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Abstract 

Background: The majority of clinical genetic testing focuses almost exclusively on regions of the genome that directly 
encode proteins. The important role of variants in non-coding regions in penetrant disease is, however, increasingly 
being demonstrated, and the use of whole genome sequencing in clinical diagnostic settings is rising across a large 
range of genetic disorders. Despite this, there is no existing guidance on how current guidelines designed primarily for 
variants in protein-coding regions should be adapted for variants identified in other genomic contexts.

Methods: We convened a panel of nine clinical and research scientists with wide-ranging expertise in clinical variant 
interpretation, with specific experience in variants within non-coding regions. This panel discussed and refined an 
initial draft of the guidelines which were then extensively tested and reviewed by external groups.

Results: We discuss considerations specifically for variants in non-coding regions of the genome. We outline how to define 
candidate regulatory elements, highlight examples of mechanisms through which non-coding region variants can lead to 
penetrant monogenic disease, and outline how existing guidelines can be adapted for the interpretation of these variants.

Conclusions: These recommendations aim to increase the number and range of non-coding region variants that can 
be clinically interpreted, which, together with a compatible phenotype, can lead to new diagnoses and catalyse the 
discovery of novel disease mechanisms.
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Background
Genomic sequencing is commonplace in the diagnosis of dis-

orders with suspected genetic cause. Traditionally, sequenc-

ing and analysis has focussed primarily on variants that fall 

within regions of the genome that code directly for protein, 

or that are within canonical splice sites of genes with a con-

firmed role in disease. With these approaches, however, many 

rare disease cases remain genetically unexplained [1, 2].
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Increasingly, whole genome sequencing (WGS) is 

being performed on individuals in which a genetic cause 

is not identified through gene panel or exome sequenc-

ing. For some disease subsets and in specific healthcare 

settings, WGS has become a first-line diagnostic test 

(for example, for selected rare developmental disor-

ders in the UK National Health Service) [3]. WGS has 

been shown to have the potential to increase diagnos-

tic yield [2, 4–7] and includes detection of variants in a 

wide range of regulatory regions (Box  1, Fig.  1) as well 

as variants in genes encoding non-coding RNAs (e.g. 

micro RNAs (miRNA), small nuclear RNAs (snRNA) and 

long non-coding RNAs). Analysis of WGS data, however, 

often excludes variants that fall in non-coding regions 

of the genome or classifies them as variants of uncertain 

significance (VUS), primarily due to difficulties in pre-

dicting or determining their impact. Whilst the triplet 

amino acid code allows us to predict the effect of variants 

within protein-coding regions with reasonable accuracy, 

the absence of a regulatory equivalent means that the 

impacts of non-coding region variants are usually much 

harder to predict. This is further confounded by these 

variants often having gene-specific effects. For example, 

binding sites for the zinc finger protein CCCTC-binding 

factor (CTCF) are enriched at topologically associated 

domain (TAD) boundaries and have been suggested as a 

mechanism to ensure appropriate genome regulation and 

chromatin structure. However, it is unclear why in some 

instances disrupting CTCF binding sites significantly 

impacts gene expression [8], and in others it does not [9, 

10]. Such differences may be dependent on the surround-

ing genomic context and the temporal/spatial activity of 

other cis-regulatory elements (CREs) [11].

Box  1 Regulatory elements controlling gene and 

protein expression

Gene and protein expression are tightly controlled processes mediated 
by a multitude of regulatory elements (Fig. 1). Transcription of a gene 
into RNA is mediated by a promoter element directly upstream of the 
gene [12], along with more distal enhancer and repressor elements 
(collectively referred to as cis-regulatory elements, or CREs) to which 
transcription factors bind [13]. CREs may be within their target gene or 
in other intragenic or intergenic space either 3′ or 5′ of the transcrip-
tion unit they influence. Within the gene itself, intronic regions contain 
specific sequences that control their removal through splicing to form 
the mature RNA (mRNA) transcript, and untranslated regions (UTRs) 
regulate RNA stability, trafficking, and the rate at which it is translated 
into protein [14]. Each gene also sits within a wider regulatory context, 
or topologically associated domain (TAD), flanked by boundary/insula-
tor elements which restrict the action of CREs to within specific TADs 
[13, 15].

Fig. 1 Schematic of regulatory elements within and around a gene and examples of disruptions that can lead to disease
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An important role for a range of non-coding vari-

ants in rare disease is increasingly being demonstrated 

[16–18]. For example, variants in upstream non-

coding regions that cause loss-of-function of MEF2C 

comprise almost one quarter of all likely diagnoses 

impacting MEF2C in the Deciphering Developmental 

Disorders (DDD) dataset [19], and RNA sequencing 

can be used to identify likely disease-causing splicing 

variants in 35% of previously undiagnosed rare muscle 

disease probands, many in deep intronic regions [20]. 

A number of disease-causing variants for X-linked 

Charcot-Marie-Tooth disease in GJB1 [21] and 

ABCA4-associated disease [22, 23] are also known to 

be in non-coding regions. These are just a few exam-

ples, with many more existing across a range of differ-

ent genes and diseases.

There are a multitude of documented mechanisms 

through which non-coding region variants which dis-

rupt non-coding elements have been demonstrated 

to cause severe disease (Table  1). These include acting 

through affecting splicing [20, 24, 25], transcription 

[26, 27], translation [19], RNA processing and stabil-

ity [16, 28] and chromatin interactions [29]. Detect-

ing and classifying these variants accurately for a likely 

disease-causing role is important to increase diagnostic 

yield and enable a robust genetic diagnosis for more 

individuals.

The American College of Medical Genetics and Genom-

ics and Association for Molecular Pathology (ACMG/

AMP) released a set of guidelines in 2015 that have become 

the global standard for interpreting the pathogenicity of 

short sequence variants (single-nucleotide variants (SNVs) 

and indels <50 bps) identified in individuals with rare dis-

ease [30]. These guidelines outline a set of rules that should 

be assessed for each identified variant. Many of these rules 

pertain specifically to variants in protein-coding regions 

and there is no existing guidance on how they should be 

adapted for variants found in other genomic contexts. 

Here, we provide guidance on how to apply these standards 

to variants identified in non-coding regions of the genome. 

Our recommendations will enable consistent interpreta-

tion and reporting of these understudied variant types 

which will in turn enable us to learn more about the diverse 

mechanisms through which non-coding region variants 

can lead to disease.

Methods
Process for drafting and refining the recommendations

We convened a panel of nine clinical and research sci-

entists with wide-ranging expertise in clinical variant 

interpretation, with specific interests and experience in 

variants within non-coding regions. The initial docu-

ment was drafted and circulated before a series of online 

calls to discuss and refine the guidance. Subsequently, 

we asked a range of clinical scientists and those actively 

involved in clinical variant interpretation to assess the 

usability of the guidelines on both a common list of 30 

diverse variants (Additional file 1: Table S1) and in-house 

identified variants. Feedback from testers was used to 

further refine the guidance.

At the Association for Clinical Genomic Science 

(ACGS) meeting in September 2021, we presented an 

overview of the new guidelines to the UK Clinical Sci-

ence community. At this meeting, we polled opinions on 

current best practice, the need for specific guidelines for 

non-coding region variants, and the appetite for train-

ing workshops/seminars (Additional file 1: Table S2). The 

attendees of the workshop were overwhelmingly in sup-

port of this effort with 98% (59/60) agreeing that addi-

tional guidance is needed to support interpretation of 

non-coding region variants.

Assessing the under‑ascertainment of non‑coding region 

variants in ClinVar

To identify non-coding region variants in ClinVar [31], 

all variants (n = 789,941) from the ClinVar GRCh38 

VCF dated 01/31/2021 were annotated with respect 

to Matched Annotation from NCBI and EMBL-EBI 

(MANE) Select [32] v0.93 transcripts. Variants were 

assigned as falling within the coding sequence (n = 

597,408), 5′UTR (n = 10,820), 3′UTR (n = 53,988), 

intronic regions (n = 110,618), or in the 2-kb upstream of 

the transcription start site (annotated as promoter; n = 

4348). All remaining variants (n = 12,759) were assigned 

as ‘other’. The majority of these ‘other’ variants were 

coding sequence variants in genes without designated 

MANE Select transcripts.

High-confidence pathogenic variants were designated 

as those with a review status of ‘criteria_provided,_multi-

ple_submitters,_no_conflicts’, ‘reviewed_by_expert_panel’, 

or ‘practice_guideline’. Pathogenic variants were taken as 

those with significance of ‘Pathogenic’, ‘Likely_pathogenic’, 

or ‘Pathogenic/Likely_pathogenic’.

Identifying in trans non‑coding region variants in 100,000 

Genomes Project to inform PM3

To determine the frequency of variants observed in 

trans with potentially pathogenic variants, we used the 

Genomics England (GEL) 100,000 Genomes dataset (ver-

sion 7) [7]. We identified all probands recruited as full 

trios (i.e. an affected proband and both unaffected par-

ents) without variants classified as either tier 1 or tier 2 

in the GEL clinical filtering pipeline [33]. We next iden-

tified all remaining probands with a single heterozygous 

predicted loss-of-function (pLoF) variant in one of 794 

genes catalogued as biallelic loss-of-function (LoF) genes 
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Table 1 Categories of small variants in non-coding regions previously implicated in penetrant Mendelian disease

Region Mechanism Example (variant/gene) Example (disease) ClinVar Var ID Reference VEP categories In silico tools to predict 
effect

Promoter Altering transcription factor 
binding

GATA1:−113A>G Hereditary persistence of 
foetal haemoglobin

1 Upstream gene variant / 
regulatory region / TF bind-
ing site

TF binding site disruption 
prediction tools e.g. motif-
breakR / SEMpl / QBiC-Pred

Promoter Altering transcription CHM c.-98C>A, c.-98C>T Choroideremia 2

Promoter/5′UTR Altering methylation pat-
terns

BRCA1:c.-107A>T Breast and ovarian cancer 3 Upstream gene variant / 5 
prime UTR variant

5′UTR Creating upstream start site 
(uAUG)

NF1:c.-272G>A Neurofibromatosis type 1 1013130 4 5 prime UTR variant e.g. UTRannotator

5′UTR Perturbing upstream open 
reading frames

NF2:−66-65insT Neurofibromatosis type 2 5 e.g. UTRannotator

5′UTR Disrupting internal ribo-
some entry sites (IRES)

GJB1:c.-103C>T Charcot-Marie-Tooth 
disease

217166 6 e.g. IRESpy / IRESfinder / 
IRESite

5′UTR Disrupting splicing SHOX:c.-19G>A SHOX haploinsufficiency 933226 7 Splicing prediction tools e.g. 
SpliceAI

5′UTR Altering Kozak consensus of 
start site

GATA4:c.-6G>C Atrial septal defect 8 e.g. utR.annotation

5′UTR N-terminal transcript elon-
gation

MEF2C:c.−8C>T Developmental disorder 9 e.g. UTRannotator

Intron Disrupting canonical splice 
sites

MYBPC3:c.3490+1G>A Hypertrophic cardiomyo-
pathy

42715 10 Splice donor variant / splice 
acceptor variant / splice 
region variant / splice_
donor_5th_base_variant 
/ splice_polypyrimidine_
tract_variant

Splicing prediction tools e.g. 
SpliceAI

Intron Disrupting splicing branch 
point

HNF4A:c.264-21A>G Maturity-onset diabetes of 
the young

11 Intron variant Splicing prediction tools e.g. 
SpliceAI

Intron Pseudo-exon activation DMD: c.7310-19A>G Muscular dystrophy 12 Splicing prediction tools e.g. 
SpliceAI

Intron Poison-exon inclusion SCN1A:c.4002+2165C>T Dravet Syndrome 13 Splicing prediction tools e.g. 
SpliceAI

Intron Branchpoint mutation BBS1:c.592-21A>T Retinitis pigmentosa 14 Splicing prediction tools e.g. 
SpliceAI

Intron Indels & spacing of splicing 
motifs

DOK7:c.54+8_54+17del 15 Splicing prediction tools e.g. 
SpliceAI

Intron Cryptic exon VHL: c.3401770T.C Erythrocytosis 16
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Table 1 (continued)

Region Mechanism Example (variant/gene) Example (disease) ClinVar Var ID Reference VEP categories In silico tools to predict 
effect

3′UTR Disrupting polyA signal 
motif

NAA10:c.a43A>G Microphthalmia 617463 17 3 prime UTR variant PolyA signal motif prediction 
tools e.g. Omni-PolyA

3′UTR Disrupting miRNA interac-
tions

REEP1 Hereditary spastic para-
plegia

18 miRNA binding site predic-
tion e.g. miRTarBase

3′UTR Disrupting splicing LHFPL5:c.a16+1G>A Hearing impairment 19 Splicing prediction tools e.g. 
SpliceAI

CRE Altering transcription factor 
binding

chr7:155754267:C>T; NCBI 
build 36.3

Holoprosencephaly 20 Upstream gene variant / 
downstream gene variant 
/ regulatory region variant 
/ TF binding site variant / 
intergenic variant / TFBS 
ablation / TFBS amplifica-
tion / regulatory region 
ablation / regulatory region 
amplification

TF binding site disruption 
prediction tools e.g. motif-
breakR / SEMpl / QBiC-Pred

CRE Abolishing enhancer activity PTF1A - 6 variants Isolated pancreatic agenesis 21

CRE Disrupting enhancer activity SOX9 - deletion 
(chr17:67,628,756–
67,634,155)

Pierre Robin sequence 22

Intergenic Creating new regulatory 
element

chr16:209,709 T>C α-thalassaemia 23 Intergenic variant / 
upstream gene variant / 
downstream gene variant

miRNA Disrupting seed region miR-204:n.37C>T Retinal dystrophy 24 non-coding transcript 
exon variant / non-coding 
transcript variant / mature_
miRNA_variant

snRNA Altering structure RNU12 Cerebellar ataxia 25 Non-coding transcript 
exon variant / non-coding 
transcript variant

snRNA Abnormal splicing, accu-
mulation of minor intron 
retained transcripts

RNU4ATAC Roifman Syndrome 26 Splicing prediction tools e.g. 
SpliceAI

snRNA Affecting expression, pro-
cessing and protein binding

SNORD118 Cerebral microangiopathy 
leukoencephalopathy

27

TAD boundary Disrupting chromatin loop-
ing leading to enhancer loss 
or adoption

WNT6/IHH/EPHA4/PAX3 
locus

Limb phenotypes 28 Intergenic variant

This is not intended as an exhaustive list. Reference DOIs: 1. 10.1182/blood-2018-07-863951. 2. 10.1002/humu.23212. 3. 10.1016/j.ajhg.2018.07.002. 4. 10.1016/j.ebiom.2016.04.005. 5. 10.1038/s41467-019-10717-

9. 6. 10.1074/jbc.M005199200. 7. 10.1038/s41431-020-0676-y. 8. 10.1002/ajmg.a.36703. 9. 10.1016/j.ajhg.2021.04.025. 10. 10.1172/JCI119555. 11. 10.2337/db07-1657. 12. 10.3390/genes11101180. 13. 10.1016/j.

ajhg.2018.10.023. 14. 10.1136/jmedgenet-2020-107626. 15. 10.1016/j.ajhg.2019.07.013. 16. 10.1182/blood-2018-03-838235. 17. 10.1136/jmedgenet-2018-105836. 18. 10.1086/505361. 19. 10.1038/s10038-018-0502-3. 

20. 10.1038/ng.230. 21. 10.1038/ng.2826. 22. 10.1038/ng.329. 23. 10.1038/s41467-021-23980-6. 24. 10.1073/pnas.1401464112. 25. 10.1002/ana.24826. 26. 10.1038/ncomms9718. 27. 10.1038/ng.3661. 28. 10.1016/j.

cell.2015.04.004
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in the Developmental Disorders Gene to Phenotype 

(DDG2P) database [34] (downloaded on 02/04/2019). 

Variants were filtered to only those classified as high-

confidence by LOFTEE [35], with allele frequency (AF) 

<0.5% across the GEL rare disease cohort and/or in gno-

mAD v2.1.1 [35], and with >25% but <75% of reads con-

taining the variant.

Each DDG2P biallelic LoF gene was annotated with a 

minimal set of non-coding regulatory regions comprising 

all intronic regions, the 5′UTR and 3′UTRs, and a core 

promoter region comprising the first 200 bps directly 

upstream of the transcription start site. Regions were 

identified using the MANE Select v0.9 transcript where 

available [32], and otherwise, the canonical transcript as 

defined by UCSC [36]. Variants transmitted by the alter-

native parent to the pLoF variant were identified in the 

non-coding regions of the same gene and filtered to only 

those with filtering allele frequency [37] <0.5% and no 

observed homozygotes in gnomAD v3.1.

Results
Non‑coding region variants are under‑ascertained 

in clinical variant databases

Non-coding regions are not regularly captured in clini-

cal sequencing pipelines, where they are most often 

excluded from capture regions, or removed during bio-

informatic processing of the data. Consequently, even 

variants within non-coding regions known to regulate 

established disease genes are under-reported. In the 

ClinVar database [31], only 1 in 294 (0.34%) high-confi-

dence pathogenic variants are in UTRs or immediately 

upstream regions (within 2 kb; Fig.  2). This is despite 

UTRs having approximately the same genomic footprint 

as protein-coding regions and important regulatory roles 

[28]. Whilst this is in part due to the lower likelihood of 

any single non-coding region variant being pathogenic, it 

also reflects under-ascertainment.

Regulatory variants are also more likely to be catego-

rised as variants of uncertain significance (VUS), with 

63.4% of all UTR variants in ClinVar categorised as VUS, 

compared to 44.2% of coding sequence variants (Fig. 2b), 

highlighting the need for clearer guidelines for interpre-

tation and strategies for functional validation.

Defining and filtering candidate non‑coding regions

The vast majority of the thousands of non-coding region 

variants identified in each individual will have very lit-

tle or no effect. For example, whilst 43% of all assessed 

common variants (minor allele frequency ≥0.01) are sig-

nificantly associated with expression of at least one gene 

in at least one human tissue, 78% of these show <2-fold 

changes [38]. Furthermore, many of these variants may 

simply tag the effect of true causal variants and them-

selves have no effect on gene expression. To avoid both 

a huge burden of interpretation and many variants being 

reported as variants of uncertain significance (VUS), it 

is important to only clinically interpret variants that (1) 

fall into regulatory elements that have well-established or 

Fig. 2 Non-coding region variants are under-ascertained in ClinVar and are more likely to be classified as variants of uncertain significance (VUS) 

when compared to protein-coding variants. a The proportion of the genomic footprint of MANE transcripts that fall into each of five region 

categories and the proportion of variants in ClinVar (all, likely pathogenic or pathogenic, likely benign or benign, and VUS) within those regions. 

b The number of high-confidence pathogenic variants in ClinVar (see ‘2’) that fall into each of the five region categories plotted as bars, with the 

proportion of variants in each region classified as VUS as blue points
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functionally validated links to target genes, and (2) those 

genes have documented associations to the phenotype of 

interest (i.e. at definitive, strong or moderate level using 

the ClinGen classification approach [39], or green for the 

phenotype of interest in PanelApp [40]). This should be 

used as a filtering approach rather than evidence towards 

pathogenicity. We therefore only recommend the use of 

ACMG/AMP rule PP4 for non-coding region variants 

where the gene is the only, or one of very few genes asso-

ciated with a discriminative set of phenotypic features, 

in accordance with existing guidance [30]. For variants 

within candidate CREs or non-coding genes without 

proven gene-disease validity, we recommend that they 

are treated as research variants, and not interpreted or 

reported, until meaningful functional experiments prove 

a direct effect of the CRE on the target gene and/or a role 

for the non-coding gene in disease is established.

We note that identifying CREs and linking them to spe-

cific genes is a very active area of research [13, 41]. How-

ever, based on current knowledge, we recommend that 

regions of interest within which variants should be inter-

preted should be defined using the following parameters. 

Possible sources of data to support these definitions are 

listed in Table 2.

– Introns and UTRs: The definition of intronic and 

UTR regions is transcript dependent. In general, 

these should be defined using well-validated clinically 

relevant transcripts. Even if a well-validated tran-

script exists for the coding regions of a gene of inter-

est, the UTRs may not be well defined. We therefore 

recommend using transcripts defined by the MANE 

project which has integrated multiple diverse data-

sets to accurately define these elements [32]. Each 

gene has a single ‘Select’ transcript (98% of genes), 

and some genes have additional ‘Plus Clinical’ tran-

scripts.

– Promoters: Promoters are marked by a region of 

open chromatin surrounding the transcription 

start site (TSS) that is described as a nucleosome-

free region. Whilst the exact size and composition 

of the promoter region may be cell type and tem-

porally specific, for many genes a minimal core 

region is visible in epigenetic [42] data across most 

cell types [43]. To define the promoter region, we 

(1) first need to determine the location of the TSS, 

before (2) defining the region around the TSS cor-

responding to the promoter. (1) The TSS should be 

defined in a relevant tissue or cell type as the most 

5′ position of the 5′UTR of a MANE Select or other 

well supported transcript, or using a peak defined 

by CAGE (Cap Analysis Gene Expression). (2) Fol-

lowing this, the promoter should be defined as the 

region of open chromatin surrounding the TSS 

(e.g. using ATAC-seq or DNase-seq data). Ideally, 

this should be based on epigenetic data from a rel-

evant tissue or cell type; however, in the absence of 

this, a minimal promoter should be defined using 

the consensus data across all available cell types. 

These data are summarised by the ENCODE Can-

didate Regulatory Elements [44] and Ensembl 

Regulatory Build datasets [45, 46]. We note that 

other data types can support the definition of the 

promoter region, including histone modifications 

that mark active promoter elements (H3K27Ac and 

H3K4Me3), overlapping transcription factor bind-

ing sites identified by ChIP-seq, and poised RNA 

Pol II identified by ChIP-seq. Where the existence 

of a promoter is not supported by epigenetic data, 

potentially because it only acts in a cell type or at a 

developmental time-point not represented by pub-

lished data, and hence a region of open chromatin 

is not known to exist around the TSS, a minimum 

promoter region can be defined as the 250 bps 

immediately up- and downstream of the TSS.

– CREs: There may be multiple ‘candidate’ CREs in 

the region surrounding a gene of interest. As noted 

above, these must have a known or functionally vali-

dated link to the gene of interest for variants within 

them to be interpreted clinically. We therefore out-

line a two-step process to identify CREs. Firstly, can-

didate CREs can be defined as regions of open chro-

matin (defined by ATAC-seq or DNase-seq), marked 

by histone modifications that mark active enhancer 

elements (H3K27Ac and H3K4Me1), and/or with 

evidence of multiple overlapping transcription factor 

binding sites identified by ChIP-seq. Candidate CREs 

should then be filtered to only those with experi-

mental evidence of a link to the gene of interest, for 

example through chromatin interaction data (from 

promoter capture Hi-C), functional perturbation 

showing an effect on gene expression, or the pres-

ence of one or more expression quantitative trait loci 

(eQTLs) for the gene.

It merits repeating that enhancer and promoter usage 

can vary across tissues and also temporally, for example 

throughout development [47]. It is therefore important 

that when defining both promoters and CREs the above 

datasets should be derived from a relevant tissue or cell 

type for the phenotype of interest and where possible, 

from a relevant developmental time-point.

We appreciate that the definition of candidate regula-

tory elements using the above guidance will vary depend-

ing on data availability and access. For equitable and 

consistent variant interpretation, these ‘interpretable’ 
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regions need to be standardised for specific genes and 

diseases, and regularly updated as new data and knowl-

edge become available. We call on the community to gen-

erate and make openly accessible relevant datasets, and 

to work together to produce resources that define inter-

pretable promoters and CREs across all known disease 

genes.

Predicting the impact of variants identified in candidate 

non‑coding regions

Predicting the effect of any individual variant may not be 

straightforward. In Table  1, we have listed many of the 

mechanisms through which non-coding region variants 

have previously been shown to cause disease. This list 

is not exhaustive, and new mechanisms will be identi-

fied as more variants are identified and comprehensively 

studied. Often, the only way to fully determine a variant’s 

impact will be through functional studies (see section ‘20’ 

below). Where in silico tools exist to predict the effect of 

certain classes of non-coding region variants, we have 

noted examples of these in Table 1.

General considerations

Variant types covered by this guidance

This guidance is intended to cover short sequence vari-

ants (SNVs and insertions and deletions (indels) <50 bps 

in size) to mirror the original ACMG/AMP guidelines. 

We do not explicitly consider larger copy number (CNV) 

and structural variants (SVs), which are discussed in 

separate existing guidelines [48]. We note, however, that 

multiple principles of our recommendations will apply 

to CNVs and SVs that do not overlap protein-coding 

sequence. The change in disease risk associated with vari-

ants identified through genome-wide association studies 

are very small and outside the scope of these guidelines.

Table 2 Data types used for identification of candidate non-coding regions

a https:// doi. org/ 10. 1186/ s13059- 018- 1519-9

b Tissue specificity and temporal specificity (e.g. specific to a developmental time-point) should be considerations for all

Evidence Description Region(s) Possible source Extra  considerationsb

ATAC-seq or DNase Flags regions of open chromatin Promoter / CRE ENCODE; ROADMAP epigenomics

Promoter capture Hi-C Links enhancer regions to pro-
moters of target genes

CRE Published datasets; 3D genome 
 browsera

Transient interac-
tions that may not be 
needed for enhancer 
function

Hi-C Define topologically associated 
domains (TADs)

TAD boundaries Published datasets; 3D genome 
 browsera

Cap analysis gene expression 
(CAGE)

Marks the 5’ cap of mRNA Promoter / 5’UTR FANTOM5 Alternative transcripts

CTCF ChIP-seq Identifies regions bound by the 
insulator protein CTCF

TAD boundaries ENCODE; ROADMAP epigenomics

Transcription factor ChIP-seq Identifies regions bound by spe-
cific transcription factors

Promoter / CRE ENCODE; ROADMAP epigenomics

H3K4Me Histone modification found near 
enhancers

CRE ENCODE; ROADMAP epigenomics

H3K4Me3 Histone modification found near 
promoters

Promoter ENCODE; ROADMAP epigenomics

H3K27Ac Histone modification found at 
active regulatory elements

Promoter / CRE ENCODE; ROADMAP epigenomics

Expression quantitative trait loci 
(eQTLs)

Identifies variants that are 
associated with changes in gene 
expression

Promoter / CRE GTEx; eqtlgen.org

Experimental perturbation Demonstrates an impact of alter-
ing/deleting all or part an element 
on gene expression

Promoter / CRE Published data Assays may not be 
representative of 
endogenous situation

Northern blot, RT-qPCR, RNA 
sequencing and microarrays

Detection of miRNAs miRNAs miRBase; published datasets

Multiple approaches Experimentally validated miRNA–
target interactions

miRNA targets miRTarBase; published datasets

Bisulphite sequencing Detects methylated DNA and 
allows identification of differen-
tially methylated regions

Promoter / 
upstream gene 
regions

ENCODE; ROADMAP epigenomics

RNA Pol II ChIP-seq Detection of poised polymerase II Promoter ENCODE; ROADMAP epigenomics

https://doi.org/10.1186/s13059-018-1519-9
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We intend these recommendations to cover all vari-

ants identified outside of protein-coding exons, includ-

ing UTRs, intronic sequence, promoters and more distal 

regulatory elements. We note that canonical splice site 

variants (altering the GT in the first two bases of the 

intron or AG in the last two bases) are generally consid-

ered to be loss-of-function and are well covered by exist-

ing guidelines [49]. We caution, however, that this is not 

always the case and we will discuss specific scenarios 

where exceptions may apply.

Terminology

Referring to variants as either ‘coding’ or ‘non-coding’ 

based on where they are in genomic sequence can be 

an unhelpful distinction. It is much more informative 

to instead refer to the predicted (or possible) down-

stream effect of the variant, which may be to alter protein 

sequence, and/or to change the abundance of expressed 

protein. For example, both coding loss-of-function 

(LoF) variants and regulatory variants in non-coding 

regions that abolish protein expression can have equiva-

lent downstream effects. Conversely, a UTR variant that 

extends the coding sequence at either the N- or C-termi-

nus could exert a pathogenic impact through changes to 

the protein sequence rather than changing protein levels, 

and hence is best described primarily by its mechanism 

of pathogenesis.

Defining relevant tissues and cell types

Both in our above discussion of defining regulatory 

regions and below when we consider functional studies, 

we mention the need for assays to be performed in ‘rel-

evant’ tissues or cell types. We deliberately do not give 

solid guidance on how to decide what constitutes a ‘rele-

vant’ cell type or tissue, or an appropriate developmental 

time-point, as these should be defined on a gene and/or 

disease-specific basis. We call on the community to work 

together to determine and standardise these.

Applying the ACMG/AMP guidelines to non‑coding region 

variants

Whilst the primary consideration for the ACMG/AMP 

guidelines was interpretation of variants in protein-

coding regions, they were intended as all-encompassing 

and can be applied to interpretation of variants genome 

wide. These recommendations are therefore designed 

to sit alongside this existing guidance, noting adapta-

tions to these rules rather than replacements.

Many of the rules from Richards et  al. [30] can be 

directly applied to variants in non-coding regions, with-

out requiring extra considerations (Fig.  3; Additional 

file  1: Table  S3). These include the use of frequency 

information (BA1, BS1, BS2 and PM2), upweighting of 

confirmed de novo variants (PM6 and PS2), and incor-

poration of co-segregation evidence (PP1 and BS4). 

Conversely, some rules are not applicable to non-cod-

ing region variants, for example those that refer specifi-

cally to missense variants and are not further adapted 

here (PP2 and BP1; Additional file 1: Table S3).

For nine of the specific ACMG/AMP rules, we 

recommend some modification in the way in which 

they are used (for example by reducing the strength 

to reflect lower certainty) or note extra considera-

tions for when they are activated (Fig. 3; Additional 

file 1: Table S3). Each of these is discussed in detail 

below.

PVS1

In the ACMG/AMP guidelines, PVS1 is defined as 

‘predicted null variant (nonsense, frameshift, canoni-

cal ±1 or 2 splice sites, initiation codon, single or 

multi-exon deletion) in a gene where loss-of-function 

(LoF) is a known mechanism of disease’ [30]. Given 

the extreme caution that is required when applying 

this criterion given its ‘very strong’ weighting, the 

Clinical Genome Resource (ClinGen) subsequently 

released further guidance on its application, includ-

ing recommendations to decrease the strength applied 

to this rule under situations where the confidence in 

a variant being true or complete LoF is reduced [49]. 

Neither the original ACMG/AMP guidelines nor the 

updated guidance refer to non-coding region variants 

other than canonical splice site variants, or splicing 

defects that would delete one or more exons, as most 

variation in non-coding regions cannot be confidently 

predicted to lead to a null effect in the absence of 

experimental data. Given this, we do not recommend 

the use of PVS1 for variant types not covered by exist-

ing guidance. We also caution that PVS1 should not be 

applied to canonical splice sites within UTRs where 

the downstream impact is not clearly loss-of-function. 

Additionally, PVS1 should not be used in combination 

with in silico prediction tools (rule PP3), as specified 

for canonical splice variants in previous guidance [49].

Although PVS1 is often applied to canonical splice 

site variants, we caution that these do not always have 

a null effect; factors such as alternative splicing may 

mediate the pathogenic impact of these variants despite 

the variant causing changes to the spliced transcript 

[51]. Moreover, variants which disrupt splicing can 

have multiple impacts [52] and/or only partial effects 

(see guidance below), with some aberrantly spliced 

transcripts resulting in a loss-of-function and others 
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showing no discernible change or creating a functional 

transcript. In such situations, these consequences 

would receive different interpretations, and the relative 

dosage of each transcript is an important consideration.

PM1

Rule PM1, ‘Located in a mutational hot spot and/or 

critical and well-established functional domain (e.g. 

active site of an enzyme) without benign variation’, was 

designed initially to capture variants within important 

protein domains that are critical to function. It is impor-

tant to note that sequence constraint and variant effect 

in non-coding regions has been shown to likely be base-

specific rather than consistent across larger regions [17, 

53]. It is therefore not appropriate to activate PM1 for 

a variant within a region (e.g. a UTR, or cis-regulatory 

element) just because multiple previous variants within 

that region have been shown to be pathogenic. There are, 

however, occasions where activating PM1 may be appro-

priate; for example, when a variant disrupts the binding 

motif of a transcription factor, perturbation of which has 

repeatedly been shown to be pathogenic, or where mul-

tiple known pathogenic variants are clustered within the 

same well-defined enhancer region, such as sub-regions 

of the ZPA regulatory sequence (ZRS) that controls 

expression of SHH [54]. In these instances, however, we 

would recommend always lowering the strength of PM1 

to supporting.

In the given example of disrupting a known transcrip-

tion factor binding site, if this is predicted using an in 

silico tool, then this should be used to inform PP3 and 

should not also be used for PM1.

PS1

In the ACMG/AMP guidelines, PS1 is used specifically 

for missense variants, when a different nucleotide change 

Fig. 3 ACMG evidence framework for non-coding region variants. An adapted version of the figure from Richards et al. [30] (permission granted). 

Rules that require no extra guidance for non-coding region variants are written in black, with those requiring extra considerations or adaptation in 

colour. †Should not be applied if the assay only assessed one of multiple possible mechanisms. ^Reduced to supporting following guidance from 

ClinGen SVI [50]. $Variant must have at least as great an impact predicted by in silico tools
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results in the same amino acid change as an established 

pathogenic variant. Subsequent guidelines from the UK 

ACGS stated that PS1 could also be used ‘at a support-

ing level for splicing variants where a different nucleotide 

substitution has been classified as (likely) pathogenic and 

the variant being assessed is predicted by in silico tools 

to have a similar or greater deleterious impact on the 

mRNA/protein function’ [55]. Whilst we support this use 

of PS1, we also caution that different base changes can 

have different effects on activation of alternative splice 

sites and hence could have different impacts.

There are other specific occasions where activation of 

PS1 may also be appropriate, for example, uORF stop-

lost variants where disruption of the same stop codon has 

previously been shown to be pathogenic [17].

PM5

Similarly to PS1, PM5 is also described in the ACMG/

AMP guidelines as specific to missense variants, although 

PM5 refers to variants disrupting the same amino acid 

residue, but leading to a different alternate residue. Here, 

we recommend using this evidence code to capture non-

coding region variants that are predicted to have exactly 

the same impact, on the same gene, as established path-

ogenic variants, but themselves may not have been 

described before. Examples of this include upstream start 

codon creating variants that result in out-of-frame over-

lapping open reading frames (see NF1 example curation 

below), and near completely overlapping deletions of the 

same transcription factor binding site or promoter region.

We further caution on our use of the phrase ‘predicted to 

have exactly the same impact’. The gene specificity of regula-

tory elements means that identifying a variant with exactly 

the same impact is often not possible. For example, a vari-

ant that creates an upstream start codon in a 5′UTR may 

need to be created into the same context and in the same 

frame with respect to the coding sequence to have an iden-

tical effect, and even then, differing distances to the coding 

sequence may have an impact. Similarly, two variants could 

disrupt binding of one transcription factor, but result in 

opposite effects on the target gene, e.g. if one variant creates 

a novel binding site for a paralogous transcription factor.

In general, PS1 should be used where the same base, or 

residue, as the previously pathogenic change is impacted, 

and PM5 should be used for other variants with the same 

predicted effect, but that are not at the same specific 

base/residue. If the effect of the variant is predicted using 

an in silico tool (e.g. splice region variants), then this 

information should inform PP3 and not PM5.

PM3

The PM3 rule can be used for recessive disorders when 

a variant is detected in trans with a known pathogenic 

variant. Non-coding region variants, in particular 

deeply intronic variants that impact splicing, have been 

identified in trans with coding variants [52]. Given the 

increased search area for possible in trans variants when 

including non-coding regions (particularly intronic 

regions), we sought to determine the frequency at which 

we would expect to observe one or more rare variants 

in trans using rare disease trios from the GEL 100,000 

Genomics Project dataset.

We identified 2016 undiagnosed trio probands with 

2714 single, rare (AF<0.5%) heterozygous pLoF variants 

in 794 genes in DDG2P annotated as biallelic (i.e. reces-

sive) with a LoF mechanism. For each sample-pLoF pair, 

we searched for rare variants in non-coding regions of 

the same gene that were inherited from the alternative 

parent to the pLoF variant. These non-coding regions 

comprised intronic, 5′UTR and 3′UTR regions, and a 

core promoter region (200 bps immediately upstream). 

In total, 1027 sample-pLoF pairs (37.8%) had at least one 

regulatory variant in trans, with a mean of 0.89 (range 

0–22) identified per sample-pLoF pair (Additional file 2: 

Fig S1). As expected, the vast majority (93.9%) of in trans 

variants mapped to intronic regions; however, only seven 

of these passed a permissive SpliceAI threshold of 0.2 

[56]. If we filter the intronic variants using this SpliceAI 

threshold, only 2.0% of sample-pLoF pairs had a candi-

date variant in trans.

Given the low numbers of in trans variants found in 

this analysis, we believe it is appropriate to apply PM3 as 

per existing guidelines for coding variants [57]. However, 

it is especially important to use strict allele frequency 

cut-offs to limit consideration to only suitably rare vari-

ants [37] and only consider variants impacting genes that 

are a credible cause of an individual’s phenotype. Of note, 

we identified 22 variants in trans with one pLoF variant 

in the WWOX gene, which is an extremely large gene 

spanning >1.1 Mbs. We also identified 16 in trans vari-

ants in an individual self-reported as ‘Black or Black Brit-

ish: African’. These examples highlight extra care required 

when considering genes with particularly large intronic 

regions or where reference datasets do not adequately 

match an individual’s genetic ancestry. In these instances, 

it may be appropriate to lower the strength of PM3. One 

possible approach is to calculate the likelihood of observ-

ing a similar variant (e.g. with an equivalent or greater 

in silico score) in the gene of interest, given the distribu-

tion of all scores across the gene. This approach would 

adjust for both region size and localised mutability. It 

should also be noted that non-coding region variants and 

hypomorphic coding variants that appear to be tolerated 

as homozygotes can be pathogenic when found in trans 

with a null effect coding variant [58].
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PS3/BS3

Functional evidence is extremely important to sup-

port either a pathogenic or a benign role for non-cod-

ing region variants. Bespoke assays are often required 

depending on the variant context and its predicted effect 

(e.g. on splicing, transcription, translation, or chroma-

tin looping). Functional assays should be designed and 

assessed following existing guidance [59]. Below we dis-

cuss in more detail considerations for different catego-

ries of functional assays commonly used for non-coding 

region variants.

– RNA sequencing: RNA-seq and/or targeted 

approaches enable the assessment of a number of 

characteristics which may be indicative of the func-

tional impact that a variant has on normal gene 

expression. These include the characterisation and 

quantification of aberrant transcript isoforms, differ-

ential gene expression and allelic expression imbal-

ances [60]. Detection of aberrant splicing isoforms 

is well-described in the literature, with numerous 

examples of Mendelian disease causation and often 

multiple known pathogenic variants per gene. This 

enables functional assays to be designed that allow 

application of PS3 at moderate/strong weighting [59]. 

In contrast, it may be difficult to establish a suitable 

number of controls for functional assays assessing 

allelic expression imbalances and therefore more 

difficult to achieve higher levels of support for PS3. 

Some genomic variants will cause binary changes in 

the measured characteristics, for example, the abo-

lition of canonical splice sites, whereas others will 

cause changes in the relative ratio of normal:aberrant 

gene expression profiles (see guidance below on par-

tial effects). The discovery of aberrant gene expres-

sion through RNA-seq requires comparison to a 

control cohort (e.g. GTEx [38]) and usually also to 

individuals from the same sequencing and analysis 

process. We recommend that software used to detect 

aberrant splicing events has been benchmarked spe-

cifically for their discovery in the context of rare dis-

ease [61]. The technical appropriateness of biosam-

ples for the discovery of aberrant events in the gene 

of interest should be considered (i.e. is the gene nor-

mally expressed in this tissue?), including when using 

bespoke control sets. Strong weighting of PS3 for 

identified aberrant splicing should only be used when 

(1) expression profiles in the biosample used match 

those of the primary disease tissue of the candidate 

genes [62], and (2) the sequencing data generated 

is appropriate for the detection of aberrant splic-

ing events (e.g. exceeds the 95% confidence interval 

recommendations from MRSD (minimum required 

sequencing depth) using appropriate parameters for 

the laboratory and bioinformatics approaches applied 

[63]). In addition, we recommend that BS3 is only 

used in the absence of aberrant splicing events when 

there is evidence that both alleles are being expressed 

(e.g. data supporting heterozygous alt/ref alleles 

present in roughly equal quantities) and appropri-

ate sequencing coverage has been achieved [62, 63]. 

Even in such scenarios, caution must be taken when 

using BS3 due to the known cell-specific impacts of 

some splicing variants [64] and, in some cases, com-

plex alternative splicing dynamics [65]; we recom-

mend that BS3 is not used in these situations, unless 

an appropriate system for functional assessment has 

been used.

– MAVE approaches: multiplexed assays of variant 

effects (MAVEs) that classify variants as function-

ally normal or functionally abnormal have great 

potential to aid the interpretation of both protein-

coding and non-coding region variants. Whilst the 

majority of studies to date have focused on protein-

coding regions, smaller studies have profiled por-

tions of UTRs [66], and others have used deletion 

tiling to identify and study enhancers [67, 68], offer-

ing insights into the regulatory code. In general, 

use of MAVE data in variant interpretation should 

follow existing guidance [69]. Extra care should be 

taken when interpreting MAVE results for non-

coding region variants, however, for the following 

reasons: (1) assays that only test a short section of 

a regulatory element for function do not account 

for regulation mechanisms that rely on neighbour-

ing DNA, such as the formation of secondary struc-

ture, binding of co-factors, or presence of internal 

ribosome entry sites (IRES); (2) if only a single 

output is assessed, this may not be relevant for the 

mechanism of the variant of interest (i.e. when an 

RNA-seq read-out is used, but the variant is pre-

dicted to impact translation); (3) experiments may 

be performed in a cell type or model system where 

the applicability to the disease of interest is unclear. 

One clear limitation to current use of MAVEs is 

the focus of each experiment on a single gene, or 

even only a single exon within a gene. Collabora-

tion through initiatives such as the Atlas of Variant 

Effects (AVE; www. varia nteff ect. org) is essential 

to achieving comprehensive coverage across both 

genes and regulatory regions.

– Chromatin interaction assays: Chromosome con-

formation capture (3C) approaches can be used to 

identify regions of the genome that are co-restricted 

following chemical cross-linkage, including CREs 

and the promoters of their target genes. As we advise 

http://www.varianteffect.org
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above, this information should be used to inform 

which variants are interpreted using these guide-

lines rather than being used as functional evidence to 

inform PS3. An exception to this is where chromatin 

interaction is shown to be disrupted in individuals 

with a variant in a candidate enhancer region (which 

passes the above inclusion criteria) when compared 

to appropriate controls, which could be used to acti-

vate PS3.

– Reporter gene assays, e.g. luciferase assays: can be 

used to assess the impact of variants in promoter 

and regulatory regions of genes. Using the biolumi-

nescent properties of a gene inserted into a plasmid 

along with a candidate regulatory region, e.g. down-

stream of a promoter region, one can enable assess-

ment of the relative quantitative impact of variants 

in the candidate regulatory region on levels of pro-

tein production [19]. Significant disruption between 

reporter assays containing variant and wild-type 

regulatory sequences can be used to activate PS3, 

although with the very important caveats that this is 

an artificial assay system and must be appropriately 

validated [59].

Many non-coding region variants may only have a 

partial effect; for example, splicing variants that affect 

a sub-set of transcripts, or 5′UTR variants that only 

partially reduce downstream coding sequence transla-

tion. For splicing variants, assays can be quantitative 

as described above; however, for many other assays, 

quantifying the precise level of an effect is difficult. 

Even when an effect can be quantified, whether a vari-

ant with a partial effect can cause disease is very gene 

dependent; for some genes, only a partial reduction in 

functional protein can be severely detrimental, but oth-

ers will tolerate partial dosage changes. Benchmarking 

assays across the full range of effects will therefore be 

important to determine gene-specific thresholds for 

activation of PS3.

When considering BS3, if a functional assay has not 

shown an effect on the gene product or its expression, 

care should be taken when the assay was not performed 

in a relevant tissue or cell type as regulation and tran-

script usage can be very tissue specific. In addition, BS3 

should not be applied if an assay only assesses a single 

output, but there are multiple possible underlying mech-

anisms (e.g. for 5′UTR variants).

Regulatory variants can act to either increase or 

decrease expression of a target gene. On some occasions, 

a functionally tested variant may cause a gain-of-function 

when the known mechanism for the gene is loss-of-func-

tion. BS3 could be applied when this direction of effect is 

inconsistent with the known gene mechanism (although 

we note that many dosage-sensitive genes may be both 

haploinsufficient and triplo-sensitive [70]).

PP3/BP4

The majority of widely used computational tools that 

predict variant deleteriousness were designed to inter-

pret the impact of coding missense variants. These tools 

cannot be applied to variants in non-coding regions. 

There are, however, multiple tools that predict the likely 

impact of variants on splicing, and a few that make pre-

dictions along the complete length of a pre-mRNA tran-

script [71]. Comparisons between available splicing tools 

have been published recently [52], showing that some 

tools (e.g. SpliceAI [56]) perform well to prioritise vari-

ants with functional evidence of aberrant splicing. These 

tools are not further reviewed here. We also do not rec-

ommend specific tools and thresholds as such guidance 

is likely to be quickly outdated given the ongoing rapid 

emergence of new predictive splicing tools showing 

iterative improvements. We instead encourage use of 

evidence-based thresholds and highlight recent papers 

benchmarking the performance of newly developed tools 

[49, 72, 73]. Additionally, we caution that many tools are 

trained on existing canonical splice junctions, or known 

pathogenic/benign variants that are enriched near exon-

intron junctions and hence may perform less well for 

deep intronic splice variants. Conversely, we note that the 

importance of genomic variation at the canonical donor 

+5 site has been well established [74], and variants at this 

position should be treated with a higher prior probability 

of pathogenicity than other proximal positions.

In silico tools that can be used to predict the deleteri-

ousness of other categories of non-coding region variants 

have also been recently reviewed (see Table  3 in Rajano 

et al. [75]). In addition to those mentioned, we note recent 

tools designed specifically for rare disease: NCBoost [76], 

ReMM (Genomiser) [77] and GREEN-DB [78].

For genome-wide machine-learning tools that rely on 

a set of true positive pathogenic variants for training, we 

caution that accurate datasets for this purpose covering 

non-coding regions are currently very limited. These data 

are biassed towards certain subsets of variants, including 

those very close to the coding sequence and only within a 

small number of genes (i.e. those causing single-gene dis-

orders). Indeed, a recent paper describing NCBoost dem-

onstrated this regional bias [76]. How well these tools 

predict the pathogenicity of the full range of non-coding 

region variants is currently unknown. We therefore rec-

ommend extreme caution against over-interpreting the 

output of any genome-wide predictor.

Whilst a limited selection of in silico scores for non-

coding region variants are accessible through widely 
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used annotation tools (e.g. Ensembl VEP), the vast 

majority must be queried individually and many are only 

currently available as large file downloads of pre-com-

puted scores or through running software/scripts (Addi-

tional file 1: Table S4). This presents a barrier to the use 

of many of these tools. Of note, the GREEN-VARAN 

[78] tool returns scores from a group of seven in silico 

algorithms, although it is not currently available as a 

web-tool.

Example variant curations

NF1:c.‑160C>A hypothetically identified variant 

in an individual with neurofibromatosis type 1

The NF1:c.-160C>A (ENST00000356175.7; chr17:31095150:C>A 

GRCh38) variant creates an upstream start codon (uAUG) in 

the 5′UTR of the NF1 gene. It has not been reported in Clin-

Var or the literature. uAUG-creating variants in NF1 have 

previously been shown to cause neurofibromatosis [17, 79]. 

This variant has the same predicted impact as these previ-

ously identified pathogenic variants: it is created into a strong 

Kozak consensus, and translation from this uAUG would 

create an upstream open reading frame (uORF) that over-

laps the coding sequence out-of-frame with the canonical 

start site. We would therefore activate PM5. This variant is 

also absent from gnomAD (PM2_Supporting), and it would 

be appropriate to activate PP4 if the variant was identified in 

an individual with classic neurofibromatosis type 1 (NF1) fea-

tures given the specificity of the NF1 phenotype for the NF1 

gene. If this variant occurred either de novo (PM6/PS2), or 

if there was evidence of segregation with disease at a mod-

erate level (PP1_Moderate), it would reach a classification of 

Likely Pathogenic. Similarly, a functional assay demonstrat-

ing a reduction of translation in a validated cell line model, or 

a reduction in protein levels in an appropriate tissue sample 

would enable activation of PS3 resulting in a Likely Patho-

genic or Pathogenic classification.

CFTR c.3874‑4522 A>G identified in a patient with cystic 

fibrosis

The proband received a late diagnosis of cystic fibro-

sis (16–20 years old). Previous genetic testing uncov-

ered the common c.1521_1523delCTT (p.Phe508del; 

chr7:117559590:ATCT>A GRCh38) pathogenic variant 

in CFTR in a heterozygous state and was proven in trans 

to c.3874-4522A>G (chr7:117648320:A>G; PM3). c.3874-

4522A>G is absent from gnomAD (PM2_Supporting) 

and at the time of analysis has previously been reported 

in a single case of cystic fibrosis with no additional func-

tional evidence. There is a strong phenotype-genotype 

correlation (PP4). MaxEntScan supported the activation 

of a cryptic splicing site but a number of in silico splic-

ing tools did not support that the variant would impact 

splicing (SpliceAI, TraP); therefore, neither PP3 nor BP4 

were applied. Functional assessment of splicing impact 

was performed using RNA extracted from whole-cell 

blood for the proband, showing abnormal splicing of 

CFTR with the introduction of a 125 bp cryptic exon con-

taining a stop codon. PS3_Strong was therefore applied 

as we were using an established method for splicing vari-

ant investigation, with appropriate controls. As we are 

using PS3, we would have had to exclude PP3 in our final 

classification had this code been used. The variant was 

classified as Likely Pathogenic (PS3_Strong, PM3, PM2_

Supporting, PP4).

Emergence of new evidence

After initial classification, additional evidence became 

available from the literature. This included functional 

evidence from minigenes and patient samples [80]. As 

the assays performed in the initial classification were 

appropriate for use of PS3_Strong, there was no altera-

tion due to this evidence. Additional families with cystic 

fibrosis from multiple ethnicities have also been reported 

to carry the c.3874-4522A>G variant, and in at least 4 

of these families, symptomatic individuals are proven to 

carry c.3874-4522A>G in trans to a proven pathogenic 

allele [81]. This evidence allows us to upgrade PM3 to 

VeryStrong, and our final classification to Pathogenic 

(PS3_Strong, PM3_VeryStrong, PM2_Supporting, PP4).

PAX6 distal enhancer variant hypothetically identified 

in a patient with aniridia

The chr11:31664397 C>A (GRCh38) variant is located 

in a candidate CRE downstream of PAX6 and intronic in 

ELP4. The region is highly conserved and the element is 

identified as a ‘distal enhancer’ by the ENCODE regula-

tory build (visualised on the UCSC genome browser [36]). 

Functional experiments show that deletion of the element 

disrupts maintenance of PAX6 expression [82]. Multiple 

in silico scores support a deleterious role (CADD = 17.4; 

ReMM = 0.985; FATHMM_MKL = 0.993; PP3), and 

the variant is absent from gnomAD (PM2_Supporting). 

In silico modelling suggests the variant disrupts a PAX6 

binding site which was validated through disruption of 

reporter expression in the lens (PS3_Moderate). The vari-

ant was also identified de novo via trio analysis (PS2) in 

a patient with a highly specific phenotype (PP4). Taken 

together, these data result in a Likely Pathogenic classifi-

cation (PS2, PS3_Moderate, PM2_Supporting, PP3, PP4). 

We note that the distal enhancer variant for PAX6 is also 

intronic within ELP4 and can be scored for predicted 

impact on splicing (e.g. SpliceAI = 0.00); we caution that 

predictive tools should be used in relevant context, and 

this SpliceAI score cannot be used to support the impact 

of chr11:31664397 C>A on PAX6 expression.
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Discussion
Here, we have outlined considerations for adaptation of 

the ACMG/AMP guidelines for variant interpretation to 

variants identified outside of protein-coding regions of 

the genome. These recommendations have been carefully 

reviewed and refined by an expert panel and extensively 

tested by clinical variant scientists.

It is clear that our knowledge of the impact of non-

coding region variants in rare disease is a fast-evolving 

field, which makes it complex to provide comprehensive 

guidance that will fit every possible scenario. We have 

therefore tried to provide general guidance that can be 

applied to most variant types and have included specific 

examples of how to apply this guidance in practice. We 

hope that these recommendations will enable increased 

interpretation of non-coding region variants and catalyse 

the discovery of additional examples of disease-causing 

variant types, which will in turn inform further revisions 

to this guidance. To enable this continued learning and 

refinement of these guidelines, we encourage the sharing 

of variant data, including for variants that are not initially 

classified as pathogenic, for example by submitting classi-

fied variants to ClinVar [31] and enabling access to indi-

vidual-level data and through DECIPHER [46].

During testing of these guidelines, it became clear that 

one of the largest barriers to widespread adoption is 

access to the epigenomic data (for example to define can-

didate regulatory elements) and in silico scores required 

to interpret non-coding region variants. We are in des-

perate need of accessible tools that allow better visu-

alisation of these data by individuals not well-versed in 

bioinformatics, ideally allowing for queries by cell type/

tissue, to allow transparent curation and reproducible 

interpretation of these data. We also need more research 

aimed at deciphering the full ‘regulatory code’ and devel-

opment of in silico prediction tools for non-coding vari-

ants not trained on limited pools of known pathogenic 

variants. It was also clear from feedback that there is sub-

stantial appetite for educational webinars and workshops 

around various aspects of using the guidelines (Supple-

mentary Table  2). This includes training on finding and 

evaluating functional data which may use assays that are 

unfamiliar. We are actively engaged in developing these 

in the hope they will increase usability and adoption.

A substantial barrier to our understanding of the role 

of non-coding region variants in rare disease to date 

has been the lack of statistical power when searching 

for enrichment of variants across and between different 

regulatory regions and/or variant classes. This is due to 

multiple factors, including (1) the majority of non-coding 

region variants having little or no effect, (2) a lack of clar-

ity on how to subdivide the genome for genome-wide 

scans, (3) potential opposing actions of different variants 

and (4) a lack of large-scale whole genome sequenced 

datasets derived from different genetic ancestry groups 

with linked phenotypic data. The study of large pheno-

typically characterised WGS cohorts using a systematic 

and reproducible analysis approach, including informed 

region-based variant filtering, is needed to establish the 

overall contribution of non-coding region variants to 

diagnostic yield and clinical utility [7]. Conversely, much 

of our success to date in identifying disease-causing non-

coding region variants has been using phenotypically 

highly selected cohorts, where only one or a very small 

number of genes are suspected as being involved. It is 

likely that this approach will continue to be successful at 

identifying new disease-causing variants in non-coding 

regions.

The full range of mechanisms through which variants 

in non-coding regions cause, and contribute to the risk 

of genetic disease remains unknown. It is likely, how-

ever, that many regulatory variants have smaller effects 

than those impacting protein sequence and that these 

effects may be highly tissue-specific. Whilst for some 

extremely dosage-sensitive genes, even partial effect 

variants will cause severe disease (as has been shown 

for MEF2C [19]); in others, single variants with only 

a moderate effect will be insufficiently deleterious or 

may only cause disease in a single tissue or organ. For 

example, in PRPF31 disease-causing variants causing 

significantly reduced expression of a single allele can be 

incompletely penetrant [83]. The penetrance of these 

variants can be modified by the relative expression of 

the other allele, or regulatory variants could themselves 

modify the penetrance of damaging protein-coding 

variants [84], and/or cause disease only in combination 

with other variants. Further research is needed to fully 

elucidate the frequency and impact of these different 

mechanisms.

The majority of non-coding region variants would be 

expected to either decrease or increase the protein prod-

uct of an impacted gene, whether through affecting tran-

scription, or post-transcriptional regulation mechanisms. 

It is therefore expected that these variants would pri-

marily impact genes that are dosage sensitive. There are, 

however, exceptions, such as uAUG-creating variants in 

5′UTRs that elongate the coding sequence at the N-ter-

minus, which could negatively impact non-dosage-sen-

sitive transcripts. Furthermore, there may be occasions 

where a gene does not appear to be constrained against 

coding loss-of-function variants (so may not be consid-

ered haploinsufficient), but where regulatory variants 

that decrease protein levels could be deleterious. This 

could be the case, for example, if a compensatory mecha-

nism relies on protein truncating variants that trigger 

nonsense-mediated decay [85].
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Given the uncertainty in predicting the effect and 

downstream impact of the majority of non-coding region 

variants, these recommendations are deliberately con-

servative, often downgrading the strength of evidence 

applied to individual rules (e.g. PM1). We acknowledge 

that it can therefore be difficult for newly identified 

variants to reach a Likely Pathogenic classification. Our 

example variant curations (Additional file  1: Table  S1), 

however, demonstrate that multiple different sources of 

evidence can support a (Likely) Pathogenic classification, 

including segregation (PP1), functional data (PS3), de 

novo (PS2/PM6) or in trans occurrence (PM3). Our mod-

ification of the PM5 missense rule to capture variants 

with exactly the same predicted impact as an established 

pathogenic variant also enables variants to be upgraded 

to Likely Pathogenic (see TH promoter variant in Addi-

tional file 1: Table S1). We believe that these recommen-

dations strike an appropriate balance between caution 

and the ability to classify variants as (Likely) Pathogenic, 

when appropriate.

In these guidelines, we have primarily discussed vari-

ants that impact existing regulatory regions; however, 

there are examples of disease-causing variants that act 

through creating novel regulatory elements. For exam-

ple, a recent paper discussed a SNV that created a new 

promoter leading to dysregulation of genes in the human 

α-globin locus [86]. We have also not discussed variants 

in non-coding genes in detail; however, we note exam-

ples of identified pathogenic variants in this area of active 

research (Table  1). The importance of variants in both 

creating novel regulatory elements and impacting non-

coding genes will increasingly be recognised and ensur-

ing that these guidelines continue to be appropriate for 

these variant types will be an important consideration in 

future revisions.

It should be recognised that non-coding regions can be 

very large. Whilst 5′UTRs average only 197 bps, 3′UTRs 

are on average approximately the same size as the pro-

tein-coding sequence (1775 bps for 3′UTRs vs 1745 bps 

for protein-coding sequence). The average combined size 

of intronic regions, by contrast, is 34-fold larger than 

protein-coding sequence at 59,220 bps (region lengths 

calculated across all MANE Select v0.95 transcripts [32]). 

Including non-coding regions in the search for likely 

disease-causing variants therefore dramatically increases 

the genomic search space. We have not here recom-

mended decreasing the strength of evidence applied to 

de novo variants for those found in non-coding regions, 

but more research is required into the relative rates of de 

novo occurrence across these different regions to deter-

mine whether this should be accounted for in future revi-

sions of these guidelines.

Conclusions
As our knowledge of disease-causing mechanisms, and 

the size of both available phenotype-linked sequencing 

data and MAVE datasets profiling non-coding regions 

expand, our ability to fully interpret variants in non-

coding regions for a role in both rare and common dis-

eases will continue to increase. As we gain the ability to 

reliably understand and interpret these variants, it may 

well be appropriate to rethink our standard ‘coding first’ 

strategy for genetic testing of many genes and conditions, 

not only through using WGS, but also by expanding the 

regions captured by targeted panels to include stand-

ardised community-defined regulatory elements, where 

these remain more appropriate. Given our continuously 

increasing knowledge, it may also be necessary to revisit 

and re-interpret variants initially designated as ‘research 

only’. This in turn will, however, catalyse the return of a 

definitive genetic diagnosis to ever increasing numbers of 

individuals with rare diseases.
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