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A systematic analysis of splicing variants 
identifies new diagnoses in the 100,000 
Genomes Project
Alexander J. M. Blakes1,2, Htoo A. Wai1, Ian Davies3, Hassan E. Moledina1, April Ruiz4, Tessy Thomas4, 

David Bunyan5,6, N. Simon Thomas5,6, Christine P. Burren7,8, Lynn Greenhalgh9, Melissa Lees10, 

Amanda Pichini11,12, Sarah F. Smithson11, Ana Lisa Taylor Tavares12,13, Peter O’Donovan12, 

Andrew G. L. Douglas1,14, Genomics England Research Consortium, Splicing and Disease Working Group, 

Nicola Whiffin15, Diana Baralle1,4† and Jenny Lord1*†   

Abstract 

Background: Genomic variants which disrupt splicing are a major cause of rare genetic diseases. However, variants 

which lie outside of the canonical splice sites are difficult to interpret clinically. Improving the clinical interpretation of 

non-canonical splicing variants offers a major opportunity to uplift diagnostic yields from whole genome sequencing 

data.

Methods: Here, we examine the landscape of splicing variants in whole-genome sequencing data from 38,688 

individuals in the 100,000 Genomes Project and assess the contribution of non-canonical splicing variants to rare 

genetic diseases. We use a variant-level constraint metric (the mutability-adjusted proportion of singletons) to identify 

constrained functional variant classes near exon–intron junctions and at putative splicing branchpoints. To identify 

new diagnoses for individuals with unsolved rare diseases in the 100,000 Genomes Project, we identified individuals 

with de novo single-nucleotide variants near exon–intron boundaries and at putative splicing branchpoints in known 

disease genes. We identified candidate diagnostic variants through manual phenotype matching and confirmed new 

molecular diagnoses through clinical variant interpretation and functional RNA studies.

Results: We show that near-splice positions and splicing branchpoints are highly constrained by purifying selec-

tion and harbour potentially damaging non-coding variants which are amenable to systematic analysis in sequenc-

ing data. From 258 de novo splicing variants in known rare disease genes, we identify 35 new likely diagnoses in 

probands with an unsolved rare disease. To date, we have confirmed a new diagnosis for six individuals, including four 

in whom RNA studies were performed.

Conclusions: Overall, we demonstrate the clinical value of examining non-canonical splicing variants in individuals 

with unsolved rare diseases.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Improved diagnosis of rare genetic diseases remains a 

significant clinical and research challenge [1]. Diagnostic 

yields in individuals with rare diseases remain below 50%, 

despite extensive investigations including whole-genome 

sequencing [2]. The accurate interpretation of genomic 
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variants in existing sequencing data presents an impor-

tant opportunity to narrow the diagnostic gap [3].

Splicing is the process by which introns are removed 

from a pre-mRNA primary transcript. Almost all human 

protein-coding genes are spliced, and disruption of splic-

ing is a major cause of rare genetic diseases [4]. The 

improved interpretation of splicing variants is therefore a 

major opportunity to improve clinical outcomes for indi-

viduals with undiagnosed rare disease [5].

Already, “canonical splice site” (CSS) variants within 

2  bp of an exon–intron junction are widely annotated 

as “loss of function” (LoF) variants and are known to be 

strong diagnostic candidates in “loss of function” dis-

orders [6]. The contribution of non-canonical splicing 

variants to rare diseases is also becoming increasingly 

recognised [7]. Up to 27% of pathogenic de novo splic-

ing variants in exome-sequencing data are found in 

non-canonical positions [8]. Several studies [7–9] have 

developed the concept of a “near-splice” region, usually 

tens of base pairs around an exon–intron junction, which 

contains many conserved splicing motifs.

However, near-splice variants are under-reported in 

clinical databases [8], and no standards exist for their 

interpretation. Furthermore, variants distal to the near-

splice region, including putative branchpoint variants 

and deep intronic variants (further than 100 bp from an 

exon–intron junction [10]), can also disrupt splicing, and 

their overall contribution to  rare diseases is unknown. 

Individual instances of pathogenic branchpoint variants 

have been previously described [11, 12], but they have 

not been systematically characterised in a large rare dis-

ease cohort.

Recently, large population genomic datasets have pro-

vided the statistical power necessary to measure con-

straints on genetic variation within human populations. 

One powerful metric which uses this approach is the 

mutability-adjusted proportion of singletons (MAPS) 

[13], which identifies classes of variation which are sub-

ject to purifying selection, and are therefore likely to 

be deleterious. MAPS has previously been calculated 

in many contexts, including for near-splice positions 

in the Exome Aggregation Consortium (ExAC) [8], and 

for upstream start-codon-creating variants in Genome 

Aggregation Database (gnomAD) [14].

Recent advances in computation and artificial intelli-

gence have led to the development of numerous in silico 

predictors for the prioritisation of splicing variants [15]. 

For example, SpliceAI is a machine learning tool which 

robustly predicts splice sites and splice-disrupting vari-

ants [16] and outperforms other algorithms in predicting 

splicing consequences from sequence data [17]. How-

ever, in clinical variant interpretation, well-validated 

functional assays have greater weight than in silico 

predictions of variant effect [6], and functional valida-

tion of most predicted splice-disrupting variants is still 

required to confirm a molecular diagnosis.

Here, we perform a systematic analysis of potential 

splicing variants in whole-genome sequencing data from 

38,688 individuals in the Rare Disease arm of the 100,000 

Genomes Project (100KGP) [18]. We evaluate the con-

tribution of variants at or near canonical splice sites, 

and at predicted branchpoints, to rare genetic diseases 

in this cohort. We show that predicted splicing branch-

points harbour deleterious non-coding variants which 

are amenable to systematic analysis in WGS data. We 

used a gene-agnostic approach to prioritise 258 de novo 

variants which potentially disrupt splicing in families 

affected by a rare genetic disorder. Of these, at least 84 

were already considered to be diagnostic, and we identi-

fied an additional 35 variants which are likely to be diag-

nostic given the available molecular, phenotypic, and in 

silico data. We confirmed a new molecular diagnosis for 

six participants, including four out of five participants 

for whom RNA studies were performed. Ultimately, we 

demonstrate the clinical and diagnostic value of examin-

ing both canonical and non-canonical splicing variants in 

unsolved rare diseases.

Methods
Cohort, sequencing, and tiering

This analysis was performed on whole-genome sequenc-

ing data from 38,688 participants in the Rare Disease arm 

of the 100,000 Genomes Project [19]. These comprised 

26,660 unaffected parents of rare disease probands, and 

12,028 participants (offspring) for whom trio WGS data 

was available. Only participants for whom WGS data was 

aligned to GRCh38 were included in this study. Parents 

affected by a rare genetic disease were excluded from 

the analysis of variant constraint (see below). Otherwise, 

participants were not selected or stratified by any other 

criterion. The sequencing and bioinformatic pipelines, 

as well as the “tiering” framework for variant prioritisa-

tion, have been previously described [18]. Briefly, vari-

ants meeting filtering criteria and falling within applied 

virtual gene panels were annotated as tier 1 (loss of func-

tion or de novo protein-altering variants), tier 2 (other 

variant types, e.g. missense, with correct mode of inherit-

ance), or tier 3 (all other filtered variants). For example, 

CSS variants in an appropriate gene panel are annotated 

as tier 1.

Defining coding sequences and near‑splice positions

The code used to perform this and subsequent analyses 

are available online [20] (see the “Availability of data and 

materials” section).
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We identified coding sequences (CDS) in high-confi-

dence protein-coding transcripts from the GENCODE 

v29 annotation [21] (GRCh38, Content = "Comprehensive 

gene annotation", Region = "CHR") using the following 

filtering criteria: feature type = "CDS", gene_type = "pro-

tein_coding", transcript_type = "protein_coding", level 

! = "level 3", and tag = "CCDS", "appris_principal_1", 

"appris_candidate_longest", "appris_candidate", or "exp_

conf". 401,314 CDS features (207,548 unique) met these 

criteria. Only autosomal CDS were included in the sub-

sequent analyses. UTR and other non-coding exons were 

not included in this analysis.

For each CDS feature, we annotated individual genomic 

positions with their positions relative to a splice donor or 

acceptor site, excluding any sites with conflicting anno-

tations. We defined the near-splice region around the 

acceptor site as 25 bp of intronic sequence (acceptor − 25 

to acceptor − 1) and 11 bp of exonic sequence (acceptor 

0 to acceptor + 10). Around the donor site, we included 

11  bp of exonic sequence (donor − 10 to donor 0) and 

10  bp of intronic sequence (donor + 1 to donor + 10). 

A total of 9,588,491 distinct near-splice positions were 

identified.

phyloP

We annotated each near-splice position with phyloP 

scores from multiple alignments of 99 vertebrate species 

to the human genome (phyloP 100-way) [22] with pyBig-

Wig, an open-source Python package [23], using Big-

Wig files downloaded from the UCSC Genome Browser 

(hg38) [24, 25].

SpliceAI

For every possible near-splice SNV in our positions of 

interest (i.e. all three possible single base changes at 

each of the 9,588,491 positions), we annotated the pre-

dicted effect on splicing with SpliceAI [16]. We anno-

tated variants with pre-computed genome-wide SpliceAI 

v1.3 scores (distance parameter = 50  bp, “masked” data, 

available via https:// github. com/ Illum ina/ Splic eAI) using 

BCFtools v1.9 [26]. A SpliceAI annotation was avail-

able for 28,265,193 variants (98.2% of 28,765,473 possible 

variants).

Aggregate SpliceAI scores for each near-splice posi-

tion were calculated as the mean probability that any 

variant at this position disrupts splicing. The probability 

that a given variant disrupts splicing was calculated as 

the probability (P) of any one of the SpliceAI-predicted 

splicing events occurring, (i.e. 1-probability of no events 

occurring). SpliceAI gives the probabilities of individual 

splicing events as a delta score (DS) for each of acceptor 

gain (AG), acceptor loss (AL), donor gain (DG), or donor 

loss (DL), giving:

Mutability‑adjusted proportion of singletons

In addition to the near-splice SNVs identified above, we 

also determined the set of all possible coding SNVs in our 

exons of interest. These were annotated with the refer-

ence base for each position (GRCh38, GenBank assem-

bly accession GCA_000001405.15) and its immediate 

sequence context (1 bp either side) with bedtools version 

2.27.1 [27].

We annotated every possible coding SNV within our 

exons of interest with the Variant Effect Predictor (VEP) 

version 99 [28]. In order to assign one unambiguous 

annotation to each variant, only the consequence in one 

transcript (typically the canonical transcript, as deter-

mined by VEP’s “–pick” flag) was used. Only synony-

mous, missense, and nonsense variants were included in 

the subsequent analysis. Synonymous variants within 

a near-splice region were classed as near-splice vari-

ants for the MAPS calculation and were excluded from 

the synonymous variant set. Missense variants within a 

near-splice region were excluded from the analysis alto-

gether. Nonsense variants within a near-splice region 

were classed as nonsense variants and excluded from the 

near-splice variant set.

We interrogated whole-genome sequencing data from 

26,660 unaffected parents in the Genomics England 

(GEL) Rare Disease cohort for SNVs overlapping the 

near-splice and coding positions defined above using 

BCFtools v1.9 [26]. Only variants passing all filters (see 

https:// resea rch- help. genom icsen gland. co. uk/ displ 

ay/ GERE/ aggV2+ Detai ls) within the GEL aggregated 

multi-sample VCF were included. We identified 915,024 

synonymous, 1,965,441 missense, 53,825 nonsense, and 

672,528 near-splice variants and calculated allele counts 

across the 26,660 unaffected parents for each variant.

We calculated MAPS with custom Python scripts, 

adapting code written by Short et al. [29] (https:// github. 

com/ pjsho rt/ dddMA PS). We used the mutation rate of a 

given trinucleotide context calculated by Samocha et al. 

[30]. The proportion of singletons for each position was 

adjusted for the mutability of the immediate sequence 

context using a linear model trained on synonymous vari-

ants within the same exons. As in previous studies [8, 13], 

the set of synonymous variants used for the MAPS model 

was not filtered by any other criterion (e.g. SpliceAI 

score). Our data are therefore directly comparable with 

these previous studies. Unselected synonymous variants 

are a useful baseline for comparison because they capture 

potential unknown impacts of coding variation, including 

impacts on splicing or translation efficiency. This is also 

P =1 − ((1 − (DS_AG)) ∗ (1 − (DS_AL)) ∗ (1 − (DS_DG))

∗ (1 − (DS_DL))

https://github.com/Illumina/SpliceAI
https://research-help.genomicsengland.co.uk/display/GERE/aggV2+Details
https://research-help.genomicsengland.co.uk/display/GERE/aggV2+Details
https://github.com/pjshort/dddMAPS
https://github.com/pjshort/dddMAPS
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a more conservative approach, because the inclusion of 

potentially functional variants in the synonymous base-

line would only weaken any apparent constraint signals in 

other functional variant classes.

Branchpoints

Splicing branchpoint positions were identified by LaBran-

choR, a machine-learning tool trained on experimentally 

validated branchpoints, which accurately identifies at least 

one branchpoint for the majority of introns genome-wide 

[31]. Although several branchpoint prediction tools are 

available [32], we favoured LaBranchoR because it accu-

rately predicts branchpoints at well-annotated 3′ splice 

sites, which were the main focus of this analysis. Pre-com-

puted LaBranchoR scores are publicly available for every 

position 1–70  bp upstream of a splice acceptor (GEN-

CODE v19, hg19) either for download or through the 

UCSC Genome Browser [31]. For each intron, the highest 

scoring position was annotated as the branchpoint (BP), 

totalling 195,863 putative branchpoints.

We converted each branchpoint to hg38 coordi-

nates using the UCSC Liftover tool [24]. We annotated 

five positions upstream (− 5 to − 1) and five positions 

downstream (+ 1 to + 5) of each branchpoint, as well 

as every possible SNV at each of these positions using 

custom Python scripts. phyloP scores for each position, 

and SpliceAI scores for each variant, were determined 

as above. We calculated the MAPS statistic for these 

branchpoint positions in the same cohort of participants 

as described above. Comparison of MAPS scores in 

branchpoint positions was made to the same set of cod-

ing variants as described above.

De novo variants

De novo variants (DNVs) overlapping near-splice posi-

tions were identified from a set of 1,004,599 high con-

fidence de novo calls in 13,949 trios from 12,609 rare 

disease families. The annotation pipeline used to identify 

these variants is publicly available [33]. Briefly, a multi-

sample VCF for each trio was annotated for putative 

DNVs using custom scripts. Putative DNVs were then fil-

tered by a series of “Global”, “Base”, and “Stringent” filters 

(see reference [33]). Unless otherwise stated, our analyses 

were performed on DNVs aligned to GRCh38 (870,559 

DNVs in 12,028 trios).

At the outset of this project this dataset was not avail-

able. Preliminary work to identify candidate diagnos-

tic de novo variants was undertaken in a smaller set of 

402,464 variants identified through a custom filtering 

strategy by Patrick J. Short (Wellcome Sanger Institute, 

personal correspondence). These variants were identi-

fied by applying post-processing filters to DNVs in 4967 

trios identified by the Platypus variant caller [34] in GEL 

and aligned to GRCh38. They were filtered according to 

the following criteria: genotype heterozygous in offspring 

and homozygous reference in both parents, no more than 

one alternate allele read in either parent, variant allele 

frequency in the offspring between 0.3 and 0.7, greater 

than 20 sequencing reads in the offspring and both par-

ents, fewer than 98 sequencing reads in the offspring, no 

overlap with locus control regions, no overlap with hg38 

“patch regions”, no other DNV within 20 bp in the same 

individual. Some candidate variants identified in this 

preliminary dataset are not present in the larger de novo 

set, owing to differences in the filtering pipeline. Unless 

explicitly stated, the data presented here are from the 

larger DNV set, above.

Candidate diagnostic variants

To identify candidate diagnostic near-splice and branch-

point variants, we annotated all GRCh38 autosomal de 

novo SNVs passing the “stringent” filters (above) with 

VEP (version 99). For each variant, to maximise our sen-

sitivity to identify variants in known developmental dis-

order genes, the consequence in one transcript per gene 

(determined by VEP’s “–per_gene” flag) was determined. 

We annotated these variants with SpliceAI as described 

above, although SpliceAI was not used to prioritise these 

variants and no SpliceAI score cut-off was applied. We 

filtered for variants overlapping our branchpoint or near-

splice positions of interest (adjacent to coding exons 

only), finding 3672 such variants. Where a variant had 

both a branchpoint and a near-splice annotation, only 

the near-splice annotation was kept. We then filtered for 

variants overlapping any known monoallelic rare disease 

gene with a loss of function mechanism using the G2P 

DD, G2P Eye, and G2P Skin gene lists [35] (accessed 

27/10/2021, confirmed and probable genes only). In total, 

we identified 258 candidate splicing DNVs (238 near-

splice, 20 branchpoint) in 255 participants, adjacent to 

coding exons in 137 genes.

To identify new diagnoses in the cohort, we annotated 

these variants with tiering data, phenotype data, and 

participant outcome data from the GEL bioinformatics 

pipeline [36]. For each participant and DNV, the similar-

ity between the HPO terms recorded at recruitment and 

the phenotype expected for a loss-of-function variant in 

that gene from the G2P [35] and OMIM [37] databases 

were manually compared by a Paediatrician and a Con-

sultant Clinical Geneticist. Plausible phenotype matches 

were confirmed or refuted through literature search and 

through detailed clinical review by the recruiting clini-

cian. Excluding any participants whose case was already 

solved through 100KGP, we identified 35 new likely diag-

nostic variants with at least a plausible phenotype match. 

In each instance, we placed a clinical collaboration 
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request with Genomics England to recruit the participant 

to the Splicing and Disease Study for functional charac-

terisation of the variant.

Genomics England does not allow re-identification of 

participants outside of a secure research environment. 

In order to protect participant identities, the HPO terms 

given here are “abstracted” by moving up one level in 

the HPO hierarchy. For example “Tetralogy of Fallot” 

becomes “Conotruncal defect”.

Functional validation

Samples from five participants underwent functional 

characterisation through the Splicing and Disease study 

at The University of Southampton. Blood was collected 

in PAXgene Blood RNA tubes, with the PAXgene Blood 

RNA kit (PreAnalytix, Switzerland) used to extract RNA. 

Random hexamer primers were used to synthesise com-

plementary DNA (cDNA) by reverse transcription using 

the High-Capacity cDNA Reverse Transcription kit 

(Thermo Fisher Scientific).

Reverse transcription polymerase chain reaction (RT-

PCR) was used to test for splicing alterations. Prim-

ers were designed for each variant to include at least 

two exons up- and downstream of the target (primer 

sequences available upon request). Agarose gel electro-

phoresis was used to assess participant vs control PCR 

products, and purified PCR products were analysed by 

Sanger sequencing.

Statistics

The null hypotheses that near-splice and branchpoint 

MAPS scores did not significantly differ from synony-

mous variants were tested with two-sided chi-squared 

tests of the observed vs the expected number of single-

tons in each variant class. In order that the synonymous 

MAPS did not equal zero, all MAPS scores were first 

corrected by the addition of the synonymous unad-

justed proportion of singletons. For each variant class, 

the “observed” proportion of singletons was taken as 

the number of alleles multiplied by the corrected MAPS 

score for that variant class. The “expected” number of 

singletons was taken as the number of alleles multiplied 

by the corrected MAPS score for synonymous variants. 

Multiple testing was accounted for by Bonferroni correc-

tion: 79 tests at alpha = 0.05 gave a significance threshold 

of < 6.3 ×  10−4.

Results
Signals of constraint at near‑splice positions are replicated 

in a large healthy cohort

To estimate the deleteriousness of variation in near-splice 

positions, we calculated aggregate measures of evolu-

tionary conservation, selective constraint, and predicted 

splicing disruption for nucleotides within near-splice 

regions genome-wide.

Evolutionary conservation was measured by base-wise 

phyloP score. The CSSs are very highly conserved (mean 

phyloP = 6.34) (Fig.  1). Other intronic splicing posi-

tions with high phyloP scores include the D + 5 (3.44), 

D + 4 (2.39), D + 3 (1.97), A-3 (1.70), and D + 6 (1.29) 

sites. Notably, the A-4 position is very weakly conserved 

(0.076). Coding positions are generally more highly 

conserved than intronic sequences. The redundancy of 

third codon positions and bias for in-phase exons [38] is 

reflected in lower phyloP scores at every third position, 

except for the donor 0 position (mean phyloP = 5.01), 

which is more highly conserved than any other coding 

position.

To measure selective constraint at near-splice posi-

tions, we calculated the degree of purifying selection 

acting at near-splice positions using MAPS [13]. MAPS 

was calculated across near splice positions genome-wide, 

using every observed synonymous, missense, nonsense, 

and near-splice SNV in 207,548 distinct CDS exons for 

26,660 unaffected parents in the 100KGP Rare Disease 

cohort. The most significant signals of purifying selec-

tion are at the CSS, with MAPS scores of 0.089–0.146 

(p < 1.2 ×  ×  10−43), approaching those of nonsense vari-

ants (0.16) (Fig.  1). The non-canonical positions with a 

MAPS score significantly above the synonymous base-

line after Bonferroni correction include the D-2, D0, 

D + 3, D + 4, D + 5, D + 6, A-3, and A + 1 positions 

(p < 6.3 ×  10−4). The MAPS scores at D0 and D + 5 vari-

ants (MAPS = 0.057 and 0.067, respectively) are compa-

rable to that at missense variants (0.052). These results 

are highly concordant with previous near-splice MAPS 

calculations in the Deciphering Developmental Disorders 

study (DDD) and ExAC datasets [8].

A subset of splicing branchpoints are highly constrained

Having replicated earlier findings [8] in our cohort, we 

expanded our analysis to examine splicing branchpoints, 

which have not been previously characterised using 

MAPS.

We repeated our analysis of conservation, constraint, 

and SpliceAI predicted splicing disruption using a set of 

195,863 putative branchpoints predicted by LaBranchoR 

[31], a deep-learning tool trained on experimentally vali-

dated branchpoints.

Annotating each position with base-wise phyloP 

scores, we found modest conservation of BP0 (0.62) and 

BP-2 (0.87), consistent with previous results [31, 39, 40] 

(Fig. 1).

Next, we calculated the MAPS statistic for these 

branchpoint positions in the same cohort described 

above. When all putative branchpoints were considered, 
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only the BP-2 position has a significantly higher MAPS 

score than the synonymous baseline (MAPS = 0.017, 

p = 1.3 ×  10−4) (Fig.  1). However, when only the most 

confident branchpoints are considered (LaBranchoR 

score > 0.85, n = 57,342), the BP0 (MAPS = 0.044, 

p = 7.6 ×  10−9) and BP-3 (0.024, p = 3.7 ×  10−4) are also 

significantly constrained, with nominal constraint at BP-2 

(MAPS = 0.031, p = 1.0 ×  10−3). We further stratified the 

MAPS analysis by reference allele at the BP-1 and BP-3 

positions but were generally underpowered to detect 

motif-specific constraints (Additional file  1: Fig. S1). 

These data suggest that LaBranchoR-predicted branch-

points are functionally important and that variants near 

branchpoints may be a significant cause of rare disease.

Next, we calculated SpliceAI scores for every possible 

SNV around each branchpoint. Again, variants at BP0 

(mean SpliceAI = 0.15) and BP-2 (mean SpliceAI = 0.14) 

are nominally more likely to disrupt splicing than syn-

onymous coding variants (Fig.  1). This trend is more 

pronounced when only the most confident branchpoints 

(LaBranchoR score > 0.85, n = 57,342) are considered 

(mean SpliceAI BP0 = 0.22, BP-2 = 0.19).

New diagnostic candidates among near‑splice de novo 

variants

Having described three orthogonal metrics which inde-

pendently suggest that certain near-splice and branch-

point variants may be deleterious, we sought to identify 

new candidate diagnostic variants at these positions.

We interrogated a set of 870,559 DNVs in 12,028 trios 

for potentially diagnostic splicing variants. We identified 

258 de novo SNVs overlapping near-splice or branchpoint 

regions of coding exons in known monoallelic “loss of 

function” rare disease genes in 255 individuals (Additional 

file 2: Table S1). Of these, 238 were in near-splice positions 

(spanning intronic and exonic positions), and 20 were 

within 5 bp of a putative branchpoint (Fig. 2) (12 variants 

had both a splice acceptor and a branchpoint annotation; 

in these cases, only the splice acceptor annotation (e.g. 

A-25) was kept). To maximise our sensitivity to identify 
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Fig. 1 Conservation, predicted splice disruption, and constraint at near-splice and branchpoint positions across 207,548 CDS features in 

protein-coding genes. A Sequence logos and schematic indicating the position of conserved splicing motifs relative to exon/intron boundaries. 

Positional weight matrices were derived from the human reference sequence at our positions of interest (defined in the “Methods” section). B The 

mean phyloP 100-way scores at splicing positions. Error bars indicate 95% confidence intervals. C SpliceAI scores for all possible near splice SNVs. 

Scores represent the mean probability that any variant at this position disrupts splicing, as predicted by SpliceAI (see the “Methods” section). Error 

bars represent the 95% confidence interval. D Mutability-adjusted proportion of singletons (MAPS) for both coding and near-splice SNVs. Error 

bars indicate 95% confidence intervals. Positions with a significantly higher MAPS than synonymous variants are indicated with open circles (see 

the “Methods” section). For branchpoint positions, dark blue points represent all putative branchpoints, whereas light blue points represent the 

branchpoints with a LaBranchoR score > 0.85
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new candidate diagnoses, variants were prioritised only by 

their near-splice location, without additional filtering by, 

for example, SpliceAI score.

Reviewing tiering data from the 100KGP bioinformat-

ics pipeline, we found that of these 258 variants, 83 (32%) 

were “tier 1”, 46 (18%) were “tier 3”, and 129 (50%) were 

not tiered (Additional file  1: Fig. S2). Of 59 CSS vari-

ants, 36 (61%) were “tier 1”, nine (15%) were “tier 3”, and 

14 (24%) were not tiered. Of ten donor + 5 variants, four 

were “tier 1”, two were “tier 3”, and four were not tiered 

(Additional file  1: Fig. S2). Annotation of these variants 

with SpliceAI generally highlighted variants at positions 

with high MAPS scores (Additional file 1: Fig. S3).

A total of 212 participants with a near-splice DNV had 

outcome data in the form of “exit questionnaires” from 

their referring Genomic Medicine Centre. In 84/111 

(76%) of solved cases, the diagnostic variant matched 

our near-splice finding (Fig. 2). This result gives us confi-

dence in our approach to candidate variant identification. 

Nevertheless, a significant proportion of participants 

with completed exit questionnaires had unsolved cases 

(101/212, 48%). These included nine with a DNV in the 

CSS of a known rare disease gene, one with a donor 0 

variant, and four with donor + 5 variants, which have 

previously been estimated to have a 90% positive predic-

tive value in rare disease diagnosis [8] (Fig. 2).

For each participant and DNV, we manually reviewed 

the similarity between the HPO terms recorded at 

recruitment and the phenotype expected for a loss-of-

function variant in that gene. Excluding any participants 

whose case was already solved through 100KGP, we iden-

tified 35 new likely diagnostic variants with at least a 

plausible phenotype match (Additional file  3: Table  S2). 

We placed a clinical collaboration request with Genom-

ics England in each case, to recruit the participant for 

functional characterisation of the variant with RNA 

studies.

New diagnoses among the cohort

Whole blood RNA samples were obtained for five par-

ticipants with near splice DNVs. RT-PCR was used to 

characterise the splicing impact of each variant (Addi-

tional file 1: Fig. S4). Abnormal splicing events (all exon 

skipping) were detected in four participants (participants 

74 (ARID1A, A-3), 249 (USP7, D + 5), 259 (TLK2, D + 5), 

261 (KAT6B, D + 5)). In the remaining participant (par-

ticipant 32 (PPP1R12A, A-21)), no disruption to splicing 

was observed (Table  1, Additional file  1: Fig. S4). Nota-

bly, these functional outcomes are consistent with the 

SpliceAI score for the variant in each case (Table 1). For 

two additional participants where the candidate variant 

fell in a canonical splice site (participants 83 (TAOK1, 

A-2) and 94 (PHIP, A-2)), a new diagnosis was reached 

without the need for functional work based on ACMG 

criteria with a PVS1 classification for these variants 

(Table 1, Additional file 1: Fig. S4).

In summary, we demonstrate a functional splicing 

defect in four out of five participants recruited to our 

study, and we have identified a new molecular diagnosis 

for six individuals to date.

Discussion
We examined WGS data from 38,688 individuals in the 

Rare Disease arm of the 100KGP to evaluate the contri-

bution of splicing variants to rare genetic diseases. Using 

a population-based metric of constraint, MAPS, we 

showed that certain near-splice and branchpoint posi-

tions are under strong purifying selection, consistent 

with previous work [8, 40, 41]. We identified 258 de novo 

near-splice and branchpoint variants in known disease 

Fig. 2 Participant outcomes for rare disease probands with de novo splicing variants in known monoallelic loss-of-function rare disease genes. 

Each point represents a DNV in a rare disease proband. Points are coloured by the clinical outcome for that individual. Crosses indicate variants 

which were identified as likely new diagnoses in this study. Where a variant overlaps both a branchpoint and a splice acceptor position, only the 

splice acceptor annotation is given
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Table 1 Diagnostic outcomes for seven individuals after clinical and functional characterisation of the splicing variant. Five individuals underwent RNA studies, of which four 

received a new diagnosis. In two additional individuals, a diagnosis was reached without the need for RNA studies. In total, a new diagnosis was confirmed for six individuals. 

Note that the given HPO terms are “abstracted” (see the “Methods” section) to protect confidentiality. *In participants 83 and 94, a new diagnosis was reached without the need 

for functional evaluation. **This exit questionnaire outcome was updated after the participant was identified by this study. DS_any: the probability that the variant has any impact 

on splicing (see the “Methods” section). DS_max: the maximum SpliceAI delta score of the variant. DS_max_type: the predicted splicing impact with the maximum delta score 

(DS_DL = donor loss, DS_DG = donor gain, DS_AL = acceptor loss, DS_AG = acceptor gain)

ID Chrom Pos Ref Alt Region Site Symbol ENST DS_any DS_max DS_max type Tier Max tier Exit questionnaire HPO terms (abstracted) Splicing impact Outcome

74 chr1 26767787 C G acceptor -3 ARID1A ENST00000324856 0.71 0.65 DS_AL 3 3 No data Aplasia/Hypoplasia of the mandible, 
Advanced eruption of teeth, Abnor-
mal pulmonary valve morphology, 
Abnormality of calvarial morphol-
ogy, Abnormality of cardiovascular 
system morphology, Oral cleft

Exon skipping New diagnosis

261 chr10 74989117 G A donor +5 KAT6B ENST00000287239 0.98 0.98 DS_DL 3 3 Case not solved Hypothyroidism Exon skipping New diagnosis

259 chr17 62596679 G A donor +5 TLK2 ENST00000326270 0.97 0.96 DS_DL 3 3 Case not solved Abnormality of globe location, 
Abnormal facial shape, Facial 
asymmetry, Abnormal heart 
sound, Cutaneous syndactyly, 
Abnormal ear morphology, 
Neurodevelopmental delay, Short 
stature, Abnormal digit morphol-
ogy, Decreased body weight, 
Intrauterine growth retardation, 
Abnormality of higher mental 
function, Motor delay, Language 
impairment, Gait disturbance, 
Abnormal location of ears

Exon skipping New diagnosis

249 chr16 8905182 C A donor +5 USP7 ENST00000344836 0.932 0.8 DS_DL 3 3 Case not solved Motor delay, Abnormal size of the 
palpebral fissure, Abnormal hair 
quantity, Abnormality of globe loca-
tion, Facial hypertrichosis, Neurologi-
cal speech impairment, Abnormality 
of higher mental function, Abnormal 
metatarsal morphology

Exon skipping New diagnosis

94 chr6 79002126 T G acceptor -2 PHIP ENST00000275034 1 1 DS_AL 3 2 Case not solved Abnormality of higher mental 
function, Motor delay, Neurode-
velopmental delay, Macrotia, 
Language impairment, Finger 
clinodactyly, Abnormal muscle 
tone, Facial hypertrichosis

N/A New diagnosis*

83 chr17 29491782 A G acceptor -2 TAOK1 ENST00000261716 0.992 0.99 DS_AL 3 3 Case solved, same 
variant**

Renal agenesis, Hemangioma, 
Abnormality of joint mobility, Hypo-
tonia, Increased head circumfer-
ence, Neurodevelopmental delay

N/A New diagnosis*

32 chr12 79808598 T A acceptor -21 PPP1R12A ENST00000450142 0 0 DS_AG N/A 3 Case not solved Increased head circumference, 
Abnormal thorax morphology, 
Bowing of the legs, Growth delay, 
Limb undergrowth, Abnormal-
ity of joint mobility, Short digit, 
Neurodevelopmental abnormality, 
Abnormality of movement

Normal splicing Unsolved
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genes in these families. We identified 35 likely diagnostic 

variants which had previously been missed through the 

100KGP, and we have confirmed a new molecular diag-

nosis for six participants to date. Overall, we demonstrate 

the clinical value of examining both canonical and non-

canonical splicing variants in unsolved rare diseases.

Non‑canonical splicing positions harbour deleterious 

splicing variants

We used three orthogonal approaches to estimate the 

deleteriousness of near-splice and branchpoint vari-

ants: between-species conservation, within-species 

constraint, and predicted splicing disruption. The Phy-

loP, MAPS, and SpliceAI scores at splicing positions 

consistently highlight those non-canonical splicing 

positions (especially D0 and D + 5) which are likely to 

harbour damaging variants. Indeed, three out of three 

D + 5 variants in which we performed RNA studies 

caused exon skipping. Importantly, although we use a 

cohort of unaffected parents as a proxy for a normal 

population, the MAPS data we present is highly con-

cordant with the strong signals of negative selection at 

which have been previously described in the ExAC and 

DDD datasets [8].

Extending this analysis to splicing branchpoints, we 

find strong signals of negative selection at a subset of 

branchpoint positions. These results are consistent with 

other measures of constraint previously described at 

bovine and human branchpoints [41]. We also identified 

candidate diagnostic variants at these positions, includ-

ing several overlapping experimentally validated branch-

point positions (Additional file  4: Table  S3), and we are 

awaiting RNA samples to functionally characterise these 

variants. The disruption of splicing branchpoints may 

therefore make an important contribution to rare dis-

ease [11, 12]. A systematic analysis of de novo variation at 

putative branchpoints and a comparison of the utility of 

different branchpoint prediction tools in a clinical setting 

are exciting future research opportunities.

The ACMG variant interpretation guidelines give special 

status to CSS variants as “very strong” diagnostic candi-

dates in disorders where LoF is a known disease mecha-

nism [6]. This remains the case in more detailed guidance 

for the interpretation of LoF variants which has recently 

been introduced [42]. However, the deleteriousness of 

splicing variants is not binary, but on a continuum, and 

can be quantitatively compared to other variant classes. 

Previous estimates suggest that 46% of non-canonical near-

splice DNVs in dominant rare disease genes may be patho-

genic, rising to 71% for pyrimidine to purine transversions 

in the polypyrimidine tract, and 90% for D + 5 variants [8]. 

The deleteriousness of individual variants is contingent on 

many factors, such as local sequence context, the alternate 

nucleotide, exon frame, exon length, and intron length [9]. 

For this reason, the systematic classification of near-splice 

variants remains challenging, and clinical interpretation 

of these variants is still dependent on expert phenotype 

matching and functional validation of candidate variants.

The functional characterisation of splicing variants 

can be challenging and requires adequate amounts of 

good-quality RNA. Our study is limited by the use of 

blood as a proxy for the most clinically relevant tissue, 

although we affirm the utility of blood RNA analysis 

by identifying splicing defects in four out of five sam-

ples tested. Whereas RT-PCR is a bespoke and low-

throughput approach, going forward, RNA-sequencing 

(RNA-seq) offers an unbiased and high-throughput 

alternative to simultaneously detect and functionally 

characterise splicing variants. A whole-transcriptome 

RNA-seq pilot study has recently been proposed for 

100KGP, and the use of RNA-seq in routine clinical 

practice could offer a much-needed means to system-

atically and objectively interpret splicing variants [43].

New rare disease diagnoses

We identified 258 de novo SNVs overlapping near-

splice or branchpoint regions of known monoallelic 

“loss of function” rare disease genes in 255 individuals. 

Of these, at least 84 were already considered to be diag-

nostic through 100KGP, and we identified an additional 

35 variants which are likely to be diagnostic given the 

available molecular, phenotypic, and in silico data. We 

confirmed a new molecular diagnosis for six partici-

pants, including four participants for whom RNA stud-

ies were performed.

Surprisingly, several strong diagnostic candidates 

were apparently overlooked in the standard variant 

interpretation pipeline, including at least nine CSS vari-

ants and four D + 5 variants, all in known rare disease 

genes. Of ten de novo D + 5 variants, none were pre-

viously labelled as pathogenic, despite their high prior 

probability of being diagnostic in this context [8].

Clearly, many new diagnoses remain to be found. A recent 

analysis of 100KGP data in the context of craniosynostosis 

found that expert-led review more than doubled diagnostic 

yields compared to the standard pipeline [3]. An important 

factor is that the “virtual panels” applied to variant calls are 

outdated and do not include recently discovered disease 

genes. Notably, the majority of new likely diagnostic vari-

ants we identify are intronic (26/35), likely because these 

variants are excluded from the 100KGP tiering and prior-

itisation pipeline and are therefore not subjected to detailed 

clinical interpretation. Our phenotype-matching work sug-

gests that the clinical impact of near-splice variants has been 

under-ascertained in this cohort, and we are continuing to 
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recruit participants for functional assessment of these vari-

ants. Additionally, the analysis of more distal variants over-

lapping exonic splicing enhancers and silencers or cryptic 

splice sites in deep-intronic regions offers an important 

future research opportunity.

One obstacle to increasing the number of researcher-

identified diagnoses in this context is the difficulty of 

recontacting de-identified participants and clinicians 

through secure research environments. The confidenti-

ality of all participants in research is rightly a priority, 

and new pathways must be developed to streamline the 

clinical-research interface in medical genomics.

Conclusions
In conclusion, the disruption of splicing is an impor-

tant cause of rare diseases among 100KGP participants, 

but the contribution of non-canonical variants is still 

under-recognised. Splicing branchpoints are another 

non-canonical and non-coding source of damaging splic-

ing variants which are amenable to systematic analysis 

in WGS data. The improved interpretation of splicing 

variants is an area of great promise to genomic medicine 

and, above all, to individuals with rare diseases and their 

families.
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