high-wavenumber ends of the spectra swing violently over time, in a
range spanning five orders of magnitude. Though oscillations are also seen in the spectra
for the flows with Ω = 1, the amplitude is much smaller.

To summarise, the results in this subsection show that for Ω = 0.1, 0.5 and 1, the flows
are still predominantly turbulent while displaying strong effects of rotation. The flows
where Ω = 5, on the other hand, appear to be mostly two-dimensionalised and display
only weakly turbulent behaviours. We will limit our interest to the synchronisation of flows
where turbulence dominates. Therefore, we will focus on the first three rotation rates, and
the cases with Ω = 5 will not be discussed further in what follows.
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Synchronisation of rotating turbulent flows

3.2. Synchronisation error

We now look into the synchronisation of the flows. To obtain smoother results, the data
shown in this subsection are the averages of five realisations.

Figure 5 shows the decay of the synchronisation error ∆(t)/∆(0) for different km and
Ω with Kolmogorov forcing. Figures 5(a,b,c) correspond to three different Reynolds
numbers. There are three common trends across all cases included in these three plots.
First, the error decays exponentially when km is sufficiently large. Second, the decay rate
increases with km. Third, the error decays only when km is greater than some threshold kc,
and clearly kc is different in different cases. For km close to but still greater than kc, the
error still decays over time, but the rate of decay fluctuates, so exponential functions do
not always provide a good fit.

Comparison across figures 5(a,b,c) shows that the decay rate of the error displays
the known dependence on the Reynolds number, namely, everything else being equal,
the decay rate decreases as the Reynolds number increases. This trend is illustrated in
figure 5(d) with selected cases, with Ω = 0.5 and km = 9. As this effect has been reported
multiple times in previous research, we will not delve too much into it. For the same
reason, we consider only the cases with N = 128 and N = 192 for flows with constant
power forcing.

More pertinent to our objectives is the observation that rotation has a strong effect on
the decay rate. Figure 5 shows that for the same km, the decay rate decreases with Ω . The
same trend is observed for different Reynolds numbers, as is shown in figures 5(a,b,c).

The results corresponding to constant power forcing are plotted in figure 6. Not
surprisingly, ∆(t) decays exponentially for sufficiently large km. Moreover, the dependence
of the decay rate on km and Reλ is qualitatively similar to that which is observed in figure 5.
However, interestingly, the dependence on rotation is significantly different. The black
lines in figure 6(a) illustrate the difference clearly. The three black lines correspond to
the same km but three different rotation rates. While the decay rates for Ω = 0.1 and 0.5
show no clear differences, the decay rate for Ω = 1 is clearly larger. That is, in this case,
it appears that the decay rate for ∆(t) increases with rotation. The same trend is seen in
figure 6(b), which is for flows with a larger Reynolds number. This observation is opposite
to the trend that we observe in the cases with Kolmogorov forcing (cf. figure 5), where the
decay rate for the same km is found to decrease with rotation. The difference in the results
for the two forcing terms has not been reported before.

3.3. Conditional Lyapunov exponents and the threshold wavenumbers

The synchronisability of the slaved flow is related to the CLEs. We calculate the CLEs
λ(km) as well as the local CLEs γ (km, t) using the algorithm outlined in § 2. The results
are presented in terms of the non-dimensionalised CLEs Λ and the non-dimensionalised
local CLEs Γ , which are defined as

Λ = λτk, Γ = γ τk. (3.2a,b)

Here, Γ is time dependent and fluctuates over time. Without showing the time sequences,
we note that after a period of transience, Γ stabilises and fluctuates around a constant
value. The magnitude of the fluctuations appears to increase with rotation, but decreases
as km increases. We will quantify some of these behaviours in what follows, starting with
Λ, which is the average of Γ in the stationary stage.

Figure 7 is shown first to establish the relationship between the decay rate of ∆(t) and
the CLE Λ. Shown with symbols in the figure are ∆(t)/∆(0) for a number of cases already
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Figure 5. The normalised synchronisation error ∆(t)/∆(0) for the cases with Kolmogorov forcing: (a)
N = 128, (b) N = 192, (c) N = 256; (d) comparison between cases with different Reynolds numbers.

discussed in figures 5 and 6. The lines without symbols represent functions exp(Λt/τk),
where Λ is the CLE for the corresponding flow. Some small discrepancies are seen
between the two, which we attribute to statistical uncertainty in the data. We note that
the discrepancies are in line with those found in previous research (e.g. Nikolaidis &
Ioannou 2022). The overall agreement between the two shows that in most cases, the
error decays exponentially and the decay rate α equals Λ. For the case shown with the
black line and triangles, ∆(t) does not decay exponentially. However, it undulates mildly
around the exponential function in such a way that Λ appears to capture the long-time
mean decay rate. Overall, we may conclude that the decay rate of ∆(t) is equal to Λ, and
the synchronisation between two flows can be characterised by Λ.
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Figure 6. The synchronisation error ∆(t) for the cases with constant power forcing: (a) N = 128, (b)
N = 192.
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Figure 7. Comparison between the decay rates of ∆(t) and the CLEs.

As an aside, we note that a larger discrepancy is observed for case F1N128Ω01K7
than for case F2N192Ω1K9. This observation appears counter-intuitive at first sight, since
Ω is larger in the latter case, which should lead to a larger fluctuation in Γ hence a
larger statistical error in Λ (or the corresponding decay rate α). However, there is another
difference between these two cases, which is that case F2N192Ω1K9 is computed with a
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Figure 8. Normalised CLEs Λ as functions of the rotation rate Ω for the cases with (a) Kolmogorov forcing,
and (b) constant power forcing. Solid lines indicate N = 128; dashed lines indicate N = 192. For N = 128,
squares indicate km = 0, upward triangles indicate km = 3, downward triangles indicate km = 5, and diamonds
indicate km = 7. For N = 192, squares indicate km = 0, upward triangles indicate km = 5, downward triangles
indicate km = 7, and diamonds indicate km = 9.

larger km. As the fluctuation in Γ is smaller for larger km, it is possible that the statistical
discrepancy in case F2N192Ω1K9 is smaller despite the fact that it is computed with a
larger Ω .

We now focus on the results for Λ. The dependence of Λ on the rotation rate Ω and
the coupling wavenumber km is shown in figure 8, including cases with km = 0 where
Λ represents the unconditional Lyapunov exponent. Figure 8(a) presents the cases with
Kolmogorov forcing. In these cases, Λ always increases with Ω , and Λ increases with Ω

quicker for larger km. The blue lines, which correspond to km = 5 for N = 128 and km = 7
for N = 192, are particularly instructive. In these cases, Λ increases from a negative value
to a positive one as Ω increases from 0.1 to 1. Therefore, the two flows synchronise when
Ω = 0.1, but they do not when Ω = 1, which shows emphatically that rotation makes
the flows more difficult to synchronise when the flow is driven by Kolmogorov forcing.
However, the observation is different for the flows maintained by constant power forcing,
which are shown in figure 8(b). In fact, the trend is reversed in this case: here, Λ decreases
as Ω increases, so the flow is easier to synchronise as rotation is increased. Also, the
unconditional Lyapunov exponent appears more sensitive to the rotation rate.

Another observation that we can make from figure 8 is that Λ decreases with km, which
can be seen by comparing different curves in the same plot. This trend is investigated
further by plotting Λ as a function of kmη, which is given in figure 9. We first note
the values of Λ at km = 0 for Ω = 0.1. As Ω is relatively small, one expects Λ to
be close to the value found in non-rotating turbulence. Figure 9 shows that Λ in this
case is approximately 0.1, though it depends weakly on the Reynolds number as well
as the forcing term. This value is indeed close to values found previously for non-rotating
turbulence (Boffetta & Musacchio 2017).

Figure 9 shows that for cases with Kolmogorov forcing, Λ decreases as kmη increases.
More interestingly, the curves corresponding to different cases collapse on each other
approximately. The one for N = 192 and Ω = 1.0 is slightly larger than the rest.
Nevertheless, overall, as a function of kmη, Λ depends on rotation only weakly. Note that
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Figure 9. Normalised CLEs Λ as functions of kmη: (a) cases with Kolmogorov forcing; (b) cases with
constant power forcing.
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Figure 10. Threshold coupling wavenumber kc as a function of the micro-scale Rossby number Rok.

this observation does not contradict the results in figure 8, as the values of km in the latter
are not non-dimensionalised by η, and η is different for different Ω .

For the cases with constant power forcing, figure 9(b) shows that Λ decreases with kmη

in a similar manner. However, the curves corresponding to different Ω do not collapse
well. In fact, Λ(kmη) tends to decrease as Ω increases, in particular for stronger rotations.

The threshold wavenumber kc where Λ is zero is of particular interest, as it is the value
of km for which synchronisation fails. The values of kc can be found from figure 9, as
they are the values of km where the curves cross the horizontal axis Λ = 0, which can be
read from the figure directly. The values are plotted as functions of the micro-scale Rossby
number Rok in figure 10.

Interestingly, figure 10 shows that kcη essentially does not depend on rotation when the
flows are driven by Kolmogorov forcing, within the range of rotation rates that we have
considered. To two decimal places, kcη = 0.20 or 0.19 for all rotation rates, which is the
value obtained in Yoshida et al. (2005) for non-rotating isotropic turbulence.
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This result seems to be contradictory to the observation that the decay rate for a given
km decreases with rotation. However, it can be explained as follows. The decay rates of the
synchronisation error are reduced when rotation is introduced, which leads to increased kc.
However, as table 1 shows, η is decreased by rotation in this type of flow. The end result
is that kcη remains roughly a constant.

For the flows driven by constant power forcing, it appears from figure 10 that there is a
consistent trend where kcη decreases as Rok decreases (i.e. as rotation rate increases). For
the smallest Rok, kcη is reduced to below 0.15. Therefore, for the flows driven by constant
power forcing, rotation does increase the synchronisability of the flow, and this is reflected
in both an increased decay rate for the synchronisation error, and a reduced kcη.

Di Leoni et al. (2020) reported that rotating turbulence was easier to synchronise, which
they attributed to the coherent vortices induced by rotation. Our results for constant power
forcing are consistent with their finding, which thus might be explained qualitatively in a
similar way. However, the results for Kolmogorov forcing show that the physical picture
can depend on the forcing scheme.

It is instructive to cross-check the results for kc with the energy spectra of the
flows. Note that in the majority of cases, the spectra are consistent with a k−2 power
law (cf. figure 1). Therefore, the dimensionless threshold wavenumber kcη remains
approximately unchanged from the value for isotropic turbulence when the spectrum
steepens from k−5/3 to k−2. On the other hand, when the slope of the energy spectra is
further steepened, reaching approximately that of the k−3 power law, kcη does become
smaller, as in the cases with the constant power forcing when Ω = 1.

To parametrise the decay rate of the synchronisation error with a physical quantity,
Yoshida et al. (2005) look into the enstrophy content in the master modes. Let
Hm

ω =
∑

k�km
k2 E(k) be the enstrophy contained in the master modes, and let

Hω =
∑

k k2 E(k) be the enstrophy of the whole velocity field. They find that in isotropic
turbulence, the decay rate α is a universal function of the ratio Hm

ω /Hω, and the ratio at
the threshold wavenumber kc, denoted by Hc

ω/Hω, is approximately 0.35. We plot Hc
ω/Hω

as a function of Rok in figure 11 for our simulations. For the largest Rok, the ratio is
approximately 0.36, which is close to the value found in Yoshida et al. (2005). The ratio
increases consistently with rotation for both forcing terms, even for larger values of Rok

where kcη remains a constant in the flows with Kolmogorov forcing. However, the results
for different cases do not collapse on a unique curve. Therefore, it seems that Hc

ω/Hω does
not provide a simple way to characterise kc in rotating turbulence.

Another way to characterise kc is put forward by Di Leoni et al. (2020), who observe that
kc marks approximately the end of the inertial range. The observation is corroborated in
Nikolaidis & Ioannou (2022). As the Reynolds numbers for our simulations are relatively
small, this observation is not assessed here even though it is highly desirable to do so.
Rather, we comment on a potential relationship between kc and the energy spectrum of the
Lyapunov vector uδ , which provides another perspective on the threshold wavenumbers.

Figure 12 plots the energy spectra of uδ(x, t) averaged over t in the stationary stage. As
the magnitude of uδ is irrelevant, the energy spectra have been normalised such that the
total energy is unity. Also note that included in this figure are the results with km = 0 –
they are the spectra of the unconditional Lyapunov vectors.

Figure 12(a) is for the flows driven by Kolmogorov forcing. First, the energy spectra
peak at an intermediate wavenumber. That is, the perturbations with energy localised
on intermediate wavenumbers are the most unstable. This observation is consistent with
Ohkitani & Yamada (1989), where the Lyapunov vector for a shell model is calculated, and
they find that the energy spectrum of the Lyapunov vector is localised in the inertial range.
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Figure 11. Enstrophy ratio Hc
ω/Hω as a function of the micro-scale Rossby number Rok.
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Figure 12. The energy spectra of the Lyapunov vectors uδ for km = 0: (a) for the cases with Kolmogorov
forcing; (b) for the cases with constant power forcing. The spectra have been normalised in such a way that the
total energy is unity.

Interestingly, the peaks of the spectra here are all found at approximately kη = 0.2, i.e. at
approximately the threshold wavenumber. Similar features are found in figure 12(b), which
shows the results for constant power forcing. Again, in most cases, the peaks are found at
approximately kcη. In particular, for the two cases with Ω = 1, the peaks are found to shift
to lower kη, consistent with figure 10, which shows that kcη is also reduced in these two
cases.

It is desirable to compare the peak wavenumbers with kc quantitatively. There are some
challenges in extracting precise peak wavenumbers due to two factors: first, the spectra of
uδ at lower wavenumbers display stronger statistical fluctuations; second, the gap between
two data points on the spectra is k = 1, which is fairly large and potentially introduces
error into the reading of the peak wavenumbers. In order to reduce the uncertainty, we
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Figure 13. Comparison between the peak wavenumbers for the spectra of the Lyapunov vectors and kc:
(a) cases with N = 128; (b) cases with N = 192. Solid lines and solid symbols indicate kcη (same as figure 10).
Dashed lines and empty symbols indicate normalised peak wavenumbers of the spectra of the Lyapunov
vectors. Lower groups and left-hand y-axes are for cases with constant power forcing. Upper groups and
right-hand y-axes are for cases with Kolmogorov forcing. The error bars correspond to the two adjacent integer
wavenumbers.

average the spectra over five realisations. We then fit a smooth curve to the spectra using
cubic splines. The peak wavenumber of the fitted curve is taken to be the peak wavenumber
of the spectrum.

The cubic spline fitting is conducted using scipy function UnivariateSpline,
with smoothing factor s chosen as 0.01 % of the maximum of the spectrum, which implies
that the 2-norm of the residue of the fitting is smaller than s. In other words, only a very
small amount of smoothing is allowed.

The peak wavenumbers extracted in the above manner are plotted in figure 13 together
with kc, which has been shown in figure 10. The peak wavenumber obtained in this way
usually falls between two integer wavenumbers. These two wavenumbers are used to define
the error bars in figure 13. The figure confirms the qualitative comments that we made
previously. The peak wavenumbers are slightly larger than kc in most cases. However,
they do display the same trends as kc. In particular, for flows driven by constant power
forcing, the peak wavenumber clearly drops off significantly for the smallest Rok, despite
the uncertainty in the data.

One plausible explanation for the correlation between kc and the peak wavenumber
of the energy spectrum of uδ is as follows. Let the coupling wavenumber be km in a
synchronisation experiment. The peak wavenumber corresponds to the Fourier modes
most susceptible to infinitesimal perturbations (on average). One may hypothesise that
to synchronise two flows, the perturbations to these most unstable Fourier modes should
be suppressed by the coupling in the synchronisation experiments. This suggests that the
coupling wavenumber km should be larger than the peak wavenumber. However, even
though only Fourier modes with wavenumbers up to km in the two flows are coupled by
design (in fact, they are exact copies of each other), the Fourier modes with wavenumbers
slightly larger than km are also strongly coupled, due to the fact that they are linked to
the master modes through nonlinear inter-scale interactions. The coupling suppresses the
growth of the synchronisation errors in these modes. Therefore, synchronisation can still
be achieved even if km is slightly smaller than the peak wavenumber. As a result, the
threshold wavenumber kc could be slightly smaller than the peak wavenumber in the
spectrum of uδ .
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0.20

0.2

kη
0.4 0.6 1.0 0.2

kη
0.4 0.6 1.0

0.15

0.10

0.05

E
∆

(k
)

0.20
0.15

0.10

0.05

F1N128Ω01K0

F1N128Ω01K3 (0.14)

F1N128Ω01K5 (0.23)

F1N128Ω01K7 (0.32)

F1N128Ω1K3 (0.10)

F1N128Ω1K5 (0.17)

F1N128Ω1K7 (0.24)

F1N128Ω1K0 F2N128Ω01K0

F2N128Ω01K3 (0.14)

F2N128Ω01K5 (0.23)

F2N128Ω01K7 (0.32)

F2N128Ω1K3 (0.14)

F2N128Ω1K5 (0.23)

F2N128Ω1K7 (0.32)

F2N128Ω1K0

(b)(a)

Figure 14. The energy spectra of the conditional Lyapunov vectors uδ for different km and N = 128. The values
of kmη are shown in parentheses. (a) Cases with Kolmogorov forcing, where kcη = 0.20 for both Ω = 0.1 and
1. (b) Cases with constant power forcing, where kcη = 0.19 for Ω = 0.1, and kcη = 0.13 for Ω = 1.

The spectra of the Lyapunov vectors corresponding to the conditional CLEs, namely
the conditional Lyapunov vectors, are given in figure 14 for the cases where N = 128, and
compared with the unconditional ones. For readability of the figures, only cases where
Ω = 0.1 and 1 with selected km are included. Note that the spectra for the conditional
Lyapunov vectors start from wavenumber km + 1 as ûδ(k, t) = 0 for |k| � km. The value
of kmη for each case is shown in parentheses, which can be compared with the value of
kcη to determine if synchronisation is achievable in the case. The interesting observation
to note is demonstrated most clearly by both the solid and dashed green lines with triangles
in figure 14(a), which correspond to km = 3 for Ω = 0.1 and 1, respectively. The flows do
not synchronise in these two cases, while they do in all other cases depicted in the plot. The
common feature of the spectra in these two cases is that the spectra peak at wavenumbers
corresponding to the slaved modes. On the other hand, the spectra for the other cases all
peak at km + 1. The same trend can be observed in figure 14(b), and for cases with N = 192
shown in figure 15. It appears that synchronisation can be achieved only when the energy
spectrum of the conditional Lyapunov vector does not have a local maximum among the
slave modes.

Although the above results for the conditional Lyapunov vectors are of a qualitative
nature, they also suggest that the threshold wavenumber kcη might be associated with
the peak of the spectrum of the Lyapunov vector. Given that our simulations cover only
a moderate range of Rossby numbers, with relatively low Reynolds numbers, how this
observation generalises to a wider range of parameter values requires further investigation.

3.4. The statistics of the local CLEs

As commented previously, the local CLEs Γ display significant fluctuations. In this
subsection, we present statistics of Γ for a few selected cases to highlight the qualitative
trends that are shared by the other cases. The statistics in this subsection are all calculated
by averaging over time as well as five independent realisations. The average is denoted by
〈·〉.
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Figure 15. Same as figure 14 but for N = 192. (a) Cases with Kolmogorov forcing, where kcη = 0.20 for both
Ω = 0.1 and 1. (b) Cases with constant power forcing, where kcη = 0.20 for Ω = 0.1, and kcη = 0.16 for
Ω = 1.
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Figure 16. The variance of the normalised local Lyapunov exponent Γ for selected cases.

The variance of Γ , Var(Γ ) = 〈(Γ − 〈Γ 〉)2〉, is shown in figure 16 for the cases indicated
in the figure. The variance clearly increases with rotation in all cases for a given km, and
for a given Ω , it is smaller for larger km. The behaviours at high rotation rates are different
for the two forcing terms. The variance for constant power forcing seems to increase more
slowly at higher rotation rates.

The p.d.f.s of Γ , shown in figure 17 for the same selected cases, exhibit largely the
same behaviours already shown by the mean CLEs and the variances. A common feature
is that the width of the p.d.f. increases with the rotation rate. Note that the p.d.f.s are not
normalised. The increase in the width is thus a manifestation of increased variance.

For Kolmogorov forcing (figure 17a), the p.d.f.s of the unconditional Γ (with km = 0)
do not move significantly with the rotation rate. For km = 7, the p.d.f. moves towards
the positive values as rotation is strengthened, indicating increased mean CLE. These
behaviours are consistent with figure 8. The behaviours of the p.d.f.s for constant power
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Figure 17. The p.d.f.s of the local Lyapunov exponent Γ for selected cases: (a) cases with Kolmogorov
forcing; (b) cases with constant power forcing. Note that the p.d.f.s are not normalised.

forcing (figure 17b) are also consistent with figure 8. One notable difference with the
results in figure 17(a) is that the p.d.f.s for the unconditional Lyapunov exponents are
affected more strongly by rotation in this case. For example, the p.d.f. for Ω = 1 is moved
to the left significantly, while the same is not observed for the corresponding case in
figure 17(a).

At higher rotation rates, the p.d.f.s often have significant probabilities to take both
positive and negative values, e.g. those for F1N192Ω1K7 and F1N192Ω05K7, and those
with constant power forcing and km = 5. Therefore, for these cases, even if synchronisation
is achieved in the long term, the synchronisation error ∆(t) may increase temporarily when
the local CLE is positive. This behaviour is observed in figures 5 and 6 for some km values
near the threshold wavenumber.

3.5. Statistics of energy production and dissipation

Some understanding of Γ and Λ can be gained from (2.22). Our calculation shows that
the contribution of the forcing term F is always negligible. In what follows, we present
only the results related to the production term P and the dissipation term D. We use

P ≡

〈

τkP

‖uδ‖2

〉

, D ≡

〈

τkD

‖uδ‖2

〉

(3.3a,b)

to denote the averaged non-dimensionalised production and dissipation terms, respectively.
The values of P and D are shown in figures 18 and 19. For completeness, results for

N = 128 and 192 have both been included, but we will comment mainly on those for
N = 128 as the trends are the same for N = 192. Figure 18 shows the results for the cases
with Kolmogorov forcing. We can see that both P and D depend strongly on km, but are
less sensitive to the value of Ω . The production term P decreases as km increases, while
the dissipation D increases in the meantime. Thus both contribute to the decrease in Γ ,
hence Λ, as km increases. For a given km, P increases slightly with rotation rate Ω . On the
other hand, D increases slightly with Ω for smaller km, but decreases with Ω for larger km.
Overall, P and D change only slightly with Ω .
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Figure 18. The production term P and the energy dissipation term D for cases with Kolmogorov forcing:
(a) N = 128, (b) N = 192.
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Figure 19. Same as figure 18, but for cases with constant power forcing.

For the cases with constant power forcing, figure 19 shows that the main impact of
rotation is on the production term P. However, in this case P decreases as rotation is
increased, i.e. the trend is opposite to what is shown in figure 18. This trend is consistent
with the previous observation that in this case synchronisation is easier when Ω is larger.
Dissipation D does not depend strongly on Ω .

Further insights into P can be obtained by looking into the alignment between uδ

and sij. Let s+
ij ≡ τksij be the dimensionless strain rate tensor. Let v = uδ/‖uδ‖, and let

λ
s
α � λs

β � λs
γ be the eigenvalues of s+

ij , with corresponding eigenvectors ei (i = α, β, γ ).
Due to incompressibility, we have λs

α + λs
β + λs

γ = 0, with λs
α � 0 and λs

γ � 0. In
isotropic turbulence, it is well known that λs

β is more likely to take positive values, so
the magnitude of λs

γ tends to be the largest among the three.
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Figure 20. The p.d.f.s of cos θγ : (a) cases with Kolmogorov forcing; (b) cases with constant power forcing.

Letting the angle between ei and v be θi, we may write

P = Pα + Pβ + Pγ , (3.4)

where

Pα = −
〈

λs
α |v|2 cos2 θα

〉

, Pβ = −
〈

λ
s
β |v|2 cos2 θβ

〉

, Pγ = −
〈

λs
γ |v|2 cos2 θγ

〉

,

(3.5a–c)

with Pα ≤ 0 and Pγ ≥ 0. The above expressions show that P is closely related to the
alignment between uδ and the eigenvectors of s+

ij , the magnitudes of the eigenvalues,
and the correlations between them. As v is normalised, it is reasonable to expect that
its magnitude is insensitive to rotation, and that rotation will affect P mainly through the
eigenvalues and cos θi. Since P is always positive in our simulations (cf. figures 18 and 19),
Pγ is the dominant term in P. As a result, we will consider only the statistics of cos θγ and
the eigenvalues.

The p.d.f.s of cos θγ are given in figures 20(a,b) for selected cases, showing the results
for Kolmogorov forcing and those for constant power forcing, respectively. It is evident
that there is a preferable alignment between eγ and uδ when rotation is weak, since the
p.d.f.s peak at cos θγ = 1. Interestingly, the alignment is weaker for larger km, and is also
weakened by rotation. These trends are observed consistently for both forcing terms. The
mean values of the eigenvalues are given in figure 21. Here, the results for the two forcing
terms display different trends. For constant power forcing, the mean eigenvalues are almost
independent of the rotation rate. For Kolmogorov forcing, the magnitudes of the averaged
λ

s
α and λs

γ both increase significantly with rotation.
Putting the results in figures 20 and 21 together, the physical picture for flows with

constant power forcing appears to be simple. The production term P decreases as rotation
increases in this case, because the preferable alignment between eγ and uδ is reduced by
rotation. For the flows driven by Kolmogorov forcing, the preferable alignment is reduced
by rotation, which tends to reduce P. However, this trend is opposed by the trend where the
eigenvalues of s+

ij increase with rotation. The overall effect is that P increases only slightly
with rotation.
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Figure 21. The mean values of the eigenvalues of the dimensionless strain rate tensor s+
ij . Solid lines indicate

cases with Kolmogorov forcing; dashed lines indicate cases with constant power forcing. Squares indicate 〈λs
α〉;

triangles indicate 〈λs
β 〉; diamonds indicate 〈λs

γ 〉.

3.6. Discussion

The different consequences of the two forcing terms have been made quite obvious
from our analysis so far. However, the cause of the difference is not yet elucidated.
The Kolmogorov forcing term is inhomogeneous, whereas the constant power forcing
is isotropic. However, if rotation is absent, then this difference alone does not lead to
significant differences in the statistics that we have examined, notwithstanding the fact that
the Reynolds numbers of the flows are not large. This assertion is supported by the various
statistics obtained for Ω = 0.1, i.e. for weakest rotation. For example, figure 20 shows that
the alignment is roughly the same for the two forces when Ω = 0.1. Figure 21 shows that
the mean eigenvalues are also almost the same for the two flows when Ω = 0.1. The same
can be said about the (conditional) Lyapunov exponents as well (see e.g. figures 8 and 9).
Therefore, if there is no rotation, then the results would be more or less independent of
the forcing mechanism even if the Reynolds number is moderate, i.e. even if there is only
moderate scale separation between the forced large scales and the small scales.

One may thus conclude that the drastic impacts of the forcing terms originate from
the interaction between forcing and rotation. The interaction seems to alter the spectral
dynamics profoundly, eluding simple phenomenological explanations (see e.g. Dallas
& Tobias (2016) and references therein). A corollary is that it is also unlikely that we
can obtain simple mechanical explanations for the difference in the behaviours of the
production term, hence those of the Lyapunov exponents, shown in previous subsections.
Nevertheless, to shed some light on the physics behind the observations, we look into how
different scales of the flow contribute to the production term, and how these contributions
depend on the rotation rate.

To do this, we decompose the normalised strain rate tensor s+
ij into a large-scale

component s+>
ij and a small-scale component s+<

ij ≡ s+
ij − s+>

ij . Here, s+>
ij is obtained

by applying a low-pass filter on s+
ij (Pope 2000). The production term calculated with

s+>
ij and v is denoted by Pl, and that with s+<

ij and v is denoted by Ps, where obviously
Pl + Ps = P. Here, Pl and Ps represent the contributions from large- and small-scale
straining, respectively, to the total production P.
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Figure 22. The large-scale (Pl) and small-scale (Ps) contributions to the production term (P): (a) N = 128,
(b) N = 192.

We use the Gaussian filter (Pope 2000) to calculate s+>
ij . The filter length scale ∆

is chosen to be eight times the grid size, with the corresponding filter wavenumber
k∆ ≡ π/∆ being 12 for N = 192, and 8 for N = 128. The values for P, Pl and Ps at
different rotation rates are plotted in figure 22 for km = 0. Several observations are evident.
First, Pl is larger than Ps for both forcing terms and both Reynolds numbers. That is,
large-scale straining makes larger contribution to the total production term, which is
consistent with the fact that the spectrum of uδ peaks at intermediate to low wavenumbers
(cf. figure 12). Second, for constant power forcing, both Pl and Ps decrease as Ω increases.
Both contribute approximately equally to the decrease of the total production. Third, for
Kolmogorov forcing, the picture is quite different again. Interestingly, Pl barely increases
(or decreases slightly) as Ω increases, whereas Ps increases with Ω at both Reynolds
numbers. Even though Pl makes a bigger contribution to P, the change in P with Ω comes
mainly from Ps.

The results in figure 22 are again non-trivial to interpret fully. If the impacts of forcing
are confined in large scales, then the small-scale contributions Ps should behave in similar
ways in flows driven by different forcing terms, but this is not supported by figure 22.
If the effects of Kolmogorov forcing (coupled with rotation) on smaller scales decrease
with increasing scale separation according to naive Kolmogorov phenomenology, then
one should reasonably expect Pl to depend more strongly on Ω compared with Ps, which
again is not supported by figure 22. Overall, like previous research (Dallas & Tobias
2016), these observations suggest that large-scale forcing affects the spectral dynamics
of rotating turbulence in highly non-trivial ways, which is the root cause of the different
synchronisability of the flows.

4. Conclusions

We investigated the synchronisation of rotating turbulence numerically, with a focus on
the effects of the rotation rates and the forcing mechanism. The phenomenon is analysed
through the decay rate of the synchronisation error, the threshold value of the coupling
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wavenumber, the conditional Lyapunov exponents (CLEs), the conditional Lyapunov
vector, and the dynamical equation for the velocity perturbations.

One main finding is that the ability to synchronise rotating turbulence varies
significantly with the forcing mechanism. For Kolmogorov flows, which are driven by a
constant sinusoidal forcing term, the CLE for a given coupling wavenumber increases with
rotation, which means that the flows are more difficult to synchronise with a given coupling
wavenumber. However, the dimensionless threshold value for the coupling wavenumber
is essentially independent of rotation within the range of rotation rates that we have
investigated, and is unchanged from the value found in isotropic turbulence even though
clearly the energy spectrum of the flow is steeper (consistent with the k−2 power law).

For a different forcing scheme that is characterised by a prescribed constant energy
injection rate, the CLE decreases as rotation is strengthened, so synchronisation is easier
to achieve. The dimensionless threshold coupling wavenumber can be significantly smaller
when rotation is strong and the slope of the energy spectrum approaches −3.

We find that the energy spectra of the Lyapunov vector as well as the conditional
Lyapunov vectors have a close relationship with the threshold coupling wavenumber for
both forcing schemes. The threshold coupling wavenumber and the wavenumber where the
energy spectrum of the Lyapunov vector peaks appear to show the same dependence on
rotation. Meanwhile, we find that for both forcing terms, the flows do not synchronise when
the energy spectrum of the conditional Lyapunov vector has a peak in the wavenumber
range for the slaved Fourier modes.

Rotation is also shown to increase the fluctuation in the local CLE. In some
cases, though the long-time CLE is negative, frequently the fluctuating local CLE can
become positive. This behaviour explains why for some numerical experiments, the
synchronisation error can oscillate about exponential decay, and shows that rotation can
reduce the stability of the synchronised state.

An analysis of the production term in the dynamical equation for velocity perturbations
shows that rotation tends to reduce the preferential alignment between the perturbation
velocity and the eigenvectors of the strain rate tensor. This behaviour tends to reduce the
CLE, which is the reason why the flows driven by the second forcing term are easier to
synchronise. However, this effect is counterbalanced in the Kolmogorov flows by increased
eigenvalues of the strain rate tensor.

A limitation of current investigation is that the Reynolds number is relatively small.
Our results indicate that the threshold coupling wavenumber depends on the slope of the
energy spectrum of the flow to some extent. To ascertain the relation, simulations with
an extended inertial range are needed, which can be achieved only when the Reynolds
number of the flow is much higher. The relation between the threshold wavenumber and the
energy spectrum of the Lyapunov vector also requires further scrutiny at higher Reynolds
numbers. Another limitation is that the anisotropy of rotating turbulence has not yet been
accounted for. Due to the formation of columnar vortices along the direction of the rotation
axis, the threshold wavenumber can be different in the axial and transversal directions.
A two-component threshold wavenumber is likely to provide a more precise description.

The drastically different physical pictures yielded by the two forcings suggest naturally
that we might obtain different results again for yet another forcing mechanism (e.g. when
the Kolmogorov forcing introduces shearing along the rotating axis). A more extensive
investigation is warranted.

Though rotation has profound effects on turbulence, the rotation rate does not appear
explicitly in the energy budget of the flow. However, it does enter directly the spectral
dynamics and the equations for higher-order statistics. It would be interesting to investigate

983 A1-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

72
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss



Synchronisation of rotating turbulent flows

the behaviours of higher-order statistics such as the generalised Lyapunov exponents
(Fujisaka 1983; Cencini, Cecconi & Vulpiani 2010) or the generalised CLEs. They
are the natural measures for the strong fluctuations in finite-time amplification of
synchronisation errors. Such an investigation would lead to more refined characterisation
of the synchronisation process.
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