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Quantum phase estimation (QPE) is a key quantum algorithm, which has been widely studied as a
method to perform chemistry and solid-state calculations on future fault-tolerant quantum computers.
Recently, several authors have proposed statistical alternatives to QPE that have benefits on early fault-
tolerant devices, including shorter circuits and better suitability for error-mitigation techniques. However,
experimental investigations of the algorithm on real quantum processors are lacking. Here, we implement
statistical phase estimation on Rigetti’s superconducting processors. Specifically, we use a modification of
the Lin and Tong [PRX Quantum 3, 010318 (2022)] algorithm with the improved Fourier approximation of
Wan et al. [Phys. Rev. Lett. 129, 030503 (2022)] and apply a variational-compilation technique to reduce
the circuit depth. We then incorporate error-mitigation strategies including zero-noise extrapolation and
readout-error mitigation with bit-flip averaging. We propose a new method to estimate energies from the
statistical phase estimation data, which is found to improve the accuracy in the final energy estimates
by 1–2 orders of magnitude with respect to prior theoretical bounds, reducing the cost of performing
accurate phase-estimation calculations. We apply these methods to chemistry problems for active spaces
up to four electrons in four orbitals, including the application of a quantum embedding method, and use
them to correctly estimate energies within chemical precision. Our work demonstrates that statistical phase
estimation has a natural resilience to noise, particularly after mitigating coherent errors, and can achieve
far higher accuracy than suggested by previous analysis, demonstrating its potential as a valuable quantum
algorithm for early fault-tolerant devices.

DOI: 10.1103/PRXQuantum.4.040341

I. INTRODUCTION

Quantum phase estimation (QPE) [1,2] is one of the
most widely studied quantum algorithms, due to its poten-
tial for exponential speed-ups in a wide range of problems.
While this potential is promising, the quantum circuits
involved in useful applications of QPE have a high depth.
Because of this, QPE is often described as a fault-tolerant
quantum algorithm, which will require large-scale quan-
tum error correction (QEC) for nontrivial applications.
Many studies have been performed in recent years to assess
the resources required to apply QPE to active spaces at
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the limit of current classical algorithms, often estimating
the need for tens or hundreds of millions of qubits using
current QPE and QEC schemes [3–6].

In the past few years, statistical modifications to the
QPE algorithm have been proposed [7–14] that use lower-
depth circuits and far fewer auxiliary qubits than tech-
niques based on qubitization [6,15] and so are better
suited to near-term devices. Importantly, statistical QPE
is also more readily combined with error-mitigation tech-
niques, many of which are primarily designed for esti-
mating expectation values. “Textbook” and many other
QPE approaches measure a discrete output, namely, the
bits of the energy estimate, and are therefore not com-
patible with most error-mitigation techniques. In con-
trast, the circuits involved in statistical phase estima-
tion methods are typically Hadamard tests, the output
of which is an expectation value, as shown in Fig. 1.
Multiple such circuits are performed, with the result-
ing expectation values used to construct an appropriate
function, from which the desired eigenvalues may be
estimated.

2691-3399/23/4(4)/040341(23) 040341-1 Published by the American Physical Society
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FIG. 1. The Hadamard test circuits that are considered in
this work. Setting V = 1 or V = S† allows estimation of
Re[ 〈ψ | e−iτHk|ψ〉 ] and Im[ 〈ψ | e−iτHk|ψ〉 ], respectively.

Error mitigation has been a major theme in early
practical applications of quantum computing, including
applications to chemistry and condensed-matter physics
problems. Current quantum processors are often referred
to as noisy intermediate-scale quantum (NISQ) devices
due to their high error rates and low qubit counts. In the
absence of QEC, which requires higher qubit counts and
lower error rates than currently available, error mitiga-
tion has been widely investigated. This includes techniques
for readout error mitigation [16,17], as well as numer-
ous methods for mitigating gate errors, such as zero-noise
extrapolation (ZNE) [18–20], probabilistic error cancel-
lation (PEC) [18,21,22], Clifford data regression (CDR)
[23,24], noise tailoring techniques such as randomized
compiling (RC) [25,26], and symmetry constraints or post-
selection [27–29]. See also Ref. [30] for a recent review of
error-mitigation techniques and Ref. [31] for a recent study
testing ZNE and PEC on multiple quantum computing
platforms.

In addition to NISQ studies, there is good reason to
believe that error mitigation will continue to be important
in the early fault-tolerant regime, where partial error cor-
rection is possible [32–35]. For example, a recent study
has investigated the resources required to perform even the
simplest ground-state calculation on an H2 molecule using
the surface code [36]; even here, it has been found that
thousands of physical qubits are required. The largest over-
head comes from the need for magic state distillation facto-
ries and decomposing rotation gates into T gates. This cost
could be significantly reduced using error mitigation. For
example, Piveteau et al. [32] have discussed approaches to
perform noisy T gates and apply error mitigation. It should
be emphasized that error-mitigation techniques in general
have a cost that scales exponentially with the circuit depth
[37]. However, in the near-term regime of NISQ and early
fault tolerance, they offer valuable methods to improve the
performance of statistical QPE.

Examples of prior QPE calculations on quantum hard-
ware include an early study of Kitaev’s iterative QPE
algorithm using superconducting qubits [38]; an applica-
tion of textbook QPE on a neutral-atom quantum computer
[39]; and, very recently, a study of Bayesian QPE on a
trapped-ion quantum computer [40]. All of these studies
consider a minimal H2 model, using a Hamiltonian of
only one or two qubits, demonstrating the challenge of
performing QPE in practice.

In this paper, we present the first combination of sta-
tistical phase estimation and error mitigation on a current
quantum device. The methodology presented allows us to
perform ground-state energy calculations to accuracy bet-
ter than 0.1 mHa for the systems considered, which is
comparable to, or better than, the accuracy that could be
previously achieved with the variational quantum eigen-
solver (VQE) and current hardware [41–43]. Statistical
phase estimation also avoids problematic barren plateaus
that hamper the scalability of VQE, although the speed-up
of all QPE algorithms does depend on the quality of the ini-
tial trial states [44]. For error mitigation, we focus on ZNE,
symmetrized readout-error mitigation [17], and RC meth-
ods. Although our results are performed on current NISQ
devices, the error-mitigation techniques presented can also
be applied in the early fault-tolerant regime. For example,
we apply RC to mitigate coherent errors for controlled-Z
(CZ) gates in this work but, as described in Ref. [25], it can
equally be applied to T gates in an error-corrected scheme.

We focus on a statistical QPE approach based on the
cumulative distribution function (CDF) of the spectral
measure of the Hamiltonian, which has been introduced by
Lin and Tong [8], and use the improved Fourier approx-
imation derived by Wan et al. [9] (but do not investi-
gate the randomized compilation approach for Hamilto-
nian simulation introduced in the same paper). We also
implement and test the quantum eigenvalue estimation
algorithm (QEEA) by Somma [7]. In both approaches,
we apply importance sampling as described in Ref. [8].
We apply these methods to several molecules, including
two examples motivated by pharmaceutical applications,
using a chemical-embedding approach to construct rel-
evant active spaces [45]. These results are achieved by
using a variational-circuit-compilation strategy to allow
the required operations to be performed with a low circuit
depth, suitable for current quantum processors. We also
study a Trotterized example, which avoids the exponential
preprocessing step of the variational-compilation method,
using two-qubit gate depths up to 100.

We show that mitigating coherent errors [25,26] is
important in statistical phase estimation and that this
methodology can be effectively combined with importance
sampling, allowing energies to be extracted with confi-
dence, even in the presence of significant QPU errors. We
further introduce a simple approach to estimate energies
from the QPU data with significantly improved accuracy,
compared to the theoretical bounds derived in Ref. [9]. The
largest example that we study is a model of a pharmaceu-
tically relevant molecule, where the ground-state energy is
again obtained with an error of less than 0.1 mHa.

The structure of the paper is as follows. In Sec. II A, we
cover the theory of statistical phase estimation, particularly
the methods of Refs. [8,9], including importance sampling.
In Sec. II B, we discuss a variational-compilation method
to reduce the circuit depth. Section II C introduces the
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error-mitigation techniques to be applied. Results are then
presented from Rigetti’s Aspen devices, first applying the
statistical phase estimation method to an example with two
electrons in two orbitals, followed by a study of larger
active spaces in combination with error-mitigation strate-
gies, and a final example using a Trotterized expansion of
the time-evolution operator.

II. THEORY

A. Statistical phase estimation

We consider n-qubit Hamiltonians of the form

H =
L

∑

l=1

clPl, (1)

where Pl are n-qubit Pauli operators, and denote the eigen-
values and eigenvectors of H by {λi; |�i〉}. We will be
concerned with estimating {λi} using statistical phase-
estimation methods. For these techniques, it is necessary to
bound the Hamiltonian in a known range and we therefore
work with a scaled Hamiltonian τH , where τ > 0.

In this paper, we focus on circuits of the form shown in
Fig. 1. This is a Hadamard test circuit, where setting V =
1 or V = S† = |0〉〈0| − i|1〉〈1| allows measurement in the
X or Y bases, respectively. For V = 1, defining a random
variable X equal to +1 for |0〉 measurements and −1 for
|1〉 measurements, it can be shown that

E[X ] = Re[ 〈ψ | e−iτHk|ψ〉 ]. (2)

where throughout E[·] denotes an expectation value. Sim-
ilarly, for V = S† measurements, defining a random vari-
able Y equal to +1 for |0〉 measurements and −1 for |1〉
measurements gives

E[Y] = Im[ 〈ψ | e−iτHk|ψ〉 ]. (3)

Performing the circuits of Fig. 1 therefore allows estima-
tion of

gk = 〈ψ |e−iτHk|ψ〉 (4)

up to statistical errors, which are controlled by averaging
over multiple repetitions of the circuit, or “shots.” This gk

is the main quantity of interest that we seek to estimate by
quantum computation.

In general, |ψ〉 will not be an exact eigenstate of H . We
denote the expansion of |ψ〉 in the eigenbasis of H by

|ψ〉 =
∑

i

νi|�i〉, (5)

which gives

gk =
∑

i

pi e−iτλik, (6)

where we define pi = |νi|2. Therefore, gk will in general
consist of a sum of oscillating signals, the frequencies of
which are determined by the energies of H and the ampli-
tudes of which are determined by the components of the
corresponding eigenstates in |ψ〉. The goal of statistical
phase estimation methods is to extract (some of) the phases
λi from the noisy estimates of gk and hence estimate the
energies of H .

Multiple such methods have been introduced in recent
years, each suggesting different techniques to construct
eigenvalue estimates from the gk estimates. Roughly
speaking, these methods involve identifying some function
f (H) that allows eigenvalues to be identified. The function
f (H) is then expanded in a Fourier series, which can be
constructed, after truncation, using the gk estimates. Trun-
cation is needed to put a finite limit on the unitary time
evolution τk. Note that once gk has been constructed, the
task of estimating the desired λi is a purely classical task
and is related to similar problems in signal processing.

We begin by reviewing the approach of Wan et al. [9].
This approach is based on a similar method by Lin and
Tong in Ref. [8] but uses an alternative Fourier approxi-
mation that allows the authors to prove a better asymptotic
complexity. Note that Ref. [9] also introduces a random-
ized compiling approach to implement e−iτHk with reduced
circuit depth, but this approach is not tested in this paper.

1. CDF-based statistical phase estimation

In the approach of Refs. [8,9], we wish to calculate a
cumulative distribution function (CDF) associated with the
Hamiltonian and state |ψ〉,

C(x) =
∑

i:τλi≤x

pi. (7)

If C(x) could be constructed, then it would allow us to
identify the eigenvalues of H through its discontinuities.
In practice, the CDF will be constructed as a sum of terms
eikx for integer values of k and so it is necessary to define
C(x) to be 2π periodic. We therefore instead define

C(x) =
∫ π/2

−π/2
p(y)�(x − y)dy, (8)

where �(x) is a 2π -periodic Heaviside step function and
p(y) is the probability distribution of τH associated with
|ψ〉,

p(y) =
∑

i

piδ(y − τλi). (9)

It is straightforward to check that this definition gives the
desired C(x) =

∑

i:λi≤x pi for |x| ≤ π/2. For |x| > π/2,
this is not true and we should therefore choose τ such that
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‖τH‖ ≤ π/2, where ‖. . . ‖ denotes the operator norm. The
discontinuities of C(x) in the range |x| ≤ π/2 can then be
used to identify eigenvalues of τH .

One can proceed by considering a Fourier-series expan-
sion of the step function. Reference [9] defines

F(x) =
∑

|k|≤N

Fkeikx, (10)

where F(x) is an approximation to �(x), which is derived
by truncating the Chebyshev polynomial expansion for
an erf(·) function. The authors carefully constructed this
approximation to satisfy various bounds on its error and
on the scaling of

∑

|k|<N |Fk| with N . The derived Fourier
coefficients are

F0 = 1/2,

F2j +1 = −i

√

β

2π
e−β Ij (β) + Ij +1(β)

2j + 1
, 0 ≤ j ≤ d − 1

F2d+1 = −i

√

β

2π
e−β Id(β)

2d + 1
, (11)

where d is related to N above by N = 2d + 1. In addition,
we have F−k = −Fk for all k �= 0. In(β) is the nth modified
Bessel function of the first kind. The Fourier coefficient Fk

is nonzero for odd k only; even k do not contribute.
The Fourier coefficients, and hence the approximate

Heaviside function F(x), depend on a parameter β > 0,
which represents the sharpness of the erf(·) function. For
untruncated k, the approximation becomes more accurate
as β increases. However, the {Fk} decay more slowly with
increasing β and so for a truncated summation, there is a
trade-off in the choice of N and β.

An approximate periodic CDF can then be expressed as

C̃(x) =
∫ π/2

−π/2
p(y)F(x − y)dy (12)

=
∑

|k|≤N

Fkeikx〈ψ |e−iτHk|ψ〉 (13)

=
∑

|k|≤N

Fkeikxgk. (14)

Noting that g−k = g∗
k and that Fk = −i|Fk| for k > 0 and

Fk = i|Fk| for k < 0, this can be simplified to the following
final expression:

C̃(x) =
1
2

+ 2
N

∑

k=1

|Fk| [Re[gk] sin(kx) + Im[gk] cos(kx)] .

(15)

In practice, one only needs to estimate gk for k ≥ 1 and
only for odd values of k.

2. Importance sampling

The summation to be estimated in the CDF-based QPE
approach takes the form given in Eq. (15), where each term
is weighted by a Fourier coefficient, |Fk|. These Fourier
coefficients decay rapidly, such that contributions at large
k may be several orders of magnitude smaller than those at
low k.

For this reason, Ref. [8] suggests performing importance
sampling of this summation. Here, terms are randomly
sampled with probabilities proportional to |Fk|,

Pk =
|Fk|
S

, (16)

where S =
∑N

k=1 |Fk|. We obtain a set of NS values
{k1, . . . , kNS

}, where each ki is sampled with probability
Pki

. The importance-sampled CDF (which we denote by
H̃(x)) can then be constructed as

H̃(x) =
1
2

+
2S
NS

NS
∑

i=1

[

Re[gki
] sin(kix) + Im[gki

] cos(kix)
]

,

(17)

which is an unbiased estimator for C̃(x). The estimates of
Re[gki

] and Im[gki
] for each ki are then each obtained by

performing Hadamard tests as in Fig. 1, with the result-
ing real and imaginary components denoted by ri and si,
respectively. In our experiments, each ri and si estimate
will be averaged over multiple shots in practice, since on
current cloud-based platforms it is inefficient to perform a
circuit for a single shot, due to the overhead in submitting
a circuit. The CDF can then be constructed by

G̃(x) =
1
2

+
2S
NS

NS
∑

i=1

[ri sin(kix) + si cos(kix)] , (18)

which again is an unbiased estimator for C̃(x). Note that
new estimates of ri and si are taken for each sample
ki (rather than only obtaining single estimates for each
unique k). Also note that we use the same set of sam-
ples {k1, . . . , kNS

}, {r1, . . . , rNS
} and {s1, . . . , sNS

} for every
value of x when constructing G̃(x) (rather than performing
a fresh sample for each x).

We emphasize that there are two separate lev-
els of sampling here. We refer to |C̃(x) − H̃(x)| as
“importance-sampling error,” whereas |C̃(x) − G̃(x)| con-
tains importance-sampling error and also “shot noise.”

To aid with discussion later, it will be helpful to write
Eq. (18) in an alternative form. Let nk denote the number
of times that k is sampled during importance sampling. We
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FIG. 2. (a) The CDF for H4 STO-3G, taking the Hartree-Fock wave function as the initial state, calculated with and without sampling
errors. In this example, the results are simulated. The parameters are β = 106 and d = 5000. The “Without sampling errors” CDF is
obtained via Eq. (15), using exact values of gk. The CDF “with importance-sampling errors” is obtained from Eq. (17) with NS = 5000
but again using exact gk values. The dashed vertical lines are exact energies. (b) The derivative of the CDF, enlarged in the region
around the ground-state energy. The maximum of the CDF derivative provides an accurate energy estimate.

can then write

G̃(x) =
1
2

+
2S
NS

N
∑

k=1

nk [r̃k sin(kx) + s̃k cos(kx)] , (19)

where

r̃k =
1
nk

∑

i:ki=k

ri, s̃k =
1
nk

∑

i:ki=k

si (20)

are estimates of the real and imaginary parts of gk, aver-
aged over all repeated samples of k. In order to mitigate
coherent errors when running on a QPU, we will perform
a separate Pauli twirl for each sample of k. Therefore, r̃k

(s̃k) will denote the estimate of Re[gk] (Im[gk]) averaged
over nk Pauli twirls of the appropriate Hadamard test (with
each single-Pauli-twirl estimate, ri or si also averaged over
multiple shots in practice).

As an example, Fig. 2(a) presents simulated results for
H4 in a STO-3G basis, with a square geometry of side
length 1.28 Å. The state |ψ〉 is taken to be the Hartree-
Fock state. The CDF estimates used here are C̃(x) (red) and
H̃(x) (blue) with NS = 5000 (thus shot noise is not present
in these examples). Because this problem is multirefer-
ence, the CDF has multiple “jumps,” each corresponding
to an energy eigenvalue of τH . While importance sam-
pling introduces noise into the CDF estimate, the first few
eigenvalues can still be clearly identified.

Figure 3 plots the values |Fk| against k for the CDF-
QPE method and compares them to those from Somma’s
QEEA, which is discussed in Appendix B. In the QEEA,
we take the half bin width as ǫ = 3 × 10−3. In the CDF-
QPE method, we set β = 105, which has been chosen to
target an equivalent accuracy of around 3 × 10−3 in esti-
mates of λi. The Fourier coefficients Fk decay rapidly in
both methods, although the decay is much more rapid in

the CDF-QPE method. This rapid decay is the reason for
the large efficiency gain in using importance sampling.

3. Estimating energies in the CDF-QPE method

Equation (15) provides a formula to construct the
approximate CDF, which in the limit of large β and N can
be used to obtain the exact energies τλi of τH through
its jump discontinuities. In practice, this function is only
constructed to a finite precision and a method is needed to
estimate λi from the approximate C̃(x).

Reference [9] proves that F(x) can be constructed with a
guaranteed level of accuracy, provided that sufficient β and
d are chosen. In particular, it is proven that for any ǫ > 0

0 500 1000 1500 2000 2500 3000 3500 4000

k

10−11

10−9

10−7

10−5

10−3

10−1

|F
k
|

QEEA

CDF QPE

FIG. 3. A comparison of the Fourier coefficients from the two
statistical phase estimation methods considered (rescaled so that
|F1| = 1), for similar target accuracies. In the QEEA [7], we
choose a bin size of 3 × 10−3. In the CDF-QPE method, we set
β = 105, which gives at least a similar level of accuracy with
high probability. The Fourier coefficients decay rapidly in both
methods, which allows efficient importance sampling.
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and δ ∈ (0, π/2), the condition

|�(x) − F(x)| ≤ ǫ ∀ x ∈ [−π + δ, −δ] ∪ [δ, π − δ]
(21)

is satisfied, provided that

β = max
{

1

4 sin2 δ
W

(

3
πǫ2

)

, 1
}

(22)

and with a sufficient d, which can be chosen as d =
O(δ−1 log(ǫ−1)), and W(·) denotes the principal branch of
the Lambert W function. Throughout this paper, we use Eq.
(22) to choose β for a given target accuracy of δ, after
loosely setting ǫ = 0.1. Note that it is always possible to
construct F(x) via Eq. (10) to check the accuracy of F(x)

for a given β and d; we use this approach to choose d after
first choosing β from Eq. (22). Given the accuracy guar-
antees above, the authors of Ref. [9] estimate τλi with a
procedure similar to a binary search, suggested in Ref. [8].
This approach allows a careful proof of the scaling of the
algorithm for a given target accuracy δ.

In this paper, we take a different practical approach to
estimating τλi from C̃(x), which we find can give more
accurate estimates than the target accuracy δ by 1–2 orders
of magnitude or more. This is performed by maximizing
the derivative of C̃(x) in the region of each jump. From Eq.
(15), the derivative can be calculated (up to an unimportant
constant) as

C̃′(x) =
N

∑

k=1

|Fk| k [Re[gk] cos(kx) − Im[gk] sin(kx)] .

(23)

This can be viewed as an objective function and the loca-
tions of its local maxima (in the regions of jumps in
C̃(x)) can be used to estimate each τλi. When performing
importance sampling and averaging over shots, we instead
take

G̃′(x) =
N

∑

k=1

nk k [r̃k cos(kx) − s̃k sin(kx)] (24)

as an objective function, which provides an unbiased esti-
mator of C̃′(x), up to an unimportant overall constant.
Here, nk, r̃k, and s̃k are as defined in Sec. II A 2. Note that
although C(x) is discontinuous in the exact case, for any
finite d and β, the function C̃′(x) will be well defined and
so this does not lead to practical issues.

To motivate why the above provides accurate esti-
mates of τλi, recall that C̃(x) is defined as a convolution
between the approximate Heaviside function, F(x), and
the probability density function, p(y), as in Eq. (8). F(x)

is constructed to meet the accuracy condition in Eq. (21),

restricting the jump to a region of width approximately
2δ. However, from the Fourier definition of F(x), it can
be seen that the maximum of the derivative of F(x) lies at
exactly x = 0, even for small β and d. To see this, consider
the derivative of F(x),

F ′(x) =
∑

|k|≤N

Skeikx, (25)

where we have denoted Sk = ikFk. The coefficients Sk obey
Sk = S−k ≥ 0 for all k. Therefore, F ′(0) = 2

∑N
k=1 Sk.

Since Sk ≥ 0, this is the maximum value of F ′(x), as
claimed. Now consider the simple case when p0 = 1, so
that the initial state |ψ〉 is an exact eigenstate of τH with
energy τλ0. In this case, p(y) = δ(y − τλ0). Since C̃(x)

is a convolution between F(x) and p(y), the maximum of
its derivative will then lie at exactly τλ0, even for small
β. In the more general case where multiple pi values are
nonzero, the CDF derivative will be a sum of such contri-
butions that will overlap and this argument no longer holds
exactly. However, if the gap between eigenvalues τλi is
much greater than δ, then it is expected to remain a signif-
icantly better approximation than the bound provided by
Eq. (21).

These arguments will be affected by the presence
of noise, including shot-noise and importance-sampling
errors. Also note that the additional factors of k in G̃′(x)
will increase noise from high-k contributions, potentially
making the derivative more susceptible to errors. We will
show in our results, however, that this approach is often
robust in practice.

Figure 2(b) plots the CDF derivative for the H4 example
described above, enlarged in the region of the ground-state
energy. It can be seen that the maximum is an accurate
estimate of τλ0, even after applying importance sampling.
By numerically maximizing this function, the estimate of
τλ0 is in error by only 2.5 × 10−7 Ha without importance
sampling [i.e., using Eq. (15)], which increases to 9.2 ×
10−6 Ha with importance sampling [using Eq. (17)]. This
can be compared to the width of the jump region, which is
approximately 10−3 Ha.

We note that a comparable approach has recently been
suggested by Wang et al. [13]. In this, the method of Lin
and Tong is used to find an approximate region where the
ground-state energy is located. A more accurate estimate
is then obtained by finding the maximum of (fσ ∗ p)(x)

in this region, where fσ (x) is a Gaussian filter kernel. We
expect that our approach is comparable from a practical
point of view, although it avoids working with a separate
Gaussian kernel. Instead, we work with the derivative of
F(x) in place of fσ (x).

B. Variational-circuit compilation

Applying statistical phase estimation requires estimat-
ing gk = 〈ψ |e−iτHk|ψ〉 using the Hadamard test of Fig. 1.
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This requires implementation of the controlled-e−iτHk uni-
tary for a range of k values. One commonly consid-
ered approach to approximately implement this unitary
is through Trotter product formulas. On current NISQ
devices, the circuit depth required to achieve this is far
too high for nontrivial problems, particularly for ab initio

Hamiltonians, where there are many terms in H , and for
the high values of k required for good precision in QPE.

Instead, in this work we primarily use a variational-
compilation technique that allows the action of each
controlled-e−iτHk operation to be compiled to a constant
circuit depth, up to a negligible error. This technique has
recently been used in other studies applying closely related
circuits on superconducting processors [46,47]. More gen-
erally, the task of variationally optimizing the action of
time-evolution operators on a given input state has been
considered in Ref. [48] and generalized to approximate the
whole unitary using tensor-network methods in Ref. [49].
The results in these papers suggest that variationally opti-
mized circuits can be made significantly shorter and more
accurate than Trotter product circuits. A related approach
has also been applied to run quantum signal processing on
a trapped-ion device, using parametrized quantum circuits
that are again optimized variationally [50].

We consider a circuit ansatz as shown in Fig. 4, con-
sisting of alternating one- and two-qubit layers. The one-
qubit layers consist of U3 gates, each of which allows
an arbitrary one-qubit rotation. The two-qubit layers are
constructed using CZ gates, entangling alternating pairs of
qubits in each layer with a “brickwork” pattern. The U3

gates are parametrized by Euler angles (θ , φ, and λ) and
implemented in native gates for Rigetti’s processors as

U3(θ , φ, λ) = RZ(φ) RX (−π/2) RZ(θ) RX (π/2) RZ(λ),
(26)

where rotation gates are defined by RZ(θ) = e−iθZ/2 and
RX (θ) = e−iθX /2. The parameters in the U3 gates can be
variationally optimized such that the circuit ansatz closely
matches the action of the desired unitary on a given input
state. Specifically, following Refs. [47,48], we define the
loss function

L(p) = ‖U|�〉 − Ũ(p)|�〉‖, (27)

where the L2 norm is used. Here, U is the target uni-
tary, Ũ(p) is that of the ansatz circuit with parameters p,
and |�〉 = |+〉 ⊗ |ψ〉 is the input state to U in the cir-
cuit. We apply this variational-compilation procedure to
the controlled-e−iτHk operation. Other components in the
circuit are constructed directly as native gates.

We perform the minimization of L(p) classically. Con-
structing and optimizing this loss function requires con-
structing the action of U on |�〉. As such, the current

methodology is not scalable to systems beyond classi-
cal computation but is nonetheless valuable for near-term
NISQ studies. Alternative loss functions based on the
reduced density matrices can be used instead [46]; this
compilation strategy could then be applied to subcircuits
on fewer qubits than the total circuit, allowing the approach
to scale to large numbers of total qubits. Alternatively,
approaches based on tensor networks could be used [49].
We do not consider these alternative approaches here and
instead work with Eq. (27). While the use of constant-
depth circuits simplifies some aspects of the error mitiga-
tion, there are many aspects of the error-mitigation task
that remain challenging and important to treat carefully, as
we shall see. To investigate the additional challenges intro-
duced by using Trotterization, we also study a Trotterized
example on a QPU at the end of Sec. IV. Additionally,
a Trotterized example is studied in Appendix C in the
presence of both unitary and depolarizing errors.

The circuit optimization is implemented using the JAX

library [51], which enables automatic differentiation of
PYTHON functions. We use the BFGS algorithm imple-
mented in the JAX library to perform the minimization of
L(p). We find BFGS to be far more robust than optimiza-
tions using stochastic gradient-descent methods for this
task.

C. Error mitigation

1. Zero-noise extrapolation

In this paper, we apply ZNE [18–20,52] to mitigate
errors in the expectation values of the Hadamard tests.
ZNE is one of the most commonly studied error-mitigation
methods in the literature. The core idea of ZNE is to exe-
cute the target circuit at varying error rates, denoted by
λ, and extrapolate the results to obtain an estimate at a
reduced error rate. Expectation values are estimated for

FIG. 4. The circuit ansatz used to compile controlled-e−iτHk

operations. The one-qubit layers consist of U3 gates. Each U3

gate is specified by three parameters that are optimized to approx-
imately match the action of the desired unitary. Each U3 gate is
applied as five native gates on the quantum processor (see Eq.
(26)). The two-qubit layers are formed from CZ gates.
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the original circuit, defined by λ = 1, in addition to cir-
cuits at increased error rates λ > 1. A function is fitted to
these expectation values and used to extrapolate to error
rate λ = 0, which gives the error-mitigated estimate.

There are various possible methods to increase the error
rate λ. Examples in the literature include parameter noise
scaling and pulse stretching [20,52]. In our implementation
of ZNE, we increase λ using identity insertion (sometimes
referred to as “unitary folding”) [53]. Identity insertion n >

0 times replaces a unitary operation U according to

U → U(U†U)n. (28)

The error rate λ is then defined as

λ = 1 + 2n. (29)

According to this definition, λ = 1 corresponds to n = 0,
meaning that no identity insertion is performed.

The circuits in this study are performed in layers of one-
or two-qubit gates that are executed in parallel (see Sec.
II B and Fig. 4). In our ZNE implementation, we fold full
two-qubit gate layers, which typically have higher error
rates than one-qubit gates on superconducting devices.
Folding layers of gates rather than individual gates helps to
ensure a consistent error profile with folding, e.g., ensuring
that the crosstalk will be consistent in each layer.

In our implementation of ZNE, we execute circuits at
error rates λ = 1, 3, and 5. To obtain circuits at error rates
λ = 3 and λ = 5, we apply identity insertion as in Eq. (28),
with n = 1 and n = 2, respectively. A possible drawback
of using such large error rates as 3 or 5 is that for low
gate fidelities, the final error can be too large to perform a
reliable extrapolation. However, in the examples studied
in this paper, this is not found to be a significant prob-
lem. Furthermore, the use of only odd-integer λ values
means that every two-qubit gate layer is folded, avoiding
complications around having to pick a subset of layers to
fold.

2. Mitigating coherent errors

As discussed in Sec. II C 1, we fold the two-qubit lay-
ers, which consist of CZ gates in this work. Such CZ gates
typically suffer from significant coherent errors on cur-
rent superconducting devices. To mitigate these coherent
errors, we apply a form of RC [25,26]. This is achieved
by applying random Pauli gates, uniformly sampled from
{I , Z, X , Y}, to each qubit before a CZ layer. Because CZ

gates are Clifford operators, it is always possible to then
apply corresponding cancelling Paulis after the CZ layer
[54,55]. This essentially has the effect of Pauli twirling
the CZ gate layer [56,57]. This twirling process is usu-
ally averaged over multiple instances of the same circuit,
with a new set of random Paulis applied in each. One can
additionally average each twirl of the circuit over multiple

shots, as we do in this work (for details, see Sec. III B).
After inserting the Pauli layers, each circuit contains sub-
sequent layers of Pauli and U3 gates, which can be merged
into a single U3 gate layer. This procedure is known to con-
vert an arbitrary error channel into a Pauli error channel,
thus eliminating coherent errors.

Our implementation of randomized compiling differs
from previous descriptions due to the use of importance
sampling. Remember that our goal is to estimate the CDF,
C̃(x), defined in Eq. (15). As discussed in Sec. II A 2,
we importance sample this summation, as contributions at
high k will typically be orders of magnitude smaller than
at small k. We incorporate the twirling procedure into the
importance sampling of C̃(x). If nk denotes the number
of times that k is sampled during importance sampling,
then the estimates for Re[gk] and Im[gk] are each averaged
over nk independent twirls of the corresponding circuits.
These estimates are denoted by r̃k and s̃k, as defined in Eq.
(20). Therefore, estimates for k = 1 will typically be aver-
aged over a large number of twirls, while many circuits for
large values of k will be performed for just a single twirl
(i.e., without averaging). This will lead to poorer results
at large k (both larger coherent errors and larger statisti-
cal errors), which will also impact on the performance of
ZNE. However, because these terms are weighted by nk,
their contribution will be small and thus it is to be expected
that the corresponding errors will not significantly impact
C̃(x). The converse is also true; using this approach, errors
at low k will be much smaller, which is beneficial for
the final estimate of C̃(x) due to their high weight in the
summation.

The mitigation of coherent errors is known to improve
the performance of ZNE, allowing a more reliable fitting
of the expectation values with λ. This has been demon-
strated in, e.g., Ref. [58], which has provided theoreti-
cal arguments to justify this finding, and will be further
demonstrated in our results. Important improvements have
also been demonstrated in the VQE algorithm [59]. Specif-
ically, we find an exponential fit to be accurate in most
cases. It should be pointed out, however, that the theoret-
ical arguments for well-behaved exponential ZNE extrap-
olations in Ref. [58] only hold for depolarizing channels
and, indeed, the authors show that this result does not hold
in general for Pauli channels with nonequal Pauli weights.
Despite this, we will see that ZNE performs well after ran-
domized compiling. We mention that the noiseless output
extrapolation (NOX) method [60] has been proposed to
overcome the above potential shortcomings, although we
do not consider this method here.

Given the above, our strategy for ZNE is to attempt an
exponential fit for Re[gk] and Im[gk] at every value of k

sampled. However, in some cases (particularly at large k

where nk is small), this fit may be unstable or of poor
quality. Since we know that all Re[gk] and Im[gk] values
must lie in the range [−1, +1], we loosely check that the
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extrapolated estimate is less 1.2 in magnitude. If this is
not the case, then we instead switch to a quadratic fit for
that data point. This strategy avoids extremely large gk

estimates due to unstable exponential fits.

3. Readout-error mitigation

We apply readout-error mitigation to our results using
the symmetrized approach described in Ref. [17]. Other
readout-mitigation strategies include methods based on
assuming readout noise to be local or based on continuous-
time Markov processes [16,61].

Suppose that we are mitigating the readout of n qubits.
Define a calibration matrix A as

Aij = P(measure |i〉 | prepared |j 〉), (30)

where |i〉 and |j 〉 are computational basis states. Also
define a vector C such that the ith element is equal to the
number of times the n-qubit state is measured to state |i〉.
Then let Cideal be such a vector C under perfect readout.
Applying matrix A to Cideal gives an estimate of the results
under noisy readout,

E[Cnoisy] = ACideal, (31)

where E[·] denotes an expectation value. Therefore, an
estimate of Cideal can be obtained by inverting A,

Cideal ≈ A−1Cnoisy. (32)

To estimate the matrix A, we repeatedly prepare and mea-
sure each of the 2n computational basis states. We use the
measurement outcomes to estimate the probabilities as in
Eq. (30) and thus the matrix A.

In practice, the readout error when measuring state |1〉
is often higher than the readout error when measuring state
|0〉, so that the calibration matrix A will not be symmetric.
Moreover, readout errors often drift quite rapidly, so that
a given estimate of A may not be accurate throughout an
experiment. We can nonetheless symmetrize the calibra-
tion matrix by bit-flip averaging [17], in which an X gate
is applied directly before measurement for half of the shots
performed (for every circuit involved in estimating each
gk). This symmetrizes any errors that remain after apply-
ing readout mitigation, resulting in a better-behaved final
CDF estimate. Nonsymmetric readout errors will generally
result in additive errors in the gk estimates, which can show
up as a spurious signal at λi = 0 in the Fourier transform.
Symmetrizing readout errors in this way can therefore sig-
nificantly improve the quality of the results. This simple
approach of applying X before measurement in 50% of
shots is found to be very effective in practice.

III. METHODS

A. Software

To generate phase-estimation circuits, including
variational-circuit compilation, we use software devel-
oped by Riverlane. These circuits are then converted to
pyQuil format and compiled to executables that are run on
Rigetti’s Aspen quantum processors, using their Quantum
Cloud Services (QCS) platform [62] and associated soft-
ware [63]. We also use pyQuil extensively to perform prior
testing on quantum virtual machines (QVMs).

We use the ORCA program package [64] to perform
embedding calculations and PySCF [65,66] to perform
Hartree-Fock to generate the fermionic Hamiltonian for
other systems. The Gaussian 16 program package [67] is
used to perform geometry optimization for one structure
detailed in Appendix A. The OpenFermion library [68] is
used to perform mapping from fermionic to qubit operators
using the Bravyi-Kitaev mapping [69], discussed further
below. Variational-circuit compilation is performed using
the JAX library [51].

B. Implementation details

Here, we discuss some specifics related to implementa-
tion of circuits for Rigetti’s software stack and QPUs.

As discussed in Sec. II C 2, we perform a separate
Pauli twirl of the circuit for each value ki obtained dur-
ing importance sampling. For example, if k = 1 is sam-
pled n1 = 50 times during the importance-sampling step,
then the estimates for r̃1 and s̃1 will each be averaged
over 50 independent twirls of the corresponding k = 1
circuits.

Ideally, we would like to perform as many Pauli twirls
as possible and so would seek to perform an independent
twirl for each shot. In practice, each separate twirl must be
submitted to the QPU as a separate circuit. Because circuit
loading takes significantly longer than circuit running, it is
inefficient to perform only one shot per twirl. Instead, we
perform 100 shots of each, with 50 each for the original and
bit-flipped versions of the circuit in order to symmetrize
readout errors. Therefore, when constructing the estimates
r̃k and s̃k as in Eq. (20), it should be understood that the
estimates ri and si are each averaged over 100 shots in
this manner, before averaging over nk independent twirls
to construct r̃k and s̃k. These are the final estimates plotted
for Re[gk] and Im[gk] in subsequent sections and also used
in constructing the final CDF estimates via Eq. (19).

To improve the effectiveness of ZNE, it is important
for each gate layer to be as consistent as possible, thus
ensuring a similar noise profile for each. To help achieve
this, we add FENCE statements around all two-qubit layers
in the Quil circuit, which ensures identical pulse tim-
ings. Additionally, we decompose all one-qubit gates with
the structure RZ(φ) RX (−π/2) RZ(θ) RX (π/2) RZ(λ). This
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FIG. 5. Results from the CDF-QPE method performed on the Aspen-11 QPU at three different error rates (ZNE-extrapolated results
are not presented here), for methanethiol (2e, 2o) with a stretched SH bond. (a),(b) Results performed without mitigation of coherent
errors. (c),(d) Results with mitigation of coherent errors by RC. There are three significant eigenstates present, the exact eigenvalues
of which are marked by dashed lines in the CDF. The mitigation of coherent errors leads to significantly better-behaved estimates
of gk with an increasing error rate, which leads to improved estimates of C̃(x). The locations of jumps in the CDF match the exact
eigenvalues closely, even at high error rates.

includes trivial Pauli gates such as I and Z. Our aim here is
to again ensure that gate layers are as consistent as possi-
ble. It should be noted that RZ gates are performed virtually
on Rigetti’s quantum processors [70].

C. Chemical systems

We study five separate systems in active spaces from
two to four spatial orbitals. Here, the active space refers
to a particular set of orbitals and a number of electrons
used to occupy those orbitals. An active space with n elec-
trons in m spatial orbitals (2m spin orbitals) is denoted
(ne, mo). Two of our example systems are motivated by
pharmaceutical applications and use a recently developed
embedding method to target a chemically relevant region
of the molecule with a small active space [45]. The first of
these systems is methanethiol, using a (2e, 2o) active space
for a minimal model of hydrogen abstraction. The second
is a structure that we refer to as “clusterTS,” taking a (4e,
4o) active space. Both of these systems are described in
Appendix A.

We also study H+
3 and H−

3 in the STO-3G basis as
example three-orbital systems. The geometry is an equi-
lateral triangle in both cases, with a bond distance of
0.9 Å in H+

3 and 1.75 Å in H−
3 . Lastly, we study H2 to

investigate a minimal example of Trotterization. Here, a
STO-3G basis is used once again, with a stretched bond
length of 2.0 Å.

The qubit Hamiltonian is generated using the Bravyi-
Kitaev qubit mapping [69] for all systems. Specifically, we
use the approach of Ref. [71], which allows two qubits to
be tapered due to spin- and particle-number symmetries,
and is implemented in OpenFermion [68]. Thus, for an
active space of M spatial orbitals, the corresponding qubit
Hamiltonian requires 2M − 2 qubits. For the Trotterized
H2 example, we taper a further qubit, which is possible due
to reflection symmetry. This allows the Hamiltonian for H2

STO-3G to be represented by a single qubit.
The Hartree-Fock wave function is taken as the initial

wave function, |ψ〉, for all systems. The PySCF input files
used to generate fermionic integrals for H2, H+

3 , H−
3 , and

H4, including the molecular geometries, are included in the
additional data [72].

IV. RESULTS

A. Methanethiol (2e, 2o)

As a first example, we consider application to
methanethiol in a (2e, 2o) active space, using orbitals cen-
tered on the sulfur-hydrogen (SH) bond, as described in
Appendix A. To model the dissociation limit, we take
the SH distance to be 4 Å. This is a minimal model but
it results in a multireference problem. We focus first on
demonstrating how the CDF is constructed from the QPU
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FIG. 6. The results for methanethiol (2e, 2o) with a stretched SH bond, using gk estimates obtained from Aspen-11. (a) Estimates of
Re[gk] for k = 3 as an example, performed at error rates λ = 1, 3, and 5. An exponential fit is accurate after performing randomized
compiling, leading to an improved ZNE estimate at λ = 0. Such a fit cannot be reliably performed for data obtained without mitigation
of coherent errors. (b) CDFs constructed using ZNE-extrapolated gk estimates.

calculations and, in particular, on the effect of incorporat-
ing RC into the importance-sampling procedure. In Sec.
IV B, we then apply this approach to more challenging
Hamiltonians with four and six qubits.

The qubit Hamiltonian for this system can be con-
structed using two qubits, so that three qubits are required
for each Hadamard test. We variationally compile each
controlled-e−iτHk operation to a brickwork circuit ansatz.
Here, the variational compilation can be performed with
negligible errors using only three layers of CZ gates; the
value of L(p) is typically smaller than 10−6 after optimiza-
tion. The total number of CZ gates is three, nine, and 15 for
error rate λ = 1, 3, and 5 circuits, respectively.

The calculations are performed on Aspen-11 using
qubits 11, 26, and 27, with qubit 11 taken as the ancilla.
CDF Fourier parameters are taken as β = 105 and d =
2 × 103. From Eq. (22) together with ǫ = 0.1, this corre-
sponds to an accuracy of δ ∼ 0.003. NS = 2 × 103 samples
are taken for the importance sampling and 100 shots are
performed per sample, thus the total number of shots is
2 × 105. Due to the very rapid decay of Fk, most sam-
ples are performed at small k. For example, 530 samples
are performed at k = 1 and 153 samples are performed at
k = 3, whereas only 28 samples are taken in total for all
values k > 1000.

In all of the results, we compare with the CDF labeled
“Without QPU errors,” which is calculated numerically
with importance sampling using exactly the same sam-
ples {ki} but in the absence of QPU errors or shot noise;
this corresponds to H̃(x) in Eq. (17). ZNE aims to cor-
rect gate errors by improving estimates of gk but cannot
correct importance-sampling noise, and so this is the fair
comparison to make.

Figure 5 presents results for the real components of
gk (up to k = 79) and the corresponding CDF estimates,
for error rates λ = 1, 3, and 5, performed both with and
without randomized compiling. Without RC, the CDF at

λ = 1 can be used to correctly estimate the energies of
τH through its jumps but this becomes challenging for the
excited states at higher error rates and the general qual-
ity of the CDF is poor. This is improved significantly by
applying RC. The energies are clearly identifiable at all
error rates and the shape of the CDF is largely correct.
By inspecting the values of Re[gk], it can be seen that the
expectation values decay with increasing error rate in a
more systematic manner when RC is applied than with-
out. Figure 6(a) emphasizes this behavior by showing an
example ZNE extrapolation for the real component of gk

at k = 3. An exponential fit is seen to be accurate with RC
applied, which leads to an improved estimate. This expo-
nential decay is not observed when RC is not incorporated,
making ZNE less effective.

Figure 6(b) shows the CDFs obtained from ZNE-
extrapolated estimates of gk. The same general behavior
is observed; with RC applied, the ZNE-corrected CDF
has roughly the correct amplitude compared with the
exact result. In contrast, the ZNE-corrected CDF obtained
without RC is of relatively poor quality and has large fluc-
tuations (even beyond the expected importance-sampling
noise) away from the jump regions. These results demon-
strate the importance of mitigating coherent errors in
statistical phase estimation experiments.

B. Four- and six-qubit Hamiltonians

We next apply these methods to larger systems, first
to H−

3 , which requires five-qubit circuits, and then to the
clusterTS system defined in Appendix A, which requires
seven-qubit circuits. Given the improvements observed by
applying RC in Sec. IV A, it is applied for all results in this
section.

Figure 7 shows the results for H−
3 . Here, controlled-

e−iτHk unitaries are compiled with seven CZ layers for
the λ = 1 circuits, with two CZ gates per layer. The CDF
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FIG. 7. Results from the CDF-QPE method for H−
3 in a STO-3G basis, performed on Aspen-M-3. Here, the ground-state wave

function is multireference, leading to three jump regions in the CDF, each indicating an energy eigenvalue. (a),(b) Estimates of the real
and imaginary parts of gk for error rates 1, 3, and 5, and the subsequent ZNE-extrapolated estimates. Note that we set d = 5000 but
only present results up to k = 79 for clarity. (c) The CDF itself and (d) its derivative, enlarged in the region of the ground-state energy.
The derivative of the CDF can be used to obtain an extremely accurate estimate of each energy. Extrapolation improves the amplitude
of the CDF, although the location of the jump is not affected.

Fourier parameters are β = 106 and d = 5 × 103. NS =
4 × 103 samples are taken for importance sampling. The
circuits are performed on Aspen-M-3 using qubits 30 and
34–37, with 34 taken as the ancilla. The corresponding CZ

fidelities, as estimated by randomized benchmarking, are
between 97.5% and 99.3%.

It can be seen that ZNE does a good job at correcting
gk estimates, particularly at low k, where more samples are
taken. This system is multireference, with three eigenstates
having a significant overlap with the initial Hartree–Fock
state, leading to three jump regions visible in the CDF.
The ground-state energy is clearly identifiable at all error
rates, although there is no clear signal from excited states at
error rate λ = 5. Also shown is the CDF derivative, G̃′(x),
enlarged in the region of the ground-state energy; the max-
imum of this objective function provides an extremely
accurate estimate of the true energy at all error rates.

Figure 8 presents equivalent results for the clusterTS
system, which has four orbitals in the active space. Here,
we take CDF Fourier parameters β = 106 and d = 5 ×
103, and NS = 4.8 × 103 for importance sampling. We are
able to obtain a good representation of each circuit using
nine CZ layers for each controlled-e−iτHk operation. Each
layer contains three CZ gates. Thus, for λ = 1, each circuit
contains 27 CZ gates. For the highest error rate, λ = 5, each
circuit contains 135 CZ gates. The final CDF is constructed

by averaging over a large number of circuits; when
considering both X and Y measurement bases, each ZNE
error rate, the large number samples NS (each correspond-
ing to a separate Pauli twirl), and bit-flip averaging to
symmetrize readout errors, 57 600 separate circuits are per-
formed to construct the CDFs, with 50 shots of each.
The circuits are again performed on Aspen-M-3, using
qubits 30–32 and 34–37, with qubit 34 again taken as the
ancilla. The corresponding CZ fidelities, as estimated by
randomized benchmarking, are between 96.7% and 99.2%.

Figures 8(a) and 8(b) show the real and imaginary com-
ponents of gk at each error rate and the ZNE-extrapolated
results. It is again observed that gk estimates decay sensi-
bly with λ within statistical errors and that the extrapolated
estimates are a significant improvement for most k values.
The final CDF estimates are shown in Fig. 8(c). Here, the
ground-state wave function is single reference, leading to
a single jump in the CDF, which is distinguishable at each
error rate. The maximum of the CDF derivative in Fig. 8(d)
again allows an accurate estimate of λ0 to be obtained.

As one method of quantifying the improvement made
to the CDF estimates by applying ZNE, we consider the
distance metric

W =
∫ α

−α

|C̃approx(x) − C̃exact(x)| dx, (33)
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FIG. 8. The results from the CDF-QPE method for the six-qubit “clusterTS” system, performed on Aspen-M-3. Here, the ground-
state wave function is single reference, leading to a single jump region in the CDF. (a),(b) Estimates of the real and imaginary parts of
gk for error rates 1, 3, and 5, and the subsequent ZNE-extrapolated estimates. (c) The CDF itself and (d) the CDF derivative, enlarged
in the region of the ground-state energy.

where [−α, α] is the range in which the CDF is calculated,
with α = 1.5 here, and we calculate the integral numeri-
cally. An exact estimate of the CDF corresponds to W = 0.
Table I gives the percentage reduction in W after perform-
ing ZNE (λ = 0) compared to the unmitigated estimates
(λ = 1). The CDF is improved by around 77–80% for the
larger systems studied.

This improvement demonstrates the potential of ZNE
to mitigate errors in expectation values, and agrees with
previous ZNE studies. However, we find that the bene-
fit of performing ZNE is somewhat limited in statistical
phase estimation. Ultimately, the energies of the Hamil-
tonian are estimated through the jumps in the CDF; thus,

TABLE I. Metrics assessing the effect of ZNE. All results use
RC and readout-error mitigation. The application of ZNE leads
to a significant improvement in the distance metric W for all sys-
tems studied. The error in the ground-state energy estimate, �λ0,
is extremely small both with and without ZNE applied; how-
ever, there is no improvement made within statistical errors by
applying ZNE and the estimate is even worsened in some cases.

System

Improvement
in W after
ZNE (%)

�λ0 before
ZNE (mHa)

�λ0 after
ZNE (mHa)

Methanethiol 63.1 0.022 0.009
H+

3 79.8 0.050 0.071
H−

3 77.6 −0.002 0.019
ClusterTS 77.3 0.089 0.149

two important metrics are the final energy estimates and
the ability to distinguish these jumps from the sampling
noise. Here, we find no improvement upon performing
ZNE. Table I gives errors in ground-state energy estimates
for each system, calculated as �λ0 = λestimate

0 − λexact
0 . No

systematic improvement is observed by performing ZNE
and in many cases the error is slightly increased (although
statistical errors may account for this). Similarly, while
ZNE increases the amplitude of the CDF, the importance-
sampling noise is also inevitably amplified. This latter
result may be expected; remember that ZNE only aims
to address QPU errors, and not statistical sampling errors.
Moreover, ZNE comes with a significant sampling over-
head in order to estimate each gk with sufficient precision
at high λ, as required for a reliable extrapolation.

The lack of improvement by performing ZNE seems to
be associated with the natural resilience of statistical phase
estimation to noise, particularly after mitigating coherent
errors and symmetrizing readout errors. Indeed, even in
the presence of significant QPU errors, the ground-state
energy errors are found to be extremely small, typically
smaller than 0.1 mHa. Again, note that for all of the exam-
ples studied here, β is chosen according to Eq. (22) for
a target accuracy of δ ∼ 1 mHa. Thus the final accuracy
is often found to significantly exceed this target, even in
the presence of noise. Therefore, while applying ZNE is
found to give little practical benefit, we find that miti-
gating coherent errors by RC is very beneficial and can
lead to an algorithm with natural noise tolerance. Since
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statistical phase estimation requires averaging over a large
number of circuits, the required twirls can be incorpo-
rated at minimal cost compared to the bare method, unlike
ZNE, which requires additional circuits to be performed,
the signal of which decays exponentially with increasing
λ. Furthermore, incorporating the twirls directly into the
importance-sampling procedure is found to be practically
effective.

C. Trotterization

The previous sections have investigated constructing the
CDF for circuits the depth of which is independent of
k. This requires mitigation of various errors that reduce
the performance of the algorithm. However, for a scalable
approach, we require circuits the length of which grows at
least linearly with k. As a final example, we investigate a
minimal model of H2 using Trotterization and investigate
the performance of the same error-mitigation techniques.

We consider H2 in a STO-3G basis set, with a stretched
internuclear distance of 2.0 Å. Using the Bravyi-Kitaev
transformation with qubit tapering, this Hamiltonian can
be represented by a single data qubit [71]. In particular,
qubits are tapered due to particle number, spin, and reflec-
tion symmetries. This allows the qubit Hamiltonian to be
written as

H = c1Z + c2X , (34)

where c1 = 0.121256 and c2 = 0.259138 and we have dis-
carded a constant shift of −0.662537. The two eigenstates
of H correspond to the lowest bonding and antibond-
ing states of H2. We choose τ = 1.5/(c1 + c2) = 3.943
and work with the scaled Hamiltonian τH . We then per-
form first-order Trotterization with a single Trotter step,
i.e., taking e−iτHk ∼ (e−iτc2X e−iτc1Z)k. The exact energies
of τH before and after Trotterization are ±1.128189 Ha
and ±1.089119 Ha, respectively. Thus there is a Trot-
ter error of 39 mHa, or 10 mHa after rescaling by τ−1.
We are not concerned with Trotter error here but, rather,
with the performance of the statistical phase estimation
method and error mitigation and thus we only compare to
the Trotterized energies from now on. Note that a similar
H2 Hamiltonian has been used in a study of textbook QPE
on a neutral-atom quantum computer, performed to three
bits of precision [39].

The circuit for a single Trotter step is given in Appendix
C and has a CZ depth of 4. Therefore, circuits to estimate
gk have a CZ depth of 4k. The results are performed on
Aspen-M-2 using qubits 121 and 122. The estimated CZ-
gate fidelity from randomized benchmarking is 99.22 ±
0.1662%. The ancilla is taken as qubit 121, with an
estimated readout fidelity of 98.4%.

The simulation parameters are chosen as β = 50, d =
30, and NS = 500. These are considerably lower than those
used in previous sections due to the need to limit the
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FIG. 9. The results for a stretched H2 molecule, using first-order Trotterization to construct e−iτHk, performed on the Aspen-M-2
QPU. (a),(b) Estimates of the real part of gk, estimated (a) without and (b) with randomized compiling. The dashed lines are added
between estimates for clarity. (c),(d) The derivative of the CDF constructed from gk, (c) without and (d) with randomized compiling.
The subplots labeled “GS” and “ES” are enlarged in the region of the ground state and excited state, respectively. The results are
performed at error rates 1, 3, and 5 and extrapolated. RC leads to better final energy estimates and a more accurate relative signal
between the two states. ZNE improves the signal but does not improve the energy estimates.
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circuit depth. Taking ǫ = 0.1, this corresponds to δ ≈ 0.13
in Eq. (22); thus we expect a low resolution in the CDF.
The highest value of k sampled is k = 25. The highest CZ

depth is therefore 100 with λ = 1 or 500 with λ = 5.
The results are presented in Fig. 9, performed with (left)

and without (right) RC applied: they display behavior sim-
ilar to that observed in Sec. IV A. In particular, the decay
of gk with increasing λ is better behaved for the twirled
results, leading to more accurate extrapolations for ZNE.
A better energy estimate is also obtained (as determined
by maximizing the CDF derivative) with RC applied than
without. For the ground-state energy, the error in the ZNE-
extrapolated estimate is reduced from −22 mHa to −8
mHa after applying RC. These errors remain large in both
cases but this is expected due to the low precision used. As
observed in Sec. IV B, we again find that ZNE improves
the amplitude of the CDF toward the exact value but does
not lead to improvements in the energy estimates.

We note that a related result has been observed in simu-
lations performed in Ref. [73], where the authors consider
a control-free variant of phase estimation. They show that
coherent noise causes errors in the phases of the unitary
and prove that these errors are removed to first order with
RC, verified with simulations. Such a result can be sim-
ilarly motivated in statistical phase estimation. For gk =
∑

i pi e−iτλik, the Fourier transform gives a sum of delta
functions, shifted by the energies, λi. In the ideal case
of a depolarizing noise model, we expect gk to decay
exponentially with k relative to the exact result, i.e., gk ∼
e−γ |k| ∑

i pi e−iτλik, for some decay rate γ . The energies
λi can still be extracted exactly by taking a Fourier trans-
form of this gk; the corresponding poles will be broadened
but the maxima of the poles, and therefore the energy
estimates, are unchanged. This also motivates why ZNE
should not be expected to improve energy estimates fur-
ther. In Appendix C, simulated results are performed for
the same system but with higher precision, applying depo-
larizing noise in one example and unitary errors in another.
The results are found to confirm these ideas; increasing
the depolarizing error rate broadens each peak in the CDF
derivative but does not affect the energy estimates, beyond
statistical noise. Under unitary errors, there is a signifi-
cant error in the ground-state energy estimate, which is
largely removed by incorporating RC into the importance-
sampling procedure, at the cost of broadened signals in the
CDF. Lastly, we note that Ref. [74] has also analyzed a
statistical version of phase estimation and given theoreti-
cal arguments to justify the approach having tolerance to
noise under certain models.

V. CONCLUSIONS

In this study, we have implemented statistical
phase estimation techniques on Rigetti’s quantum
processors, in combination with error-mitigation and

chemical-embedding methods, allowing accurate energy
estimation for several small chemical problems. In addi-
tion, a variational-compilation technique has been used
to reduce the circuit depth. We find this combination
of techniques to be robust in practice, allowing accurate
estimation of the ground-state energy with high confi-
dence, even in the presence of significant QPU errors.
The variational-compilation technique is also found to be
robust and should be seen as a valuable tool for near-term
NISQ studies. In the longer term, there is an interesting
possibility of using this technique to optimize repeated
sub-blocks within larger circuits.

We have demonstrated that the CDF-based approach of
Lin and Tong [8], using the optimized Fourier approxima-
tion of Wan et al. [9], can be used to give significantly
better energy estimates in practice than suggested by pre-
vious bounds. In particular, the derivative of the estimated
CDF can be viewed as an objective function, the max-
imum of which gives accurate energy estimates. This
estimate can be orders of magnitude more accurate than
the rigorous bound derived in Ref. [9], even in the pres-
ence of both QPU and importance-sampling errors. This
improved accuracy will permit the use of shorter circuits,
allowing useful applications of phase estimation to be per-
formed sooner. In the future, it would be interesting to
derive a theoretical explanation of our observed improved
accuracy.

We have shown that error mitigation and noise tailoring
are important for improving the quality of the estimated
CDF. In particular, there is a significant benefit in mitigat-
ing coherent errors. The twirling procedure in randomized
compiling is incorporated into the importance sampling of
the CDF, thus performing a much larger number of twirls
at small k than at large k. Indeed, many circuits at large
k are performed for only a single twirl in this approach.
Despite this, we find the approach to be robust, leading to
noise resilience in the statistical phase estimation results.
We do not find further improvements in the energy esti-
mates after applying ZNE; although ZNE does improve
the signal of the CDF in each case, the energy estimates
themselves and the signal-to-noise ratio are not systemat-
ically improved. Given the very high additional sampling
cost associated with performing ZNE, overall we find it
preferable to not use ZNE for this application. Lastly, we
mention that an alternative error-mitigation approach has
been suggested recently, which involves postselecting the
data qubits of the Hadamard test circuits to be measured in
the starting state [29]; we have not tested this approach but
believe that it could be combined with the methodology
developed here to improve the results further.

The results presented suggest the possibility of perform-
ing large-scale phase-estimation experiments in a manner
that allows noise resilience and also that the required cir-
cuit depth for a given accuracy can often be made much
lower than in traditional QPE approaches. The use of
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shorter circuits and accurate results in the presence of noise
will be crucial for successful applications of phase estima-
tion on early fault-tolerant devices. Taken together with
other recent results [13,14], we believe that this shows
significant promise for statistical phase estimation tech-
niques, emphasizing their potential as valuable techniques
for chemistry and materials problems and motivating fur-
ther development work in this direction. As we enter the
regime of early fault-tolerant quantum computing, it will
be important to explore whether our observed results hold.
This suggests further work to repeat our experiments on a
real or simulated early fault-tolerant quantum computer.
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APPENDIX A: DETAILS OF CHEMICAL

SYSTEMS

Here, we provide details of the two systems studied
in this paper that have been motivated by pharmaceutical
applications.

Methanethiol is a model system for the amino acid
cysteine, a naturally occurring amino acid in proteins.
Hydrogen abstraction from the thiol group of cysteine
is an essential step in many enzymatic and drug-binding
processes [75]. Methanethiol is the smallest neutral self-
contained system that features a carbon-connected thiol
group. The orbitals in the (2e, 2o) active space selected
are located on the SH bond, allowing a minimal model of
hydrogen abstraction.

As a larger example, we have studied a cut-out of ibruti-
nib in its binding pocket, a drug approved for treatment of
non-Hodgkin lymphoma [76] that binds covalently to the
cysteine of Bruton’s tyrosine kinase (BTK). Correspond-
ing to the hydrogen abstraction in the model system, we
have considered a transition-state structure for the hydro-
gen transfer from thiol to an adjacent water molecule,
which we refer to as “clusterTS.” There are the two elec-
trons of the thiol bond and the forming bond between
the transferred hydrogen and water, which need to be
included in a (4e, 4o) active space. This pharmaceutically
relevant system has been used in a previous study of quan-
tum algorithm resource estimation by some of the current
authors [5] and we refer to a more detailed description of
this system in that work. The geometry optimization of

methanethiol was carried out with the Gaussian 16 pro-
gram package [67] at the MP2 level of theory [77] and
using the aug-cc-pVQZ orbital basis set [78–80] level of
theory. The SH distance has then been fixed to 4 Å. The
transition-state structure for the drug-protein cut-out has
been taken from one of our previous studies [81].

APPENDIX B: SOMMA’S QUANTUM

EIGENVALUE ESTIMATION ALGORITHM

(QEEA)

Some alternative statistical phase estimation methods
primarily differ in their classical analysis. Therefore, once
a set of values {gk} have been estimated, it is relatively easy
to test alternative statistical phase estimation approaches to
estimate the eigenvalues {λi}.

In addition to the CDF-QPE approach discussed in
the main text, we have also implemented the quantum
eigenvalue estimation algorithm (QEEA) of Somma [7]
and tested it with estimates of {gk} from Rigetti’s QPUs.
Although the underlying approach to estimate {λi} is quite
different, it will be seen that the final objective function
takes an identical form, primarily differing in the Fourier
coefficients of the target function. We also extend the
QEEA method by implementing importance sampling and
briefly demonstrate its performance here.

1. Theory

In the QEEA, a range [−α, α] is considered in which
the Hamiltonian is known to be bounded and where α ≤ π .
α = 1/2 is chosen in the original presentation. The range
[−α, α] is divided into M bins, each with width 2ǫ for a
small ǫ > 0. These bins are constructed to overlap with
each other, such that the center of the j th bin is given
by −α + j ǫ. The use of bins that overlap helps to ensure
appropriate normalization of results; we will return to this
point shortly.

Consider a state |ψ〉, which will be chosen to have a
large overlap with a state (or set of states) the energy
of which we seek to estimate. For example, for a chem-
ical system where we wish to estimate the ground-state
energy, |ψ〉 might be taken as the Hartree-Fock state. For
each bin, the QEEA aims to assess whether corresponding
eigenstates (the eigenvalues of which lie within the bin)
have a significant overlap with |ψ〉. By making ǫ suffi-
ciently small, we can then obtain accurate estimates of the
desired λi.

More precisely, for each bin, we define a function fj that
acts as a window function for that bin. This means that
fj (λi) will be nonzero only if λi is within the j th bin. For
an eigenstate |�i〉 of τH with eigenvalue τλi,

fj (τH)|�i〉 = fj (τλi)|�i〉. (B1)
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The goal of the QEEA is then to construct the vector

pj = 〈ψ |fj (τH)|ψ〉. (B2)

This is referred to as the probability vector. Only bins con-
taining eigenstates supported by |ψ〉 will have nonzero
values pj and the magnitudes pj will be related to the cor-
responding overlaps, 〈�i|ψ〉. Thus, by assessing the bins
with a large pj , one can estimate the desired eigenvalues
of τH .

We can estimate pj from a set of gk estimates by
expanding each fj as a Fourier series,

fj (τH) =
1

√
2π

∞
∑

k=−∞
Fj (k)e

iτHk. (B3)

Inserting this expansion into Eq. (B2) and truncating such
that |k| < N , for some N ∈ N, gives

p̃j =
1

√
2π

∑

|k|<N

Fj (k)g
∗
k . (B4)

Here, p̃j denotes the approximate probability vector, with
an error introduced due to truncation.

It only remains to choose the precise form of fj (x).
There are many choices that could be made but because the
Fourier series is truncated, it is important that the Fourier
coefficients Fj (k) decay rapidly. Somma chooses

fj (x) =
∫ ∞

−∞
hǫ(y − x)1j (y) dy, (B5)

where 1j is the indicator function for the j th bin, and hǫ is
a rescaled bump function. Specifically,

h(x) =
{

a e−1/(1−x2), if |x| < 1
0, if |x| ≥ 1

(B6)

with a such that
∫ 1
−1 h(x)dx = 1 and then

hǫ(x) =
2
ǫ

h(2x/ǫ). (B7)

The key properties for this choice are that the Fourier
coefficients Fj (k) decay superpolynomially and that
∑M

j =1 fj (x) = 1 for x ∈ [−α, α]. This second point is
important to ensure that contributions are appropriately
normalized; this is why bins are chosen to overlap, pre-
venting potential issues if an eigenvalue lies near the edge
of a bin.

As stated in Ref. [7, Appendix A], the Fourier coeffi-
cients can be derived as

Fj (k) = H(kǫ/2)e−iλj k sin(kǫ/2)

k
, (B8)

≡ Fke−iλj k, (B9)

where λj is the center of the j th bin and H(k) is the Fourier
transform of h(x), which we calculate numerically through
a fast Fourier transform after discretization. The coeffi-
cients Fj (k) only depend on the bin index j through a phase
factor, which allows us to write the second line and thus
define Fk independent of j . We can therefore rewrite Eq.
(B4) as

p̃j =
1

√
2π

∑

|k|<N

Fke−iλj kg∗
k . (B10)

Note that this expression has an almost identical form to
that in Eq. (14) in the CDF-QPE method. The main differ-
ence is in the Fourier coefficients used. These are plotted
for ǫ = 3 × 10−3 in Fig. 3 and compared to those in the
method of Wan et al., aiming for a similar final accuracy by
using Eq. (22) to select β. The Fourier coefficients decay
less rapidly in the QEEA. However, as pointed out by
Somma [7], there are advantages to this binning approach;
in particular, if the gaps between eigenvalues are very
small (e.g., in a solid-state system with bands of energy
values), then solving the QEEA is much less ambitious
than distinguishing individual eigenvalues to very high
precision and so there may be advantages in such cases.

Lastly, noting that g−k = g∗
k and F−k = Fk allows us to

write

p̃j =
ǫ

2π
+

√

2
π

N−1
∑

k=1

Fk

[

Re[gk] cos(kλj )

− Im[gk] sin(kλj )
]

. (B11)

2. Importance sampling

We have additionally implemented importance sampling
in the QEEA, which was not considered in the original
presentation of the method. As pointed out in Ref. [8],
this can be used to reduce the complexity of the QEEA,
bringing it closer to that of other statistical phase estima-
tion approaches, some of which have proven Heisenberg-
limited scaling [8,11]. We do not perform a study of scaling
here. However, importance sampling allows the use of a
much smaller bin width (and therefore higher precision)
for a given number of circuits to perform.

The probability vectors in the QEEA can be constructed
using importance sampling in an identical manner to that
described in Sec. II A 2, starting from Eq. (B11). The main
difference is that the sign of Fk can vary. Therefore, these
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FIG. 10. Results from Aspen-11, performing the QEEA on methanethiol (2e, 2o) with a stretched SH bond. (a) The full probability
vector from −1.5 to +1.5. (b),(c) Plots enlarged in the region of the ground-state and first-excited state, respectively. The results
presented are for error rates λ = 1, 3, and 5 and the ZNE-extrapolated (λ = 0) result. The half bin width is set to ǫ = 3 × 10−3 and
we set N = 4001. For importance sampling, NS = 2000 samples are taken. The correct energy is estimated for every error rate, to the
precision considered.

signs must also be absorbed into the importance-sampled
summation but the approach is otherwise unchanged. As
described in the main text, we have also performed RC in
the following results, incorporating it into the importance-
sampling procedure by performing one twirl for each
sample.

3. Results

We have performed the QEEA on Rigetti’s Aspen-11
for the same methanethiol system studied in Sec. IV A,
which requires three qubits in total. Each controlled-e−iτHk

operation has been compiled to a circuit ansatz with three
CZ layers, as in Sec. IV A. The half bin width has been

set to ǫ = 3 × 10−3 and the corresponding Fourier coeffi-
cients have been importance sampled with NS = 2000. A
separate Pauli twirl has been performed for each sample.
The Fourier summation has been truncated at N = 4001.

The results are presented in Fig. 10 and can be com-
pared to equivalent results from the CDF-QPE method in
Fig. 5. As for the CDF-QPE method, we find the QEEA
to be robust and that each eigenvalue can be clearly and
correctly identified from the probability vector, within the
accuracy determined by roughly half the bin width.

As found in Sec. IV B, there is no improvement to the
energy estimates after performing ZNE. In this case, the
estimates are already correct within the resolution deter-
mined by ǫ and so there is no improvement to be made.

FIG. 11. The circuit for a single Trotter step for H2 in a STO-3G basis, where the Hamiltonian has the form H = c1Z + c2X . The
circuit on the right is reduced so that the only two-qubit gates are CZ gates, using standard identities. The one-qubit gates are each
implemented in native Rigetti gates via the structure RZ(φ) RX (−π/2) RZ(θ) RX (π/2) RZ(λ), which ensures consistent gate layers.
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FIG. 12. CDFs and their derivatives for stretched H2 STO-3G, performed with Trotterization using the Trotter step in Fig. 11. The
simulations are performed on a pyQuil quantum virtual machine (QVM). Depolarizing noise is applied to CZ gates with four different
error rates, p . The subplots are enlarged in the region of (a),(b) the ground state and (c),(d) the excited state, respectively. Increasing
the error rate broadens the “jump” region of the CDF and the corresponding peak of the derivative. The peak of the CDF remains
roughly correct regardless, although statistical noise at higher p can lead to errors in the final energy estimate. Note that different x-axis
scales are used between subplots.

ZNE boosts the signal from the probability vector but over-
shoots considerably for the ground-state bin. One reason
for this is that because the coefficients |Fk| decay much
more slowly in the QEEA, very few samples are performed
for any particular k, even at small k. This makes mitigation
of coherent errors less successful and also increases the
statistical error bars on each gk estimate, thus lowering the
quality of each extrapolation and therefore also the ZNE
estimate of the probability vector.

APPENDIX C: SIMULATED TROTTERIZATION

RESULTS WITH COHERENT AND INCOHERENT

ERRORS

Figure 11 presents the circuit used for each Trotter step
in Sec. IV C. Since the Hamiltonian has the form H =
c1Z + c2X , a single first-order Trotter step is taken as

UTrotter = e−ic2τX e−ic1τZ (C1)

= RX (2 c2τ) RZ(2 c1τ), (C2)

which leads to the circuit on the left. The circuit on the
right is then expressed with CZ as the only two-qubit gate,
which can be obtained through standard circuit identities.

In addition to the results in the main text, we have
performed simulated results using the pyQuil QVM. This

allows us to investigate higher precision and the effect of
varying error rates. The same H2 example is considered
with an identical Trotter step. However, CDF-QPE param-
eters of β = 5 × 104, d = 511, and NS = 1000 are taken.
This choice of β corresponds to δ ≈ 0.004 in Eq. (22),
after choosing ǫ = 0.1. As for the results in the main text,
we perform 100 shots for each ki value obtained during
importance sampling.

First, we consider applying depolarizing noise to each
CZ gate, before next considering the effect of coherent
errors. The depolarizing channel is defined as

�(ρ) = (1 − p)ρ +
p

2n
1, (C3)

where n is the number of qubits, equal to 2 when applied to
a CZ gate, and p is the depolarizing error parameter. In the
following results, we vary p from 5 × 10−4 to 4 × 10−3.
All other gates and measurements are applied without
error. Figure 12 presents the CDF, G̃(x), and its derivative,
G̃′(x). The subplots are enlarged in the region of the ground
state (GS) and excited state (ES). As might be expected,
the jumps in the CDF become broader as the error rate is
increased. Despite this, the energy estimate obtained by
maximizing the CDF derivative remains accurate in each
case.
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FIG. 13. CDFs and their derivatives for stretched H2 STO-3G, performed with Trotterization using the Trotter step in Fig. 11. The
simulations are performed on a pyQuil QVM. A unitary error of e−i(θ/2)Z⊗Z with θ = 0.1 is applied after every CZ gate. We then
consider how this affects the CDF, both before and after applying randomized compiling. (a),(b) Without RC, there is a large error in
the ground-state energy. This error is effectively removed by RC, at the cost of reduced signal. Interestingly, the error in the excited-
state energy is much smaller but still slightly improved by RC. (c),(d) The excited state is harder to distinguish in the CDF derivative
due to statistical noise. Note that different x-axis scales are used between subplots.

It is straightforward to see that depolarizing noise does
not prevent us from obtaining accurate energy estimates.
Under depolarizing noise, the expectation values will
decay as e−γ |k|, for some decay rate γ . We then expect

gk ∼ e−γ |k|
∑

i

pi e−iτλik. (C4)

This decay factor does not affect the frequencies present
in gk but it should be expected that it becomes more chal-
lenging to reliably estimate each λi with increasing γ . To
be precise, the Fourier transform of e−γ |k| is a Lorentzian
function centered about 0, and the width of this function
grows as γ increases. The results in Fig. 12 are as expected,
given these arguments.

A separate type of error consists of coherent (or unitary)
errors, which preserve the purity of the input state. Refer-
ence [73] considers a type of control-free phase estimation
and demonstrates that unitary errors cause errors in the
final phase estimates, which can be largely removed with
RC. Here, we demonstrate a similar result with the method-
ology developed in this paper, with the CDF-based method
of Ref. [9] and integrating RC with importance sampling.
Following Ref. [73], we apply each CZ gate with a unitary
error, so that U

′
CZ = �UCZ, with

� = e−i(θ/2)Z⊗Z . (C5)

We choose θ = 0.1, which is a very large error in prac-
tice. All other gates and measurements are applied without
error.

The results are presented in Fig. 13. All simulation
parameters are the same as for the results in Fig. 12,
including β, d, and NS. Application of the CZ unitary
error � leads to a large error in the ground-state energy
of −7.6 mHa (after rescaling by τ−1). This is reduced to
+0.3 mHa after applying RC. Interestingly, the error in
the excited-state energy is less than 1 mHa in both cases,
although there is a slight improvement with RC applied.
These results demonstrate that coherent errors can cause
significant errors in energy estimates from statistical phase
estimation but that RC is a promising approach to help
mitigate these errors in practice.
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