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Abstract

The secondary Bjerknes force plays a significant role in the evolution of bubble clusters. However, due to the complex

dependence of the force on multiple parameters, it is highly non-trivial to include its effects in the simulations of bubble

clusters. In this paper, machine learning is used to develop a data-driven model for the secondary Bjerknes force between

two insonated bubbles as a function of the equilibrium radii of the bubbles, the distance between the bubbles, the amplitude

and the center frequency of the ultrasound wave. The sign of the force may change with the phase difference between the

oscillating bubbles. Meanwhile, the magnitude of the force varies over several orders of magnitude, which poses a serious

challenge for the usual machine learning models. To overcome this difficulty, the magnitudes and the signs of the force are

separated and modelled separately. A nonlinear regression is obtained with a feed-forward network model for the logarithm of

the magnitude, whereas the sign is modelled by a support-vector machine model. The principle, the practical aspects related

to the training and validation of the machine models are introduced. The predictions from the models are checked against the

values computed from the Keller–Miksis equations. The results show that the models are extremely efficient while providing

accurate estimate of the force. The models make it computationally feasible for the future simulations of the bubble clusters

to include the effects of the secondary Bjerknes force.

Keywords Bubble clusters · Secondary Bjerknes force · Machine learning · Neural networks · Support-vector machine ·

Numerical simulations

1 Introduction

The secondary Bjerknes force [1] is an important compo-

nent in the interaction between two bubbles oscillating in an

acoustically driven fluid. The force is induced by the pres-

sure perturbation radiated from the oscillations bubbles. It is

thought to be important in the formation and evolution of bub-

ble clusters and has been the focus of considerable research

in the past decades [2–11], which explores the effects of non-

linear interaction, multiple scattering, and the coupling with

shape oscillation and translation, as well as the experimen-

tal measurement of the force. More recently, Doinikov and
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Bouakaz [12] develop a nonlinear theoretical model that pro-

vides a unified description of the coupled radial oscillation

and translation of two bubbles. The model is generalised to

investigate the acoustic micro-streaming patterns in the vicin-

ity of two interacting bubbles [13]. The asymmetricity of the

force is discussed in Pandey [14] taking into account higher

order nonlinear coupling between the bubbles, which further

highlights the complexity of the force.

Recent experimental evidences [5,10,15–17] further draw

attention to the importance of the secondary Bjerknes force

in the dynamics of bubble pairs and micro-bubble clusters.

The collective behaviors of up to 100 oscillating bubbles are

modelled in Haghi et al. [18] using the coupled Keller–Miksis

equations [19]. It is found that the interactions between the

bubbles can be both constructive and destructive, and the

bifurcation sequences of a large system with many bubbles

can be very different from a small one. The research again

demonstrates the importance of the interactions between the

bubbles which are manifested as the secondary Bjerknes

force. The force has been used to manipulate bubbles, e.g.,
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as a means to control micro-devices, which potentially have

important applications [20–22]. Given that bubble clusters

are often observed in biomedical, metallurgical, food pro-

cessing and other applications (see, e.g., Bermudez-Aguirre

et al. [24], Brujan [23], Eskin and Eskin [26], Roberts [25]),

the modelling of the secondary Bjerknes force and hence

bubble clusters is a question of significant interests.

Few simulations of bubble clusters so far have employed

sophisticated models for the secondary Bjerknes force.

Numerical simulations conducted in Lazarus et al. [16],

with a simple model for the secondary Bjerknes force, qual-

itatively reproduce the experimental observations on the

clustering of bubble clouds. Similarly, simplified models are

used in the simulations in Refs. [27–29]. In particular, Mettin

et al. [28] qualitatively reproduce the process by which bub-

bles agglomerate to form a pattern that, as described by the

authors, mimics the Lichtenberg figures sometimes observed

in sudden electrical discharges such as lightnings (see Fig.

1 in Mettin et al. [28] for an illustration). These simulations

follow the movements of individual bubbles, thus are based

on a Lagrangian approach. Recently a hybrid Lagrangian-

Eulerian method is proposed in Ref. [30] where bubble

oscillation is computed, although the secondary Bjerknes

force is not explicitly included.

The past research has yielded considerable physical

insights on the secondary Bjerknes force. Unfortunately,

due to the complexity of bubble clusters, the insights have

yet to be translated into accurate and computationally effi-

cient models. We observe, however, that the complexity of

the problem makes it an excellent example for which a

data-driven approach can be fruitful. Data-driven methods,

especially machine learning, have made tremendous pro-

gresses in recent years, as exemplified and popularized by the

success of AlphaGo [31]. The methods have been success-

fully applied to many physical and applied sciences. There

is, however, not yet any report of such applications in bubble

simulations. The objective of this paper is to use machine

learning to build a novel model for the secondary Bjerk-

nes force that is more comprehensive than those previously

reported, and more generally, introduce this useful method

into the investigation and modelling of bubble oscillations.

In order to build machine learning models, a sufficiently

large dataset for the secondary Bjerknes force is needed.

Experimental measurements of the force have recently been

reported in, e.g., Jiao et al. [10], Yoshida et al. [5], Ma et al.

[17]. However, to the best of our knowledge, systematic data

covering a wide range of parameters are not yet available.

Therefore, in this investigation we use numerical simulations

based on the Keller–Miksis model to generate the dataset.

The paper is organized as follows. The dynamical equa-

tions for the bubbles are reviewed in Sect. 2, where the

dependence of the secondary Bjerknes force on relevant

parameters are highlighted. The dataset for the force is

described in Sect. 3. Section 4 introduces the machine learn-

ing models to be used to build the model for the force. The

practical aspects of the training and testing of the models

are also presented. Additional checks are performed in Sect.

5 where the efficiency of the models is also assessed. The

conclusions are summarized in Sect. 6.

2 Governing equations

Let D be the distance between the two bubbles. The radius

of bubble i (i = 1, 2) is denoted by Ri (t) and its equilibrium

radius is REi . The bubbles are driven by a uniform pressure

field oscillating harmonically in time:

pI (t) = p0 − pa sin(ωt), (1)

where p0 is the ambient pressure, pa is the amplitude of the

ultrasonic pressure, and ω ≡ 2π f and f are the angular and

linear frequencies, respectively. By using a pressure uniform

in space, it has been assumed that D is small compared with

the wave length of the pressure wave or the bubbles are on

the same phase plane of a planar pressure wave. By using

simple harmonic pressure oscillation, we have assumed the

acoustic pressure is low enough that its propagation can be

described by the linear acoustic equation. It is assumed that

the fluid has density ρ, speed of sound c, surface tension σ

and kinematic viscosity ν.

The radii of the bubbles can be described by the Keller–

Miksis model [1,19] with additional pressure coupling terms

between the bubbles as introduced in Mettin et al. [6]. Ignor-

ing the time-delay effect, the coupling pressure between

bubbles i (i = 1, 2) and j ≡ 3 − i , denoted as pi j , is given

by [6]

pi j (t) =
ρ

D

dR2
j Ṙ j

dt
, (2)

which is valid when the radii Ri and R j are much smaller

than D. With pi j included, the equation for Ri (t) becomes

[6]

2ρ(1 − c−1 Ṙi )Ri R̈i + ρ(3 − c−1 Ṙi )Ṙ2
i

= 2(1 + c−1 Ṙi )(pwi − pI ) + 2c−1 Ri ( ṗwi − ṗI )

− 2ρD−1(2R j Ṙ2
j + R2

j R̈ j ), (3)

where

pwi =

(

p0 +
2σ

REi

) (

REi

Ri

)3k

−
2σ

Ri

−
4ρν Ṙi

Ri

(4)

is the pressure on the outer wall of bubble i and k is the

polytropic exponent for the gas inside the bubble.
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As this model assumes D ≫ Ri and R j , the same limita-

tion applies to the results to be presented below. It implies, for

example, that the machine learning models obtained below

should only be applied to the simulations of sparse bubble

clusters. To obtain a model for the secondary Bjerknes force

that is applicable in densely packed clusters, one might need

to use, e.g., the model in Doinikov and Bouakaz [12], which

potentially provides a more accurate description when D is

comparable with Ri or R j . Obviously the machine learning

approach to be presented below can be used in conjunction

with these models as well.

The secondary Bjerknes force is defined as the time-

averaged pressure exerted on bubble i due to the oscillations

of bubble j [6]. Let fi j be the notation for this force, simple

calculation shows that, for small bubbles, fi j can be written

as

fi j = −
ρ

D2

〈

Vi

dR2
j Ṙ j

dt

〉

=
ρ〈V̇i V̇ j 〉

4πD2
, (5)

where Vi is the volume of bubble i . The angle brackets rep-

resent time averaging. In the above expression we follow the

tradition where fi j is positive when it is attractive. In a bub-

ble cluster, fi j is expected to depend not only on bubbles

i and j but also the other bubbles. Nevertheless, when the

force was considered in the few bubble cluster simulations

reported so far [16,28,29], fi j had all been calculated from

2-bubble systems, where the contributions from other bub-

bles were neglected. Empirical fitting of fi j as a function of

D was used. The dependence of fi j on other parameters have

not been considered in these simulations.

For a 2-bubble system, the only secondary Bjerknes force

is f12. f12 depends on many parameters of the system,

including REi , D, pa , ω, ν, ρ, c, σ , and k. In the present

investigation, we choose water as the medium, hence fix-

ing ν at 8.9 × 10−7 m2/s, ρ at 997 kg/m3, c at 1497 m/s

and σ at 0.0721 N/m. An adiabatic process is assumed so

that k is fixed at 1.4, whereas p0 is assumed to be the atmo-

spheric pressure patm = 1.013×105 Pa. The objective of the

investigation is to model the dependence of f12 on the five

parameters: D, pa , f , RE1 and RE2.

3 Data for f12

The machine learning method is used to discover the com-

plicated dependence of f12 on the system parameters. The

method is data-driven and is based on a large data set for

f12 obtained over a range of values for the five parameters.

The distance D ranges from 100 to 1000 µm with an incre-

ment of 100 µm. The pressure amplitude pa ranges from 40

to 150 kPa with an increment of 10 kPa. This range covers

both near harmonic and strongly nonlinear aharmonic oscil-

lations. The forcing frequency f ranges from 20 to 40 kHz

with an increment of 10 kHz. Both RE1 and RE2 start at 1 µm

and end at 10 µm with an increment of 2 µm.

The ranges for the parameters have been chosen to cover

the conditions used in the numerical simulations reported in

Mettin et al. [28]. The pressure amplitudes are in the low

to medium range according to the classification in Mettin

[27], in which bubble clusters of different natures are cate-

gorized. These pressure amplitudes and frequency values are

also within the ranges used in, e.g., food processing [32] and

metallurgy [25], although typical medical applications have

higher pressure amplitudes as well as higher frequencies.

When the other parameters are held fixed, the bubble

pairs with radii (RE1, RE2) and (RE2, RE1) would have

the same f12. Therefore the parameter combinations with

RE1 < RE2 are removed from the data set, which leaves in

total 5400 combinations of parameter values. Equation (3)

is numerically integrated for each combination to obtain the

corresponding f12. The ode45 solver in MATLAB is used. In

each run, the simulation is run for ten periods of the forcing

pressure to allow the oscillation becomes stationary. The data

from the last two periods are used to calculate the force f12

according to Eq. (5). The data for f12 obtained this way, and

the corresponding parameters, form the dataset for the devel-

opment of the machine learning models. In the terminology

of machine learning, a set of values for the five parameters

(D, RE1, RE2, pa, f ) is called a predictor while the corre-

sponding f12 is the response.

As an illustration, Fig. 1 plots the radii of the two bubbles

which oscillate in the nonlinear regime for the given set of

parameters. Figure 2 plots the force as a function of RE2 for

RE1 = 9 µm and several D’s. The force displays previously

known behaviours: it increases when RE2 is increased or D

is reduced.

0 50 100 150 200 250 300 350

0

10

20

30

40

50

60

70

Fig. 1 Radii R(t)(µm) for the two bubbles as functions of time t(µs),

with RE1 = 9 µm, RE2 = 2 µm, pa = 150 kPa, f = 30 kHz,

D = 200 µm
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Fig. 2 Force f12(N) as a function of RE2(µm) for RE1 = 9 µm, pa =

150 kPa, and f = 30 kHz. Top: D = 100 µm, middle: D = 300 µm,

bottom: D = 500 µm

4 Machine learningmodels

The secondary Bjerknes force f12 depends sensitively on the

flow parameters. As a result, the magnitude for f12 varies over

many orders of magnitude, which is a significant difficulty

for the development of the machine learning (ML) models.

To overcome the difficulty, the data set for f12 is split

into two. The first one contains log | f12|, whereas the second

one contains the sign of f12 (sgn f12). Two machine learning

models are built for the two sets separately, and the prediction

for f12 is reconstructed from the two models. The first model,

given the nature of the data, is a regression model, which is

implemented with a feed-forward neural network (FFNN).

The data in the second data set are binary (sgn f12 is either 1

or −1). A classification model, the support-vector machine

(SVM), is thus used. If the predictions from the first and the

second models are y1 and y2, respectively, the prediction for

f12 is then given by y210y1 .

Working with log | f12| proves to be crucial. Taking the

logarithm reduces the range of the data, and as a result, an

FFNN can be found to model | f12| (after exponentiation) and

hence f12 with good accuracy. Without separating the magni-

tude and the sign and taking the logarithm of the magnitude,

we failed to find a satisfactory ML model for f12. The FFNN

and the SVM models are now explained.

4.1 Feed-forward neural network for log |f12|

An FFNN [33] typically includes an input layer, an output

layer, and several hidden layers of neurons. The neurons

receive inputs from those in previous layers and send outputs

to those in later layers. Each neuron is defined by an activation

function (also known as transfer function), which processes

the inputs using suitable weights and biases associated with

the neuron. Figure 3 provides a schematic illustration of the

structure of an FFNN. The several components in a large

blue rectangle box form a neuron. Only one neuron is shown

explicitly in each layer in Fig. 3 but in reality there could

be many. In an FFNN, the number of hidden layers L , the

number of neurons in each hidden layer Nn (n = 1, 2, ..., L),

and the activation function φ(·) are chosen a priori and, in

practice, mostly empirically. Let a
(n)
j be the output of the j th

( j = 1, 2, ..., Nn) neuron in the nth layer (n = 1, 2, ..., L).

Then the computation in this neuron is written as

a
(n)
j = φ

(

w
(n)T
j a

(n−1) + b
(n)
j

)

, (6)

where a
(n) is the vector (a

(n)
1 , a

(n)
2 , ..., a

(n)
Nn

)T, w
(n)
j and b

(n)
j

are, respectively, the weight and bias associated with the

neuron. That is, all the outputs from the (n − 1)th layer

are combined and fed into all the neurons individually in

the nth layer. Equation (6) is applicable to the first hidden

layer if we let a
(0) be the vector of the input parameters

x ≡ (D, RE1, RE2, pa, f )T. By repeatedly applying Eq. (6),

an FFNN generates an output ŷ from the input x.

The weights w
(n)
j and biases b

(n)
j are chosen in such a

way that the outputs of the FFNN provide the best model

for the data in a so-called “training” dataset. The process to

find the optimal weights and biases is called training. The

training dataset contains a set of input parameters x
(i) and

corresponding true outputs y(i) (i = 1, 2, ..., M). Let ŷ(i)

denote the model output for x
(i) predicted by the FFNN.

Mathematically, the goal of the training process is to find the

optimal w
(n)
j and b

(n)
j to minimise the mean squared error

(MSE)

1

2

M
∑

i=1

[

y(i) − ŷ(i)
]2

. (7)

The optimal solution is usually obtained with a gradient

based algorithm where the gradient is found through a pro-

cess called back-propagation. For more details on FFNNs

and machine learning in general, see, e.g., Hagan et al. [33],

Goodfellow et al. [34], Hastie et al. [35].

4.1.1 Architecture and the hyperparameters

MATLAB is used to define, train, validate and test the net-

work [36]. The numbers of layers and neurons and the

activation functions are the hyperparameters that should be

decided at the outset.

For the activation functions, the default setting is adopted,

where the hyperbolic tangent sigmoid function φ(z) =

tanh(z) is used for the neurons in the hidden layers and the

linear function φ(z) = z is used in the output layer. Even

though in the machine learning community rectified linear
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Input

5

Hidden2 Output

Output

15

1

Hidden1

15 1

Fig. 3 Architecture of the FFNN with two hidden layers having 15 neurons on each

units (ReLUs) are now the recommended choice for the acti-

vation functions in the hidden layers for large scale problems,

our tests using the ReLUs for the hidden layers do not show

appreciable differences.

As for the numbers of the layers and neurons, it is known

that perfect regression can be obtained for any dataset if

there is no limit to the number of available neurons. How-

ever, the training may become too expensive and the model

too inefficient if too many neurons are used. Therefore it is

desirable to use as few neurons as possible. Empirical evi-

dences show that, in some cases, the model performance can

be improved by using more hidden layers [34]. However,

there is not yet theoretical justification or guidelines for the

optimal choices. As a result, we have adopted the following

trial-and-error strategy to decide these two hyperparameters,

which is explained briefly here while related numerical evi-

dence is presented later. We start with an FFNN with only one

hidden layer, and train it with increasing number of neurons,

until satisfactory performance is obtained. After a number of

tests, it is found that consistently good results can be obtained

with 30 neurons. The total number of neurons is thus fixed

at 30, and networks with different numbers of hidden lay-

ers are tested to explore how the performance can be further

improved. As demonstrated below with numerical results,

the best performance is found with two hidden layers and 15

neurons on each. This architecture is thus chosen, which is

illustrated in Fig. 3. More details are given in Sect. 4.1.3.

4.1.2 Training of the FFNN

With the architecture chosen, the weights and the biases in

the neurons are then initialized randomly, but they have to

be adjusted to improve the performance of the model. This

process is called training, in which the dataset for log | f12|

mentioned in Sect. 3 is used. For each predictor (i.e., a param-

eter combination), the FFNN is used to make a prediction for

log | f12|, which is the response in this model. The prediction

is compared with the true value obtained as explained in

Sect. 3. The Levenberg-Marquardt algorithm [33] is used to

optimize the weights and biases iteratively. In the machine

learning terminology, an iteration which scans through all

training data is called an epoch.

The training is stopped when a certain stopping condition

is satisfied. One of these conditions is that the magnitude

of the gradient of the MSE should be sufficiently small.

However, in our tests, the training is always terminated

due to detection of overfitting. Overfitting is a phenomenon

where the model performs well in training, but makes poor

predictions for data outside of the training dataset. It is a

common problem that should be avoided when training a

neural network. In this investigation, cross-validation is used

to tackle this problem [35]. Specifically, 70% of the dataset

for log | f12| is randomly chosen to form the training set, while

15% is used for validation, and the rest for testing. At each

epoch, the current FFNN (with not-yet-optimal weights and

biases) is used to make predictions on the validation data set.

The MSE of the predictions over the validation set is moni-

tored. If the MSE increases for No = 6 consecutive epochs

(while the MSE for the training set is still decreasing), then

overfitting is deemed to have happened and the training is

stopped. The value 6 is empirical. If a different No is used,

one might need to adjust other parameters to obtain a model

with similar performance.

4.1.3 Numerical results

The architectures of the FFNN models tested in this investi-

gation are summarized in Table 1. For each architecture, the

training is run 32 times with random initialization. 32 mod-

els are thus produced, which are slightly different from each

other due to random initialization, even though they have

Table 1 Number of neurons (Nn) in each hidden layer for each network

architecture

Architecture Nn in each layer

1 30

2 20, 10

3 10, 20

4 15, 15

5 5, 10, 15

6 10, 10, 10

7 10, 10, 5, 5

8 10, 5, 5, 5, 5
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Fig. 4 Median and range of the optimal MSE obtained with different

FFNN models in 32 runs
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Fig. 5 Changes of the MSE and the gradient with the epochs for a

model with the fourth architecture

the same architecture. The training, testing, and validation

MSEs for these 32 models are calculated. The median values

are plotted with the symbols in Fig. 4 for all 8 architectures.

Indicated by the error bars are the maximum and minimum

values, which show the ranges of the data. As the number of

data points is small (32 for each architecture), we have chosen

to plot the medians, which is considered more representative

of the overall behaviour of small data set. For the same rea-

son, we have used the ranges to represent the dispersion of

the data. The result for architecture 1 shows that, with 30 neu-

rons, the validation MSE can be kept under 5% in all runs.

This observation has been the basis to choose 30 as the total

number of the neurons. Figure 4 shows clearly that the MSE

can be reduced by using multiple hidden layers. Architecture

4, which has two hidden layers with 15 neurons in each, has

the best performance. Further increasing the number of hid-

den layers beyond two appears to degrade the performance.

The median testing MSE for architecture 4 is 1.51%, while

that of architecture 8 is 2.01%, which is 33% higher. Based

-20 -15 -10 -5 0
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Training

Testing

Fig. 6 Regression of the training (filled circles) and the testing (empty

circles) data
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Fig. 7 Bar chart for the error εa ≡ log | f t
12| − log | f m

12| ≡

log(| f t
12/ f m

12|) for the training (bottom bars), validation (middle bars)

and testing (top bars) data. The height of a bar represents the number

of samples Ns in the bin

on these results, architecture 4 has been chosen to obtain all

the results to be presented below. As an illustration, Fig. 5

shows how the performance and the gradient of the model

improves by the training.

The next results provide fuller description of the errors.

Figure 6 shows the regression of the training and the testing

data, where superscripts t and m are used to denote the true

and modelled values, respectively. Excellent regression is

obtained for both datasets. The coefficient of determination

R is more than 99% in both cases.

The bar chart in Fig. 7 shows the distribution of the abso-

lute error for log | f12| defined by εa ≡ log | f t
12| − log | f m

12|.

Given that the values for log | f12| approximately range

between −20 and −5 (c.f. Fig. 6), the error on a large majority

data points is very small.
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Fig. 8 Probability distribution for the relative error εr ≡ |(| f t
12| −

| f m
12|)|/| f m

12| for the training (bars) and the testing (filled circles) sets.

The y-axis is the probability for εr in each bin. The blue line is the

cumulative probability for εr for the testing data

The error in log | f12| is small enough that the magnitude

| f12| itself is also accurately modelled. Plotted in Fig. 8 is

the relative error for | f12|, which is defined as εr ≡ || f t
12| −

| f m
12||/| f m

12| and is related to εa by εr = |10εa −1|. There are

a small number of extraneous samples where εr can be more

than 100%, but, as expected, the majority of the samples have

small errors. The cumulative probability distribution, plotted

with the dashed line, shows that more than 90% samples in the

testing set have relative errors smaller than 30%, and about

85% smaller than 20%. Comparing the errors on the training

set and the testing set, it is only slightly more probable to

observe larger errors on the testing data, which demonstrates

that the model generalizes well.

The above results show that the FFNN model (with 15

neurons on each of the two hidden layers) can provide an

accurate model for not only log | f12| but also | f12|. In terms

of the training cost, typically less than 100 epochs are needed

to achieve the accuracy depicted in Figs. 6, 7, and 8, which

takes less than one minute to compute on a modern laptop.

4.2 Support-vector machinemodel for sgn f12

In its most simple form, the SVM [35] is an algorithm that

finds the optimal straight line that separates two clusters

of points on a plane, hence classifying the points into two

classes. In order to introduce some necessary basic concepts,

its formulation is briefly explained here. It is assumed that a

set of N points x
( j) = (x

( j)
1 , x

( j)
2 ) ∈ R2 ( j = 1, 2, ..., N )

is given as the training set. The points are divided into two

groups, the positive and negative classes. For simplicity, the

data are assumed to be separable, i.e., it is assumed that a

straight line can be found to separate the two classes, and

that the classifications are known and labelled by 1 and −1,

respectively. The classification of point x
( j) is recorded by

y( j) ∈ {−1, 1}.

The optimal separating line is defined as the line that

separates the two groups whilst leaving the largest margins

on both sides of the line. Let the equation for the line be

f (x) ≡ w
T

x + b = 0, where w ∈ R2 and b ∈ R. It can

be shown that the best separating line is the solution of the

following optimization problem [35]: find w and b that mini-

mize the objective function ||w||2 such that for all data points

(x( j), y( j)),

y( j) f (x( j)) ≥ 1. (8)

The optimal objective function maximizes the margins on the

two sides of the line. The constraints ensure that the points

are found on the correct sides of the separating line. Let ŵ and

b̂ be the optimal solutions, which define the optimal SVM,

and let f̂ (x) ≡ ŵ
T

x + b̂. The classification of a data point x

is given by its label sgn f̂ (x).

In the more general cases where the data are not separable

by a straight line, two modifications to the above method

have been introduced. Firstly, one may allow a small number

of points to be mis-classified, a practice termed using soft

margin. Mathematically, this method amounts to replacing

Eq. (8) by

y( j) f (x( j)) ≥ 1 − ξ ( j) (9)

for ξ ( j) ≥ 0. Meanwhile, a penalty term is added to the

objective function to limit the magnitude of ξ ( j). For this

investigation, the term takes the form of C
∑N

j=1 ξ ( j) with

C being a parameter called the box constraint. A larger C

introduces larger penalty, hence reduces ξ ( j)’s magnitudes,

which means fewer mis-classifications are allowed. No mis-

classification is allowed when C → ∞. Secondly, one may

use a nonlinear curve to separate the data. The idea is imple-

mented by using a function f (x) = w
T

h(x) + b as the

separating curve, where h(x) is a non-linear function that

transforms the separating line to a nonlinear separating curve.

The above exposition of the SVM model has been based

on the so-called primal formulation. Used in current inves-

tigation is the dual formulation of the model, because the

dual problem is convex and guaranteed to converge to the

global minimum [37]. The two formulations are equivalent

as their optimal solutions provide the same classification.

Letting α( j) be the dual variable corresponding to the con-

straint given in Eq. (9), the dual problem can be written as

min
1

2

N
∑

j=1

N
∑

k=1

α( j)α(k)y( j)y(k)G(x( j), x
(k)) −

N
∑

j=1

α( j)

(10)
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Fig. 9 Objective function and the gradient difference as functions of the

training epochs in a typical training session. Only the first 100 epochs

are shown

subject to the constraints

N
∑

j=1

α( j)y( j) = 0, 0 ≤ α( j) ≤ C . (11)

The bivariate function G in Eq. (10) is the kernel function

corresponding to the nonlinear function h(x). For this inves-

tigation, a Gaussian kernel is used where G(x( j), x
(k)) =

exp(−||x( j) − x
(k)||2/σ 2) with σ being the kernel scale.

The dual problem is solved with the sequential minimal

optimization (SMO) algorithm. The SMO algorithm is an

iterative descent algorithm, in which the convergence is mon-

itored by the gradient of the dual objective function with

respect to α( j). Specifically, the difference between the gra-

dient components corresponding to the maximal upper and

lower violation of the feasibility conditions is monitored [37].

The iteration is deemed converged when this difference is

smaller than a tolerance δ. Once the optimal solution for the

dual problem is found, ŵ and b̂ can then be found from α( j)

using the Karush–Kuhn–Tucker conditions, which are then

used to classify new data points. For more details of the SVM

methods and the algorithms, see Hastie et al. [35], Cristianini

and Shawe-Taylor [37].

The SVM model is applied to classify the data for sgn f12,

using the MATLAB function fitcsvm which implements the

above algorithms. In this case, x is a five dimensional vector,

i.e., x = (D, RE1, RE2, pa, f )T and the label y is sgn f12.

The number of data points is N = 5400. The data are

standardized when they are fed into the training algorithm.

Specifically, the mean is removed from the data which are

then rescaled by the standard deviation. Figure 9 illustrates

the decay of the gradient difference as well as the objective

function in Eq. (10) in a typical training process.

The adjustable parameters in the model are the box con-

straint C , the kernel scale σ , and the tolerance δ. Tests with
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Fig. 10 Mis-classification rate for different kernel scales σ and box

constraints C

δ = 10−3 and 10−4 show essentially the same results. There-

fore δ = 10−4 has been used. When the separation boundary

has a complicated shape, a small σ is required to model the

fine features of the boundary. However a too small σ may

limit the ability of the model to capture the large scale fea-

tures in the distribution of the data. The choice of C depends

on the accuracy of the data for f12. If the data for f12 likely

contain large errors, it is not meaningful to insist perfect clas-

sification. The physical model being used here (Eq. (3)) has

been derived with a few simplifying assumptions. Therefore,

it is appropriate to use a large C to limit mis-classification,

although it is not necessary to achieve zero mis-classification.

Based on the above discussion, the mis-classification

rate has been calculated for several different kernel scales

σ and box constraints C . A point x
( j) is mis-classified if

y( j) f̂ (x( j)) < 1 (c.f. Eq. (9)). The mis-classification rate is

the ratio of the number of mis-classified points, Nm , to the

total number N . The results are plotted in Fig. 10. The mis-

classification rate reaches an approximate plateau quickly

when C increases. The results for σ = 0.4 are clearly much

worse, whereas small mis-classification is found for other σ ’s

when C is sufficiently large. These observations demonstrate

the robustness of the classification scheme as long as σ is not

too small. The smallest mis-classification of 2.61% is found

at (σ, C) = (0.6, 20), which is considered sufficiently small.

Therefore C = 20 and σ = 0.6 are used in what follows.

The robustness of the model is assessed in Fig. 11 using

k-fold cross-validation [35]. In k-fold cross-validation, the

dataset is divided randomly into k equal sets, and k mod-

els (called the partitioned models) are trained. The i th (i =

1, 2, ..., k) dataset is called the i th test fold, whereas the other

k −1 sets form the i th training fold. The i th partitioned SVM

model is trained on the i th training fold and evaluated on the

i th test fold. The overall assessment is based on performance

indices averaged over the k partitioned models.
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Fig. 11 Left axis: the median accuracy (solid line with circles) and the

median specificity (dashed line with squares). Right axis: the median

precision (solid line with diamonds) and the median recall (dashed line

with triangles). Found in an ensemble of 32 runs. The error bars show

the maximum and minimum

The most commonly used performance indices are the

accuracy, the precision, the recall and the specificity. For

each predictor, the model response could either be positive

or negative; in either case, it could be either true or false. As a

result, the response falls in one of four categories: a positive

response could be a true positive (TP) or, coming erroneously

from a predictor in the negative class, a false positive (FP),

whereas a negative response could be true negative (TN) or

false negative (FN). Let NT P , NT N , NF P and NF N be the

numbers of TP, TN, FP, and FN, respectively. The accuracy

is defined as

NT P + NT N

N
, (12)

which simply gives the percentage of correct predictions in

both classes. The precision, recall and specificity are, respec-

tively, defined as

NT P

NT P + NF P

,
NT P

NT P + NF N

,
NT N

NT N + NF P

. (13)

The precision tells us the probability of a positive response

being correct; the recall is the probability of the positives

being correctly identified as positive, while the specificity

gives the probability of the negatives being correctly identi-

fied as negative [35].

Due to the randomness in data partition, the indices aver-

aged over the k partitioned models may fluctuate if the

cross-validation is conducted multiple times. Therefore, we

repeat the validation 32 times to find the medians and ranges

of the indices. The results are plotted in Fig. 11. It is clear that

the accuracy, the precision, and the recall of the models are

consistently high (more than 98% for all of them), although

they drop slightly when fewer folds are used, while the ranges

increase slightly (the error bars for the accuracy are too nar-

row to see on the figure). With fewer folds, the number of

data points in each fold, hence in the training set, is smaller.

Thus the performance of the partitioned models are expected

to somewhat deteriorate. The results for accuracy show that

more than 98% data points, with either negative or positive

f12, are classified correctly. Meanwhile, the result for the

precision shows that there is a 98% chance that f12 is indeed

positive when the model predicts so, and the result for the

recall shows that there is a 1 − 98% = 2% chance that f12

is not predicted to be positive when it is actually positive.

Figure 11 shows that the median specificity and its range

display behaviours similar to those of the accuracy, the pre-

cision and the recall, but there is stronger dependence on the

number of folds, and its range is wider and the median is

smaller. The median recall increases with the fold number

and reaches approximately 85%, which implies there is a

1 − 85% = 15% chance that f12 is not predicted to be nega-

tive when it is actually negative. The specificity is relatively

low compared with the other indices, but this observation

does not necessarily reflect poorer performance regarding

the samples with negative f12. Rather, this behaviour is due

to the fact that there is only about 3.4% data points on which

f12 < 0, thus mis-classification has an outsized impact.

The results presented in this subsection show that, with

kernel scale σ = 0.6, box constraint C = 20, and tolerance

δ = 10−4, the trained SVM classifier can effectively model

the distribution of the signs of f12.

5 Efficiency and accuracy of the combined
model

A prediction for the force f12 can be made by combining

the two ML models obtained in Sect. 4. In this section the

predictions f m
12 made this way are compared with the true

predictions f t
12 found from solving Eqs. (3) and (5). 1024

samples for (D, RE1, RE2, pa, f )T are randomly chosen,

with each component falling in the range covered by the

dataset used to train the ML models. Note that the samples are

not necessarily in the dataset. Excluding the samples where

RE1 < RE2, 640 samples are used for this test, and 640 pairs

of values ( f t
12, f m

12) are obtained.

Excellent correlation is found between f t
12 and f m

12, with

the correlation coefficient being 0.98. The scatter plot for

the data is shown in Fig. 12. The figure confirms the good

correlation while, in the meantime, shows that the difference

tends to increase when the magnitude of the force increases.

The histogram for the relative error ε
f

r ≡ | f t
12− f m

12|/| f t
12|

is shown in Fig. 13. The error distribution has a broader

spread than those in Fig. 8, i.e., those for the training data

and the testing data. This behaviour is not unexpected as the

ML models are being applied to a new dataset here. Never-

theless, more than 45% samples have less than 20% errors,
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and for more than 75% samples the error is less than 40%.

Therefore, the results are still quite satisfactory. Obviously,

the performance of the ML models can be improved if the

training data set can be expanded and refined.

Finally, the ML models are extremely efficient compared

with direct numerical integration. Tested on a laptop, it takes

0.8 h to obtain the 640 values for f t
12, whereas it takes only

0.04 second for the ML models to find corresponding f m
12

when the 640 values are retrieved in one batch through a sin-

gle call to the machine learning models. We now consider

a situation where only one f m
12 value can be calculated in

each functional call to the machine learning model. In this

case obviously the total computational time increases with
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10
-1

Fig. 14 Ratio of computational time as a function of the number of

samples

the number of samples. The ratio between the total compu-

tational time needed to calculate f m
12 from the model and the

time needed to calculated f t
12 by solving Eq. (3) is plotted

in Fig. 14. The figure shows that the ratio can be reduced

to approximately 0.2% for large numbers of samples. There-

fore, a very significant saving is still achieved even in this very

inefficient way of applying the machine learning model.

6 Conclusions

Machine learning models for the secondary Bjerknes force

as a function for several parameters have been developed in

a two bubble system. Because the force varies drastically

with the parameters, the magnitude and the sign of the force

have to be modelled separately, which results in a composite

model consisting of a feed-forward neural network for (the

logarithm of) the former and a support-vector machine for

the latter.

Numerical tests demonstrate the feasibility of using

machine learning to tackle this problem. Practical methods

for choosing the suitable architecture and hyperparameters

for the models are proposed. Accurate machine models are

obtained, which are shown to be very efficient compared with

direct numerical integration of the bubble evolution equa-

tions.

The results demonstrate that machine learning is a viable

method in modelling the secondary Bjerknes force. The mod-

els developed here have the potential to enhance the future

simulations of bubble clusters. Obviously, the model can

be further refined and expanded, by, e.g., using a larger

dataset covering a wider range of parameters. A particularly

interesting question is if the methodology is still valid for

higher pressure amplitudes. Increasing the pressure would

potentially increase the occurrence of negative (repulsive)

secondary Bjerknes force, which tends to reduce the accuracy
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of model predictions. However, there is an opposing effect.

When the pressure is increased, the domain in the parametric

space where the force is negative could become more regu-

lar, with smoother boundaries. This behaviour is observed in,

e.g., Mettin et al. [6]. This change in principle could improve

the performance of the models. Therefore, how increased

pressure may change the performance of the models remains

an interesting question. Finally, machine learning clearly is

equally applicable when a more sophisticate physical model

is used to describe bubble oscillations, although it is not obvi-

ous that the currently chosen architectures are still sufficient

when the dataset grows larger. These interesting topics will

be explored in our future investigations.
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