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REVIEW ARTICLE

Manipulating the diseased oral microbiome: the power of probiotics and 
prebiotics
X. Yu, D.A. Devine and J.J. Vernon

Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK

ABSTRACT
Dental caries and periodontal disease are amongst the most prevalent global disorders. Their 
aetiology is rooted in microbial activity within the oral cavity, through the generation of detri-
mental metabolites and the instigation of potentially adverse host immune responses. Due to the 
increasing threat of antimicrobial resistance, alternative approaches to readdress the balance are 
necessary. Advances in sequencing technologies have established relationships between disease 
and oral dysbiosis, and commercial enterprises seek to identify probiotic and prebiotic formula-
tions to tackle preventable oral disorders through colonisation with, or promotion of, beneficial 
microbes. It is the metabolic characteristics and immunomodulatory capabilities of resident 
species which underlie health status. Research emphasis on the metabolic environment of the 
oral cavity has elucidated relationships between commensal and pathogenic organisms, for 
example, the sequential metabolism of fermentable carbohydrates deemed central to acid 
production in cariogenicity. Therefore, a focus on the preservation of an ecological homeostasis 
in the oral environment may be the most appropriate approach to health conservation. In this 
review we discuss an ecological approach to the maintenance of a healthy oral environment and 
debate the potential use of probiotic and prebiotic supplementation, specifically targeted at 
sustaining oral niches to preserve the delicately balanced microbiome.  

KEY MESSAGES
● The balance of oral homeostasis requires delicate adjustments to prevent and counteract 

disease.
● The metabolic activities of the complete microbiome, not only key pathogens or commen-

sals, are important to the maintenance of health.
● Metabolomics techniques can be valuable in identifying environmental niches deficient in 

disease that can act as targets for probiotic and prebiotic treatments.
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Introduction

In the age of extensive antimicrobial resistance, effec-
tive replacements for traditional antibiotic therapies 
are extremely valuable to clinicians from all disci-
plines, including dentistry. Driven by a strong com-
mercial push, probiotics and prebiotics are promising 
alternatives for maintaining the delicate balance 
between host and microbiome, necessary to health.

Most research conducted in the field of probiotics 
and prebiotics has focused on the gastrointestinal 
system and its impact on health, as well as local and 
systemic diseases [1–7.] However, the influence of 
pro- and prebiotics on the activity of the oral micro-
biome is understudied. There is a paucity of data 
outlining the precise impact and mechanisms of 
potentially beneficial oral microbes. Since the oral 
microbiome is not only crucial to oral health, but is 
also linked with many systemic diseases, such as 
diabetes mellitus [8,9], rheumatoid arthritis [10–13], 

cardiovascular disease [14,15] and Alzheimer’s dis-
ease [16–18], the need for adjunctive therapies to 
maintain microbial homeostasis is clear.

The relationship between host and resident oral 
microorganisms is one of synergy, with dysbiosis 
often responsible for disease onset. In 1994 Marsh 
proposed the ‘ecological plaque hypothesis’, under-
lining the significance of bacterial interactions, both 
with other microorganisms and the host environ-
ment [19]. This highlighted the importance of colla-
borative metabolic activity within the microbiome 
and its impact on health. Modern sequencing and 
‘omics’ technologies have facilitated the identifica-
tion of species associated with health and disease. 
However, the importance of each organism is the 
contribution it makes to a succession of metabolic 
events essential to nutritional, environmental and 
immunological balance (Figure 1). Modulation of 
both the microbial composition and collective 
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metabolic activity is central to an ecological 
approach towards preserving health [20–22]. 
Hence, the development of pro- and prebiotic solu-
tions can be informed through assessment of meta-
bolic capabilities, facilitating generation of therapies 
capable of inducing delicate adjustments to the oral 
microbial equilibrium. Here we discuss oral ecology 
in health and disease, with a focus on the metabolic 
alterations of pro- and prebiotic therapies for caries 
and periodontitis.

Probiotic and prebiotic definitions

Since inception of the term ‘probiotics’ [23], its defi-
nition has been revised to reflect scientific advances. 

The nomenclature has broadened to include the sym-
biotic stimulation of other organisms through 
secreted compounds [24], before being expanded to 
the current concept of live organisms conferring 
a host health benefit [25,26]. Prebiotics were first 
defined as ‘non-digestible food ingredients providing 
benefits through selective metabolism in the gut’ [2], 
e.g. inulin, lactulose, fructo-oligosaccharides and 
galacto-oligosaccharides [27]. An expanded definition 
that omits the limitation to the gut and includes 
elements influencing microbiome composition and 
metabolic state ensures a more relevant, holistic clas-
sification [28,29].

Definitions have advanced and delineated further, 
with many nascent phrases cited in the literature: Live 

Figure 1. Approaches for the preservation of a healthy oral ecology.
Main panel: Arginine is metabolised into ammonia by bacteria exhibiting the arginine deiminase system. The alkaline products neutralise 
detrimental acid production from dietary fermentable carbohydrates. Sugar alcohols such as xylitol and erythritol competitively inhibit the glycolysis 
reaction of fermentable carbohydrates by caries-associated pathogens such as S. mutans, minimising the generation of acidic products. Increased 
mastication can stimulate salivary flow which has multiple benefits: improved removal of loosely bound bacteria, increased flow of immune 
elements, increased release of sodium bicarbonate capable of contributing to remineralisation of the enamel and increasing pH, and a quicker 
reinstatement of a neutral oral pH. Up-regulation of mucin production or a reduced breakdown of mucin-related glycan by inhibiting bacteria 
capable of doing so can result in an increased physical barrier and a concentration of IgA, hindering invading pathogens. Probiotic lactic acid 
bacteria are capable of preferential binding on oral surfaces reducing the prevalence of pathogens. Dietary nitrates, metabolised into nitrites in the 
gut and concentrated in the serum can be reduced by nitrite-reducing bacteria in the mouth, generating nitric oxide, which can confer antimicrobial 
properties onto the oral communities. However, these can also stimulate an immune response from gingival cells potentially causing periodontal 
deterioration. Top left panel: Antimicrobial peptides, of bacterial, host and synthetic origin can target communities and convey anti-biofilm effects. 
Specifically targeted antimicrobial peptides (STAMPs) can impart a more precise targeted effect directly on pathogens, exploiting bacterial signals 
including pheromones. Bottom left panel: Replacement therapies use isogenic bacteria with attenuated virulence to competitively inhibit and 
displace virulent strains from oral biofilms.
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Biotherapeutic Products, Next Generation Probiotics, 
Probioceuticals, Paraprobiotics, Synbiotics and 
Symbiotics [26]. Since focusing on the metabolic bal-
ance of the oral environment is of primary impor-
tance, for the purpose of this review we will refer to 
any beneficial approach using live bacteria or growth 
enhancing compounds as ‘probiotic’ or ‘prebiotic’, 
respectively.

Probiotics for the oral microbiome

Clinical trials have been investigating the influence of 
probiotics from an oral disease perspective for over 
twenty years [30–43]. However, no consensus has 
been reached as to the true efficacy of this approach, 
with recent multiple systematic reviews and meta- 
analyses concurring on beneficial trends but identify-
ing the requirement for further studies [44–50].

The majority of the research has concentrated on 
the genus Lactobacillus, since these bacteria have 
demonstrated efficacy in the gut against systemic 
diseases [51]. Lactobacillus reuteri, Lactobacillus 
rhamnosus and Lactobacillus acidophilus are amongst 
the species exhibiting beneficial effects on both caries 
[31,37,52,53] and periodontal disease [40,42,54–56]. 
This genus has a strong potential for maintaining the 
balance of oral microbiome observed in health. 
Nevertheless, other genera have demonstrated bene-
ficial effects which may indicate further targets for 
health preservation [32,33,57–59].

Prebiotics for the oral microbiome

Prebiotics can help to promote the growth of bene-
ficial, commensal bacteria and maintain a healthy 
balance of microorganisms in the mouth, through 
several metabolic pathways. However, as with probio-
tics, many common prebiotics are targeted at gut 
microbiota [60–62]. Subsequently, the attention for 
oral prebiotics has mainly focused on distinct com-
pounds, often with local applications.

Slomka and colleagues used high-throughput 
Phenotype MicroArrays to screen a series of com-
pounds for use as potential oral prebiotics [63]. They 
identified two compounds capable of selectively boost-
ing commensal organisms in the mouth, N-acetyl- 
D-mannosamine and beta-methyl-D-galactoside. In 
two-species competitive biofilm cultures, both com-
pounds stimulated increased growth and a population 
shift in favour of the commensal organisms. 
Interestingly, beta-methyl-D-galactoside has been 
demonstrated to interfere with the co-aggregation of 
oral pathogens, whilst N-acetyl-D-mannosamine is 
part of the sialic acid metabolism pathway [64]. 
Orthologs of N-acetyl-D-mannosamine have been 
reported in several oral streptococci, including 
S. gordonii, S. mitis and S. oralis [63].

Nitrates also have potential as prebiotics capable 
of influencing the oral environment. A range of oral 
commensal bacteria, including Veillonella and 
Actinomyces spp., play an essential role in the 
nitrate-nitrite-nitric oxide metabolic pathway 
[65,66]. These nitrate-reducing bacteria utilize diet-
ary/salivary nitrate and produce nitrite, assisting 
further generation of nitric oxide, important in 
maintaining oral and systemic health [67]. An 
in vitro study assessing the short-term influence of 
nitrate on complex oral biofilms indicated that 
within nine hours of supplementation there was 
a significant increase in ammonium and an asso-
ciated shift in pH [68]. Observed through 16S 
rRNA gene sequencing, this alteration resulted in 
significant increases in nitrate-reducing bacterial 
genera, Rothia and Neisseria, and an associated 
decrease in periodontitis, halitosis, and caries- 
associated pathogens.

It is important to note that the research on dental 
prebiotics and their impact on metabolism is still in 
the early stages, and more research is necessary. 
However, the current evidence suggests that dental 
prebiotics may have the potential to promote meta-
bolic health and prevent the development of certain 
metabolic disorders [63,68–70].

Probiotics and prebiotics in dental caries

Dental caries is the most prevalent noncommunicable 
disease globally [71]. Cariogenic bacteria in dental 
plaque, such as Streptococcus mutans, metabolise fer-
mentable dietary carbohydrates producing acid, 
which decreases pH and causes enamel demineraliza-
tion over time [72,73]. Targeting these processes is 
key to the efficacy of pro- and prebiotic approaches 
to combating caries.

Probiotics for the prevention of dental caries

Oral probiotics research has often focused heavily on 
the reduction of cariogenic organisms, specifically 
S. mutans. Since the metabolic cascade and virulence 
properties of S. mutans are well-characterised, 
a diverse range of approaches have been taken. 
These include competitive inhibition with non- 
pathogenic commensals, the introduction of species 
capable of alternative carbohydrate fermentation, or 
the addition of mutant knock-out strains with an 
absence of virulence genes.

In vitro studies

In vitro studies can identify prospective candidate 
probiotic strains and are useful in outlining poten-
tially contributory mechanisms. Reports from one 
South Korean group indicated that Lactobacillus lactis 
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reduced biofilm formation in vitro, which correlated 
with decreased S. mutans counts and importantly, 
reduced levels of glucosyltransferases [57,74]. 
A reduction in these crucial caries virulence factors 
can result in attenuated glucan production, a key 
component of a cariogenic biofilm [75]. 
Furthermore, there is a body of evidence linking 
Bifidobacterium with a beneficial reduction in 
S. mutans populations [76–79]. In vitro reports of 
this genus’s ability to form complexes with 
Fusobacterium on hydroxyapatite surfaces denote 
a potential favourable influence on biofilm formation 
[80] This affinity for coaggregation with a key brid-
ging organism may be beneficial to colonisation and 
retention of the probiotic, in turn, competitively inhi-
biting S. mutans.

In vivo studies

To understand the holistic impact on oral ecology we 
must look to in vivo trials. Probiotic instillations have 
demonstrated efficacy by priming the immune system 
to deal with pathogenic threats [41,81,82]. One recent 
study of 50 participants demonstrated elevated IgA 
concentrations in a group administered a probiotic 
lozenge of Lactobacillus salivarius subs. salicinius, 
Lactobacillus paracasei and Lactobacillus plantarum 
[81]. This correlated with substantially reduced oral 
pathogen populations, including S. mutans, indicat-
ing the importance of immune stimulation in anti- 
caries, probiotic effects. Other lactobacilli also appear 
to have an inhibitory effect on oral pathogens, with 
reductions in both caries lesions and S. mutans popu-
lations observed in children consuming probiotic 
milk products [31,37]. These benefits are generally 
associated with reduced plaque formation, potentially 
due to stimulation of the immune system. Similarly, 
other probiotic organisms including Bifidobacterium 
and Bacillus strains have also been strongly associated 
with an indirect modulation of inflammatory 
response [41,58,82–85].

The use of commensal and non-pathogenic 
Streptococcus species has also been trialled as probio-
tic agents [34,86,87]. Hedayati-Hajikand et al. 
observed significant reductions of early caries indica-
tions in 2–3-year-old children consuming 
Streptococcus rattus, Streptococcus oralis and 
Streptococcus uberis enriched chewing tablets [34]. 
The authors proposed that this combination eradi-
cated S. mutans through both competitive inhibition 
and the production of hydrogen peroxide. This cor-
roborated earlier animal model experiments which 
indicated that a lactate dehydrogenase (LDH) defi-
cient S. rattus strain was capable of displacing 
S. mutans on oral surfaces [88]. In the absence of 
the LDH enzyme, pyruvate can be metabolised down 
alternative pathways (pyruvate-formate lyase or 

pyruvate dehydrogenase), subsequently forming pH 
neutral substances, such as ethanol, tempering cario-
genicity [89]. Reduced cariogenicity was also 
observed in a rat model harbouring a LDH-deficient 
S. mutans strain [90]. These studies demonstrate the 
potential for exploiting oral bacterial mutants, defi-
cient in key virulence factors, as potential replace-
ment therapies.

Bacterial replacement therapy

Bacterial replacement therapeutics is an area of 
research eliciting substantial attention [88,91–95]. 
The concept is based on employing oral bacterial 
variants, deficient in virulence factors, as a method 
to substitute pathogens for harmless isogenic bacteria. 
This approach has value in causing less disruption 
and potentially less collateral damage to the oral 
microbiome. Hillman has suggested that a strain 
selected for replacement therapy must abide by four 
tenets: 1 – a vastly attenuated pathogenesis potential, 
2 – a significant capability to outcompete the patho-
genic strain for the environmental niche, 3 – ability to 
displace pre-existing, colonising pathogens, 4 – con-
firmation of safety from any detrimental effects, 
whether local or systemic [93]. Much of the research 
in this field has been directed at caries prevention and 
the use of S. mutans variants [89,92,95–97]. Hillman 
identified a LDH-deficient S. mutans strain with 
a greatly attenuated ability to produce acid, demon-
strating reductions of caries lesions in rats by 90% 
[92]. Crucially, the authors also indicated the persis-
tent colonisation and retention of the non-pathogenic 
strain. More recently, a Chinese group built upon the 
use of LDH-deficient strains by further knocking out 
a negative regulator gene, gcrR, for glucan-binding 
lectin expression, deemed important for adhesion 
and biofilm formation [94,95]. Here they demon-
strated elevated adhesion in the replacement strain 
compared to wild-type S. mutans, significantly redu-
cing caries in vivo [94]. One study investigated the 
potential of a non-virulent S. mutans strain with 
heightened bacteriocin production, capable of killing 
almost all other S. mutans strains [98]. Promisingly, 
the research revealed that individuals with an initial 
high level of cariogenic S. mutans were free from the 
pathogen up to two and a half years post-replacement 
therapy. This study demonstrated the strong appeal 
and potential of replacement treatments and their 
superior longitudinal effects compared to standard 
probiotic therapies. However, the risks of horizontal 
gene transfer and spontaneous mutation must be 
considered carefully with this approach. 
Furthermore, the introduction into the oral milieu 
of pre-existing antimicrobial resistance determinants 
harboured by probiotic strains must be considered 
for the future of antimicrobial efficacy. Highlighting 
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the importance of this point, a recent study assessing 
the antimicrobial resistance profiles of strains con-
tained within commercially available probiotic 
lozenges identified genes potentially conveying resis-
tance to more than 30 antibiotics [99].

Interesting advances in the replacement therapy 
approach have been proposed, with the potential 
use of bacterial auxotrophs examined. By designing 
genetic variants with an auxotrophic requirement for 
D-amino acids, a replacement organism could be 
eliminated if necessary, alleviating some of the risk 
[91]. Since D-amino acids are not naturally available, 
the use of these strains would require dietary supple-
mentation, but ultimately offers the safety net to 
eliminate the therapeutic strain via cessation of 
D-amino acid administration. Nonetheless, much 
like the blockbuster film Jurassic Park (1993) [100], 
where a lysine contingency was established to control 
genetically procreated dinosaurs, unforeseen circum-
stances can occur, although in this case the threat 
might be oral acidification as opposed to being 
eaten alive.

Playful digressions aside, replacement therapies 
present a promising alternative to classical probiotics, 
offering the incentive of minimal further dysbiosis of 
the oral ecology. Nonetheless, extensive clinical trial-
ling and safety evaluations of the potential reactiva-
tion of virulence through gene transfer or mutation 
are necessary.

Long-term probiotic retention

Long-term retention and colonisation of the oral 
cavity by beneficial bacteria is crucial to disease pre-
vention. Nonetheless, caution must be taken with this 
approach and any potential risks of local and sys-
temic disorders must be considered. Many studies 
have attempted to introduce beneficial species, parti-
cularly in early childhood, but often the microbiome 
relapses soon after probiotic intake ceases [31,37,52]. 
Further longitudinal studies are essential to identify 
this crucial characteristic in prospective probiotic 
strains. In order to better understand retention and 
long-term efficacy, several parameters should be 
adhered to during longitudinal studies. 
Implementing frequent and consistent sample collec-
tions over an extended period, particularly after ces-
sation of probiotic intake, would allow for population 
variations to be monitored. Conducting comprehen-
sive microbiome analyses at each time point would 
improve identification of low abundance presence, 
whilst monitoring of additional demographics such 
as antibiotic usage, diet and comorbidities would 
provide further insight. Furthermore, as longitudinal 
research often suffers from participant drop out, 
powering the study size with attrition rates in mind 
would enable stronger outcomes [101].

Prebiotics for the prevention of dental caries

Arginine

The amino acid arginine has versatile effects on human 
wellbeing, including the enhancement of wound heal-
ing [102], immune responses [103,104], cardiovascular 
function [105], and oral health [106]. In the oral cavity, 
arginine exists in saliva as free acid or as peptide con-
stituents and has been included in some oral hygiene 
products [107,108]. Many oral bacteria, especially the 
genus Streptococcus, including S. gordonii, S. sanguinis, 
S. parasanguinis, S. cristatus, S. mitis and S. oralis 
[109,110], are able to utilize arginine. It is catabolized 
by these bacteria via the arginine deiminase (ADS) or 
agmatine deiminase system (AgDS), both of which 
pathways generate ammonia and ATP [111]. 
However, AgDS activity is relatively lower than that of 
ADS [112], so it is postulated that AgDS-produced 
ammonia does not contribute sufficiently to oral alka-
lization [113]. Conversely, the ammonia released via 
ADS can create an alkaline environment and thus neu-
tralize acids produced by bacterial fermentation of diet-
ary carbohydrates, inhibiting enamel demineralization 
[111]. Several clinical trials performed by Nascimento 
et al. have found an inverse correlation between ADS 
activity and caries [114–116]. Furthermore, the expo-
sure to arginine also increased ADS activity in the 
caries-active cohort.

Moreover, arginine can positively affect the balance 
of oral microbial populations. One study of 45 indivi-
duals demonstrated that toothpaste supplemented with 
1.5% arginine promoted a favourable compositional 
shift in supragingival plaque of a caries-active group 
towards that of a caries-free group [115]. Zheng et al. 
further confirmed this finding and observed that argi-
nine enriched S. sanguinis and markedly decreased 
S. mutans levels in saliva and dental plaque [117]. In 
another (small) study with nine healthy volunteers, 
toothpaste containing 8% arginine significantly 
increased the abundance of lactate fermenter, 
Veillonella in saliva [118]. Similarly, Kuriki et al. 
reported that using mouthwash supplemented with 
8% arginine significantly increased ammonium ion 
concentration in saliva and decreased the genera 
Atopobium and Catonella that can act as opportunistic 
pathogens [119]. Notably, the cohort sizes in these 
studies were relatively small, with two trials only having 
nine and ten participants. Additionally, many of these 
studies were funded by industry, which may raise con-
cerns of research bias [120].

Fluoride

In the last decades, fluoride has been used as an anti- 
caries agent in several formats, of which fluoride 
toothpaste is the most widespread globally and has 
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a substantial caries prevention effect [121–123]. The 
underlying mechanisms have been well discussed and 
illustrated in the previous studies, including the inhi-
bition of glycolysis to reduce acid production in car-
ies-related Streptococcus strains [124,125] and the 
promotion of remineralization and prevention of 
demineralization of dental enamel [126,127]. Recent 
studies have also found that it influences biofilm 
composition [128–130]. López-López and Mira 
revealed that health-associated Streptococcus salivar-
ius and Rothia mucilaginosa were significantly 
increased when saliva-derived biofilms were exposed 
to fluoride [130]. In a long-term cohort study, the use 
of fluoride induced an ecological shift, with increased 
activity of health-associated streptococci, as demon-
strated by metagenomic and metatranscriptomic ana-
lysis [131].

Supplementation with additional prebiotics has 
been demonstrated to enhance the anti-caries efficacy 
of fluoride. In three-species in vitro biofilms, the 
combination of arginine and fluoride suppressed the 
growth of acidogenic S. mutans, whereas it boosted 
the growth of S. sanguinis (an arginine utiliser and 
alkaline producer) [132,133]. Furthermore, a number 
of clinical studies have demonstrated that the use of 
dentifrice containing both fluoride and arginine 
resulted in ammonia production, a higher dental 
plaque pH [134,135] and greater reductions of caries 
lesions than fluoride alone [106,136,137]. Carda- 
Diéguez et al. found that patients who brushed with 
fluoride and arginine dentifrice had lower levels of 
caries- and periodontitis-related bacterial species after 
six months, compared to the baseline [131]. This 
synergism could be valuable for caries prevention.

Probiotics and prebiotics in periodontitis

Periodontitis is an inflammatory gum disease which 
damages gingival tissue, resulting in compromised 
attachment and tooth loss [138]. The pathogenesis 
of periodontal disease is complex and multifactorial. 
The main causative factor is the accumulation of 
plaque, leading to the outgrowth of a consortium of 
periodontal pathogens and dysbiosis of oral biofilms 
[139]. Although maintenance of good oral health is 
foremost in the prevention of periodontal diseases, 
the use of compounds and organisms to counteract 
the microbial dysbiosis has exhibited adjunctive 
effects [35,56,140].

Probiotic compounds for the prevention of 
periodontitis

Central to periodontal disease is the contribution of 
de-regulated host immunity, and subsequent selec-
tion of an inflammophilic microbial community 
[141], leading to the degradation of tissue, the 

periodontal ligament and bone [142]. A range of 
commensal oral bacteria can attenuate immune 
responses [143,144] and some probiotic approaches 
have aimed to harness these properties in periodon-
titis treatment. In vitro work by Ma et al., reported 
decreased cytokine production in human epithelial 
cell lines exposed to L. reuteri [82] and Cosseau 
et al. found that the probiotic strain S. salivarius 
K12 down-regulated cytokine secretion from respira-
tory and oral keratinocyte cell lines and primary cells 
[145]. The mechanism of such immune modulation 
postulated in in vitro studies is that these probiotic 
strains inhibit the translocation of NF-κB subunit 
into the host cell nucleus and thus prevent the pro-
duction of proinflammatory cytokines [82,145]. 
Twetman et al. investigated the effects of gum sup-
plemented with L. reuteri, observing decreases in 
both TNFα and CXCL8 pro-inflammatory elements 
in the gingival crevicular fluid of individuals with 
moderate gingivitis [41]. Several other clinical trials 
support these findings, reporting changes in the bal-
ance of pro- and anti-inflammatory cytokines in dis-
eased patients undergoing probiotic therapy 
[58,140,146].

Effective as adjunctive therapy to scaling and root 
polishing (SRP), the use of L. reuteri has displayed 
both bactericidal and bacteriostatic properties against 
periodontal pathogens [84]. The production of reu-
terin, an antimicrobial peptide and metabolite of 
glycerol, has been implicated as central to the adjunc-
tive effect in periodontitis. Reuterin has been demon-
strated to provoke an oxidative stress effect on the 
oral environment by modification of protein thiol 
groups [84]. Several studies report reductions in pre-
valence of disease-associated bacteria, such as 
S. mutans and Porphyromonas gingivalis associated 
with L. reuteri. [44,53,55] These may be attributed 
to the antimicrobial effect of reuterin, but also co- 
aggregation with pathogenic bacteria as observed by 
Saha et al [53]. or competitive adhesion as demon-
strated in lactobacilli contributing to Yakult’s gastro-
intestinal probiotics [147,148].

Long-term probiotic retention

As with caries, the concept of longitudinal retention 
is essential to periodontal probiotics. Vivekananda 
et al. and Tekce et al. investigated the use of 
a L. reuteri lozenge as an adjunctive therapy alongside 
professional plaque removal for the treatment of per-
iodontal disease. They reported superior clinical char-
acteristics in the probiotic groups [40,42] and also 
reduced re-colonisation rates of obligate anaerobes in 
the treatment arm one year after probiotic adminis-
tration. However, they could only demonstrate reten-
tion of L. reuteri in 11/20 patients by day 90 and in 
no patients by day 180 [40]. Although low L. reuteri 
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retention rates were reported by Tekce et al., the 
detection methodologies relied on agar-based culture 
and metabolic detection of reuterin [40]. 
Quantification using this method may be subject to 
variability and may not provide precise quantitative 
data, impacting the reliability of the reported reten-
tion rates. Furthermore, the sensitivity of reuterin 
detection methods may vary, and low sensitivity 
could lead to an underestimation of the actual reu-
terin production. Incorporating more advanced 
molecular techniques, such as quantitative polymer-
ase chain reaction (qPCR) or metagenomic 
approaches, can enhance the specificity and sensitiv-
ity of probiotic detection. By employing 
a combination of detection methods and parameters, 
including molecular, culture, and viability assess-
ments, a more comprehensive understanding of pro-
biotic retention can be achieved. Another recent trial 
by Morales et al. demonstrated decreased clinical 
attachment loss, bleeding on probing and probing 
depth after a one year follow up of those consuming 
L. rhamnosus SP1 (a.k.a. GG) [54]. Whilst these fol-
low-up studies are promising, many more longitudi-
nal studies are necessary to elucidate the true 
retention rate and therefore the long-term value of 
these species.

Prebiotic compounds for the prevention of 
periodontitis

Prebiotic effects are an understudied discipline out-
side of the gut environment. However, certain com-
pounds may have value to the oral microbiome when 
delivered locally, or even systemically processed 
through the digestive system. Arginine inhibits co- 
aggregation between periodontal pathogens, includ-
ing interactions between P. gingivalis and Prevotella 
oris/Prevotella intermedia/Treponema denticola 
[149,150]. Studies of P. gingivalis and P. intermedia/ 
T. denticola demonstrated that gingipains and/or gin-
gipain-adhesion complexes on the surface of 
P. gingivalis encoded by gingipain genes were 
involved in the coaggregation and suggested that 
arginine may work as a potential inhibitor of gingi-
pains which inhibited co-aggregation reactions. Such 
bacterial co-aggregation is an important factor for 
adherence, colonization and biofilm formation [151].

Other dietary elements have implications in the 
dental environment, including nitrite levels. 
Metabolised from nitrate, nitrite is concentrated in 
the saliva from the blood plasma and has been puta-
tively implicated in associations with periodontal dis-
ease [152]. This has been hypothesized as due to an 
increased secretory response to the inflamed oral 
cavity, as a host defence mechanism, whereby the 
reduction of nitrite to nitric oxide by denitrifying 
bacteria in the mouth can generate an antimicrobial 

effect on periodontal pathogens [153,154]. Balance is 
crucial once again, since denitrification by nitrite- 
reducing bacteria generates nitric oxide which has 
antimicrobial abilities [155]. However, it is also 
involved as a signalling molecule for host inflamma-
tory response in gingival cells, contributing to the 
tissue destruction associated with periodontitis 
[152]. These interactions have been further outlined 
by Wang et al. who observed elevated expression of 
an inducible-nitric oxide synthase gene from host cell 
interactions with bacterial products of nitrite meta-
bolism [156]. Attaining a homeostatic balance of 
these compounds may provide an additional angle 
for the treatment of periodontitis and a return to 
a healthy microbiome.

Metabolomics for probiotic and prebiotic 
discovery

Metabolomics techniques enable a greater under-
standing of the intricacies of the complex interactions 
between the host environment and the cohabiting 
consortia of oral microbes. At present, mass spectro-
metry and nuclear magnetic resonance are the main 
techniques in metabolomics and have been employed 
in the exploration of differential metabolites found in 
the oral microbiome between health and disease. In 
periodontal diseases, clinical studies revealed altera-
tions in some metabolites between periodontally 
healthy and diseased individuals [157–160]. Wei 
et al. observed metabolites related to biosynthesis of 
amino acid and aminocyl-tRNA, such as isoleucine, 
hydrocinnamic acid, serotonin, 4-hydroxycinnamic 
acid and serine, markedly increased in patients with 
periodontal diseases. Similarly, altered metabolites 
were identified in children with and without caries, 
which involved pathways including carbohydrate 
metabolism [161–163]. By identifying the metabolic 
pathways associated with health and the deficiencies 
relating to disease, specific metabolites can be 
highlighted.

Metabolomic effects of probiotics in caries

Understanding healthy oral metabolism
To understand probiotic effects in disease, we must 
first identify the desired balance of the metabolic 
environment. In health, supragingival plaque is nour-
ished with salivary glycoproteins including amino 
acids, peptides, and mucin. These are processed into 
sugars and proteins through the action of both host 
and bacterial glycosidases and proteases. One impor-
tant environmental condition, pH, is maintained 
through several well-balanced mechanisms including 
acid production via sugar catabolism by 
Streptococcus, Lactobacillus and Actinomyces spp., 
counteracted by ammonia generation through 
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amino acid metabolism. Furthermore, a constant sali-
vary flow helps sustain the neutrality of the environ-
ment [164]. A healthy equilibrium is upheld with 
a cyclical demineralisation and remineralisation of 
tooth surfaces, where enamel is protected from acid 
damage, preventing caries. At homeostasis, dietary 
sugars metabolised into acids contribute to deminer-
alisation, but calcium and phosphate ions distributed 
by the saliva, coupled with bacterial alkaline produc-
tion and the action of lactate converting bacteria, 
such as Veillonella, Actinomyces and Lactobacillus 
spp. promote remineralisation [165].

Through analysis of the oral metabolome and pro-
teome, research has begun to elucidate many of the 
detailed elements of the intra-bacterial and bacterial- 
host interactions relating to oral diseases. Cyclic in 
nature, bacterial and host interactions generate meta-
bolites altering the environment and the capabilities 
of bacterial cells to survive and interact with each 
other [166].

Oral metabolism in disease
Recent studies of the metabolomes of patients with 
early childhood caries have identified significant dif-
ferences amongst salivary metabolites [161,167]. 
Heimisdottir et al.’s larger cohort revealed catechin, 
epicatechin and fucose as strongly correlated with 
caries, whilst Li et al’s 2023 study reported 32 differ-
ing metabolites, including those involved in galactose 
metabolism in S. mutans. The latter study pinpointed 
a complex of four compounds as potentially useful 
diagnostic biomarkers, 2-benzylmalate, epinephrine, 
2-formaminobenzoylacetate and 3-Indoleacrylic acid.

A study from Wen and colleagues compared the 
metabolic profiles of S. mutans and L. casei in both 
mono- and dual-species cultures [168]. UV-HPLC 
testing of the spent media indicated four-fold reduc-
tions in succinic acid in the presence of L. casei, 
suggesting a positive impact on carbohydrate meta-
bolism and a potential valuable mechanism for anti- 
caries probiotic strains. A recent in vitro study inves-
tigated the use of Lactiplantibacillus plantarum to 
counteract S. mutans growth [169]. In dual-species 
cultures of S. mutans with Candida albicans, the 
inclusion of L. plantarum supernatant reduced 
S. mutans biomass. This was associated with reduced 
carbohydrate metabolism, and high intracellular 
sucrose levels indicated an accumulation, but not 
utilisation of sucrose [169]. Furthermore, the authors 
reported increased concentrations of the sugar alco-
hols, xylitol, and sorbitol, which may act as less 
acidogenic substrates.

There is minimal research utilising metabolomics 
methodologies to investigate the use of probiotics as 
anti-caries agents. However, one such study by Belda- 
ferre et al. used proteomic analyses to report reduc-
tions in LDH and ADS activity in individuals with 

caries compared to a healthy cohort [170]. Increasing 
LDH is commonly associated with decreased pH, so 
these conflicting findings highlight the difficulties in 
fully understanding the complexities of how probiotic 
instillations may impact the overall environment. 
Here, the authors reported greater numbers of sugar 
transporters in the caries individuals, implying higher 
levels of sugar intake as a putative explanation. 
Further complicating the issue, the aforementioned 
study also identified greater proportions of exopoly-
saccharide in healthy plaque, which is associated with 
increased biofilm formation [171]. Further work is 
essential to elucidate key mechanisms and targets in 
the search for anti-caries probiotics.

Metabolomic effects of prebiotics in caries
The origin of caries lesions has a well-defined cascade of 
metabolic processes, resulting in acid production from 
sugar fermentation. Therefore, the introduction of 
alternative food sources, such as non-fermentable 
sugars, is a common approach for oral prebiotics. 
From a therapeutic angle, the use of sugar alcohols 
such as xylitol has been the subject of some controversy, 
with systematic reviews and meta-analyses reporting 
contradictory findings [172–175]. Metabolomics may 
help us to understand the mechanisms in vivo, high-
lighting the specific impact on oral pathologies.

Takahashi et al. determined no effect of 10% xyli-
tol on the plaque metabolome or acid production in 
a group of Japanese adult volunteers, suggesting that 
it does not directly inhibit acid production, and may 
only have an influence through competition as a non- 
fermentable sugar [176]. Nonetheless, the same study 
reported a dose-dependent effect of fluoride, redu-
cing lactate production from glucose by up to 46%. 
Subsequently, there was an increase in 3-phosphogly-
cerate and a decrease in phosphoenolpyruvate. These 
changes in 3-phosphoglycerate and phosphoenolpyr-
uvate production indicate an inhibition of enolase 
activity in the Embden – Meyerhof – Parnas (EMP) 
pathway, as phosphoenolpyruvate is a product of 
phosphoglycerate catabolism during glycolysis. Since 
this process has been identified in cariogenic bacteria 
such as S. mutans [177], the mechanism of acid 
reduction in the presence of fluoride may be due to 
interference with the EMP pathway in these 
pathogens.

A recent study of 83 individuals using either argi-
nine, fluoride or control toothpastes reported 
increases in supragingival plaque metabolites asso-
ciated with the maintenance of healthy, non- 
cariogenic pH. These included glucosamine-6-phos-
phate, agmatine and phenethylamine in the arginine 
group. Increases in agmatine could well be linked to 
the ADS found in commensal streptococci, capable of 
generating ammonia and neutralising acidic environ-
ments [113].
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Metabolomic effects of probiotics in periodontitis
To identify relevant probiotic strains, we must first 
consider the metabolic environment of periodontal 
disease and target the detrimental pathways. 
Metabolomic studies of periodontitis patients have 
highlighted increases in components relevant to oxi-
dative stress pathways, lipase, glycosidase and pro-
tease activity, and an uptake of saccharides as 
essential sources of energy for oral bacteria 
[178,179]. Many of these would contribute to 
a favourable environment for oral pathogens asso-
ciated with periodontal disease, such as P. gingivalis 
[180]. Although there is minimal available metabolo-
mics data for the use of probiotics against periodontal 
disease, by identifying organisms capable of balancing 
out the biochemical environment, the impact of per-
iodontal diseases may be reduced.

Periodontitis-metabolic biomarkers in saliva, GCF 
or dental plaque have been investigated for years, but 
there is no consensus in specific metabolites identified 
as the disease signature across the studies [157,159,181– 
183]. Nonetheless, targets might include short chain 
fatty acids, as butyrate has been demonstrated to impact 
epithelial cell junctions, amongst other influences [184], 
protease inhibition to tackle the detrimental proteolytic 
activity [185] and oxidative stress pathways to counter-
act the damage caused [186].

Pro- and prebiotics in the oral cavity drive beneficial 
changes, including inhibiting the virulence gene expres-
sion of pathogenic bacteria [187–191], promoting 
ammonia generation [118] or reducing pro- 
inflammatory production in host cells [41,82,145,192].

Metabolomic effects of prebiotics in periodontitis
There is a paucity of studies assessing the metabolo-
mic impact of oral prebiotics on periodontitis. 
Comprehensive clinical trials are essential to elucidate 
the biochemical differences instigated with prebiotic 
treatments. Potential suitable targets for prebiotics, 
may come from the signatures identified in period-
ontitis patients, such as high levels of acetate [193], 
short-chain fatty acids [194], 2-pyrrolidineacetic acid, 
butyrylputrescine, dimethylarginine, as well as poly-
amines and their derivatives e.g. cadaverine 
[182,195,196]. By introducing prebiotic compounds 
to promote species with alternative metabolic path-
ways, or interfere with those associated with diseased 
states, a potential strategy may be developed to 
restore periodontal health.

The future of probiotic and prebiotic research

Throughout the course of this review, we have high-
lighted the necessity for further research in this field, 
particularly towards gaining a detailed interpretation 
of the metabolic environment, through metabolomics 
and proteomics studies. There is a particular need for 

well-designed longitudinal studies to allow a better 
understanding of the dynamic changes in the oral 
microbiome response to probiotic interventions, 
over time. Future research focus would benefit from 
the development of novel probiotic formulations with 
enhanced stability, targeted delivery mechanisms, and 
improved viability for optimal oral microbiome mod-
ulation. A focus on strain-specific differences in pro-
biotics and their influence on the overall system 
would enable better precision interventions [197]. 
Furthermore, there is value in exploring the potential 
for personalized probiotics and prebiotics tailored to 
individual oral microbiomes, whilst considering fac-
tors such as genetics, lifestyle, and dietary habits. 
Another research direction is to focus attention to 
investigating the synergistic effects of combining pro-
biotics with prebiotics (synbiotics) to enhance ther-
apeutic outcomes. By gaining a greater understanding 
of the underlying mechanisms of probiotic and pre-
biotic effects, robust links could be established for the 
amelioration of oral disease and systemic disorders.

Conclusion

Optimal approaches to the preservation of a balanced 
healthy oral microbiome may involve complementing 
many of the well-established dental approaches, such as 
plaque removal and dietary awareness, with adjunctive 
therapies. Supplementation with potentially beneficial 
compounds or colonisation of bacterial species capable 
of contributing to the healthy metabolic state is one 
such option. However, treatment of prevalent oral dis-
eases, including caries and periodontitis requires careful 
ecological manipulation, since each disorder reflects 
a different set of environmental and metabolic dys-
bioses, all of which are intrinsically linked. With many 
ecological properties and effects still unknown and 
a plethora of systemic diseases demonstrating correla-
tions with the oral environment, achieving a balance of 
therapies so as not to cause alternate problems remains 
crucial. The key to this may lie in a greater understand-
ing of a holistic metabolic environment and the mod-
ulation of host immune response.
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