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Electromagnetic self-force on a charged particle on Kerr spacetime:
Equatorial circular orbits
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We calculate the self-force acting on a charged particle on a circular geodesic orbit in the equatorial plane

of a rotating black hole. We show by direct calculation that the dissipative self-force balances with the sum of

the flux radiated to infinity and through the black hole horizon. Prograde orbits are found to stimulate black

hole superradiance, though we confirm that the condition for floating orbits cannot be met. We calculate the

conservative component of the self-force by application of the mode sum regularization method, and we

present a selection of numerical results. We obtain the leading-order coefficients in post-Newtonian

expansions of the dissipative and conservative components of the self-force, using an analytical method and

numerical fitting, respectively. The self-force on the innermost stable circular orbits of the Kerr spacetime is

calculated, and comparisons are drawn between the electromagnetic and gravitational self forces.

DOI: 10.1103/PhysRevD.106.024024

I. INTRODUCTION

The first detection of gravitational waves in 2015

heralded the arrival of gravitational wave astronomy as

an observational science [1]. Two years on, the near-

coincident detection of gravitational waves (GWs) and

gamma rays from a binary neutron-star merger confirmed

that GWs travel at the speed of light [2]. This dual detection

highlighted the potential of multimessenger astronomy, as

the host galaxy was quickly located by telescopes working

in the electromagnetic spectrum, enabling a new measure-

ment of the expansion rate of the universe to be made,

that is, an independent determination of the Hubble param-

eter [3]. By 2021, ground-based detectors had reported

90 gravitational wave events, detailed in the transient

catalogues (GWTCs) 1, 2 and 3 [4]. With each doubling

of sensitivity, we can expect that number to increase by a

factor of approximately eight.

The mathematical modeling of compact binary inspirals,

and their gravitational wave signatures, has progressed

steadily over recent decades. Three leading approaches to

modeling the gravitational two-body problem give comple-

mentary information, namely, post-Newtonian expansions

[5], self-force calculations [6], and the simulations of

numerical relativity [7]. The essential inspiral process can

be understood from the leading-order term in the post-

Newtonian expansion. A pair of compact bodies of masses

M1 andM2, on quasicircular orbits about the center of mass,

will radiate gravitational waves predominantly in the

quadrupole mode (l ¼ 2) at twice the orbital frequency

[8,9]. Consequently, the binary system loses energy, and the

GW frequency increases with a characteristic chirp profile,

fðtÞ ≈ 5

8π

�

5GM

c3

�

−5=8

ðt0 − tÞ−3=8; ð1Þ

where f is the wave frequency, c is the speed of light, t0 is

the time of collision, and M ¼ ðM1M2Þ3=5=ðM1 þM2Þ1=5
is the chirp mass [10]. The spectrogram of the gravitational

wave signal from the binary neutron star inspiral was found

to track this chirp profile remarkably closely over the last

∼100 seconds before merger [11], despite the fact that,

formally, Eq. (1) arises only from the leading-order term of a

post-Newtonian expansion for the radiated flux [9].

A natural question arises: does the catalogue of GW

events from inspirals put strong constraints on beyond-GR

theories, such as Einstein-Maxwell-dilaton theory [12,13],

or dark matter scenarios featuring exotic charges [14]? A

more prosaic, but related, question is whether the compact

bodies could carry significant electromagnetic charges. In

both scenarios, the existence of a radiative dipole mode

(l ¼ 1) will, in principle, change the character of the

inspiral. However, numerical simulations [15] suggest

that the gravitational-wave chirps observed from compa-

rable mass binaries are compatible with non-negligible

charge-to-mass ratios (e.g., up to ∼0.3 for GW150914, for

example [15]).

In future decades, space-based observatories will detect

low-frequency gravitational waves from systems involving

supermassive black holes. A key target for LISA are so-

called extrememass-ratio inspirals (EMRIs) withM1 ≫ M2.
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The scenario in which the central black hole (M1) is charged

was recently investigated using black hole perturbation

theory [16,17]. In this work, we consider the complementary

case, in which the central black hole (M1) is uncharged, but

the orbiting body (M2) carries an electromagnetic charge q.
We shall approach this problem from the perspective that the

orbiting body experiences an electromagnetic self-force, at

order q2, that causes a radiation reaction upon its motion.

First, let us review the roots of this idea in the birth of

quantum theory.

It is well-known that classical field theory is unable

to satisfactorily account for the observed stability of

the hydrogen atom. In the “planetary” version of the

Rutherford atomic model [18], a pointlike electron orbits

the atomic nucleus. The centripetal acceleration of the

charged electron generates electromagnetic (EM) radia-

tion at the orbital frequency of ∼1015 Hz and, conse-

quently, a radiation-reaction force acts upon the electron,

causing the rapid collapse of the atom within 10−8 s.

Invoking the Abraham-Lorentz [19,20] force law,

F ¼ 2

3

e2

4πϵ0c
3
_a; ð2Þ

nonrelativistic classical theory
1
implies that a pointlike

electron on a quasicircular inspiral trajectory will generate

EM radiation with the following “chirp” profile [cf. Eq. (1)]

fðtÞ ≈ 1

4πα

ffiffiffiffiffi

c

a0

r

ðt0 − tÞ−1=2: ð3Þ

Here α is the fine-structure constant and a0 is the Bohr

radius (see Appendix A for a derivation).

There is no experimental support for collapsing atoms

and/or EM chirps, of course. To the contrary, experiments

with electric discharges from the 1850s onwards show that

atoms emit EM radiation at certain discrete frequencies

[22]. Tension between theory and experiment led to the

introduction of the Bohr-Rutherford atomic model [23],

and on to quantum theory itself. However, the idea of an

orbit driven by a radiation-reaction force has reemerged as a

useful concept on a very different scale in the universe.

In this article we consider the radiation-reaction process

for a charged particle orbiting a black hole of massM, rather

than a charged nucleus. We shall assume that the length-

scales of the particle, such as its Compton wavelength,

are substantially smaller than the curvature scale, so that

classical field theory provides an adequate framework. One

might expect that, since the gravitational force and the

Coulomb force both follow inverse square-laws in theweak-

field, the radiation reaction process will proceed in a broadly

similar fashion, producing a chirp frequency which scales

with ðt0 − tÞ−1=2 while v ≪ c and r ≫ GM=c2. However,
an important difference that cannot be overlooked is that the

spacetime of a black hole is curved, not flat.

The first expression for an EM self-force on a weakly

curved spacetime was obtained by DeWitt-Morette and

DeWitt [24] in 1964. The self-force on a particle of charge

q on a vacuum spacetime characterized by a Newtonian

potential ΦN ¼ GM=c2r ≪ 1 is given by

Fself ≈
q2

4πϵ0c
3

�

2

3

dg

dt
þ GMc

r3
r̂

�

; ð4Þ

where g ¼ −c2∇ΦN is the Newtonian gravitational field.

The first term in parentheses in Eq. (4) is the standard

Abraham-Lorentz force, which leads to the dissipation of

orbital energy, and thus to an analogue of Eq. (3). The

second term is a conservative correction to the Newtonian

forcemg, which is not present in flat spacetime. Analogous

equations were obtained for scalar and gravitational self-

forces in weakly-curved spacetimes in Ref. [25].

To move beyond the Newtonian/weak-field context, we

must acknowledge several key differences between a point

mass in Newtonian theory and a black hole in general

relativity. First, there exists an innermost stable circular orbit

(ISCO), inside of which circular orbits cannot be sustained.

Second, orbital velocities are sizable (v=c ∼ 0.4 at the

Schwarzschild ISCO), necessitating a fully relativistic

description. Third, the issue of regularization is more subtle

in a curved space-time, and Dirac’s time-reversal approach

(“half-advanced-minus-retarded”) breaks down and requires

modification [26–28].

The conservative component of the EM self-force leads to

a shift in the orbital energy and angular momentum, and to a

shift in the ISCO radius and frequency. The dissipative

component of the EM self-force leads to orbital decay, and

to the possibility of two interesting phenomena: floating

orbits, and synchrotron radiation. The possibility of floating

orbits—orbits which do not decay—arises due to super-

radiance, which allows a particle on a corotating orbit to

stimulate the release of energy and angular momentum from

a rotating black hole [29–31]. The possibility of synchrotron

radiation arises from the high velocities on ISCO orbits,

leading to the beaming of radiation in the direction of

motion [32,33].

In 1960, DeWitt and Brehme [26] derived an expression

for the self-force on a point electric charge (see Eq. (1.33)

in Ref. [34]) that consists of two parts: a local term which

depends on the external force and the local Ricci tensor

[35], and a tail integral, which encapsulates the effect of

radiation emitted at earlier times that reaches the particle

after interacting with the spacetime curvature. Thus, self-

force in curved spacetime is nonlocal in time, since it

depends on the past history of the motion of the particle, as

well as its current state.

1
For a fully relativistic treatment, one would instead start

with the Abraham-Lorentz-Dirac equation [21]; but note that
v=c < 0.01 for a pointlike electron at the Bohr radius.
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Calculating the tail integral in practice is a technical

challenge (though see [36]); fortunately, there are equivalent

formulations available, as described in the review articles

[34,6] (see also Ref. [37]). Prominent among these is the

mode sum regularization (MSR) method introduced by

Barack and Ori [38], which has been applied by numerous

authors [39–48] for efficient and accurate calculations of the

self-force. Schematically, a regularized self-force F
reg
μ is

obtained by subtracting regularization parameters F
½−1�
μ ,

F
½0�
μ , etc., from the l modes of a “bare” force:

F
reg
μ ¼

X

∞

l¼0

ðF bare;l
μ − F

½−1�
μ ð2lþ 1Þ − F

½0�
μ −…Þ: ð5Þ

The regularization parameters are obtained from a local

analysis of the symmetric-singular Detweiler-Whiting field

[27]. Happily, regularization parameters for the EM field

have already been calculated for the Schwarzschild black

hole by Barack and Ori [49] and for the Kerr black hole by

Heffernan, Wardell and Ottewill [50–52], and we make use

of these here.

The MSR method is suited to cases where the field

equations allow for a complete decomposition into modes in

such a way as to reduce the problem to the solution of

ordinary differential equations. Fortunately, the field equa-

tions for an EM field on Kerr spacetime fall into this class,

as shown by Teukolsky [53–55], and the Faraday tensor Fμν

can be fully reconstructed from Maxwell scalars of spin-

weight �1 that satisfy second-order ODEs [56,57].

The article is organized as follows. Section II describes

the formulation of the calculation, covering the spacetime

and its geodesic orbits (II A); Maxwell’s equations in the

Teukolsky formalism (II B); the distributional source terms

due to the particle (II C); the mode solutions (II D) and the

special cases of static modes and the monopole (II E); the

dissipative self-force and fluxes (II F); and the conservative

self-force (II G) calculated by projecting from spin-

weighted spheroidal harmonics to spherical harmonics

(II G 2) and by mode sum regularization (II G 3).

Section III describes the implementation, addressing

numerical issues (III A) and the validation of the results

(III B). Results are given in Sec. IV for the dissipative (IVA)

and conservative (IV B) aspects of the self-force. We

conclude with a discussion in Sec. V.

We employ units in which the physical constants G, c
and 4πϵ0 are equal to unity. The spacetime signature

is f−þþþg.

II. FORMULATION

A. Spacetime and geodesic orbits

1. Spacetime

The Kerr solution with mass M and angular momentum

J ¼ aM expressed in Boyer-Lindquist coordinates

ft; r; θ;ϕg has the line element

ds2 ≡ gμνdx
μdxν

¼ −
Δ

Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ

Σ
ððr2 þ a2Þdϕ − adtÞ2; ð6Þ

where Σ≡ r2 þ a2 cos2 θ and Δ≡ r2 − 2Mrþ a2.

When the condition a2 ≤ M2 is satisfied, the Kerr

solution corresponds to a black hole spacetime with two

distinct horizons: an internal (Cauchy) horizon at r− ¼
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p

and an external (event) horizon at

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p

. The angular velocity of the event

horizon is [58]

Ωh ¼
a

2Mrþ
: ð7Þ

The inverse metric gμν can be written in terms of a null

basis flμ; nμ; mμ; m̄μg, where the overline denotes the

complex conjugate, as

gμν ¼ −2lðμnνÞ þ 2mðμm̄νÞ ð8Þ

¼ Δr

Σ
l
ðμ
þ l

νÞ
− þ 1

Σ
m

ðμ
þm

νÞ
− : ð9Þ

Here we employ the Kinnersley tetrad [59],

lμ¼ l
μ
þ; nμ¼−

Δr

2Σ
lμ−; mμ¼ 1

ffiffiffi

2
p

ðrþ iacosθÞ
m

μ
þ; ð10Þ

written in terms of an non-normalized null basis

l
μ
� ≡ ½�ðr2 þ a2Þ=Δ; 1; 0;�a=Δ�;

m
μ
� ≡ ½�ia sin θ; 0; 1;�i csc θ� ¼ m̄

μ
∓: ð11Þ

The legs l
μ
� are aligned with the two principal null

directions of the spacetime. The inner products of the

tetrad l
μ
� and m

μ
� are

gμνl
μ
þl

ν
− ¼ 2Σ

Δ
; gμνm

μ
þm

ν
− ¼ 2Σ; ð12Þ

with all others zero.

2. Circular equatorial geodesic orbits

Let x
μ
pðτÞ denote the particle’s worldline, with tangent

vector uμ ≡
dx

μ
p

dτ
satisfying gμνu

μuν ¼ −1. In the absence of

forces x
μ
pðτÞ is a geodesic, satisfying uν∇νu

μ ¼ 0.

Geodesic orbits on the Kerr spacetime are characterized

by three constants of motion: energy E ¼ −uμξ
μ

ðtÞ, azimu-

thal angular momentum L ¼ uμξ
μ

ðϕÞ and Carter constant

Q ¼ Qμνuμuν, where ξ
μ

ðtÞ ¼ ð∂tÞμ and ξ
μ

ðϕÞ ¼ ð∂ϕÞμ are
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Killing vectors and Qμν is the Killing tensor. For a

circular orbit in the equatorial plane at Boyer-Lindquist

radius r0,

E¼ 1−2ν2þ ãν3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−3ν2þ2ãν3
p ; L¼ r0ν

1−2ãν3þ ã2ν4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−3ν2þ2ãν3
p ; Q¼0;

ð13Þ

where ã ¼ a=M and ν ¼
ffiffiffiffiffiffiffiffiffiffiffi

M=r0
p

. Explicitly, the equatorial

circular geodesic orbit has x
μ
pðτÞ ¼ ½tðτÞ; r0; 0;ΩtðτÞ� and

uμ ¼ ut½1; 0; 0;Ω�, where

Ω ¼ ν3

Mð1þ ãν3Þ ; ut ¼ 1þ ãν3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3ν2 þ 2ãν3
p : ð14Þ

We adopt the convention [60] that L and Ω are always

positive and a > 0 (a < 0) for prograde (retrograde) orbits.

The innermost stable circular orbit (ISCO) is at the radius

risco=M ¼ 3þ Z2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3 − Z1Þð3þ Z1 þ 2Z2Þ
p

ð15Þ

where Z1 ¼ 1þ ð1 − ã2Þ1=3½ð1þ ãÞ1=3 þ ð1 − ãÞ1=3� and

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ã2 þ Z2

1

p

and the upper (lower) sign in Eq. (15)

corresponds to prograde (retrograde) motion [61,62].

B. Maxwell’s equations and the Teukolsky formalism

The electromagnetic field equations in their standard

covariant form are

∇νF
μν ¼ 4πJμ; ∇½μFνσ� ¼ 0; ð16Þ

where Fμν is the Faraday tensor and Jμ is a vector field

representing a four-current that is divergence-free

(∇μJ
μ ¼ 0). It is convenient to introduce a complexified

version of the Faraday tensor, Fμν ¼ Fμν − iF̃μν, where

˜ denotes the Hodge dual, i.e., F̃μν ¼ 1

2
εμνσγFσγ . The

complexified tensor is self-dual by virtue of the property

F̃
μν ¼ iFμν. The field equations (16) then reduce to a single

tensorial equation

∇νF
μν ¼ 4πJμ: ð17Þ

The six degrees of freedom of Fμν are encapsulated in

3 complex Maxwell scalars,

ϕ0≡Fμνl
μmν; ϕ2≡Fμνm̄

μnν; ϕ1≡
1

2
Fμνðlμnν−mμm̄νÞ;

ð18Þ

and the self-dual Faraday tensor is specified in terms of

Maxwell scalars by

F
μν ¼ 4ðϕ0m̄

½μnν� þϕ2l
½μmν� þϕ1ðn½μlν� − m̄½μmν�ÞÞ: ð19Þ

For future reference, we introduce rescaled quantities:

Φþ1≡ϕ0¼
1
ffiffiffi

2
p

ϱ
l
μ
þm

ν
þFμν Φ−1≡2ϱ̄2ϕ2¼

Δ
ffiffiffi

2
p

ϱ
lμ−m

ν
−Fμν;

ð20Þ

where ϱ ¼ rþ ia cos θ.
Projecting (17) onto a null tetrad aligned with the

principal null directions leads to four equations in

Newman-Penrose form [54]

ðD − 2ρÞϕ1 − ðδ̄þ π − 2αÞϕ0 ¼ −2πJl; ð21aÞ

ðδ − 2τÞϕ1 − ðΔþ μ − 2γÞϕ0 ¼ −2πJm; ð21bÞ

ðD − ρþ 2ϵÞϕ2 − ðδ̄þ 2πÞϕ1 ¼ −2πJm̄; ð21cÞ

ðδ − τ þ 2βÞϕ2 − ðΔþ 2μÞϕ1 ¼ −2πJn; ð21dÞ

where D ¼ lμ∂μ, Δ ¼ nμ∂μ, δ ¼ mμ
∂μ are directional

derivatives, and Jl ¼ lμJμ, Jn ¼ nμJμ, etc., are projections

of the four-current, and α, ρ, τ, π etc. are the Newman-

Penrose coefficients associated with the null tetrad.

In 1973, Teukolsky [54] showed that one can obtain a

decoupled equation for ϕ0, and also for ϕ2, by exploiting a

commutation relation between first-order operators. After

inserting the Newman-Penrose quantities for the Kinnersley

tetrad, viz. κ ¼ σ ¼ ν ¼ λ ¼ 0,

ρ ¼ −1=ðr − ia cos θÞ; β ¼ −ρ� cot θ=2
ffiffiffi

2
p

;

π ¼ iaρ2 sin θ=
ffiffiffi

2
p

; α ¼ π − β�; ð22aÞ

τ ¼ −iaρρ� sin θ=
ffiffiffi

2
p

; μ ¼ ρ2ρ�Δr=2;

γ ¼ μþ 1

4
ρρ�Δ0; ϵ ¼ 0; ð22bÞ

one arrives at a master equation, Eq. (4.7) in Ref. [54]. This

may be cast into the form [63]

½ð∇μ � ΓμÞð∇μ � Γ
μÞ − 4ψ2�Φ�1 ¼ 4πT�1; ð23Þ

where ∇μ denotes the covariant derivative on the Kerr

spacetime, and here the so-called “connection vector”

[63] is

Γ
μ ≡

1

Σ

�

Mðr2 − a2Þ
Δ

− ðrþ ia cos θÞ; r −M; 0;
aðr −MÞ

Δ

þ i
cos θ

sin2θ

�

ð24Þ

and ψ2 ¼ M=ðr − ia cos θÞ3 is the only nonvanishing

Weyl scalar for the Kerr spacetime in the Kinnersley

tetrad. The source terms in Eq. (23) are

THEO TORRES and SAM R. DOLAN PHYS. REV. D 106, 024024 (2022)
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Tþ1 ¼ J0 ≡ ðδ − β − ᾱ − 2τ þ π̄ÞJl
− ðD − ϵþ ϵ̄ − 2ρ − ρ̄ÞJm; ð25Þ

1

2ϱ̄2
T−1 ¼ J2 ≡ ðΔþ γ − γ̄ þ 2μþ μ̄ÞJm̄

− ðδ̄þ αþ β̄ þ 2π − τ̄ÞJn: ð26Þ

Remarkably, Eq. (23) admits separable solutions. The

solution can be constructed from a sum over modes, with

each mode in the form

Φ�1 ¼ R�1ðrÞS�1ðθÞe−iωtþimϕ: ð27Þ

In the vacuum case (Jμ ¼ 0), inserting Eq. (27) into

Eq. (23) leads to homogeneous Teukolsky equations in

Chandrasekhar’s form,

ðΔD†D − 2iωr − λÞP−1 ¼ 0;

ðΔDD† þ 2iωr − λÞPþ1 ¼ 0; ð28aÞ

ðLL†

1
þ 2aω cos θ þ λÞS−1 ¼ 0;

ðL†L1 − 2aω cos θ þ λÞSþ1 ¼ 0; ð28bÞ

where Pþ1 ¼ ΔRþ1, P−1 ¼ R−1 and λ is the separation

constant for s ¼ −1 [57]. Here we have made use of

directional derivatives along flμþ; lμ−; mμ
þ; m

μ
−g, denoted by

fD;D†;L†;Lg, where

D≡ l
μ
þ∂μ ¼ ∂r −

iK

Δ
; L† ≡m

μ
þ∂μ ¼ ∂θ −Q; ð29aÞ

D† ≡ lμ−∂μ ¼ ∂r þ
iK

Δ
; L≡mμ

−∂μ ¼ ∂θ þQ; ð29bÞ

with K ≡ ωðr2 þ a2Þ − am and Q≡m csc θ − aω sin θ.

We assume that these operators act only on quantities

with harmonic time dependence χ ≡ e−iωtþimϕ.

Furthermore, let Ln ¼ Lþ n cot θ and L†
n ¼ L† þ n cot θ.

For consistency these functions must also satisfy the

Teukolsky-Starobinsky identities,

ΔDDP−1 ¼ BPþ1; L†L
†

1
S−1 ¼ BSþ1; ð30aÞ

ΔD†D†Pþ1 ¼ BP−1; LL1Sþ1 ¼ BS−1; ð30bÞ

where B≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ 4amω − 4a2ω2
p

.

The modes of the Maxwell scalar of zero spin-weight,

ϕ1, can be constructed by applying differential operators

to the modes of ϕ0 and ϕ2 [56]. From Chap. 8 in

Chandrasekhar [59],

ϕlm
1

¼ χ
ffiffiffi

2
p

ðr − ia cos θÞ2
½gþ1ðrÞL1Sþ1ðθÞ

− iaf−1ðθÞDP−1ðrÞ� ð31aÞ

¼ −
χ

ffiffiffi

2
p

ðr − ia cos θÞ2
½g−1ðrÞL†

1
S−1ðθÞ

− iafþ1ðθÞD†Pþ1ðrÞ� ð31bÞ

where

Bgþ1ðrÞ ¼ ðrD − 1ÞP−1; ð32aÞ

Bg−1ðrÞ ¼ ðrD† − 1ÞPþ1; ð32bÞ

Bfþ1ðθÞ ¼ ðcos θL†

1
þ sin θÞS−1; ð32cÞ

Bf−1ðθÞ ¼ ðcos θL1 þ sin θÞSþ1: ð32dÞ

C. Source terms

For a pointlike charge q on a geodesic orbit, the four-

current is

Jμ ¼ q

Z

uμðτÞδ4ðxμ − x
μ
pðτÞÞð−gðxÞÞ−1=2dτ; ð33Þ

¼ qÛμ

r2
0

δðr − r0Þδðθ − π=2Þδðϕ −ΩtÞ: ð34Þ

On the second line we have inserted the expressions in

Sec. II A 2 to specialize to a circular geodesic orbit in the

equatorial plane (θ ¼ π=2). Here Ûμ ≡ uμ=ut ¼ ½1; 0; 0;Ω�,
with Ω defined in Eq. (14); projecting onto the Kinnersley

tetrad yields

Ûμlμ ¼ −ð1 − aΩÞ ¼ Ûμnμ
2r2

0

Δ0

;

Ûμmμ ¼
i
ffiffiffi

2
p

r0
ððr2

0
þ a2ÞΩ − aÞ: ð35Þ

The first task is to compute the source terms J0 and J2 in

Eqs. (25) and (26). Here we must handle the distributional

terms with some care (see Appendix E), noting that whereas

fðxÞδðx − x0Þ ¼ fðx0Þδðx − x0Þ, on the other hand

fðxÞδ0ðx − x0Þ ¼ fðx0Þδ0ðx − x0Þ − f0ðx0Þδðx − x0Þ; ð36Þ

where fðxÞ is any differentiable function and x0 is a

constant. Using

δðϕ −ΩtÞ ¼ 1

2π

X

∞

m¼−∞

χm; χm ≡ eimðϕ−ΩtÞ; ð37Þ

and evaluating on the equatorial plane at r ¼ r0 after

employing (36) leads to
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ΣJ0 ¼
−q

2π
ffiffiffi

2
p

r0

X

m

�

ð1 − aΩÞ
�

∂θ −mð1 − aΩÞ þ ia

r0

�

þ iððr2
0
þ a2ÞΩ − aÞ

�

∂r −
imððr2

0
þ a2ÞΩ − aÞ
Δ0

þ 1

r0

��

χmδðr − r0Þδ
�

θ −
π

2

�

: ð38Þ

At this point we employ the orthonormality of the spin-weighted spheroidal harmonics,

Z

Slm�1
ðθÞSl0m�1

ðθÞdðcos θÞ ¼ 1

2π
δll0 ; ð39Þ

to establish that

δ

�

θ −
π

2

�

¼ 2π
X

∞

l¼1

Slm�1

�

π

2

�

Slm�1
ðθÞ; ð40Þ

δ0
�

θ −
π

2

�

¼ 2π
X

∞

l¼1

−Slm0
�1

�

π

2

�

Slm�1
ðθÞ: ð41Þ

Hence

ΣJ0 ¼
−q
ffiffiffi

2
p

r0

X

lm

Slmþ1
ðθÞχm

�

iððr2
0
þ a2ÞΩ − aÞSlmþ1

�

π

2

�

δ0ðr − r0Þþ

− ð1 − aΩÞSlm0
þ1

�

π

2

�

δðr − r0Þ þ
�

ir0Ωþm

�ððr2
0
þ a2ÞΩ − aÞ2

Δ0

− ð1 − aΩÞ2
��

Slmþ1

�

π

2

�

δðr − r0Þ
�

: ð42Þ

From the form of (42), we see that the master equation Eq. (23) admits a separable solution

Φ�1 ¼
X

∞

l¼1

X

l

m¼−l

Rlm
�1
Slm�1

χm ð43Þ

where

ðΔDD† þ 2imΩr − λÞPlm
þ1

¼ SðþiBSþδ
0ðr − r0Þ þ fðmAðrÞ þ iAðiÞÞSþ þ CS0þgδðr − r0ÞÞ; ð44aÞ

ðΔD†D − 2imΩr − λÞPlm
−1 ¼ Sð−iBS−δ0ðr − r0Þ þ fðmAðrÞ − iAðiÞÞS− − CS0−gδðr − r0ÞÞ; ð44bÞ

where Plm
þ1

¼ ΔRlm
þ1

and Plm
−1 ¼ Rlm

−1 , and S�1 ¼ Slm�1
ðπ
2
Þ and S0�1

¼ Slm0
�1

ðπ
2
Þ, and

S ¼ −
4πq
ffiffiffi

2
p

r0
; ð45aÞ

B ¼ Δ0ððr20 þ a2ÞΩ − aÞ; ð45bÞ

AðrÞ ¼ r0ðr0ððr20 þ a2ÞΩ2 − 1Þ þ 2Mð1 − aΩÞ2Þ; ð45cÞ

AðiÞ ¼ a2ð2M − r0ÞΩþ 2aðr0 −MÞ − r3
0
Ω; ð45dÞ

C ¼ −Δ0ð1 − aΩÞ: ð45eÞ
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D. Mode solutions

The source terms in Eqs. (44) are distributions with

support at r ¼ r0 only. Hence solutions to the inhomo-

geneous equations may be constructed from solutions to the

homogeneous equations in the standard manner. Let Plm;h
�1

and Plm;∞
�1

be a pair of solutions to Eq. (28) that satisfy the

physical boundary conditions, that is, let Plm;h
�1

be ingoing

at the future horizon, and let Plm;∞
�1

be outgoing at future

infinity. The inhomogeneous solution takes the form

Plm
�1
ðrÞ ¼ α∞�1

Plm;∞
�1

ðrÞΘðr− r0Þ þ αh�1
Plm;h
�1

ðrÞΘðr0 − rÞ;
ð46Þ

where Θð·Þ is the Heaviside step function, and α∞�1
and αh�1

are complex coefficients to be determined. Inserting (46)

into (44) yields the matrix equation

 

αlm;∞
�1

αlm;h
�1

!

¼ 1

Δ0W�

 

−ðPlm;h
�1

Þ0 Plm;h
�1

−ðPlm;∞
�1

Þ0 Plm;∞
�1

!	

	

	

	

	

r¼r0

 

B�

A�

!

:

ð47Þ

where

W� ¼ Plm;h
�1

dPlm;∞
�1

dr
− Plm;∞

�1

dPlm;h
�1

dr
; ð48aÞ

B� ¼ �iSBS�; ð48bÞ

A� ¼ SfðmAðrÞ � iÃðiÞÞS� � CS0�g: ð48cÞ

Here S, B, AðrÞ and C are defined in Eq. (45), and

Ã
ðiÞ ¼ r0Δ0Ω.

E. Static modes and the monopole

1. m= 0 homogeneous modes

The m ¼ 0 modes are static (ω ¼ 0). In this case we

employ the homogeneous modes

Pl0;h
�1

¼ Δ∂rPlðzÞ; Pl0;∞
�1

¼ Δ∂rQlðzÞ; ð49Þ

where Plð·Þ and Qlð·Þ are Legendre functions with the

branch cut on the real axis from −∞ to þ1, and

z≡ Δ;r=ðrþ − r−Þ. The Wronskian is

W� ≡Pl0;h
�1

dPl0;∞
s

dr
−Pl0;∞

s
dPl0;h

s

dr
¼ 1

2
ðrþ − r−Þlðlþ 1Þ:

ð50Þ

The angular functions are

Sl0�1
ðθÞ ¼ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1

4πlðlþ 1Þ

s

d

dθ
Plðcos θÞ; ð51Þ

such that the normalization condition (39) holds.

2. Monopole mode

To complete the solution, we must now add “by hand” a

nonradiative monopole mode which is responsible for the

q=r part of the electric field far from the black hole.

The homogeneous vector potential

A
μ

ð0Þ ≡
qr

2Σ
ðlμþ − lμ−Þ; ð52Þ

in Lorenz gauge (∇μA
μ

ð0Þ ¼ 0) generates a homogeneous

Faraday tensor F
μν

ð0Þ ¼ ∇μAν −∇νAμ that satisfies the

vacuum equation ∇νF
μν

ð0Þ ¼ 0. It has the key properties that

Ftr
ð0Þ ¼

q

r2
þOðr−3Þ; ð53Þ

in the far-field and

1

2

Z

F
μν

ð0ÞdSμν ¼ 4πq; ð54Þ

where the two-surface integral is taken over any “sphere”

of constant Boyer-Lindquist coordinate r, or any closed

surface enclosing the horizon. It is quick to verify that the

Maxwell scalars ϕ0 and ϕ2 (but not ϕ1) associated with the

homogeneous solution are zero.

The inhomogeneous monopole mode,

F
μν
mono ¼ Θðr − r0ÞFμν

ð0Þ; ð55Þ

does not satisfy the vacuum equation; instead, ∇νF
μν
mono ¼

4πJ
μ
mono where F

μν
mono ≡ F

μν
mono − iF̃

μν
mono and it is straight-

forward to show that

J
μ
mono ¼

q

4π

Δ

2Σ

1

ðr − ia cos θÞ2 ðl
μ
þ − lμ−Þδðr − r0Þ: ð56Þ

Note that J
μ
mono associated with the step in the monopole

mode is not restricted to the particle worldline, but instead

has support on the sphere at r ¼ r0. Although J
μ
mono itself

is not zero, a short calculation shows that there are no

additional source terms for the Teukolsky equation (23),

that is, Jmono
0

¼ Jmono
2

¼ 0. In other words, the inhomo-

geneous monopole is associated with a step in ϕ1, the

Maxwell scalar of spin-weight zero, only.

The inhomogeneous monopole mode makes a contribu-

tion to the radial component of the self-force of
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Fmono
r ¼ q2ut

ðr2
0
− a2 cos2 θÞð1 − aΩ sin2 θÞ

Σ
2

≡
X

∞

l¼0

F
l;mono
r Yl0

0
ðθÞ: ð57Þ

Evaluating at θ ¼ π=2 yields Fmono
r ¼ q2utð1 − aΩÞ=r2

0
.

F. Dissipative force and fluxes

1. Dissipative component of the self-force

The dissipative components of the self-force are the t
and ϕ components of F μ ≡ qFμνu

ν. From the symmetry

of the Faraday tensor, it is straightforward to see that

F t ¼ qFtϕΩu
t ¼ −FϕΩ and in the following we will

focus on the t component of the self-force. The ðtϕÞ
component of the Faraday tensor can be expressed in

terms of the Maxwell scalars as:

Ftϕ ¼
ffiffiffi

2
p

Re

�

i sin θðr − ia cos θÞϕ2

þ iΔ sin θ

2Σ
ðrþ ia cos θÞϕ0

�

: ð58Þ

Evaluating the force on the particle’s worldline, i.e., at

r ¼ r0 and θ ¼ π=2, yields

F t ¼
ffiffiffi

2
p

qutΩRe

�

ir0ϕ2 þ
iΔ0

2r0
ϕ0

�

ð59Þ

¼ qΩut
ffiffiffi

2
p

r0

X

lm

Re

�

iPlm
−1 ðr0ÞSlm−1

�

π

2

�

þ iPlm
þ1
ðr0ÞSlmþ1

�

π

2

��

ð60Þ

¼qΩut
ffiffiffi

2
p

r0

X

lm

Re

�

iðð−1ÞlþmPlm
−1 ðr0ÞþPlm

þ1
ðr0ÞÞSlmþ1

�

π

2

��

;

ð61Þ

where we have used the fact that Slm−1 ðπ2Þ ¼ ð−1ÞlþmSlmþ1
ðπ
2
Þ.

2. Energy flux

For an electromagnetic field given by a Faraday tensor Fμν

with energy-momentum Tμν ¼ FμαFνβgαβ −
1

4
FαβFαβg

μν,

and a Killing vector Kμ, one can construct a current:

Yμ ¼ TμνKν: ð62Þ

In vacuum, this current is divergence-free but in the presence

of a source, which is the case of interest here, the current

satisfies the following continuity equation:

∇μY
μ ¼ FμνKμJν ¼

F μK
μ

r2
0
ut

δðr − r0Þδ
�

θ −
π

2

�

δðϕ − ΩtÞ:

ð63Þ

Using Gauss’ theorem

Z

V

∇μY
μ
ffiffiffiffiffiffi

−g
p

d4x ¼
Z

∂V

YμdΣμ ð64Þ

where V is a space-time volume with boundary ∂V that spans

from the horizon to infinity, we can relate the force at the

particle to the fluxes through the boundary. Since the system

is stationary, only the fluxes at infinity and through the

horizon contribute to the total flux (see Appendix B):

F aK
a

ut
¼ Φ

K
∞ þΦ

K
h ; ð65Þ

where the superscript K correspond to the choice of Killing

vector. As mentioned the link between the t and ϕ component

of the force is trivial and we focus on the time component of

the force which correspond to the choice Ka ¼ ½1; 0; 0; 0�. In
the following we will drop the superscript K and keep in

mind that we are considering the energy flux. In Appendix B

we derive the expression for the energy flux at infinity and

through the horizon in terms of the α coefficients defined in

Eq. (46). Explicitly, the energy flux at infinity is

Φ∞ ¼ 1

8π

X

lm

jαlm;∞
−1 j2; ð66Þ

and through the horizon,

Φh ¼
1

8π

X

lm

ω

2Mrþω̃
jαlm;h

þ1
j2; ð67Þ

with ω̃ ¼ ω −mΩh and Ωh as defined in Eq. (7).

G. Conservative force and regularization

1. Conservative component of the self-force

We compute here the conservative component of the

self-force, i.e., F r, in terms of the Maxwell scalars. From

the definition of the force, we have:

F r ¼ qFrμu
μ ¼ qutðFrt þ FrϕΩÞ: ð68Þ

Using the expression of the Faraday tensor in terms of the

Maxwell scalars,

Fμν ¼ 2½ϕ2l½μmν�þϕ0m̄½μnν�þϕ1ðn½μlν�þm½μm̄ν�Þ�þ c:c:;

ð69Þ

we get that
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F r

qut
¼

ffiffiffi

2
p

ðða2 þ r2ÞΩ − aÞ sin θ
�

−
iϕ0

4ðr − ia cos θÞ þ
iϕ2ðr − ia cos θÞ

2Δ

�

þ ð1 − aΩsin2θÞϕ1 þ c:c: ð70Þ

Inserting the mode decompositions (27) and (31a) and evaluating at ϕ ¼ Ωt yields

F r ¼ qut
X

lm

ffiffiffi

2
p

ððr2 þ a2ÞΩ − aÞ
4Δðr − ia cos θÞ sinðθÞ

h

−iPlm
þ1
Slmþ1

þ iPlm
−1S

lm
−1

i

þ ð1 − aΩsin2θÞ g
lm
þ1
L1S

lm
þ1

− iaflm−1DPlm
−1

ffiffiffi

2
p

ðr − ia cos θÞ2
þ c:c: ð71Þ

2. Projection onto scalar harmonics

Before the mode sum regularization procedure can be applied, it is necessary to project the spin-weighted spheroidal

harmonics onto the scalar spherical harmonics. Using the results of Appendix C,

F r ¼ qut
X

l;m;l̂;l̃

�

ffiffiffi

2
p

ððr2 þ a2ÞΩ − aÞ
4Δðr − ia cos θÞ

h

−iPlm
þ1
Cþ1

lml̂ l̃
þ iPlm

−1C
−1

lml̂ l̃

i

ð72Þ

þ ð1 − aΩsin2θÞ
Bglmþ1

CL
lml̂ l̃

− ia½CL
lml̂ l̃

cos θ þ Cþ1

lml̂ l̃
�DPlm

−1
ffiffiffi

2
p

Bðr − ia cos θÞ2
�

Y l̃m
0

þ c:c: ð73Þ

with

Cþ1

lml̂ l̃
¼ ðbmþ1

Þl
l̂
ðAm

þ1
Þl̂
l̃

ð74aÞ

C−1
lml̂ l̃

¼ ðbm−1Þll̂ðA
m
−1Þl̂l̃ ð74bÞ

CL
lml̂ l̃

¼ ðbmþ1
Þl
l̂

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l̂ðl̂þ 1Þ
q

δl̂
l̃
− amΩðAm

þ1
Þl̂
l̃

i

: ð74cÞ

Expanding (73) in z ¼ cos θ, we have

F r ¼ qut
X

lm

½
0
F lm

r þ
1
flmr zþ

2
flmr z2 þ oðz3Þ�Ylm

0
; ð75Þ

with

0
F lm

r ¼
X

ll̂

ððr2
0
þa2ÞΩ−aÞ
ffiffiffi

2
p

Δ0r0
Im½Plm

þ1
Cþ1

lml̂l
−Plm

−1C
−1

lml̂l
�

þ
ffiffiffi

2
p

ð1−aΩÞ
r2
0

Re

�

glmþ1
CL
lml̂l

−
iaCþ1

lml̂l
DPlm

−1

B

�

; ð76Þ

and

1
flmr ¼ a

X

ll̂

ððr2
0
þ a2ÞΩ − aÞ
ffiffiffi

2
p

Δ0r
2
0

Re½Plm
þ1
Cþ1

lml̂l
− Plm

−1C
−1

lml̂l
�

−
2
ffiffiffi

2
p

ð1 − aΩÞ
r3
0

Im½glmþ1
CL
lml̂l

−
ia

B
Cþ1

lml̂l
DPlm

−1�

þ 2ð1 − aΩÞ
ffiffiffi

2
p

r2
0

Im

�

CL
lml̂l

DPlm
−1

B

�

; ð77Þ

2
flmr ¼ a2

X

ll̂

−ððr2
0
þ a2ÞΩ − aÞ
ffiffiffi

2
p

Δ0r
3

0

Im½Plm
þ1
Cþ1

lml̂l
− Plm

−1C
−1

lml̂l
�

−
3
ffiffiffi

2
p

ð1 − aΩÞ
r4
0

Re

�

glmþ1
CL
lml̂l

−
iaCþ1

lml̂l
DPlm

−1

B

�

þ 2
ffiffiffi

2
p

ð1 − aΩÞ
r3
0

Re

�

CL
lml̂l

DPlm
−1

B

�

þ aΩ
X

ll̂

ffiffiffi

2
p

r2
0

Re

�

glmþ1
CL
lml̂l

−
iaCþ1

lml̂l
DPlm

−1

B

�

; ð78Þ

Finally, expanding zYlm
0

and z2Ylm
0

using

cos θYlm
0

¼
X

l1

1
Blm
l1
Y
l1m
0

; ð79aÞ

cos2 θYlm
0

¼
X

l2

2
Blm
l2
Y
l2m
0

; ð79bÞ

where

ELECTROMAGNETIC SELF-FORCE ON A CHARGED PARTICLE … PHYS. REV. D 106, 024024 (2022)

024024-9



1
Blm
l1

¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2lþ 1Þð2l1 þ 1Þ
p

×

�

1 l l1

0 0 0

��

1 l l1

0 m −m

�

ð80Þ

2
Blm
l2

¼ ð−1Þm 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2lþ 1Þð2l2 þ 1Þ
p

3

×

�

2 l l2

0 0 0

��

2 l l2

0 m −m

�

þ 1

3
δl;l2 ð81Þ

leads to

F r ¼ qut
X

lm

½
0
F lm

r þ
1
F lm

r þ
2
F lm

r þ oðz3Þ�Ylm
0
; ð82aÞ

¼
X

∞

l¼0

F l
r ð82bÞ

with

1
F lm

r ¼
X

l1

1
fl1mr 1

B
l1m
l

ð83aÞ

2
F lm

r ¼
X

l2

1
fl2mr 2

B
l2m
l

: ð83bÞ

3. Mode sum regularization

The regularization procedure is based on the subtraction

of an appropriate singular component from the retarded

field, in order to leave a finite regular field that is solely

responsible for the self-force. The subtracted component

must have the same singular structure as the retarded field

in the vicinity of the particle, and must be sufficiently

symmetric as to not contribute to the self-force (or at least,

not in such a way that cannot be easily corrected for).

Detweiler and Whiting identified an appropriate choice of

the singular (S) field, based on a Green’s function decom-

position [27]. Subtracting this singular field is equivalent to

regularizing at the level of the l-mode sum [6,34,38–48].

In the electromagnetic case, Heffernan et al. [50–52]

(see also Haas [64,65]) showed that subtracting the S field

leads to a regularized force F
reg
μ with a radial component in

the form

F
reg
r ¼

X

∞

l¼0

F
reg½n�l
r ; F

reg½n�l
r ≡ F l

r − F
½n�l
r ; ð84Þ

where [n] denotes the order of the local expansion of the S
field, and

F
½n�l
r ¼ ð2lþ 1ÞF ½−1�

r þ F
½0�
r þ F

½2�
r

ð2l − 1Þð2lþ 3Þ
þ � � � þ F

½n�
r G½n�ðlÞ: ð85Þ

Here n ≥ 0 is an even integer denoting the order, and

G½n�ðlÞ≡ 1=ð2lþ 1 − nÞð2lþ 3 − nÞ…ð2lþ 1þ nÞ is

defined for n > 0 such that
P

∞
l¼0

G½n�ðlÞ ¼ 0. Explicit

expressions for the mode sum regularization parameters

F
½−1�
r , F

½0�
r and F

½2�
r are given in Eq. (2.54), (2.56), and

(2.59) of Ref. [51] for the Kerr case, and F
½4�
r is given in

Eq. (5.52) of Ref. [50] for the Schwarzschild case.

The regularized force in Eq. (85) should include the

monopole piece given in Eq. (57).

III. IMPLEMENTATION

A. Numerics

1. Homogeneous solution to the Teukolsky equations

In order to compute the components of the self-force, we

need to evaluate radial Teukolsky functions Plm
�1
ðrÞ and

spin-weighted spheroidal harmonics Slm�1
ðθÞ at the particle’s

location, that is r ¼ r0 and θ ¼ π=2. To do so, we use the

BlackHolePerturbation toolkit [66]. The angular functions

are computed using the SpinWeightedSpheroidalHarmonics

package and the radial functions are computed with the

Teukolsky package of the toolkit. The Teukolsky package

implements the Mano-Suzuki-Takasugi (MST) method

[67,68] to compute the homogeneous solution of the

Teukolsky equations.

2. High-l tail contribution

Our approach to compute the self-force requires us to

sum over spin-weighted spheroidal modes or scalar spheri-

cal modes. Ideally one would sum an infinite number of

modes but in practice we can only compute a finite number

of components, up to lmax. In the case of the dissipative

components of the self-force, the magnitude of the terms to

be summed over decays exponentially, as can be seen in

Fig. 4, and therefore the error from truncating the sum is

negligible. However, for the regularized conservative part

of the self-force, the terms in the sum decay as an inverse

power of L ¼ lþ 1=2 instead of an exponential, and the

associated error from neglecting the higher modes is

sizable. To reduce this error, we estimate the contribution

coming from the l > lmax modes following the standard

approach of [39] which we outline below.

In the large-l regime, the modes of the regularized force

in Eq. (84) are approximately

F
reg½n�l
r ≈

Dn

Ln
; ð86Þ

where n denotes the regularization order (with n ¼ 6 in the

Schwarzschild case and n ¼ 4 in the Kerr case) and Dn is a

numerical coefficient to be determined by fitting to the

high-l modes. Figure 5 shows that Eq. (86) is a reasonable

approximation for high values of l. The contribution of the

high-l modes is then approximately
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X

∞

l¼lmaxþ1

F
reg½n�l
r ≈

X

∞

l¼lmaxþ1

Dn

Ln
¼ Dnζðn;lmax þ 1Þ; ð87Þ

where ζðs; aÞ is the Hurwitz Zeta function.

3. Projection

In order to apply the mode-sum regularization procedure,

we need to project the force onto the scalar spherical

harmonics basis. The original quantities in the spin-

weighted spheroidal harmonics (associated to the index l)
are first projected onto the spin-weighted spherical har-

monics (associated with the index l̂) which are then

expanded onto scalar spherical harmonics (associated with

the index l). For the subdominant terms, which are propor-

tional to cos θ and cos2 θ, one extra projection is needed

(associated with the index l1 and l2). Due to the presence

of the 3j-symbols, and their association to spin-weighted or

scalar quantities, the summation indices satisfy

l − 2 ≤ l2 ≤ lþ 2 ð88Þ

l − 1 ≤ l1 ≤ lþ 1 ð89Þ

l − ð1þ nÞ ≤ l̂ ≤ lþ ð1þ nÞ ð90Þ

jmj ≤ l; l̂;l;l1;l2 ð91Þ

where n ¼ 0, 1, 2 when computing the dominant, sub-

dominant or subsubdominant term.

Since one spin-weighted spheroidal mode couples to

several scalar spherical modes, we first compute all spin-

weighted spheroidal modes separately and then perform

the sums. We start by summing over l1 or l2 if we are

computing the subdominant contributions at fixed m, l̂

and l. We then sum over m modes with fixed l̂ and l and

then we sum over l̂ modes at fixed l. All these sums

performed at this point are finite and can be performed for

any value of l. Finally we sum over l which in principle can
take any nonzero integer values. In practice however, we

sum over a finite number of l modes and estimate the

contribution of the higher l as described above.

B. Validation

In order to validate our numerical code when computing

the energy fluxes at infinity and through the horizon, we

compare the total flux with the dissipative component of the

self-force computed using (61). We check that the two

quantities agree up to numerical accuracy according to (65).

Furthermore, each flux is computed at r ¼ rþ
0
and r ¼ r−

0

using different solutions to the homogeneous Teukolsky

equations. We verify that the two fluxes obtained agree to

numerical accuracy, meaning that our dissipative compo-

nent of the self-force is continuous across the particle.

In the case of the conservative piece of the self-force, we

do not have a conservation law to support our numerical

code. To validate our numerical approach in this case, we

first verify that the radial component of the self-force is

continuous across the particle as in the conservative

component case. We note that while F r is continuous

across the particle, up to the expected precision, each

spherical harmonic component F l
r is discontinuous (for

a ≠ 0). We also observe that the sum of the even (odd) l

modes are independently continuous across the particle.

Both features are likely due to the fact that we are only using

a finite number of terms when expanding around cos θ ≈ 0.

We observe that the bare modes,F l
r , are well regularized

using the regularization parameters found in the literature

[50,51]. Finally, our result for the conservative self-force in

the Schwarzschild case agrees with the results of Haas [64]

(see Fig. 7).

IV. RESULTS

Below we present a selection of numerical results for the

self-force. Where a dimensionless value is stated, e.g., F̃ r,

the physical value should be inferred by reinstating the

dimensionful constants, e.g., F r ¼ ðq2=4πϵ0Þðc2=GMÞ2F̃ r.

A. Dissipative effects

1. Total fluxes

Figure 1 shows the total energy flux Φ for a charged

particle on a circular orbit about a black hole, as a function

of orbital radius. The total flux is related to the self-force

component F t by Eq. (65). In the large-r0 limit, the flux

approaches an asymptotic value of ΦNewt, where

ΦNewt ¼
2

3
βr̃−4

0
; β≡

q2c5

4πϵ0G
2M2

ð92Þ

and

r̃0 ≡ r0=ðGM=c2Þ: ð93Þ

In Appendix A, it is shown that ΦNewt results from

combining Keplerian orbits with the Abraham-Lorentz

force (2). In the discussion below, we omit the dimension-

ful factor β.

By fitting the numerical results in the weak-field region

(r0 ≫ M), we infer that, for the flux at infinity,Φ∞ ≈ΦNewt

at leading order, with a linear-in-a contribution of

− 8

3
ãr̃

−11=2
0

at leading order (where ã ¼ a=M). For the

horizon flux, we infer that Φh ≈
8

3
r̃−7
0

at leading order for

the Schwarzschild case, with a linear-in-a contribution of

− 2

3
ãr̃

−11=2
0

at leading order in the Kerr case. Note that, for

the horizon flux, the Kerr term begins at a lower order in the

expansion in 1=r̃0 than the Schwarzschild term.
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Alternatively, an expansion of the fluxes in inverse

powers of 1=r̃0 can be obtained using the Mano-Suzuki-

Takasugi (MST) formalism [67] by applying the approach

of Kavanagh et al. [69,70] to our Eqs. (66) and (67). At

leading orders, we find that the dipole flux is Φ
ðl¼1Þ
∞ ¼

2

3
r̃−4
0

− 44

15
r̃−5
0

and the quadrupole flux is Φ
ðl¼2Þ
∞ ¼ 8

5
r̃−5
0
,

which sum to Φ∞ ¼ 2

3
r̃−4
0

− 4

3
r̃−5
0

through next-to-leading

order. This expansion is consistent with the numerical data

presented in Fig. 1.

Figure 2 shows the ratio of the flux through the horizon

to the flux radiated away to infinity, for the three types of

field (scalar, electromagnetic and gravitational). The scalar

and electromagnetic cases are qualitatively similar, with

radiation emitted principally in the dipole (l ¼ 1) modes.

For particles that are orbiting in the same sense as the black

hole spin, superradiance can lead to a significant extraction

of energy from the horizon. For a ¼ 0.99M, the energy

extracted from the hole is up to ∼26.5% of that radiated

away in the EM case, and up to ∼22.3% in the scalar-field

case. Since this ratio falls below the threshold for balance

(100%), there are no floating orbits. In the gravitational

case, radiation is emitted principally in the quadrupole

(l ¼ 2) modes, and the maximum ratio is smaller (∼8.7%

for a ¼ 0.99M). Again, there are no floating orbits.

In the gravitational case, these results are consistent with

those previously presented by Kapadia, Kennefick and

Glampedakis [31].

Figure 3 shows the ratio of fluxesΦh=Φ∞ for a particle on

the innermost stable circular orbit (ISCO), as a function of the

spin of the black hole. The ratio changes sign at a ¼ ac ≈
0.359403M. This is the value of a at which the angular

frequency of the ISCO orbit [see Eq. (15)] matches the

angular frequency of the event horizon Ωh. For a > ac, the
(prograde) horizon frequency exceeds the orbital frequency.

In this case, the electromagnetic field slows the rotation of

the black hole, generating superradiance, leading to an

extraction of flux from the event horizon and Φh=Φ∞ < 0.

Figure 4 shows the multipolar structure of the flux

generated by a particle at the ISCO for the scalar, electro-

magnetic and gravitational-wave cases. The lowest radiative

multipole l ¼ maxðjsj; 1Þ generates the greatest flux at the

horizon, and the low multipoles also dominate the flux at

infinity. The plots show evidence for the expected expo-

nential fall-off of the modal fluxes with lþ 1=2.

B. Conservative effects

1. Schwarzschild case

Regularization. Figure 5 illustrates the application of the

regularization procedure to the radial component of the

self-force, in the a ¼ 0 case. The unregularized (“bare”)

modes scale with L ¼ lþ 1=2 in the large-l limit. After

subtractingF
½−1�l
r andF

½0�l
r as in Eq. (85), that is, removing

the leading and subleading order regularization terms, one

obtains modes that scale with L−2. This is the minimum

necessary to obtain a convergent sum. To reduce the error

associated with the high-l tail, and to demonstrate that our

results match expectations, we removed a further two

regularization terms, that is, we subtracted F
½4�l
r , leaving

a mode sum whose terms converge as L−6 in the large-l

regime, as shown in Fig. 5.

Weak field expansion. Using numerical data for the

radial component of the self-force at large values of r0 we
infer a weak-field expansion in the form

F rðr0Þ ≈
q2

4πϵ0c
2

GM

r3
0

�

1þ 3

2r̃0
þ α2 logðr̃0Þ

r̃2
0

þ α3

r̃2
0

þ o

�

1

r̃3
0

��

: ð94Þ

where r̃0 is the dimensionless radial coordinate introduced

in Eq. (93). The coefficients α2 and α3 were estimated from

summing over the first 15l-modes, with data in two ranges

(i) 1000 < r0 < 1500 and (ii) 900 < r0 < 1000, yielding

α2 ¼ 1.249ð2Þ α2 ¼ 1.231ð1Þ ð95aÞ

α3 ¼ 1.38ð1Þ α3 ¼ 1.48ð1Þ: ð95bÞ

FIG. 1. The radiated flux for an electromagnetically charged

particle on a circular orbit at radius r ¼ r0 around a Kerr black

hole of spin a. Here the total flux Φtot ¼ Φ∞ þΦh has been

scaled by the Newtonian value ΦNewt (see Eq. (92)). The solid

lines correspond to prograde orbits (a > 0), while the dotted lines

correspond to retrograde orbits (a < 0), and the color of the lines

gives the magnitude of a. In each case, the minimum radius is the

innermost stable circular orbit.
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The numeral in parantheses is the confidence

interval in the final digit quoted, which is specific to

the particular dataset used for the fitting. The data

supports the presence of a log term at sub-sub-leading

order, but accurate estimates for α2 and α3 have not

been obtained.

Figure 6 compares the weak-field expansion, Eq. (94),

with numerical data for F r for a ¼ 0. It shows that F r

increases monotonically as r0 decreases. Moreover, F r

differs from the leading order term in Eq. (94) by no more

than a factor of ∼1.44 across the range ½risco;∞Þ. Including
successive terms in the expansion improves the agreement

with the data; and Eq. (94) gives a relative error of ∼6% at

the ISCO.

Shifts in orbital parameters. The conservative self-force

has the effect of shifting the orbital parameters from their

geodesic values at order q2. For a circular orbit on the

Schwarzschild spacetime, the fractional change in the

orbital energy E, angular momentum J and frequency Ω

is given by

0 5 10 15
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0
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-0.08
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0

FIG. 2. The ratio of the energy flux falling onto the horizon, Φh, to the energy flux radiated to infinity, Φ∞, as a function of orbital

radius r0, for various spin parameters ã, and for the scalar, electromagnetic and gravitational cases. The solid lines correspond to

prograde orbits (a ≥ 0). The dotted lines on the second plot, corresponds to retrograde orbits (a < 0). The color of the lines gives the

magnitude of a. Negative ratios arise due a negative flux from the horizon associated with superradiance. A value less than −1 would

indicate the existence of floating orbits.

ELECTROMAGNETIC SELF-FORCE ON A CHARGED PARTICLE … PHYS. REV. D 106, 024024 (2022)

024024-13



-1 -0.5 0 0.5 1

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.36

0

FIG. 3. The ratio of fluxes Φh=Φ∞ for a particle on the

innermost stable circular orbit, as a function of a the spin of

the black hole. Negative (positive) values of a correspond to

retrograde (prograde) circular orbits. For Ωh > Ω, there is a

negative flux (Φh < 0) from the horizon, a manifestation of

superradiance.
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FIG. 4. The multipolar structure of the flux radiated through the

horizon (upper) and to infinity (lower) by a charged particle on a

circular orbit at the ISCO of a Kerr black hole with a ¼ 0.99M.

The trendline indicates an exponential fall-off with multipole

number l.

1 5 10 15 20

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

FIG. 5. Scalar spherical modes of the radial component of the

self-force F r, and regularization at various orders. Here we have

chosen a ¼ 0 (Schwarzschild) and r0=M ¼ 20. The blue dots are

the values of the bare force, which grow linearly with L ¼
lþ 1=2 at large L. The solid black lines are guidelines to

represent the decay of the regularized force.
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FIG. 6. Comparison between the numerically-determined value

of F r (solid) and the weak-field expansion in Eq. (94) (dashed),

for the Schwarzschild (a ¼ 0) case. Here the dashed lines F
ðnÞ
r

show truncated versions of (94), with n indicating the number of

terms included.
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ΔΩ

Ω0

¼ −
ðr0 − 3MÞr0

2μM
F r; ð96aÞ

ΔE

E0

¼ −
r0

2μ
F r; ð96bÞ

ΔJ

J0
¼ −

ðr0 − 2MÞr0
2μM

F r: ð96cÞ

Figure 7 shows the shift in E, J and Ω as a function

of r0. In each case, the self-force leads to a reduction

in E, J and Ω. The shifts for the Kerr case are given in

Appendix D.

2. Kerr case

Figure 8 shows that the bare modes of the force, F l
r

defined in Eq. (82), are correctly regularized with the

regularization parameters calculated by Heffernan et al.

[51]. This is a nontrivial test of the formulation, and of the

projection onto spherical harmonics. In the projection

step, we find that it is necessary to expand to subsu-

bleading order in z ¼ cos θ in Eq. (82) to achieve

regularization at order n ¼ 2, and to obtain a regularized

forceF
reg½2�
r which is well defined on the particle such that
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FIG. 7. Fractional change of the energy (green), angular

momentum (blue) and frequency (red) for a particle on a circular

orbit as a function of the orbital radius r0 in the Schwarzschild

case. The inset shows the radial range presented in Fig. 12 of

Haas [64]. Our results agree with [64] and provides the behavior

of the fractional for a larger radial range.
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FIG. 8. Scalar-spherical modes of the radial component of the

self-force and their regularization at various orders in the Kerr

case. Here we have chosen r0=M ¼ 20 and a ¼ 1

2
M. The blue

dots are the values of the bare force, which (at leading order) grow

linearly with L ¼ lþ 1=2. The solid black lines are guidelines to
indicate the power-law decay of the regularized modes.
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FIG. 9. Radial component of the self-force (scaled by r3
0
) for

various black hole spins, a ∈ f−0.99; 0.5; 0; 0.5; 0.99g. The solid
lines correspond to prograde orbits (a > 0), while the dotted lines

correspond to retrograde orbits (a < 0), and the color of the lines

gives the magnitude of a. In each case, the minimum radius is the

innermost stable circular orbit.
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its left-sided limit (r → r−
0
) and right-sided limit (r → rþ

0
)

are in agreement.

Figure 9 shows F r as a function of r0, for several values
of the black hole spin parameter a=M. We observe that F r

is everywhere positive (i.e., repulsive) and greater than

q2=r3
0
. At fixed radius, F r is larger on the retrograde orbit

than on the prograde orbit. The effect of black hole rotation

increases as r0 decreases, as expected.

By fitting the numerical data, we find a linear-in-a

contribution to F r of −3ãr̃
−9=2
0

at leading order.

Figure 10 shows the self-force on the ISCO, as a function

of a=M. The conservative component, F r, is always

positive (i.e., repulsive). The total flux is always positive,

indicating that superradiance is insufficient for a floating

orbit to arise. The magnitudes of F r and F t are largest on

the corotating ISCO of a rapidly-rotating black hole. In the

limit a → M, the ISCO approaches r0 ¼ M.

Table I provides a selection of values of F r for circular

orbits of radii r0 ∈ ½risco; 50M�, for the black hole spin

parameters a ¼ 0, �0.5M and �0.99M.

V. DISCUSSION AND CONCLUSION

In this article, we have computed the electromagnetic

self-force acting on a point charge—or, with caveats, on a

charged compact body—on a circular geodesic lying in

the equatorial plane of a rotating black hole. This

represents the first EM self-force calculation on Kerr

spacetime in a dynamical scenario (see below for static

cases). Our results complement those already available for

the gravitational self-force on Kerr [42,43,48,62,71–73],

a topic which has received much attention due to its

relevance in modeling extreme mass-ratio inspirals for

gravitational wave detectors.

To compare the dissipative effects of the electromag-

netic and gravitational self-forces, consider once more the

inspiral of a particle or compact body of mass μ and charge

q into a black hole of mass M, driven by the dissipative

component of the self-force. From the chirp formulas (3)

and (1), valid in the large-r0 regime, an order-of-magnitude

estimate of the merger timescale, starting with an orbit of

radius r0, is

τEM ∼

�

πϵ0GM
2
⊙

Q2

�

·

�

M

μ

�

·

�

r0

GM=c2

�

2

·
r0

c
; ð97aÞ

τgrav ∼

�

5

21=332

�

·

�

M

μ

�

·

�

r0

GM=c2

�

3

·
r0

c
: ð97bÞ

Here Q is the net charge density of the particle/compact

body in Coulombs per solar mass, and we have made

the assumption that μ ≪ M to obtain (97b). Numerical

evaluation of the first parantheses in Eq. (97a) yields

7.4 × 1039 C2=Q2, and thus, for a compact body, an

electromagnetically driven inspiral is much slower than

a gravitationally-driven inspiral, unless the compact body

can support implausibly high net charge densities of

Q≳ 1018 C per solar mass. On the other hand, for an

elementary charged particle the converse is true, as

Q ≈ 1.9 × 1038 C per solar mass for a proton, for instance.

That is, for a charged elementary particle, the EM inspiral

is more rapid and the gravitational wave flux is negligible;

but nevertheless, the inspiral into a black hole is exceed-

ingly slow due to the suppressing factor M=μ. Of course,
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FIG. 10. The radial and time components of the self-force for

a particle on the innermost stable circular orbit, as a function

of a the spin of the black hole. Negative (positive) values of a
correspond to retrograde (prograde) circular orbits.

TABLE I. Radial component of self-force for circular equatorial geodesic orbits. The dimensionless values in the table correspond to

F r=½ðq2=4πϵ0Þðc2=GMÞ2�. The digit in parantheses is an estimate of the uncertainty in the final quoted digit. The ISCO radius, defined

in Eq. (15), is risco=M ∈ f8.971861; 7.554585; 6.0; 4.233003; 1.454498g (to 7 s.f.) for the cases a=M ∈ f−0.99;−0.5; 0; 0.5; 0.99g.

F rðr0Þ
r0=M a ¼ −0.99 a ¼ −0.5 a ¼ 0 a ¼ 0.5 a ¼ 0.99

risco=M 0.001967652(2) 0.003315094(1) 0.0066497(5) 0.019003(2) 0.479(1)

10 0.0013513595(1) 0.0012770754(1) 0.00120985(2) 0.00114927(1) 0.001093823(1)

20 0.000141150327(2) 0.00013867449(5) 0.00013624(1) 0.000133916(2) 0.0001316275(1)

50 0.000008332378(2) 0.000008296911(1) 0.000008261044(2) 0.000008225470(2) 0.000008190833(6)
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an elementary-particle-black-hole-inspiral scenario is

rather artificial, not least because we have neglected all

contents of the universe but two.

One key result of this work is a demonstration that the

local dissipative component of the self-force F t exactly

balances with the sum of the electromagnetic flux radiated

to infinity and down the horizon of the black hole, in accord

with Eq. (65), up to the expected numerical precision.

Closer examination of the fluxes, in Figs. 1, 2 and 3, shows

that superradiance is stimulated when the angular velocity

of the black hole horizon exceeds the orbital angular

velocity. However, we find that superradiance is not

sufficient to support floating orbits, even at the ISCO

(see also [31]).

A key difference between the electromagnetic self-force

and the gravitational self-force is that the latter is gauge-

dependent under small changes in the coordinate system at

OðμÞ. More precisely, for circular orbits the dissipative

component of the gravitational self-force—relating to the

radiated fluxes—can be identified uniquely, but the

conservative component cannot; it is coordinate-dependent.

This means that it is not possible to directly compare F r

between the electromagnetic and gravitational cases.

Instead, one must look to the gauge-invariant consequences

of the conservative component of self-force to make

meaningful comparisons. For example, Fig. 7 shows the

fractional change in the orbital energy, angular momentum

and frequency at fixed r0 due to the conservative compo-

nent of the self-force.

One such gauge-invariant consequence, slightly beyond

the scope of this work, is the shift in the ISCO atOðq2Þ that
arises due to the conservative component of the self-force.

This can be calculated by examining mildly eccentric

orbits [74], or possibly by using a Hamiltonian approach

with circular-orbit data as input [62]; a comparison with

known results for the ISCO shift induced by the gravita-

tional self-force would certainly be of interest. Another

observable that could be compared directly is the self-force-

induced shift in the advance of the periapsis of an eccentric

bound orbit [71].

The new results presented in Sec. IVare mostly numerical

in nature. We have inferred leading order terms in weak-

field expansions by fitting the numerical data. A comple-

mentary approach is to apply the Mano-Suzuki-Takasugi

(MST) formalism [67] to obtain analytical results in the

form of post-Newtonian expansions (see e.g., [69,70]). This

has been done successfully in the gravitational self-force

case, for quantities such as fluxes [75–77], Detweiler’s

redshift invariant [78], and the spin-precession invariant

[79]. The MST method can be straightforwardly adapted

from the s ¼ 2 to the s ¼ 1 case. Indeed, in Sec. IVA 1 we

have applied this method to obtain the flux through

subleading order in r̃−1
0
. A promising avenue for future

work, therefore, is to apply the MSTmethod to the formulae

herein to obtain very high-order expansions of (e.g.,)F t and

F r in closed form.

It is worth noting that the calculation presented here is

not fully self-consistent, in the sense that we have evaluated

the self-force by assuming the past worldline of the particle

is a geodesic, rather than a trajectory that has itself been

accelerated by its own self-force. Introducing the “true”

trajectory would introduce subdominant contributions to

the force starting at Oðq4Þ. One challenge, for future

investigation, is to evolve the orbit in a fully self-consistent

manner under the action of the electromagnetic self-force.

This has already been done successfully for the gravita-

tional self-force [73,80].

The electrostatic self-force on a charged particle on Kerr

was examined many years ago by Léauté and Linet [81],

and later by Piazzese and Rizzi [82]. For the special case of

a particle at rest on the symmetry axis θ ¼ 0 at r ¼ r0, the
(repulsive, conservative) self-force is available in closed

form [82],

F
μ
self ¼

q2ðMr0 − a2Þ
ðr2

0
þ a2Þ2 e

μ
3
; ð98Þ

where e
μ
3
is a unit spacelike vector along the symmetry axis.

It is notable that Eq. (98) does not depend on the sign of a,
and thus frame-dragging effects are absent in this highly

symmetric case. Here, we have established that F r has a

linear-in-a contribution for geodesic orbits in the equato-

rial plane.

Two further avenues of enquiry suggest themselves.

First, the self-force on the ISCO in the a → M extremal

limit has been investigated in the gravitational self-force

context [83], but not yet in the electromagnetic self-force

context. Second, an additional physical effect which has not

been examined here is the self-torque that would arise at

Oðq2Þ if the particle (or compact body) is endowed with a

magnetic dipole moment. In other words, the force arising

from the (regularized) magnetic field in the rest frame of

the particle.
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APPENDIX A: DISSIPATIVE SELF-FORCE

IN THE NEWTONIAN LIMIT

For circular orbits far from a black hole (r0 ≫ GM=c2),

the speed of the particle, jvj ¼ r0Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GM=r0
p

, is small

in comparison with the speed of light c, and a leading-order
Newtonian approximation for the flux (92) and the chirp

formula (3) is obtained by combining the Abraham-Lorentz

force (2) with circular orbits in Newtonian gravity.

The work done in unit time P upon a particle of charge q
by the Abraham-Lorentz force (2) is

P ¼ F · v ¼ 2

3

q2

4πϵ0c
3
_a · v: ðA1Þ

Inserting a fixed circular orbit with r ¼ r0r̂ and v≡ _r ¼
r0Ωϕ̂ and a≡ _v ¼ −r0Ω

2r̂ and _a≡ −r0Ω
3ϕ̂, where r̂

and ϕ̂ are unit vectors and Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GM=r3
0

q

is the angular

frequency of the orbit, yields

P ¼ −
2

3

q2

4πϵ0c
3
r2
0
Ω

4 ðA2Þ

¼ −
2

3

q2

4πϵ0c
3

G2M2

r4
0

: ðA3Þ

By conservation of energy, the flux radiated to infinity

is equal and opposite to the work done on the particle by

the Abraham-Lorentz force, that is, ΦNewt ¼ −P, yield-
ing Eq. (92).

For a particle of mass μ on a circular orbit under gravity,

the sum of kinetic and (Newtonian) potential energies is

E ¼ −GMμ=2r0. We now allow the particle to gradually

spiral inwards on a sequence of quasicircular orbits, by

equating P with _E ¼ −GMμ _r=2r2. This leads to

_f

f3
¼ 8π2q2

4πϵ0c
3
; ðA4Þ

where f ¼ Ω=2π is the orbital frequency. Integrating with

respect to time leads to

fðtÞ ¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πϵ0c
3μ

q2

s

ðt0 − tÞ−1=2; ðA5Þ

where the time of collision t0 arises as the constant of

integration. For the case of an electron of mass μ ¼ me

and charge q ¼ −e, Eq. (A5) reduces to Eq. (3) once we

insert the definition of the fine-structure constant α ¼
e2=ð4πϵ0ℏcÞ and the Bohr radius a0 ¼ 4πϵ0ℏ

2=ðmee
2Þ.

APPENDIX B: ENERGY FLUX

1. Flux at infinity

At infinity the energy flux is given by

Φ
K
R ¼ Δt−1

Z

TabKbdΣa ðB1Þ

where we have chosen Kμ ¼ ½1; 0; 0; 0� to be the Killing

vector and dΣμ is defined by the condition r → ∞ and is

given by

dΣμ ¼ nμdΣ; ðB2Þ

with

nμ ¼
½0; 1; 0; 0�

ffiffiffiffiffiffi

grr
p and dΣ ¼ jhj1=2dtdθdϕ: ðB3Þ

where hμν is the induced metric on the hypersurface define

by r → ∞. Since jhj ¼ g=grr, we have

dΣμ ¼ ½0; 1; 0; 0� ffiffiffiffiffiffi−g
p

dtdθdϕ: ðB4Þ

The flux is then given by

ΦR ¼
Z

Tr
t

ffiffiffiffiffiffi

−g
p

dθdϕ: ðB5Þ

The energy-momentum tensor can be expressed in terms of

the Maxwell scalars as [54]

4πTμν¼−fϕ0ϕ
�
0
nμnνþ2ϕ1ϕ

�
1
½lðμnνÞþmðμm

�
νÞ�þϕ2ϕ

�
2
lμlν

−4ϕ�
0
ϕ1nðμmνÞ−4ϕ�

1
ϕ2lðμmνÞþ2ϕ2ϕ

�
0
mμmνgþc:c:

ðB6Þ

where parentheses denote symmetrization. With our choice

of tetrad, we find that the relevant terms as r → ∞ are

lim
r→∞

Tr
t ¼

1

2π

�

ϕ2ϕ
�
2
−
ϕ0ϕ

�
0

4

�

ðB7Þ

We recall that

ϕ0 ¼
X

l;m

þ1
R
lm
ðrÞSlmþ1

ðθÞeimðϕ−ΩtÞ; ðB8Þ

2ðr − ia cos θÞ2ϕ2 ¼
X

l;m

−1RlmðrÞSlm−1 ðθÞeimðϕ−ΩtÞ; ðB9Þ

as well as the fact that

lim
r→∞

r2jþ1
R
lm
ðrÞj¼0 and lim

r→∞

j−1RlmðrÞj
r

¼j−1α∞lmj: ðB10Þ
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Using the orthonormality properties of the spin-weighted

spheroidal harmonics, we therefore get the energy flux

radiated at infinity

Φ∞ ¼ lim
r→∞

Z

r2 sin θ

2π
ϕ2ϕ

�
2
dθdϕ ¼

X

l;m

j−1α∞lmj2
8π

ðB11Þ

2. Flux through the horizon

In order to evaluate the flux of energy through the horizon,

we first need to modify the tetrad basis we have defined

in Eq. (10) since it is singular at the horizon. Following

Chap. 8 Sec. 76(b) of [59], we first perform a rotation of

class III (according to Chandrashekar’s convention):

lμ →
Δ

2ðr2 þ a2Þ l
μ ¼

�

1

2
;

Δ

2ðr2 þ a2Þ ;0;
a

2ðr2 þ a2Þ

�

ðB12Þ

and

nμ →
2ðr2 þ a2Þ

Δ
nμ

¼
�ðr2 þ a2Þ2

ΣΔ
;−

ðr2 þ a2Þ
Σ

; 0; a
ðr2 þ a2Þ

ΣΔ

�

: ðB13Þ

We then go to a Kerr-Schild frame via the coordinate

transformation:

dv ¼ dtþ r2 þ a2

Δ
dr and dϕ̃ ¼ dϕþ a

Δ
dr: ðB14Þ

In this frame, the null vectors l
μ

ðHHÞ and n
μ

ðHHÞ, where HH

stands for Hartle-Hawking, are given by

l
μ

ðHHÞ ¼
�

1;
Δ

2ðr2 þ a2Þ ; 0;
a

r2 þ a2

�

; ðB15Þ

n
μ

ðHHÞ ¼
�

0;−
r2 þ a2

Σ
; 0; 0

�

: ðB16Þ

On the horizon, the vector lðHHÞ can be expressed in terms

of the time and angular Killing vector K
μ
T ¼ ½1; 0; 0; 0� and

K
μ
L ¼ ½0; 0; 0; 1� as

l
μ

ðHHÞ ¼ K
μ
T þ ΩhK

μ
L: ðB17Þ

where Ωh ¼ a=2Mrþ is the angular frequency of the

horizon. In this basis, which is well behaved at the horizon,

the Maxwell scalars ϕ
ðHHÞ
0

is related to the Maxwell scalar

ϕ0 computed in the basis (10) via

ϕ
ðHHÞ
0

¼ Δ

2ðr2 þ a2Þϕ0: ðB18Þ

The surface element dΣa of the horizon, which is a null

hypersurface, is given by

dΣμ ¼ l
ðHHÞ
μ dσdt ðB19Þ

where dσ ¼ 2Mrþ sinðθÞdθdϕ is the elementary surface

area of the event horizon. Therefore, the elementary flow of

energy and angular momentum through the horizon are

�

d2ΦT
h

dtdΩ

�

¼ 2Mrþl
ðHHÞ
μ Kν

TT
μ
ν ðB20Þ

�

d2ΦL
h

dtdΩ

�

¼ 2Mrþl
ðHHÞ
μ Kν

LT
μ
ν ðB21Þ

Combining these with (B17) and using the fact that

Φ
T ¼ −ΩΦL yields

�

d2ΦT
h

dtdΩ

�

¼ 2Mrþω

ω −mΩh

Tμνl
ðHHÞ
μ l

ðHHÞ
ν : ðB22Þ

By definition Tμνl
ðHHÞ
μ l

ðHHÞ
ν ¼ ϕ

ðHHÞ
0

ϕ�
0

ðHHÞ=2π, and

therefore

�

d2ΦT
h

dtdΩ

�

¼ ω

8Mrþω̃

Δ

2π
ϕ0ϕ

�
0
: ðB23Þ

Finally, integrating over the surface element using the

decomposition (B8), the orthonomality of the spin-weighted

spheroidal harmonics, and the asymptotic behavior of the

radial function near the horizon,

Φ
T
h ¼

X

l;m

ω

16πMrþω̃
jþ1

αh
lm
j2: ðB24Þ

APPENDIX C: PROJECTION ONTO SCALAR

SPHERICAL HARMONICS

To compute the physical conservative part of the self-

force we apply the mode-sum regularization procedure. As

a preliminary step before applying the regularization, one

should decompose the radial force onto a basis of scalar

spherical harmonics. Since the structure of the Kerr metric

invited us to use spin-weighted spheroidal harmonics as a

basis for the angular functions of our problem, we now

need to project the spin-weighted spheroidal harmonics

onto scalar spherical harmonics.

1. Projection of the spin-weighted spheroidal harmonics

a. From spin-weighted spheroidal harmonics

to spin-weighted spherical harmonics

We first decompose the spin-weighted spheroidal har-

monicsSlms onto the spin-weighted spherical harmonicsYlm
s :

Slms ðθÞ ¼
X

l̂

ðbms Þll̂Y
l̂m
s ðcos θÞ: ðC1Þ
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The coefficients ðbms Þll̂ are computed using the Black Hole

Perturbation Toolkit [66].

b. From spin-weighted spherical harmonics to scalar

spherical harmonics

We decompose the spin-weighted spherical harmonics in

terms of spherical harmonics Ylm
0
,

Ylm
þ1
ðzÞ ¼

X

l̃

ðAm
þ1
Þl
l̃

ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p Y l̃m

0
ðzÞ; ðC2Þ

Ylm
0
ðzÞ ¼

X

l̃

δl
l̃
Y l̃m
0
ðzÞ; ðC3Þ

Ylm
−1ðzÞ ¼

X

l̃

ðAm
−1Þll̃
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p Y l̃m

0
ðzÞ; ðC4Þ

where z ¼ cos θ and the coefficients are given by

ðAm
þ1
Þl
l̃
¼ ð−1Þmþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2lþ 1Þð2l̃þ 1Þ
q

×

�

1 l l̃

0 m −m

��

1 l l̃

1 −1 0

�

; ðC5aÞ

ðAm
−1Þll̃ ¼ ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2lþ 1Þð2l̃þ 1Þ
q

×

�

1 l l̃

0 m −m

��

1 l l̃

−1 1 0

�

: ðC5bÞ

It follows from the properties of the Wigner 3j symbols

that

ðAm
þ1
Þl
l̃
¼ ð−1Þlþl̃ðAm

−1Þll̃: ðC6Þ

Combining the two decompositions, we can write the

spin-weighted spheroidal harmonics as

Slms ðθÞ ¼
X

l̂;l̃

ðbms Þll̂ðA
m
s Þl̂l̃

Y l̃m
0
ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p : ðC7Þ

Note that due to the presence of the 3j-symbols in

Eqs. (C5), the indices l̃ and l̂ satisfy l̃ − 1 ≤ l̂ ≤ l̃þ 1.

2. Expansion of L1S
lm
+ 1ðθÞ

The definition of L1S
lm
þ1

is

L1S
lm
þ1
ðθÞ ¼ ∂θS

lm
þ1
ðθÞþ

�

m

sinθ
−aωsinθ

�

Slmþ1
þ cosθ

sinθ
Slmþ1

:

ðC8Þ

In order to project L1S
lm
þ1

onto scalar spherical harmonics,

we first need to project ∂θS
lm
þ1
.

The spherical harmonics of different spins are related by

ðYlm
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl − sÞðlþ sþ 1Þ
p

Ylm
sþ1

; ðC9Þ

ð̄Ylm
s ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ sÞðl − sþ 1Þ
p

Ylm
s−1; ðC10Þ

where the spin-raising and spin-lowering operators ð and ð̄

are defined by

ðfsðθ;ϕÞ ¼ −ðsin θÞs
�

∂

∂θ
þ i

sin θ

∂

∂ϕ

�

ððsin θÞ−sfsÞ ðC11Þ

ð̄fsðθ;ϕÞ ¼ −ðsinθÞ−s
�

∂

∂θ
−

i

sinθ

∂

∂ϕ

�

ððsinθÞsfsÞ: ðC12Þ

We have that

∂θS
lm
þ1
ðθÞ ¼

X

l̂

ðbmþ1
Þl
l̂
∂θY

l̂m
þ1
ðcos θÞ: ðC13Þ

We can eliminate the derivative using the relation (C11) and

the expression for ð̄, namely,

ð̄Ylm
þ1
ðzÞ ¼ −ðsinθÞ−1

�

∂

∂θ
−

i

sinθ

∂

∂ϕ

�

ðsinθYlm
þ1
ðzÞÞ ðC14Þ

¼ −
1

sin θ
½ðcos θ þmÞYlm

þ1
ðzÞ þ sin θ∂θY

lm
þ1
ðzÞ�

ðC15Þ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p

Ylm
0
: ðC16Þ

Therefore, we have that

∂θS
lm
þ1
ðθÞ ¼

X

l̂

ðbmþ1
Þl
l̂

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l̂ðl̂þ 1Þ
q

Y l̂m
0
ðcos θÞ

−
ðcos θ þmÞ

sin θ
Y l̂m
þ1
ðcos θÞ

�

: ðC17Þ

Substituting (C17) into (C9), we get

L1S
lm
þ1

¼
X

l̂

ðbmþ1
Þl
l̂

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l̂ðl̂þ1Þ
q

Y l̂m
0
−amΩsinθY l̂m

þ1

i

ðC18Þ

¼
X

l̂;l̃

ðbmþ1
Þl
l̂

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l̂ðl̂þ 1Þ
q

δl̂
l̃
− amΩðAm

þ1
Þl̂
l̃

i

Y l̃m
0
:

ðC19Þ

APPENDIX D: SHIFTS IN ORBITAL

PARAMETERS FROM CONSERVATIVE

SELF-FORCE

On Kerr spacetime, the shifts in the energy and angular

momentum at fixed r0 are
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ΔE

E0

¼ −
r0Δ0ðL0ðr0 − 2MÞ þ 2aME0Þ

2E0X
F r=μ; ðD1aÞ

ΔL

L0

¼ −
r0Δ0ðE0ðr30 þ a2ðr0 þ 2MÞÞ − 2aML0Þ

2L0X
F r=μ; ðD1bÞ

X ¼ ðr3
0
− 3Mr2

0
− 2Ma2ÞE0L0 þ aMðð3r2

0
þ a2ÞE2

0
þ L2

0
Þ ðD1cÞ

and the shift in the angular velocity at fixed r0 is

ΔΩ

Ω0

¼ −
Δ

2

0
r3
0
ððr3

0
þ a2ðr0 þ 2MÞÞE2

0
− 4E0L0aM − L2

0
ðr0 − 2MÞÞ

2XðE0r0ðr20 þ a2Þ − 2aMðL0 − aE0ÞÞðr0L0 − 2MðL0 − aE0ÞÞ
F r=μ: ðD2Þ

APPENDIX E: A DISTRIBUTIONAL IDENTITY

The Dirac delta distribution δðx − x0Þ is of compact

support, with δðx − x0Þ ¼ 0 for x ≠ x0 and the fundamental

property

Z

x0þϵ

x0−ϵ

hðxÞδðx − x0Þdx ¼ hðx0Þ: ðE1Þ

Here ϵ > 0, x0 is a real constant and hðxÞ is a test function
that is continuous at x0 (and, below, differentiable). Now

consider fðxÞδ0ðx − x0Þ appearing in Eq. (36), where fðxÞ
is a differentiable function and the prime denotes an

ordinary derivative with respect to x. By application of

integration by parts,

Z

x0þϵ

x0−ϵ

hðxÞfðxÞδ0ðx − x0Þdx

¼ −

Z

x0þϵ

x0−ϵ

fh0ðxÞfðxÞ þ hðxÞf0ðxÞgδðx − x0Þ;

¼ −h0ðx0Þfðx0Þ − hðx0Þf0ðx0Þ: ðE2Þ

By contrast, the integral of fðx0Þδ0ðx − x0Þ, where fðx0Þ
is a constant rather than a function of x, has but a single

term,

Z

x0þϵ

x0−ϵ

hðxÞfðx0Þδ0ðx − x0Þdx ¼ −h0ðx0Þfðx0Þ: ðE3Þ

Hence fðxÞδ0ðx − x0Þ and fðx0Þδ0ðx − x0Þ are not equiv-

alent. On the other hand,

Z

x0þϵ

x0−ϵ

hðxÞffðx0Þδ0ðx − x0Þ − f0ðx0Þδðx − x0Þgdx

¼ −h0ðx0Þfðx0Þ − hðx0Þf0ðx0Þ; ðE4Þ

which matches Eq. (E2). This equivalence justifies the

replacement made in Eq. (36).
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