UNIVERSITY OF LEEDS

This is a repository copy of Induced subgraphs and tree decompositions I. Even-hole-free graphs of bounded degree.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/207734/
Version: Accepted Version

Article:

Abrishami, T., Chudnovsky, M. orcid.org/0000-0002-8920-4944 and Vušković, K. (2022) Induced subgraphs and tree decompositions I. Even-hole-free graphs of bounded degree. Journal of Combinatorial Theory, Series B, 157. pp. 144-175. ISSN 0095-8956
https://doi.org/10.1016/j.jctb.2022.05.009

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS I. EVEN-HOLE-FREE GRAPHS OF BOUNDED DEGREE

TARA ABRISHAMI*§ ${ }^{*}$ MARIA CHUDNOVSKY ${ }^{* \dagger}$, AND KRISTINA VUŠKOVIĆ ${ }^{* * \ddagger}$

Abstract

Treewidth is a parameter that emerged from the study of minor closed classes of graphs (i.e. classes closed under vertex and edge deletion, and edge contraction). It in some sense describes the global structure of a graph. Roughly, a graph has treewidth k if it can be decomposed by a sequence of noncrossing cutsets of size at most k into pieces of size at most $k+1$. The study of hereditary graph classes (i.e. those closed under vertex deletion only) reveals a different picture, where cutsets that are not necessarily bounded in size (such as star cutsets, 2-joins and their generalization) are required to decompose the graph into simpler pieces that are structured but not necessarily bounded in size. A number of such decomposition theorems are known for complex hereditary graph classes, including even-hole-free graphs, perfect graphs and others. These theorems do not describe the global structure in the sense that a tree decomposition does, since the cutsets guaranteed by them are far from being noncrossing. They are also of limited use in algorithmic applications.

We show that in the case of even-hole-free graphs of bounded degree the cutsets described in the previous paragraph can be partitioned into a bounded number of well-behaved collections. This allows us to prove that even-hole-free graphs with bounded degree have bounded treewidth, resolving a conjecture of Aboulker, Adler, Kim, Sintiari and Trotignon [arXiv:2008.05504]. As a consequence, it follows that many algorithmic problems can be solved in polynomial time for this class, and that even-hole-freeness is testable in the bounded degree graph model of property testing. In fact we prove our results for a larger class of graphs, namely the class of C_{4}-free odd-signable graphs with bounded degree.

1. Introduction

All graphs in this paper are finite and simple. A hole of a graph G is an induced cycle of G of length at least four. A graph is even-hole-free if it has no hole with an even number of vertices.

Even-hole-free graphs have been studied extensively; see [23] for a survey. The first polynomial time recognition algorithm for this class of graphs was obtained in [9]. This algorithm is based on a decomposition theorem from [8] that uses 2-joins and star, double star, and triple star cutsets to decompose the graph into simpler pieces. Later, a stronger decomposition theorem, using only star cutsets and 2-joins, was obtained in [12], leading to a faster recognition algorithm. Further improvements resulted in the best currently known algorithm with running time $\mathcal{O}\left(n^{9}\right)$ $[6,15]$. This progress required deep insights into the behavior of even-hole-free graphs; however the global structure of graphs in this class is still not well understood. Moreover, there are several natural optimization problems whose complexity for this class remains unknown (among those are the vertex coloring problem and the maximum weight stable set problem). The key difficulty is to make use of star cutsets, and in particular to understand how several star cutsets in a given

[^0]graph interact. In this paper we address this problem, by showing that star cutsets in an even-hole-free graph of bounded degree can be partitioned into a bounded number of well-behaved collections, which in turn allows us to bound the treewidth of such graphs.

Let $G=(V, E)$ be a graph. A tree decomposition (T, χ) of G is a tree T and a map $\chi: V(T) \rightarrow$ $2^{V(G)}$ such that the following hold:
(i) For every $v \in V(G)$, there exists $t \in V(T)$ such that $v \in \chi(t)$.
(ii) For every $v_{1} v_{2} \in E(G)$, there exists $t \in V(T)$ such that $v_{1}, v_{2} \in \chi(t)$.
(iii) For every $v \in V(G)$, the subgraph of T induced by $\{t \in V(T) \mid v \in \chi(t)\}$ is connected.

If (T, χ) is a tree decomposition of G and $V(T)=\left\{t_{1}, \ldots, t_{n}\right\}$, the sets $\chi\left(t_{1}\right), \ldots, \chi\left(t_{n}\right)$ are called the bags of (T, χ). The width of a tree decomposition (T, χ) is $\max _{t \in V(T)}|\chi(t)|-1$. The treewidth of G, denoted $\operatorname{tw}(G)$, is the minimum width of a tree decomposition of G.

Many NP-hard algorithmic problems can be solved in polynomial time in graphs with bounded treewidth. For a full discussion, see [5]. While tree decomposition s, and classes of graphs of bounded treewidth, play an important role in the study of graphs with forbidden minors, the problem of connecting tree decompositions with forbidden induced subgraphs has so far remained open. Clearly, in order to get a class of bounded treewidth, one needs to forbid, for example, large cliques, large complete bipartite graphs, large walls, and the line graphs of large walls. However, all of these obstructions, except for large cliques, contain even holes. Further, in [20], a bound on the treewidth of planar even-hole-free graphs was proven. On the other hand, [21] contains a construction of a family of even-hole-free graphs with no K_{4}, and with unbounded treewidth. The graphs in this construction have both unbounded degree and contain large clique minors. In [1] it was examined whether both of these are necessary. They show that any graph that excludes a fixed graph as a minor either has small treewidth or contains (as an induced subgraph) a large wall or the line graph of a large wall. This implies that even-hole-free graphs that exclude a fixed graph as a minor have bounded treewidth (generalizing the result of [20]). Furthermore, the following conjecture was made (and proved for subcubic graphs) in [1]:
Conjecture 1.1. For every $\delta \geq 0$ there exists k such that even-hole-free graphs with maximum degree at most δ have treewidth at most k.

The main result of the present paper is the proof of Conjecture 1.1, in fact, the following slight strengthening of it. We sign a graph G by assigning 0,1 weights to its edges. A graph G is odd-signable if there exists a signing such that every triangle and every hole in G has odd weight. Thus even-hole-free graphs are a subclass of odd-signable graphs.

Theorem 1.2. For every $\delta \geq 0$ there exists k such that C_{4}-free odd-signable graphs with maximum degree at most δ have treewidth at most k.

It follows from Theorem 1.2 that vertex coloring, maximum stable set, and many other NPhard algorithmic problems can be solved in polynomial time for even-hole-free graphs with bounded maximum degree. Another consequence of Theorem 1.2 is that even-hole-freeness is testable in the bounded degree graph model of property testing, since even-hole-freeness is expressible in monadic second-order logic with modulo counting (CMSO) and CMSO is testable on bounded treewidth [4]. See [1] for an excellent survey that motivates the study of Conjecture 1.1 and surrounding problems, and in particular contains a detailed discussion of property testing algorithms.
1.1. Outline of the proof of Theorem 1.2. A graph G has bounded treewidth if and only if every connected component of G has bounded treewidth. Therefore, we prove that connected C_{4}-free odd-signable graphs with bounded degree have bounded treewidth.

In [14], a number of parameters tied to treewidth are discussed. Let G be a graph, let $c \in\left[\frac{1}{2}, 1\right)$, and let k be a nonnegative integer. For $S \subseteq V(G)$, a $(k, S, c)^{*}$-separator is a set $X \subseteq V(G)$ with $|X| \leq k$ such that every component of $G \backslash X$ contains at most $c|S|$ vertices of S. The
separation number $\operatorname{sep}_{c}^{*}(G)$ is the minimum k such that there exists a $(k, S, c)^{*}$-separator for every $S \subseteq V(G)$. The separation number is related to treewidth through the following lemma.
Lemma 1.3 ([14]). For every graph G and for all $c \in\left[\frac{1}{2}, 1\right)$, the following holds:

$$
\operatorname{sep}_{c}^{*}(G) \leq t w(G)+1 \leq \frac{1}{1-c} \operatorname{sep}_{c}^{*}(G)
$$

A set $S \subseteq V(G)$ is d-bounded if there exist $v_{1}, \ldots, v_{d^{\prime}}$, with $d^{\prime} \leq d$, such that $S \subseteq N^{d}\left[v_{1}\right] \cup$ $\ldots \cup N^{d}\left[v_{d^{\prime}}\right]$. For a graph G and weight function w on its vertices, if X is a subgraph of G or a subset of $V(G)$, then $w(X)$ is the sum of the weights of vertices in X. Let G be a graph and let $w: V(G) \rightarrow[0,1]$ be a weight function of G such that $w(G)=1$. By $w^{\text {max }}$ we denote the maximum weight of a vertex in G. A set $Y \subseteq V(G)$ is a (w, c, d)-balanced separator of G if Y is d-bounded and $w(Z) \leq c$ for every component Z of $G \backslash Y$. The following lemma shows that if G is a graph with maximum degree δ and G has a (w, c, d)-balanced separator for every weight function $w: V(G) \rightarrow[0,1]$ with $w(G)=1$, then G has bounded treewidth.
Lemma 1.4. Let δ, d be positive integers with $\delta \leq d$, let $c \in\left[\frac{1}{2}, 1\right)$, and let $\Delta(d)=d+d \delta+d \delta^{2}+$ $\ldots+d \delta^{d}$. Let G be a graph with maximum degree δ. Suppose that for every $w: V(G) \rightarrow[0,1]$ with $w(G)=1$ and $w^{\max }<\frac{1}{\Delta(d)}$, G has a (w, c, d)-balanced separator. Then, $t w(G) \leq \frac{1}{1-c} \Delta(d)$.
Proof. Note that $\Delta(d)$ is an upper bound for the size of a d-bounded set in G. Let $S \subseteq V(G)$. If $|S| \leq \Delta(d)$, then S is a $(\Delta(d), S, c)^{*}$-separator of G. Now, assume $|S|>\Delta(d)$. Let w_{S} : $V(G) \rightarrow[0,1]$ be such that $w_{S}(v)=\frac{1}{|S|}$ for $v \in S$ and $w_{S}(v)=0$ for $v \in V(G) \backslash S$. Then, $w_{S}(G)=1$ and $w_{S}^{\max }<\frac{1}{\Delta(d)}$, so G has a $\left(w_{S}, c, d\right)$-balanced separator. Specifically, for all $S \subseteq V(G)$ such that $|S|>\Delta(d)$, there exists a set X such that $|X| \leq \Delta(d)$, and $w_{S}(Z) \leq c$ for all components Z of $G \backslash X$. It follows that X is a $(\Delta(d), S, c)^{*}$-separator of G. Therefore, G has a $(\Delta(d), S, c)^{*}$-separator for every $S \subseteq V(G)$. It follows that $\operatorname{sep}_{c}^{*}(G) \leq \Delta(d)$, and by Lemma 1.3, $\operatorname{tw}(G) \leq \frac{1}{1-c} \Delta(d)$.

In this paper, we prove that connected C_{4}-free odd-signable graphs with bounded degree have bounded treewidth. Specifically, we prove the following theorem:

Theorem 1.5. Let δ, d be positive integers. Let G be a connected C_{4}-free odd-signable graph with maximum degree δ and let $w: V(G) \rightarrow[0,1]$ be a weight function such that $w(G)=1$. Let $f(2, \delta)=2(\delta+1)^{2}+1$, and let $c \in\left[\frac{1}{2}, 1\right)$. Assume that $d \geq 49 \delta+4 f(2, \delta) \delta-4$ and $(1-c)+\left[w^{\max }+3 f(2, \delta) \delta 2^{\delta}(1-c)+2(\delta-1) 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Then, G has $a(w, c, d)-$ balanced separator.

We can then prove our main result:
Theorem 1.6. Let δ be a positive integer and let G be a connected C_{4}-free odd-signable graph with maximum degree δ. Then, there exists $c \in\left[\frac{1}{2}, 1\right)$ and positive integer $d \geq \delta$ such that $t w(G) \leq \frac{1}{1-c}\left(d+d \delta+d \delta^{2}+\ldots+d \delta^{d}\right)$.

Proof. Let $f(2, \delta)=2(\delta+1)^{2}+1$. Let d be an integer such that $d \geq 49 \delta+4 f(2, \delta) \delta-4$, and let $\Delta(d)=d+d \delta+d \delta^{2}+\ldots+d \delta^{d}$. Note that there exists $c \in\left[\frac{1}{2}, 1\right)$ such that $(1-c)+\left[\frac{1}{\Delta(d)}+\right.$ $\left.3 f(2, \delta) \delta 2^{\delta}(1-c)+2(\delta-1) 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Let $w: V(G) \rightarrow[0,1]$ be a weight function of G such that $w(G)=1$ and $w^{\max }<\frac{1}{\Delta(d)}$. Then by Theorem 1.5, G has a (w, c, d)-balanced separator. The result now follows from Lemma 1.4.

Let us now discuss the main ideas of the proof of Theorem 1.5. We will give precise definitions of the concepts used below later in the paper; the goal of the next few paragraphs is just to give the reader a road map of where we are going. A separation (or decomposition) of a graph G is a triple of disjoint vertex sets (A, C, B) such that $A \cup C \cup B=V(G)$ and there are no edges
from A to B. To "decompose along (A, C, B) " means to delete A. Usually, to prove a result that a certain graph family has bounded treewidth, one attempts to construct a collection of "noncrossing separations", which roughly means that the separations "cooperate" with each other, and the pieces that are obtained when the graph is simultaneously decomposed by all the separtions in the collection "line up" to form a tree structure. Such collections of separations are called "laminar."

In the case of C_{4}-free odd-signable graphs, there is a natural family of separations to turn to, given by Lemmas 4.4, 4.5, and 4.6. A key point here is that all the decompositions above are forced by the presence of certain induced subgraphs that we call "forcers." In essence it is shown that the corresponding decomposition of the forcer extends to the whole graph, and when the graph is decomposed along the decomposition, part of the forcer is removed.

Unfortunately, the decompositions above are very far from being non-crossing, and therefore we cannot use them in traditional ways to get tree decompositions. What turns out to be true, however, is that, due to the bound on the maximum degree of the graph, this collection of decompositions can be partitioned into a bounded number of laminar collections X_{1}, \ldots, X_{p} (where p depends on the maximum degree). We can then proceed as follows. Let G be a connected C_{4}-free odd-signable graph with maximum degree δ and let $w: V(G) \rightarrow[0,1]$ be such that $w(G)=1$. In view of Lemma 1.3, to prove Theorem 1.5, we would like to show that for certain c and d, G has a (w, c, d)-balanced separator; we may assume that no such separator exists. We first decompose G, simultaneously, by all the decompositions in X_{1}. Since X_{1} is a laminar collection, by Lemma 2.1 this gives a tree decomposition of G, and we identify one of the bags of this decomposition as the "central bag" for X_{1}; denote it by β_{1}. Then, β_{1} corresponds to an induced subgraph of G, and we can show that β_{1} has no (w_{1}, c, d_{1})-balanced separator for certain w_{1} and d_{1} that depend on w and d. We next focus on β_{1}, and decompose it using X_{2}, and so on. At step i, having decomposed by X_{1}, \ldots, X_{i}, we focus on a central bag β_{i} that does not have a $\left(w_{i}, c, d_{i}\right)$-separator for suitably chosen w_{i}, d_{i}.

The fact that all the separations at play come from forcers ensures that at step i, after decomposing by X_{1}, \ldots, X_{i}, none of the forcers that were "responsible" for the decompositions in X_{1}, \ldots, X_{i} is present in the central bag β_{i} (as part of each such forcer was removed in the decomposition process). It then follows that when we reach β_{p}, all we are left with is a "much simpler" graph (one that contains no forcers), where we can find a (w_{p}, c, d_{p})-balanced separator directly, thus obtaining a contradiction.

The remainder of the paper is devoted to proving Theorem 1.5. In Section 1.2, we review key definitions and preliminaries. In Section 2, we define laminar collections of separations, and describe a tree decomposition corresponding to a laminar collection of separations. In Section 3, we prove results about clique cutsets and balanced separators. In Sections 4 and 5, we define forcers and prove results about forcers, star cutsets, and balanced separators. In Section 6, we prove a bound on separation number in graphs with no star cutset. Finally, in Section 7, we prove Theorem 1.5.
1.2. Terminology and notation. Let G and H be graphs. We say that G contains H if G has an induced subgraph isomorphic to H. We say that G is H-free if G does not contain H. If \mathcal{H} is a set of graphs, we say that G is \mathcal{H}-free if G is H-free for every $H \in \mathcal{H}$. For $X \subseteq V(G)$, $G[X]$ denotes the subgraph of G induced by X, and $G \backslash X=G[V(G) \backslash X]$. In this paper, we use induced subgraphs and their vertex sets interchangeably. Let $v \in V(G)$. The open neighborhood of v, denoted $N(v)$, is the set of all vertices in $V(G)$ adjacent to v. The closed neighborhood of v, denoted $N[v]$, is $N(v) \cup\{v\}$. Let $X \subseteq V(G)$. The open neighborhood of X, denoted $N(X)$, is the set of all vertices in $V(G) \backslash X$ with a neighbor in X. The closed neighborhood of X, denoted $N[X]$, is $N(X) \cup X$. If H is an induced subgraph of G and $X \subseteq H$, then $N_{H}(X)\left(N_{H}[X]\right)$ denotes the open (closed) neighborhood of X in H. Let $Y \subseteq V(G)$ be disjoint from X. Then, X is anticomplete to Y if there are no edges between X and Y. We use $X \cup v$ to mean $X \cup\{v\}$.

Given a graph G, a path in G is an induced subgraph of G that is a path. If P is a path in G, we write $P=p_{1}-\ldots-p_{k}$ to mean that p_{i} is adjacent to p_{j} if and only if $|i-j|=1$. We call the vertices p_{1} and p_{k} the ends of P, and say that P is from p_{1} to p_{k}. The interior of P, denoted by P^{*}, is the set $V(P) \backslash\left\{p_{1}, p_{k}\right\}$. The length of a path P is the number of edges in P. A cycle C is a sequence of vertices $p_{1} p_{2} \ldots p_{k} p_{1}, k \geq 3$, such that $p_{1} \ldots p_{k}$ is a path, $p_{1} p_{k}$ is an edge, and there are no other edges in C. The length of C is the number of edges in C. We denote a cycle of length four by C_{4}.

If $v \in V(G)$ and $X \subseteq V(G)$, a shortest path from v to X is the shortest path with one end v and the other end in X. If $v \in V(G)$, then $N_{G}^{d}(v)$ (or $N^{d}(v)$ when there is no danger of confusion) is the set of all vertices in $V(G)$ at distance exactly d from v, and $N_{G}^{d}[v]$ (or $N^{d}[v]$) is the set of vertices at distance at most d from v. Similarly, if $X \subseteq V(G), N_{G}^{d}(X)$ (or $N^{d}(X)$) is the set of all vertices in $V(G)$ at distance exactly d from X, and $N^{d}[X]$ (or $N^{d}[X]$) is the set of all vertices in $V(G)$ at distance at most d from X.

Next we describe a few types of graphs that we will need. They are illustrated in Figure 1. A theta is a graph consisting of three internally vertex-disjoint paths $P_{1}=a-\ldots-b, P_{2}=a-\ldots-b$, and $P_{3}=a-\ldots-b$ of length at least 2 , such that no edges exist between the paths except the three edges incident with a and the three edges incident with b. A prism is a graph consisting of three vertex-disjoint paths $P_{1}=a_{1}-\ldots-b_{1}, P_{2}=a_{2}-\ldots-b_{2}$, and $P_{3}=a_{3}-\ldots-b_{3}$ of length at least 1 , such that $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ are triangles and no edges exist between the paths except those of the two triangles. A pyramid is a graph consisting of three paths $P_{1}=a-\ldots-b_{1}, P_{2}=a-\ldots-b_{2}$, and $P_{3}=a-\ldots-b_{3}$ of length at least 1 , two of which have length at least 2, vertex-disjoint except at a, and such that $b_{1} b_{2} b_{3}$ is a triangle and no edges exist between the paths except those of the triangle and the three edges incident with a.

A wheel (H, x) is a hole H and a vertex x such that x has at least three neighbors in H. A wheel (H, x) is even if x has an even number of neighbors on H. The following lemma characterizes odd-signable graphs in terms of forbidden induced subgraphs.

Figure 1. Theta, pyramid, prism, and wheel
Theorem 1.7. ([7]) A graph is odd-signable if and only if it is (even wheel, theta, prism)-free.
A cutset $C \subseteq V(G)$ of G is a set of vertices such that $G \backslash C$ is disconnected. A star cutset in a graph G is a cutset $S \subseteq V(G)$ such that either $S=\emptyset$ or for some $x \in S, S \subseteq N[x]$. A clique is a set $K \subseteq V(G)$ such that every pair of vertices in K are adjacent. A clique cutset is a cutset $C \subseteq V(G)$ such that C is a clique.

2. BaLANCED SEPARATORS AND LAMINAR COLLECTIONS

The goal of this section is to develop the notion of a "central bag" for a laminar collection of separations, and to study the properties of the central bag. The main result is Lemma 2.6, that connects the existence of a balanced separator in the whole graph with the existence of one in
the central bag of a laminar collection of separations. Note that in a later paper by the authors and their coauthors [2], a simpler way to define central bags is given.

For the remainder of the paper, unless otherwise specified, we assume that if G is a graph, then $w: V(G) \rightarrow[0,1]$ is a weight function of G with $w(G)=1$, and $w^{\max }=\max _{v \in V(G)} w(v)$. A separation of a graph G is a triple of disjoint vertex sets (A, C, B) such that $A \cup C \cup B=V(G)$ and A is anticomplete to B. A separation (A, C, B) is proper if A and B are nonempty. A set $X \subseteq V(G)$ is a clique star if there exists a nonempty clique K in G such that $K \subseteq X \subseteq N[K]$. The clique K is called the center of X. A separation $S=(A, C, B)$ is a star separation if C is a clique star, and the center of S is the center of C. For $\varepsilon \in[0,1]$, a separation $S=(A, C, B)$ is ε-skewed if $w(A)<\varepsilon$ or $w(B)<\varepsilon$. For the remainder of the paper, if $S=(A, C, B)$ is ε-skewed, we assume that $w(A)<\varepsilon$. Let $S_{1}=\left(A_{1}, C_{1}, B_{1}\right)$ and $S_{2}=\left(A_{2}, C_{2}, B_{2}\right)$ be two separations. For $i=1,2$, let $X_{i}=A_{i} \cup C_{i}$ and $Y_{i}=C_{i} \cup B_{i}$. We say S_{1} and S_{2} are non-crossing if for some $i \in\{1,2\}$, either $X_{i} \subseteq X_{3-1}$ and $Y_{3-i} \subseteq Y_{i}$, or $X_{i} \subseteq Y_{3-i}$ and $X_{3-i} \subseteq Y_{i}$. If S_{1} and S_{2} are not non-crossing, then S_{1} and S_{2} cross.

Let \mathcal{C} be a collection of separations of G. The collection \mathcal{C} is laminar if the separations of \mathcal{C} are pairwise non-crossing. The separation dimension of \mathcal{C}, denoted $\operatorname{dim}(\mathcal{C})$, is the minimum number of laminar collections of separations with union \mathcal{C}.

Let G be a graph and let (T, χ) be a tree decomposition of G. Suppose that $e=t_{1} t_{2}$ is an edge of T and let T_{1} and T_{2} be the connected components of $T \backslash e$, where for $i=1,2, t_{i}$ is a vertex of T_{i}. Up to symmetry between t_{1} and t_{2}, the separation of G corresponding to e, denoted S_{e}, is defined as follows: $S_{e}=\left(D_{e}^{t_{1}}, C_{e}, D_{e}^{t_{2}}\right)$, where $C_{e}=\chi\left(t_{1}\right) \cap \chi\left(t_{2}\right), D_{e}^{t_{1}}=\left(\bigcup_{t \in T_{1}} \chi(t)\right) \backslash C_{e}$, and $D_{e}^{t_{2}}=\left(\bigcup_{t \in T_{2}} \chi(t)\right) \backslash C_{e}$. The following lemma shows that given a laminar collection of separations \mathcal{C} of G, there exists a tree decomposition $\left(T_{\mathcal{C}}, \chi_{\mathcal{C}}\right)$ of G such that there is a bijection between \mathcal{C} and the separations corresponding to edges of $\left(T_{\mathcal{C}}, \chi_{\mathcal{C}}\right)$.
Lemma 2.1 ([19]). Let G be a graph and let \mathcal{C} be a laminar collection of separations of G. Then there is a tree decomposition $\left(T_{\mathcal{C}}, \chi_{\mathcal{C}}\right)$ of G such that
(i) for all $S \in \mathcal{C}$, there exists $e \in E\left(T_{\mathcal{C}}\right)$ such that $S=S_{e}$, and
(ii) for all $e \in E\left(T_{\mathcal{C}}\right), S_{e} \in \mathcal{C}$.

We call $\left(T_{\mathcal{C}}, \chi_{\mathcal{C}}\right)$ a tree decomposition corresponding to \mathcal{C}. Suppose \mathcal{C} is a laminar collection of ε-skewed separations of G, and let ($T_{\mathcal{C}}, \chi_{\mathcal{C}}$) be a tree decomposition corresponding to \mathcal{C}. For $e \in E\left(T_{\mathcal{C}}\right), S_{e}=\left(A_{e}, C_{e}, B_{e}\right)$, where $w\left(A_{e}\right)<\varepsilon$. We define the directed tree $T_{\mathcal{C}}^{\prime}$ to be the orientation of $T_{\mathcal{C}}$ given by directing edge $e=t_{1} t_{2}$ of $T_{\mathcal{C}}$ from t_{1} to t_{2} if $A_{e}=D_{e}^{t_{1}}$ (so $e=\left(t_{1}, t_{2}\right)$ in $T_{\mathcal{C}}^{\prime}$), and from t_{2} to t_{1} if $A_{e}=D_{e}^{t_{2}}$ (so $e=\left(t_{2}, t_{1}\right)$ in $T_{\mathcal{C}}^{\prime}$). If $w\left(A_{e}\right)<\varepsilon$ and $w\left(B_{e}\right)<\varepsilon$, then edge e is directed arbitrarily.

A sink of a directed graph G is a vertex v such that each edge incident with v is oriented toward v. Every directed tree has at least one sink. A directed tree T is an in-arborescence if there exists a root $v \in V(T)$ such that for every $u \in V(T)$, there is exactly one directed path from u to v in T. The following lemma shows that when \mathcal{C} is a laminar collection of ε-skewed separations satisfying an additional property, $T_{\mathcal{C}}^{\prime}$ is an in-arborescence.
Lemma 2.2. Let $\varepsilon, \varepsilon_{0}>0$ be such that $\varepsilon+\varepsilon_{0}<\frac{1}{2}$. Let G be a graph and let \mathcal{C} be a laminar collection of ε-skewed separations of G such that $w(C) \leq \varepsilon_{0}$ for all (A, C, B) in \mathcal{C}. Let $\left(T_{\mathcal{C}}, \chi_{\mathcal{C}}\right)$ be a tree decomposition corresponding to \mathcal{C}. Then, the directed tree $T_{\mathcal{C}}^{\prime}$ is an in-arborescence.

Proof. Let $x \in V\left(T_{\mathcal{C}}^{\prime}\right)$ be a sink of $T_{\mathcal{C}}^{\prime}$. We prove by induction on the distance from x in $T_{\mathcal{C}}$ that for every vertex $u \in V\left(T_{\mathcal{C}}^{\prime}\right)$, the path from u to x in $T_{\mathcal{C}}$ is a directed path from u to x in $T_{\mathcal{C}}^{\prime}$. Since x is a sink, the base case follows immediately. Suppose that there is a directed path from v to x in $T_{\mathcal{C}}^{\prime}$ for all vertices v of distance i from x, and consider vertex u of distance $i+1$ from x. Let $P=u-v-v^{\prime}-\ldots-x$ be the path from u to x in $T_{\mathcal{C}}$. By induction, the path $v-v^{\prime}-\ldots-x$ is a directed path from v to x in $T_{\mathcal{C}}^{\prime}$. Suppose that $(v, u) \in E\left(T_{\mathcal{C}}^{\prime}\right)$. Let T_{1} be the component of
$T_{\mathcal{C}}^{\prime} \backslash(v, u)$ containing v, and let T_{2} be the component of $T_{\mathcal{C}}^{\prime} \backslash\left(v, v^{\prime}\right)$ containing v. Because $S_{v u}$ and $S_{v v^{\prime}}$ are ε-skewed separations of G, we have that

$$
\begin{equation*}
w\left(\left(\bigcup_{t \in T_{1}} \chi_{\mathcal{C}}(t)\right) \backslash\left(\chi_{\mathcal{C}}(v) \cap \chi \mathcal{C}(u)\right)\right)<\varepsilon \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
w\left(\left(\bigcup_{t \in T_{2}} \chi_{\mathcal{C}}(t)\right) \backslash\left(\chi_{\mathcal{C}}(v) \cap \chi_{\mathcal{C}}\left(v^{\prime}\right)\right)\right)<\varepsilon \tag{2}
\end{equation*}
$$

Together, (1) and (2) imply that $w(G)<2 \varepsilon+2 \varepsilon_{0}<1$, a contradiction. Therefore, the directed tree $T_{\mathcal{C}}^{\prime}$ is an in-arborescence.
Lemma 2.3. Let $c \in\left[\frac{1}{2}, 1\right)$ and let d be a positive integer. Let G be a graph, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$, and suppose G has no (w, c, d)-balanced separator. Let $S=(A, C, B)$ be a separation of G such that C is d-bounded. Then, S is $(1-c)$-skewed.
Proof. Since C is d-bounded and G has no (w, c, d)-balanced separator, we may assume $w(B)>c$. Since $1=w(G) \geq w(A)+w(B)$ and $w(B)>c$, it follows that $w(A)<1-c$, and so S is $(1-c)$ skewed.

Let G be a graph with maximum degree δ. Note that $\delta+\delta^{2}$ is an upper bound for the maximum size of a clique star in G. Let $\beta \subseteq V(G)$. For a laminar collection X of ε-skewed star separations of G, β is perpendicular to X if $\beta \cap A=\emptyset$ for all $(A, C, B) \in X$.

Lemma 2.4. Let δ be a positive integer, let $c \in\left[\frac{1}{2}, 1\right)$, and let $m \in[0,1]$, with $(1-c)+m\left(\delta+\delta^{2}\right)<$ $\frac{1}{2}$. Let G be a connected graph with maximum degree δ and let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$ and $w^{\max } \leq m$. Let X be a laminar collection of $(1-c)$-skewed star separations of G. Let $\left(T_{X}, \chi_{X}\right)$ be a tree decomposition corresponding to X. (Note that since $(1-c)+w^{\max }\left(\delta+\delta^{2}\right)<\frac{1}{2}$, it follows from Lemma 2.2 that T_{X}^{\prime} is an in-arborescence.) Let v be the root of T_{X}^{\prime} and let $\beta=\chi_{X}(v)$. Then β is connected and perpendicular to X.

Proof. Suppose $(A, C, B) \in X$. Then, C is a clique star, so $|C| \leq \delta+\delta^{2}$ and $w(C) \leq w^{\max }\left(\delta+\delta^{2}\right)$. First, we show that β is connected. Let e_{1}, \ldots, e_{m} be the edges of T_{X} incident with v and let $S_{e_{1}}, \ldots, S_{e_{m}}$ be the corresponding separations, where $S_{e_{i}}=\left(A_{e_{i}}, C_{e_{i}}, B_{e_{i}}\right)$ and $w\left(A_{e_{i}}\right)<1-c$. Then, $V(G) \backslash \beta=\bigcup_{i=1}^{m} A_{e_{i}}$. Since $A_{e_{1}}, \ldots, A_{e_{m}}$ are pairwise disjoint and anticomplete, for every connected component D of $G \backslash \beta$ there exists $1 \leq i \leq m$ such that $D \subseteq A_{e_{i}}$. Since $N\left(A_{e_{i}}\right) \cap \beta \subseteq C_{e_{i}}$ and $C_{e_{i}} \subseteq N\left[K_{e_{i}}\right]$ for some clique $K_{e_{i}} \subseteq C_{e_{i}}$, it follows that the neighborhood in β of every connected component of $G \backslash \beta$ is contained in a unique connected component of β. Therefore, since G is connected, β is connected.

Now we show that β is perpendicular to X. Let $(A, C, B) \in X$, let $e=t_{1} t_{2}$ be the edge of T_{X} such that $S_{e}=(A, C, B)$, and let T_{1} and T_{2} be the components of $T_{X} \backslash e$ containing t_{1} and t_{2}, respectively. Up to symmetry between T_{1} and T_{2}, assume that $A=\left(\cup_{t \in T_{1}} \chi_{X}(t)\right) \backslash \chi_{X}\left(t_{2}\right)$. Then, $e=\left(t_{1}, t_{2}\right)$ in T_{X}^{\prime}. Since v is the root of T_{X}^{\prime}, it follows that $v \in V\left(T_{2}\right)$, and thus $\beta \subseteq \cup_{t \in T_{2}} \chi_{X}(t)$. Therefore, $\beta \cap A=\emptyset$, so β is perpendicular to X.

Let G be a connected graph with maximum degree δ and let X be a laminar collection of ε skewed star separations of G, where $\varepsilon+w^{\max }\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Let $\left(T_{X}, \chi_{X}\right)$ be a tree decomposition corresponding to X. Let $v \in V\left(T_{X}\right)$ and $\beta=\chi_{X}(v)$ be as in Lemma 2.4; then β is connected and perpendicular to X. We call β the central bag for T_{X}. Let e_{1}, \ldots, e_{m} be the edges of T_{X} incident with v where $e_{i}=v_{i} v$, and let $S_{e_{1}}, \ldots, S_{e_{m}}$ be the corresponding separations of G, where $S_{e_{i}}=\left(A_{e_{i}}, C_{e_{i}}, B_{e_{i}}\right)$. Since $C_{e_{i}}=\chi_{X}(v) \cap \chi_{X}\left(v_{i}\right)$, it follows that $C_{e_{i}} \subseteq \chi_{X}(v)=\beta$ for every $i \in\{1, \ldots, m\}$.

For every $C_{e_{i}}$, let $K_{e_{i}}$ be a center of $C_{e_{i}}$. We let $v_{e_{i}} \in K_{e_{i}}$ chosen arbitrarily be the anchor of $C_{e_{i}}$. For $v \in V(G)$, let $I_{v} \subseteq\{1, \ldots, m\}$ be the set of indices i such that v is the anchor of $C_{e_{i}}$. Then, the weight function w_{X} on β with respect to T_{X} is a function $w_{X}: \beta \rightarrow[0,1]$ such that $w_{X}(v)=w(v)+\sum_{i \in I_{v}} w\left(A_{e_{i}}\right)$ for all $v \in \beta$.
Lemma 2.5. Let δ be a positive integer and let ε, $m \in[0,1]$, with $\varepsilon+m\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Let G be a connected graph with maximum degree δ and let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$ and $w^{\max } \leq m$. Let X be a laminar collection of ε-skewed star separations of G. Let $\left(T_{X}, \chi_{X}\right)$ be a tree decomposition corresponding to X, let β be the central bag for T_{X}, and let w_{X} be the weight function on β with respect to T_{X}. Then, $w_{X}(\beta)=w(G)=1$. Furthermore, if every clique K of G is the center of at most one star separation in X, then $w_{X}^{\max } \leq w^{\max }+2^{\delta} \varepsilon$.
Proof. By the definition of w_{X}, we have $w_{X}(\beta)=\sum_{v \in \beta} w_{X}(v)=\sum_{v \in V(G) \backslash \bigcup_{i=1}^{m} A_{e_{i}}} w(v)+$ $\sum_{i=1}^{m} w\left(A_{e_{i}}\right)=w(G)=1$.

Suppose every clique K of G is the center of at most one star separation in X. Because the maximum degree of G is δ, every vertex $v \in V(G)$ is in at most 2^{δ} cliques of G. It follows that every vertex $v \in V(G)$ is the anchor of at most 2^{δ} separations of X, so $\left|I_{v}\right| \leq 2^{\delta}$. Since X is a collection of ε-skewed separations, $w\left(A_{e_{i}}\right)<\varepsilon$ for all $i \in I_{v}$. Therefore, $w_{X}^{\max } \leq w^{\max }+2^{\delta} \varepsilon$.

The following lemma shows that if G does not have a (w, c, d)-balanced separator and X is a laminar collection of star separations of G, then the central bag for T_{X} does not have a $\left(w_{X}, c, d-2\right)$-balanced separator.
Lemma 2.6. Let δ, d be positive integers with $d>2$, let $c \in\left[\frac{1}{2}, 1\right)$, and let $m \in[0,1]$, with $(1-c)+m\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Let G be a connected graph with maximum degree δ, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$ and $w^{\max } \leq m$, and suppose that G does not have a (w, c, d)-balanced separator. Let X be a laminar collection of star separations of G. Then, the central bag β for X exists (in particular, β is perpendicular to X), $w_{X}(\beta)=1$, and β does not have a $\left(w_{X}, c, d-2\right)$-balanced separator.

Proof. Since X is a collection of star separations, it follows that C is 2-bounded for every $(A, C, B) \in X$. Since G does not have a $(w, c, 2)$-balanced separator Lemma 2.3 implies that every separation in X is $(1-c)$-skewed. Let $\left(T_{X}, \chi_{X}\right)$ be a tree decomposition corresponding to X. Then, by Lemma 2.4, the central bag β for X exists, and by Lemma 2.5, $w_{X}(\beta)=1$.

Suppose that Y is a $\left(w_{X}, c, d-2\right)$-balanced separator of β. We claim that $N_{\beta}^{2}[Y]$ is a (w, c, d) balanced separator of G. Since Y is $(d-2)$-bounded, it follows that $N_{\beta}^{2}[Y]$ is d-bounded. Let Q_{1}, \ldots, Q_{ℓ} be the components of $\beta \backslash Y$. Let $t \in V\left(T_{X}\right)$ be such that $\beta=\chi_{X}(t)$. Let e_{1}, \ldots, e_{m} be the edges of T_{X} incident with t, let $S_{e_{1}}, \ldots, S_{e_{m}}$ be the corresponding separations, where $S_{e_{i}}=\left(A_{e_{i}}, C_{e_{i}}, B_{e_{i}}\right)$ and $w\left(A_{e_{i}}\right)<1-c$, and let $c_{e_{i}}$ be the anchor of $C_{e_{i}}$ for $i=1, \ldots, m$. Then, $V(G) \backslash \beta=\bigcup_{i=1}^{m} A_{e_{i}}$ and $A_{e_{i}}$ is anticomplete to $A_{e_{j}}$ for $i \neq j$. For $v \in V(G)$, let $I_{v} \subseteq\{1, \ldots, m\}$ be the set of all i such that v is the anchor of $C_{e_{i}}$. For $i=1, \ldots, \ell$, let $A_{i}=\bigcup_{v \in Q_{i}}\left(\bigcup_{j \in I_{v}} A_{e_{j}}\right)$, let $Q_{i}^{\prime}=\left(Q_{i} \backslash N_{\beta}^{2}[Y]\right)$, and let $Z_{i}=Q_{i}^{\prime} \cup A_{i}$.
(1) Z_{i} is anticomplete to Z_{j} for $i \neq j$.

Suppose there is an edge e from Z_{i} to Z_{j}. Since Q_{i}^{\prime} is anticomplete to Q_{j}^{\prime} and A_{i} is anticomplete to A_{j}, we may assume that e is from $A_{e_{i^{\prime}}}$ to Q_{j}^{\prime}, where $A_{e_{i^{\prime}}} \subseteq A_{i}$. Since $N\left(A_{e_{i^{\prime}}}\right) \cap \beta \subseteq C_{e_{i^{\prime}}}$, it follows that $C_{e_{i^{\prime}}} \cap Q_{j}^{\prime} \neq \emptyset$. Let $v \in C_{e_{i^{\prime}}} \cap Q_{j}^{\prime}$ and let P be a shortest path from $c_{e_{i^{\prime}}}$ to v through β. Since $c_{e_{i^{\prime}}}, v \in C_{e_{i^{\prime}}}$ and $C_{e_{i^{\prime}}}$ is a clique star, it follows that P is of length at most 2 . Since $c_{e_{i^{\prime}}} \in Q_{i}$ and $v \in Q_{j}$, it follows that P goes through Y and thus P is of length exactly 2 . Let $P=c_{e_{i^{\prime}}}-y-v$, where $y \in Y$. Then, $v \in N_{\beta}^{2}[y] \subseteq N_{\beta}^{2}[Y]$, a contradiction (since $v \in Q_{j}^{\prime}$). This proves (1).
(2) If $c_{e_{i}} \in Y$, then $A_{e_{i}}$ is anticomplete to Z_{j} for $j \in\{1, \ldots, \ell\}$.

Suppose $c_{e_{i}} \in Y$. Then, $C_{e_{i}} \subseteq N_{\beta}^{2}[Y]$. Since $N\left(A_{e_{i}}\right) \cap \beta \subseteq C_{e_{i}}$, it follows that $A_{e_{i}}$ is anticomplete to Q_{j}^{\prime} for all $j=1, \ldots, \ell$. Therefore, $A_{e_{i}}$ is anticomplete to Z_{j} for all $j=1, \ldots, \ell$. This proves (2).

Let $I_{Y} \subseteq\{1, \ldots, m\}$ be the set of all i such that $c_{e_{i}} \in Y$. Then, $V(G) \backslash N_{\beta}^{2}[Y]=\left(\bigcup_{i \in I_{Y}} A_{e_{i}}\right) \cup$ $\left(\bigcup_{j=1}^{\ell} Z_{j}\right)$. Suppose Z is a component of $V(G) \backslash N_{\beta}^{2}[Y]$. It follows from (1) and (2) that either $Z \subseteq A_{e_{i}}$ for some $i \in I_{Y}$, or $Z \subseteq Z_{j}$ for some $j \in\{1, \ldots, \ell\}$. Since $w_{X}\left(Q_{i}\right) \leq c$, it follows that $w\left(Z_{i}\right) \leq c$ for all $i=1, \ldots, \ell$. Further, since every separation in X is $(1-c)$-skewed and $c \in\left[\frac{1}{2}, 1\right)$, it follows that $w\left(A_{e_{i}}\right)<(1-c) \leq c$ for all $i \in I_{Y}$. Therefore, $w(Z) \leq c$, and $N_{\beta}^{2}[Y]$ is a (w, c, d)-balanced separator of G, a contradiction.

3. Balanced separators and clique separations

In this section, we show that if G is a connected graph with no balanced separator, then there exists a connected induced subgraph of G with no balanced separator and no clique cutset. The central bag from Lemma 2.6 is the primary tool for finding such an induced subgraph.

A separation (A, C, B) of a graph G is a clique separation if C is a clique. A clique cutset C is minimal if every $c \in C$ has a neighbor in every component of $G \backslash C$. Note that in a connected graph $G,|C| \geq 1$ for every minimal clique cutset C of G.

Lemma 3.1. Let G be a connected graph and let \mathcal{C} be a collection of clique separations of G such that C is a minimal clique cutset for all $(A, C, B) \in \mathcal{C}$ and for every two distinct separations $\left(A_{1}, C_{1}, B_{1}\right),\left(A_{2}, C_{2}, B_{2}\right) \in \mathcal{C}, C_{1} \neq C_{2}$. Then, $\operatorname{dim}(\mathcal{C})=1$. In particular, \mathcal{C} is laminar.

Proof. Let $S_{1}=\left(A_{1}, C_{1}, B_{1}\right)$ and $S_{2}=\left(A_{2}, C_{2}, B_{2}\right)$ be clique separations of G such that C_{1} and C_{2} are minimal clique cutsets of G. Since C_{1} is a clique and A_{2} is anticomplete to B_{2}, either $C_{1} \cap A_{2}=\emptyset$ or $C_{1} \cap B_{2}=\emptyset$. We may assume that $C_{1} \cap A_{2}=\emptyset$. Similarly, we may assume that $C_{2} \cap A_{1}=\emptyset$. If $A_{1} \cap A_{2}=\emptyset$, then $A_{2} \subseteq B_{1}$ and $A_{1} \subseteq B_{2}$, so S_{1} and S_{2} are non-crossing (since $A_{2} \cup C_{2} \subseteq B_{1} \cup C_{1}$ and $A_{1} \cup C_{1} \subseteq B_{2} \cup C_{2}$). Therefore, we may assume that $A_{1} \cap A_{2} \neq \emptyset$. Since $C_{1} \neq C_{2}$, either $C_{1} \cap B_{2} \neq \emptyset$ or $C_{2} \cap B_{1} \neq \emptyset$. Assume up to symmetry that $C_{1} \cap B_{2} \neq \emptyset$. Since $A_{1} \subseteq A_{2} \cup B_{2}$ and A_{2} is anticomplete to B_{2}, every component of A_{1} is either a subset of A_{2} or a subset of B_{2}. Since $A_{1} \cap A_{2} \neq \emptyset$, there exists a connected component A of A_{1} such that $A \subseteq A_{2}$. Let $c \in C_{1} \cap B_{2}$. Then, c is anticomplete to A, contradicting that C_{1} is a minimal clique cutset. It follows that S_{1} and S_{2} are non-crossing. Therefore, $\operatorname{dim}(\mathcal{C})=1$.

Let G be a graph and let C be a minimal clique cutset of G. The minimal clique separation S for C is defined as follows: $S=(A, C, B)$, where B is a largest weight connected component of $G \backslash C$ and $A=V(G) \backslash(B \cup C)$.
Lemma 3.2. Let $c \in\left[\frac{1}{2}, 1\right)$. Let G be a graph, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$, and suppose G has no ($w, c, 1$)-balanced separator. Let C be a minimal clique cutset of G. Then, the minimal clique separation S for C is unique and S is $(1-c)$-skewed.
Proof. Since G has no ($w, c, 1$)-balanced separator, C is not a ($w, c, 1$)-balanced separator. It follows that if B is a largest weight connected component of $G \backslash C$, then $w(B)>c$. Since $c \in\left[\frac{1}{2}, 1\right)$ and $w(G)=1$, the largest weight connected component of $G \backslash C$ is unique, and thus S is unique. Since C is a 1 -bounded set and G has no ($w, c, 1$)-balanced separator, it follows from Lemma 2.3 that S is $(1-c)$-skewed.

In the following lemma, we prove that if k is the minimum size of a clique cutset in G and \mathcal{C} is the collection of all minimal clique separations of G for clique cutsets of size k, then the
central bag β for \mathcal{C} does not contain a clique cutset of size less than or equal to k. Note that a minimum size clique cutset is a minimal clique cutset.
Lemma 3.3. Let δ be a positive integer, let k be a nonnegative integer, let $c \in\left[\frac{1}{2}, 1\right)$, and let $m \in[0,1]$, with $(1-c)+m\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Let G be a connected graph with maximum degree δ and let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$ and $w^{\max } \leq m$. Suppose G does not have a ($w, c, 1$)-balanced separator, and suppose the smallest clique cutset in G has size k. Let \mathcal{C} be the collection of all minimal clique separations of G such that $|C|=k$ for every $(A, C, B) \in \mathcal{C}$. Then, \mathcal{C} is laminar, and if $\left(T_{\mathcal{C}}, \chi_{\mathcal{C}}\right)$ is the tree decomposition of G corresponding to \mathcal{C} and β is the central bag for $T_{\mathcal{C}}$, then β does not have a clique cutset of size less than or equal to k.
Proof. Since G is connected, $k \geq 1$. Since G does not have a $(w, c, 1)$-balanced separator and $c \in\left[\frac{1}{2}, 1\right)$, it follows that every minimal clique cutset of size k in G corresponds to exactly one minimal clique separation in \mathcal{C}. Therefore, by Lemma 3.1, \mathcal{C} is laminar, and by Lemma 3.2, every separation in \mathcal{C} is $(1-c)$-skewed. Let $v \in V\left(T_{\mathcal{C}}\right)$ be such that $\beta=\chi_{\mathcal{C}}(v)$ is the central bag for $T_{\mathcal{C}}$, and suppose β has a clique cutset of size less than or equal to k. Let $\left(A_{v}, C_{v}, B_{v}\right)$ be a minimal clique separation of β such that $\left|C_{v}\right| \leq k$. Let v_{1}, \ldots, v_{m} be the vertices of $T_{\mathcal{C}}$ adjacent to v, let $e_{i}=v v_{i}$ be the edge from v to v_{i} for $i=1, \ldots, m$, and let $S_{e_{1}}, \ldots, S_{e_{m}}$ be the clique separations corresponding to e_{1}, \ldots, e_{m}, where $S_{e_{i}}=\left(D_{e_{i}}^{v}, C_{e_{i}}, D_{e_{i}}^{v_{i}}\right)$ as in Section 2. Since $\beta \cap \chi_{\mathcal{C}}\left(v_{i}\right)=C_{e_{i}}$ and $C_{e_{i}}$ is a clique, it follows that $C_{e_{i}} \cap A_{v}=\emptyset$ or $C_{e_{i}} \cap B_{v}=\emptyset$ for all $i=1, \ldots, m$. Let A be the union of A_{v} and all $D_{e_{i}}^{v_{i}}$ for i such that $C_{e_{i}} \cap B_{v}=\emptyset$, and let B be the union of B_{v} and all $D_{e_{i}}^{v_{i}}$ for i such that $D_{e_{i}}^{v_{i}} \nsubseteq A$. For $i \neq j, D_{e_{i}}^{v_{i}}$ and $D_{e_{j}}^{v_{j}}$ are disjoint and anticomplete to each other. By properties of the tree decomposition, $\beta \cup \bigcup_{i=1}^{m} D_{e_{i}}^{v_{i}}=V(G)$. Therefore, it follows that $\left(A, C_{v}, B\right)$ is a clique separation of G with $\left|C_{v}\right| \leq k$.

Since the smallest clique cutset in G has size k, it follows that $\left|C_{v}\right|=k$. Let $S=\left(X, C_{v}, Y\right)$ be the minimal clique separation for C_{v} in G. It follows that $S \in \mathcal{C}$, so by Lemma 2.4, $\beta \subseteq C_{v} \cup Y$. But since $\left(A, C_{v}, B\right)$ is a clique separation of G, it follows that two components of $G \backslash C_{v}$ intersect β, a contradiction.

In the following theorem, we use Lemmas 2.6 and 3.3 to find an induced subgraph of G that has no clique cutset and no balanced separator.
Theorem 3.4. Let δ, d be positive integers, with $d>2 \delta-2$. Let $c \in\left[\frac{1}{2}, 1\right)$ and let $m \in[0,1]$, with $(1-c)+\left[m+(\delta-1) 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Let G be a connected graph with maximum degree δ, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$ and $w^{\max } \leq m$, and suppose G has no (w, c, d)-balanced separator. Then, there exists a sequence $\left(\alpha_{0}, w_{0}\right),\left(\alpha_{1}, w_{1}\right), \ldots,\left(\alpha_{\delta^{\prime}}, w_{\delta^{\prime}}\right)$ such that $\delta^{\prime}<\delta,\left(\alpha_{0}, w_{0}\right)=(G, w)$ and for $i \in\left\{0, \ldots, \delta^{\prime}\right\}$, the following hold:

- α_{i} is a connected induced subgraph of G and w_{i} is a weight function on α_{i} such that $w_{i}\left(\alpha_{i}\right)=1$ and $w_{i}^{\max } \leq w^{\max }+i 2^{\delta}(1-c)$.
- α_{i} has no ($\left.w_{i}, c, d-2 i\right)$-balanced separator.
- If $i>0$ then α_{i} is the central bag for a tree decomposition corresponding to a collection of minimal clique separations of α_{i-1}.
- $\alpha_{\delta^{\prime}}$ does not have a clique cutset.

Proof. We may assume that G has a clique cutset, otherwise the result holds with $\delta^{\prime}=0$. If $\delta=1$, then G consists of a single edge, contradicting the assumption that G has a clique cutset. Therefore, $\delta \geq 2$ and so $d>2$. Since the maximum degree of G is δ and every vertex in a minimal clique cutset C has a neighbor in every component of $G \backslash C$, it follows that every minimal clique cutset of G has size at most $\delta-1$. Let j_{0} be the size of the smallest clique cutset of G. Note that since G is connected, $j_{0} \geq 1$. Since G has no (w, c, d)-balanced separator and $d \geq 1, G$ has no ($w, c, 1$)-balanced separator. Let \mathcal{C}_{1} be the collection of all minimal clique separations of G that correspond to clique cutsets of size j_{0}. By Lemma 3.2, every separation in \mathcal{C}_{1} is $(1-c)$-skewed and
for every two distinct separations $\left(A_{1}, C_{1}, B_{1}\right),\left(A_{2}, C_{2}, B_{2}\right) \in \mathcal{C}_{1}, C_{1} \neq C_{2}$. Therefore, by Lemma 3.1, \mathcal{C}_{1} is laminar. Let $\left(T_{\mathcal{C}_{1}}, \chi_{\mathcal{C}_{1}}\right)$ be the tree decomposition of G corresponding to \mathcal{C}_{1}. By Lemma 2.6 , the central bag for $T_{\mathcal{C}_{1}}$ exists and does not have a $\left(w_{\mathcal{C}_{1}}, c, d-2\right)$-balanced separator. Let α_{1} be the central bag for $T_{\mathcal{C}_{1}}$ and let $w_{1}=w_{\mathcal{C}_{1}}$. By Lemma 2.5, $w_{1}\left(\alpha_{1}\right)=1$ and $w_{1}^{\max } \leq w^{\max }+2^{\delta}(1-c)$. Since $(1-c)+w^{\max }\left(\delta+\delta^{2}\right) \leq(1-c)+\left[w^{\max }+(\delta-1) 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$, by Lemma 2.4, α_{1} is connected. It follows from Lemma 3.3 that α_{1} does not have a clique cutset of size less than or equal to j_{0}. If α_{1} does not have a clique cutset, then $\delta^{\prime}=1$ and the sequence ends. Otherwise, for $i \in\{2, \ldots, \delta-1\}$, we define $\left(\alpha_{i}, w_{i}\right)$ inductively. For $i \in\{2, \ldots, \delta-1\}$, suppose $\left(\alpha_{i-1}, w_{i-1}\right)$ are such that α_{i-1} is the central bag for a tree decomposition corresponding to a collection of minimal clique separations of α_{i-2} and w_{i-1} is the corresponding weight function on $\alpha_{i-1}, \alpha_{i-1}$ is a connected induced subgraph of G with no (w_{i-1}, c, d_{i-1})-balanced separator for $d_{i-1}=d-2(i-1), w_{i-1}\left(\alpha_{i-1}\right)=1$, and $w_{i-1}^{\max } \leq w^{\max }+(i-1) 2^{\delta}(1-c)$. Further, suppose the smallest clique cutset in α_{i-1} has size j_{i-1}, where $\delta>j_{i-1} \geq i$.

Since $\delta>i$ and $d>2 \delta-2$, it follows that $d-2(i-1) \geq 1$. Since α_{i-1} has no $\left(w_{i-1}, c, d-2(i-1)\right)-$ balanced separator, it follows that α_{i-1} has no $\left(w_{i-1}, c, 1\right)$-balanced separator. Let \mathcal{C}_{i} be the collection of all minimal clique separations of α_{i-1} that correspond to clique cutsets of size j_{i-1}. By Lemmas 3.2 and 3.1, \mathcal{C}_{i} is laminar. Since $w_{i-1}^{\max } \leq w^{\max }+(i-1) 2^{\delta}(1-c)$ and $i<\delta$, it follows that $(1-c)+w_{i-1}^{\max }\left(\delta+\delta^{2}\right)<(1-c)+\left[w^{\max }+(\delta-1) 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Since $d>2 \delta-2$, $i<\delta$, and $\delta \geq 2$, it follows that $d_{i-1}=d-2(i-1) \geq d-2(\delta-2)>2$. Since α_{i-1} has no $\left(w_{i-1}, c, d-2(i-1)\right)$-balanced separator, $d_{i-1}>2$ and $(1-c)+w_{i-1}^{\max }\left(\delta+\delta^{2}\right)<\frac{1}{2}$, it follows from Lemma 2.6 that the central bag for \mathcal{C}_{i} exists and does not have a $\left(w_{\mathcal{C}_{i}}, c, d_{i}\right)$-balanced separator, where $d_{i}=d_{i-1}-2=d-2 i \geq 1$. Let $T_{\mathcal{C}_{i}}$ be the tree decomposition of α_{i-1} corresponding to \mathcal{C}_{i}. Let α_{i} be the central bag for $T_{\mathcal{C}_{i}}$ and let $w_{i}=w_{\mathcal{C}_{i}}$ be the weight function on α_{i} with respect to $T_{\mathcal{C}_{i}}$. By Lemma 2.5, $w_{i}\left(\alpha_{i}\right)=1$ and $w_{i}^{\max } \leq w_{i-1}^{\max }+2^{\delta}(1-c) \leq w^{\max }+i 2^{\delta}(1-c)$. Since $(1-c)+w_{i-1}^{\max }\left(\delta+\delta^{2}\right)<\frac{1}{2}$, by Lemma 2.4, α_{i} is connected. If α_{i} has no clique cutset, then $\delta^{\prime}=i$ and the sequence ends. Otherwise, let j_{i} be the size of the smallest clique cutset in α_{i}. By Lemma 3.3, it follows that $j_{i}>j_{i-1}$, so $j_{i} \geq i+1$. Since the maximum size of a minimal clique cutset in G, and thus in α_{i}, is $\delta-1, j_{i}<\delta$. Thus, minimal clique cutsets used in this proof are of sizes in $\{1, \ldots, \delta-1\}$, so $\delta^{\prime}<\delta$. Therefore, the sequence $\left(\alpha_{1}, w_{1}\right), \ldots,\left(\alpha_{\delta^{\prime}}, w_{\delta^{\prime}}\right)$ is well-defined and satisfies the theorem. Further, by construction, $\alpha_{\delta^{\prime}}$ does not have a clique cutset.

We call $\alpha_{\delta^{\prime}}$ the clique-free bag for G.

4. Star cutsets and forcers

Let G be a graph. A cutset C of G is a clique star cutset of G if C is a clique star. Recall that a star separation $S=(A, C, B)$ is proper if C is a clique star cutset. In this section we study properties of separations associated with clique star cutsets. In particular, we establish the notion of a canonical separation that corresponds to a given clique, and show how to partition a set of canonical clique separations into a bounded number of laminar collections; this is done in Lemma 4.2. Then we list several lemmas showing that certains subgraphs are clique star cutset forcers (Lemmas 4.4, 4.5, and 4.6, summarized in Lemma 4.7). Finally we show that repeatedly taking central bags leads to a forcer-free subgraph (this is done in Theorem 4.11).

In the following lemma, we show that if two proper star separations cross, then their centers are not anticomplete to each other.

Lemma 4.1. Let G be a theta-free graph with no clique cutset, let K_{1} and K_{2} be cliques of G, and let $\mathcal{S}_{1}=\left(A_{1}, C_{1}, B_{1}\right)$ and $\mathcal{S}_{2}=\left(A_{2}, C_{2}, B_{2}\right)$ be proper star separations such that $C_{1} \subseteq N\left[K_{1}\right]$ and $C_{2} \subseteq N\left[K_{2}\right]$. Suppose S_{1} and S_{2} cross. Then, K_{1} and K_{2} are not anticomplete to each other.

Proof. Suppose K_{1} is anticomplete to K_{2}. Then, $K_{1} \cap N\left[K_{2}\right]=\emptyset$, so K_{1} is contained in a connected component of $G \backslash C_{2}$. Similarly, K_{2} is contained in a connected component of $G \backslash C_{1}$. Up to symmetry between A and B, assume that $K_{1} \subseteq B_{2}$ and $K_{2} \subseteq B_{1}$. Then, $C_{1} \cap A_{2}=\emptyset$ and $C_{2} \cap A_{1}=\emptyset$. Since S_{1} and S_{2} cross, it follows that $A_{1} \cap A_{2} \neq \emptyset$. Let $A=A_{1} \cap A_{2}$. Suppose $C_{1} \subseteq B_{2}$. Then, C_{1} is anticomplete to A. Because $A \subseteq A_{1}$ and A_{1} is anticomplete to B_{1}, it follows that B_{1} is anticomplete to A. Finally, since $A_{1} \cap C_{2}=\emptyset$, it follows that $A_{1} \backslash A \subseteq B_{2}$, so A is anticomplete to $A_{1} \backslash A$. Therefore, A is anticomplete to $G \backslash A$, a contradiction, so $C_{1} \cap C_{2} \neq \emptyset$.

Let $C=C_{1} \cap C_{2}$, let A^{\prime} be a connected component of A, and let $C^{\prime}=N_{C}\left(A^{\prime}\right)$. Suppose there exists $c_{1}, c_{2} \in C^{\prime}$ such that $c_{1} c_{2} \notin E(G)$. Then, G contains a theta between c_{1} and c_{2} through A^{\prime}, K_{1}, and K_{2}, a contradiction. Therefore, C^{\prime} is a clique. Since $A_{1} \cap A_{2}$ is anticomplete to B_{1} and B_{2}, it follows that $N(A) \subseteq C$, so $N\left(A^{\prime}\right)=C^{\prime}$. Then, A^{\prime} is a connected component of $G \backslash C^{\prime}$, so C^{\prime} is a clique cutset of G, a contradiction.

The next lemma shows that if Y is a set of cliques of size at most k, then there exists a partition of Y into $(k+\delta k) \sum_{j=0}^{k-1}\binom{\delta}{j}+1$ parts such that every two cliques in the same part are anticomplete to each other.
Lemma 4.2. Let δ, k be positive integers with $k \leq \delta$ and let $f(k, \delta)=(k+\delta k) \sum_{j=0}^{k-1}\binom{\delta}{j}+1$. Let G be a graph with maximum degree δ and let $Y=\left\{K_{1}, \ldots, K_{t}\right\}$ be a set of cliques of G of size at most k. Then, there exists a partition $\left(Y_{1}, \ldots, Y_{f(k, \delta)}\right)$ of Y such that for every $\ell \in\{1, \ldots, f(k, \delta)\}$ and $K_{i}, K_{j} \in Y_{\ell}, K_{i}$ is anticomplete to K_{j}.
Proof. Let H be a graph with vertex set $V(H)=\left\{x_{1}, \ldots, x_{t}\right\}$, and for $x_{i}, x_{j} \in V(H), i \neq j$, let $x_{i} x_{j} \in E(H)$ if and only if K_{i} is not anticomplete to K_{j} in G. Let $x_{i} \in V(H)$ and let $x_{j} \in N_{H}\left(x_{i}\right)$.Then, K_{i} is not anticomplete to K_{j}, so $K_{j} \cap N\left[K_{i}\right] \neq \emptyset$. Let $v \in K_{j} \cap N\left[K_{i}\right]$. Then, $K_{j} \subseteq N[v]$. Since $\left|N\left[K_{i}\right]\right| \leq k+\delta k$ and $|N[u]| \leq \delta$ for all $u \in V(G)$, it follows that K_{i} is not anticomplete to at most $(k+\delta k) \sum_{j=0}^{k-1}\binom{\delta}{j}$ cliques of size at most k. Therefore, the maximum degree of H is at most $(k+\delta k) \sum_{j=0}^{k-1}\binom{\delta}{j}$.

Since the maximum degree of H is at most $(k+\delta k) \sum_{j=0}^{k-1}\binom{\delta}{j}$, it follows that the chromatic number of H is at most $(k+\delta k) \sum_{j=0}^{k-1}\binom{\delta}{j}+1=f(k, \delta)$. Let $C: V(H) \rightarrow\{1, \ldots, f(k, \delta)\}$ be a coloring of H and let $Y_{1}, \ldots, Y_{f(k, \delta)}$ be the color classes of C. Then, $\left(Y_{1}, \ldots, Y_{f(k, \delta)}\right)$ is a partition of Y such that if $\ell \in\{1, \ldots, f(k, \delta)\}$ and $K_{i}, K_{j} \in Y_{\ell}$, then K_{i} is anticomplete to K_{j}.

Let G be a graph with weight function w and let K be a nonempty clique of G. A canonical star separation for K, denoted S_{K}, is defined as follows: $S_{K}=\left(A_{K}, C_{K}, B_{K}\right)$, where B_{K} is a largest weight connected component of $G \backslash N[K]$ if $G \backslash N[K] \neq \emptyset$ and $B_{K}=\emptyset$ otherwise, C_{K} is the union of K and the set of all vertices $v \in N[K]$ such that v has a neighbor in B_{K}, and $A_{K}=V(G) \backslash\left(B_{K} \cup C_{K}\right)$. The following lemma shows that if G has no balanced separator, then the canonical star separation is unique.
Lemma 4.3. Let $c \in\left[\frac{1}{2}, 1\right)$. Let G be a graph with no ($w, c, 2$)-balanced separator and let K be a nonempty clique of G. Then, the canonical star separation S_{K} for K is unique and S_{K} is ($1-c$)-skewed.
Proof. Since G has no ($w, c, 2$)-balanced separator, $N[K]$ is not a $(w, c, 2)$-balanced separator. It follows that if B_{K} is a largest weight connected component of $G \backslash N[K]$, then $w\left(B_{K}\right)>c$. Since $c \in\left[\frac{1}{2}, 1\right)$ and $w(G)=1$, the largest weight connected component of $G \backslash N[K]$ is unique, and thus S_{K} is unique. Since C_{K} is a 2 -bounded set and G has no ($w, c, 2$)-balanced separator, it follows from Lemma 2.3 that S_{K} is $(1-c)$-skewed.

Let G be a graph. Let X, Y, Z be disjoint subsets of $V(G)$. We say that X separates Y from Z if there exist distinct components C_{Y}, C_{Z} of $G \backslash X$ such that $Y \subseteq C_{Y}$ and $Z \subseteq C_{Z}$. Recall
that a wheel (H, x) of G consists of a hole H and a vertex x that has at least three neighbors in H. A sector of (H, x) is a path P of H whose ends are adjacent to x, and such that x is anticomplete to P^{*} (recall that P^{*} is the set of interior vertices of P). A sector P is a long sector if P^{*} is nonempty. We now define several types of wheels that we will need. They are illustrated in Figure 2.

A wheel (H, x) is a universal wheel if x is complete to H. A wheel (H, x) is a twin wheel if $N(x) \cap H$ induces a path of length 2. If (H, x) is a twin wheel and $x_{1}-x_{2}-x_{3}$ is the path of length 2 induced by $N(x) \cap H$, we say x_{2} is the clone of x in H. Note that if (H, x) is a twin wheel and x_{2} is the clone of x in H, then $\left(\left(H \backslash\left\{x_{2}\right\}\right) \cup\{x\}, x_{2}\right)$ is also a twin wheel. Suppose (H, x) is a twin wheel contained in a graph G and x_{2} is the clone of x in H. We say (H, x) is x-rich if there is a path in G from x to $V(H) \backslash N[x]$ containing no neighbors of x_{2} other than x, and x_{2}-rich if there is a path in G from x_{2} to $V(H) \backslash N[x]$ containing no neighbors of x other than x_{2}. We say (H, x) is x-poor if it is not x-rich, and x_{2}-poor if it is not x_{2}-rich. We say that (H, x, x_{2}) is a terminal twin wheel if (H, x) is a twin wheel and x_{2} is the clone of x in H, and (H, x) is either x-poor or x_{2}-poor. A wheel (H, x) is a short pyramid if $|N(x) \cap H|=3$ and x has exactly one pair of adjacent neighbors in H. A wheel is proper if it is not a twin wheel or a short pyramid. If (H, x) is a short pyramid (resp. proper wheel), then x is said to be the center of a short pyramid (resp. proper wheel) in H.

Figure 2. Universal wheel, twin wheel, and short pyramid
The following three lemmas show that proper wheels and short pyramids generate clique star cutsets.

Lemma 4.4 ([3], [12]). Let G be a C_{4}-free odd-signable graph that contains a proper wheel (H, x) that is not a universal wheel. Let x_{1} and x_{2} be the endpoints of a long sector Q of (H, x). Let W be the set of all vertices h in $H \cap N(x)$ such that the subpath of $H \backslash\left\{x_{1}\right\}$ from x_{2} to h contains an even number of neighbors of x, and let $Z=H \backslash(Q \cup N(x))$. Let $N^{\prime}=N(x) \backslash W$. Then, $N^{\prime} \cup\{x\}$ is a cutset of G that separates Q^{*} from $W \cup Z$.
Lemma 4.5 ([11]). Let G be a C_{4}-free odd-signable graph that contains a universal wheel ($\left.H, x\right)$. If $G=N[x]$ then for every two non-adjacent vertices a and b of $H, N[x] \backslash\{a, b\}$ is a cutset of G that separates a and b. If $G \backslash N[x] \neq \emptyset$ then for every connected component C of $G \backslash N[x]$, there exists $a \in H$ such that a has no neighbor in H, i.e. $N[x] \backslash\{a\}$ is a cutset of G that separates a from C.
Lemma 4.6. ([8]) Let G be a C_{4}-free odd-signable graph that contains a wheel (H, x) that is a short pyramid. Let x_{1}, x_{2} and y be the neighbors of x in H such that $x_{1} x_{2}$ is an edge. For $i \in\{1,2\}$ let H_{i} be the sector of (H, x) with ends y, x_{i}. Then, H_{1} and H_{2} are long sectors of (H, x), and $S=N(x) \cup N(y)$ is a cutset of G that separates $H_{1} \backslash S$ from $H_{2} \backslash S$.

Let G be a graph. A forcer $F=(H, K)$ in G consists of a hole H and a clique K such that one of the following holds:

- (H, x) is a proper wheel of G and $K=\{x\}$.
- (H, x) is a short pyramid of $G, N(x) \cap H=\left\{x_{1}, x_{2}, y\right\}$ where $x_{1} x_{2}$ is an edge, and $K=\{x, y\}$.
- $\left(H, x, x_{2}\right)$ is a terminal twin wheel of $G,(H, x)$ is x_{2}-poor, and $K=\{x\}$.

If $F=(H, K)$ is a forcer, we say that K is the center of F. The forcer described in the first bullet is referred to as a proper wheel forcer, the one in the second bullet as a short pyramid forcer, and the one in the third bullet as a twin wheel forcer. A forcer $F=(H, K)$ is strong if it is not a twin wheel forcer. The following lemma shows that forcers generate clique star cutsets.

Lemma 4.7. Let G be a C_{4}-free odd-signable graph and let $F=(H, K)$ be a forcer in G. Then, K is the center of a clique star cutset in G.

Proof. If (H, x) is a proper wheel that is not a universal wheel, then by Lemma 4.4, x together with some of its neighbors is a clique star cutset in G. If (H, x) is a universal wheel, then by Lemma 4.5, x together with some of its neighbors is a clique star cutset in G. If (H, x) is a short pyramid and y is the common node of the two long sectors of (H, x), then by Lemma 4.6, x, y and its neighbors form a clique star cutset in G. It follows that if $F=(H, K)$ is a strong forcer, then the result holds. Therefore, assume $F=(H, K)$ is a twin wheel forcer. It follows that there exist $x \in V(G), x_{2} \in V(H)$ such that $\left(H, x, x_{2}\right)$ is a terminal twin wheel, (H, x) is x_{2}-poor, and $K=\{x\}$. Then, it follows that $N[K] \backslash x_{2}$ is a clique star cutset that separates x_{2} from $H \backslash N[K]$.

The following lemma shows that if $F=(H, K)$ is a forcer and $S_{K}=\left(A_{K}, C_{K}, B_{K}\right)$ is the canonical star separation for K, then $A_{K} \cap H \neq \emptyset$.

Lemma 4.8. Let G be a C_{4}-free odd-signable graph. Let $F=(H, K)$ be a forcer in G and let $S_{K}=\left(A_{K}, C_{K}, B_{K}\right)$ be a canonical star separation for K. Then, $A_{K} \cap H \neq \emptyset$. Furthermore, if for $c \in\left[\frac{1}{2}, 1\right), G$ has no $(w, c, 2)$-balanced separator, then S_{K} is a proper star separation.
Proof. Let (H, x) be the wheel such that $F=(H, K)$. Suppose first that (H, x) is a wheel such that there exist two long sectors S_{1}, S_{2} of (H, x). Lemmas 4.4 and 4.6 imply that $N[K]$ separates $S_{1} \backslash N[K]$ from $S_{2} \backslash N[K]$. It follows that for some $i \in\{1,2\}, S_{i} \cap A_{K} \neq \emptyset$, and so $H \cap A_{K} \neq \emptyset$.

Next, suppose that (H, x) is a proper wheel with exactly one long sector S. If $B_{K} \cap H=\emptyset$, then $S^{*} \cap A_{K} \neq \emptyset$, so we may assume that $S^{*} \subseteq B_{K}$. By Lemma 4.4, for some $a \in N(x) \cap H, a$ has no neighbor in B_{K}. Therefore, $a \in A_{K}$ and $A_{K} \cap H \neq \emptyset$.

Now, suppose that (H, x) is a universal wheel. We may assume that $G \neq N[K]$ (since otherwise $B_{K}=\emptyset$ and $\left.A_{K}=H\right)$. Then, it follows from Lemma 4.5 that for every component C of $G \backslash N[K]$, there exists $a \in H$ such that a has no neighbor in C. In particular, there exists $a \in H$ such that a has no neighbor in B_{K}. Therefore, $a \notin C_{K}$ and $a \notin B_{K}$, so $a \in A_{K}$ and $H \cap A_{K} \neq \emptyset$.

Finally, suppose that (H, x) is a twin wheel, and let x_{2} be the clone of x in H. Then, $\left(H, x, x_{2}\right)$ is a terminal twin wheel, (H, x) is x_{2}-poor, and $K=\{x\}$. Consider $G \backslash N[K]$. If $\left(H \backslash\left\{x_{1}, x_{2}, x_{3}\right\}\right) \cap B_{K}=\emptyset$, then $A_{K} \cap H \neq \emptyset$, so assume $\left(H \backslash\left\{x_{1}, x_{2}, x_{3}\right\}\right) \subseteq B_{K}$. Since (H, x) is x_{2}-poor, it follows that x_{2} does not have a neighbor in B_{K}. Therefore, $x_{2} \in A_{K}$, and $A_{K} \cap H \neq \emptyset$.

Now, suppose that $c \in\left[\frac{1}{2}, 1\right)$ and G has no $(w, c, 2)$-balanced separator. Then, $G \backslash N[K] \neq \emptyset$, and thus $B_{K} \neq \emptyset$. Since $A_{K} \neq \emptyset$, it follows that S_{K} is proper.

Let G^{\prime} be an induced subgraph of G. A forcer $F=(H, K)$ is active for G^{\prime} if $H \subseteq G^{\prime}$ and $K \subseteq G^{\prime}$.
Lemma 4.9. Let δ be a positive integer, $c \in\left[\frac{1}{2}, 1\right)$, and $m \in[0,1]$, with $(1-c)+m\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Let G be a connected C_{4}-free odd-signable graph with maximum degree δ, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$ and $w^{\max } \leq m$, and suppose G does not have a $(w, c, 2)$ balanced separator. Let \mathcal{F} be a set of forcers, let $Y=\{K:(H, K) \in \mathcal{F}\}$ be the set of centers of \mathcal{F}, and let \mathcal{C} be the collection of canonical star separations for centers in Y. Suppose \mathcal{C} is
laminar and let $\left(T_{\mathcal{C}}, \chi_{\mathcal{C}}\right)$ be the tree decomposition of G corresponding to \mathcal{C}. Then, the central bag β for \mathcal{C} exists and no forcer in \mathcal{F} is active for β.

Proof. By Lemma 4.3, every separation in \mathcal{C} is $(1-c)$-skewed. By Lemma 2.4, the central bag β for \mathcal{C} exists (in particular, β is perpendicular to \mathcal{C}). Suppose $F=(H, K)$ is a forcer in \mathcal{F} and let $S_{K}=\left(A_{K}, C_{K}, B_{K}\right)$ be the canonical star separation for K. Then, since β is perpendicular to $\mathcal{C}, \beta \cap A_{K}=\emptyset$, and hence $\beta \subseteq C_{K} \cup B_{K}$. By Lemma 4.8, it follows that $H \cap A_{K} \neq \emptyset$, so $H \nsubseteq \beta$ and F is not active for β.

The following theorem generalizes the results of Lemma 4.9. Recall the definition of cliquefree bag from the end of Section 3: the clique-free bag of a graph G is an induced subgraph α of G, formed by taking repeated central bags, such that α does not have a clique cutset. (See Theorem 3.4 for details).

Theorem 4.10. Let δ, d be positive integers, let k be a nonnegative integer, let $f(2, \delta)=$ $2(\delta+1)^{2}+1$, let $c \in\left[\frac{1}{2}, 1\right)$, and let $m \in[0,1]$, with $d>2 f(2, \delta) \delta+2 \delta$, and $(1-c)+$ $\left[m+f(2, \delta) \delta 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Let G be a connected C_{4}-free odd-signable graph with maximum degree δ, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$ and $w^{\max } \leq m$, and suppose that G does not have $a(w, c, d)$-balanced separator. Let \mathcal{F} be a set of forcers of G. Then, there exists a sequence $\left(\beta_{1}, w_{1}\right), \ldots,\left(\beta_{2 k+1}, w_{2 k+1}\right)$, where $\beta_{2 k+1} \subseteq \beta_{2 k} \subseteq \ldots \subseteq \beta_{1} \subseteq \beta_{0}=G$, $k \leq f(2, \delta)$, and for $i \in\{1, \ldots, 2 k+1\}$, w_{i} is a weight function on β_{i}, with $w_{i}\left(\beta_{i}\right)=1$, such that:

- for $i \in\{0, \ldots, k\}, \beta_{2 i+1}$ is the clique-free bag for $\beta_{2 i}$,
- for $i \in\{0, \ldots, k-1\}, \beta_{2 i+2}$ is the central bag for a tree decomposition corresponding to a laminar collection of proper star separations of $\beta_{2 i+1}$ with clique centers of size 1 or 2 (of size 1 if \mathcal{F} does not contain a short pyramid forcer),
- for $i \in\{0, \ldots, k\}, \beta_{2 i+1}$ is connected and does not have a $\left(w_{2 i+1}, c, d_{2 i+1}\right)$-balanced separator, for $d_{2 i+1}=d-2 i \delta-2(\delta-1)$, and for $i \in\{0, \ldots, k-1\}, \beta_{2 i+2}$ is connected and does not have a $\left(w_{2 i+2}, c, d_{2 i+2}\right)$-balanced separator for $d_{2 i+2}=d-2(i+1) \delta$,
- $w_{2 k+1}^{\max } \leq w^{\max }+f(2, \delta) \delta 2^{\delta}(1-c)+(\delta-1) 2^{\delta}(1-c)$,
- no forcer in \mathcal{F} is active for $\beta_{2 k+1}$,
- $\beta_{2 k+1}$ has no clique cutset.

Proof. Let $Y=\{K:(H, K) \in \mathcal{F}\}$ be the set of centers of forcers in \mathcal{F}. For all $K \in Y$, $|K| \in\{1,2\}$, and if (H, K) is not a short pyramid forcer, then $|K|=1$. Let $\left(Y_{1}, \ldots, Y_{f(2, \delta)}\right)$ be a partition of Y as in Lemma 4.2 and let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{f(2, \delta)}$ be a partition of \mathcal{F} such that $Y_{i}=\left\{K:(H, K) \in \mathcal{F}_{i}\right\}$, for $i \in\{1, \ldots, f(2, \delta)\}$. Let β_{1} be the clique-free bag for G and let w_{1} be the weight function on β_{1} from Theorem 3.4. By Theorem 3.4, β_{1} has no clique cutset and no $\left(w_{1}, c, d-2(\delta-1)\right.$)-balanced separator, where $w_{1}\left(\beta_{1}\right)=1$ and $w_{1}^{\max } \leq w^{\max }+(\delta-1) 2^{\delta}(1-c)$. If no forcer in \mathcal{F} is active for β_{1}, then $k=0$, and the sequence ends.

Otherwise, assume that there is a forcer in \mathcal{F}_{1} active for β_{1}. Let $X_{1}=\left\{S_{K}: K \in Y_{1}\right\}$ be the set of canonical star separations of β_{1} for centers in Y_{1}. Since β_{1} has no $\left(w_{1}, c, d-2(\delta-1)\right)$ balanced separator and $d-2(\delta-1) \geq 2$, by Lemma 4.3, every clique K appears as a center of at most one separation in X_{1} and every separation in X_{1} is $(1-c)$-skewed. Since β_{1} has no clique cutset and cliques in Y_{1} are pairwise anticomplete, and by Lemma 4.8 the separations in X_{1} are all proper, it follows from Lemma 4.1 that X_{1} is laminar. Since X_{1} is a laminar collection of star separations of β_{1} and $(1-c)+w_{1}^{\max }\left(\delta+\delta^{2}\right) \leq(1-c)+\left[w^{\max }+(\delta-1) 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$, by Lemma 2.6, the central bag β_{2} for X_{1} exists and β_{2} does not have a ($w_{X_{1}}, c, d-2 \delta$)-balanced separator. Let $w_{2}=w_{X_{1}}$ be the weight function on β_{2} with respect to $T_{X_{1}}$, where $T_{X_{1}}$ is the tree decomposition of β_{1} corresponding to X_{1}. By Lemma $2.5, w_{2}\left(\beta_{2}\right)=1$ and $w_{2}^{\max } \leq$ $w_{1}^{\max }+2^{\delta}(1-c) \leq w^{\max }+\delta 2^{\delta}(1-c)$. By Lemma 4.9, it follows that no forcer in \mathcal{F}_{1} is active for β_{2}. By Lemma 2.4, β_{2} is connected.

For $i>0$, we define $\left(\beta_{2 i+1}, w_{2 i+1}\right)$ and $\left(\beta_{2 i+2}, w_{2 i+2}\right)$ inductively. For $i \in\{1, \ldots, f(2, \delta)\}$, suppose $\left(\beta_{2 i}, w_{2 i}\right)$ are such that $\beta_{2 i}$ is connected and has no $\left(w_{2 i}, c, d_{2 i}\right)$-balanced separator for $d_{2 i}=d-2 i \delta \geq 1, w_{2 i}\left(\beta_{2 i}\right)=1$, and $w_{2 i}^{\max } \leq w^{\max }+i \delta 2^{\delta}(1-c)$. Further, suppose there exists $I_{i} \subseteq\{1, \ldots, f(2, \delta)\}$ such that $i \leq\left|I_{i}\right|<f(2, \delta)$, no forcer in $\bigcup_{j \in I_{i}} \mathcal{F}_{j}$ is active for $\beta_{2 i}$, and for all $j \in\{1, \ldots, f(2, \delta)\} \backslash I_{i}$, there is a forcer in \mathcal{F}_{j} active for $\beta_{2 i}$.

Since $d>2 f(2, \delta) \delta+2 \delta$ and $i<f(2, \delta)$, it follows that $d_{2 i}=d-2 i \delta>2 \delta>2 \delta-2$. Also, since $\beta_{2 i}$ has no $\left(w_{2 i}, c, d_{2 i}\right)$-balanced separator and $(1-c)+\left[w_{2 i}^{\max }+\delta 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right) \leq$ $(1-c)+\left[w^{\max }+f(2, \delta) \delta 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$, the conditions of Theorem 3.4 for $\beta_{2 i}$ are satisfied. Let $\beta_{2 i+1}$ be the clique-free bag for $\beta_{2 i}$ and let $w_{2 i+1}$ be the weight function on $\beta_{2 i+1}$ from Theorem 3.4. By Theorem 3.4, $\beta_{2 i+1}$ does not have a $\left(w_{2 i+1}, c, d_{2 i}-2(\delta-1)\right)$ balanced separator, where $w_{2 i+1}\left(\beta_{2 i+1}\right)=1$ and $w_{2 i+1}^{\max } \leq w_{2 i}^{\max }+(\delta-1) 2^{\delta}(1-c) \leq w^{\max }+$ $i \delta 2^{\delta}(1-c)+(\delta-1) 2^{\delta}(1-c)$. Let $d_{2 i+1}=d_{2 i}-2(\delta-1)$. If no forcer in \mathcal{F} is active for $\beta_{2 i+1}$, then $k=i$, and the sequence ends. Otherwise, let $\sigma_{i} \in\{1, \ldots, f(2, \delta)\} \backslash I_{i}$ be such that there is a forcer in $\mathcal{F}_{\sigma_{i}}$ that is active for $\beta_{2 i+1}$. Let $X_{\sigma_{i}}=\left\{S_{K}: K \in Y_{\sigma_{i}}\right\}$ be the set of canonical star separations of $\beta_{2 i+1}$ for centers in $Y_{\sigma_{i}}$. Since $\beta_{2 i+1}$ has no $\left(w_{2 i+1}, c, d_{2 i+1}\right)-$ balanced separator, by Lemma 4.3, every clique K appears as the center of at most one separation in $X_{\sigma_{i}}$ and every separation in $X_{\sigma_{i}}$ is $(1-c)$-skewed. Since $\beta_{2 i+1}$ has no clique cutset and cliques in $Y_{\sigma_{i}}$ are pairwise anticomplete and by Lemma 4.8 the separations in $Y_{\sigma_{i}}$ are all proper, it follows from Lemma 4.1 that $X_{\sigma_{i}}$ is laminar. Finally, $d_{2 i+1}>2$ and, since $i<f(2, \delta)$, $(1-c)+w_{2 i+1}^{\max }\left(\delta+\delta^{2}\right) \leq(1-c)+\left[w^{\max }+f(2, \delta) \delta 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$, so by Lemma 2.6 , the central bag $\beta_{2 i+2}$ for $X_{\sigma_{i}}$ exists and $\beta_{2 i+2}$ does not have a $\left(w_{X_{\sigma_{i}}}, c, d_{2 i+2}\right)$-balanced separator, where $d_{2 i+2}=d_{2 i+1}-2=d-2(i+1) \delta$. Let $w_{2 i+2}=w_{X_{\sigma_{i}}}$ be the weight function on $\beta_{2 i+2}$ with respect to $T_{X_{\sigma_{i}}}$, where $T_{X_{\sigma_{i}}}$ is the tree decomposition of $\beta_{2 i+1}$ corresponding to $X_{\sigma_{i}}$. By Lemma 2.5, $w_{2 i+2}\left(\beta_{2 i+2}\right)=1$ and $w_{2 i+2}^{\max } \leq w_{2 i+1}^{\max }+2^{\delta}(1-c) \leq w^{\max }+(i+1) \delta 2^{\delta}(1-c)$. By Lemma 2.4, $\beta_{2 i+2}$ is connected. Let I_{i+1} be the set of all $j \in\{1, \ldots, f(2, \delta)\}$ such that no forcer in \mathcal{F}_{j} is active for $\beta_{2 i+2}$. Since $\beta_{2 i+2} \subseteq \beta_{2 i}$ and no forcer in $\bigcup_{j \in I_{i}} \mathcal{F}_{j}$ is active for $\beta_{2 i}$, it follows that no forcer in $\bigcup_{j \in I_{i}} \mathcal{F}_{j}$ is active for $\beta_{2 i+2}$. Further, since $\beta_{2 i+2}$ is the central bag for a tree decomposition corresponding to $X_{\sigma_{i}}$, it follows from Lemma 4.9 that no forcer in $\mathcal{F}_{\sigma_{i}}$ is active for $\beta_{2 i+2}$. Therefore, $\left|I_{i+1}\right| \geq i+1$, and $\left(\beta_{2 i+2}, w_{2 i+2}\right)$ satisfies the conditions of the induction. It follows that the sequence $\left(\beta_{1}, w_{1}\right), \ldots,\left(\beta_{2 k+1}, w_{2 k+1}\right)$ is well-defined, $k \leq f(2, \delta), \beta_{2 k+1}$ does not have a clique cutset, and no forcer in \mathcal{F} is active for $\beta_{2 k+1}$.

We call $\left(\beta_{1}, w_{1}\right), \ldots,\left(\beta_{2 k+1}, w_{2 k+1}\right)$ as in Theorem 4.10 an \mathcal{F}-decomposition of G, and $\beta_{2 k+1}$ the terminal bag for $\left(\beta_{1}, w_{1}\right), \ldots,\left(\beta_{2 k+1}, w_{2 k+1}\right)$. A graph G is clean if G does not contain a strong forcer. The following theorem shows that if \mathcal{F} is the collection of all strong forcers of G and $\beta_{2 k+1}$ is the terminal bag for a \mathcal{F}-decomposition, then $\beta_{2 k+1}$ is clean.

Theorem 4.11. Let δ, d be positive integers, let $f(2, \delta)=2(\delta+1)^{2}+1$, let $c \in\left[\frac{1}{2}, 1\right)$, and let $m \in[0,1]$, with $d>2 f(2, \delta) \delta+2 \delta$, and $(1-c)+\left[m+f(2, \delta) \delta 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Let G be a connected C_{4}-free odd-signable graph with maximum degree δ, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$ and $w^{\max } \leq m$, and suppose G does not have $a(w, c, d)$-balanced separator. Let \mathcal{F} be the set of all strong forcers of G, and let $\left(\beta_{1}, w_{1}\right), \ldots,\left(\beta_{2 k+1}, w_{2 k+1}\right)$ be an \mathcal{F}-decomposition. Then, the terminal bag $\beta_{2 k+1}$ is clean.

Proof. Suppose $\beta_{2 k+1}$ contains a strong forcer $F=(H, K)$. Then, F is a strong forcer in G, so $F \in \mathcal{F}$. By Theorem 4.10, it follows that F is not active for $\beta_{2 k+1}$, a contradiction.

5. TWin wheels in clean graphs

In this section we study twin wheels. It turns out that not all twin wheels are clique star cutset forcers, but some of them ("terminal" ones) are. The goal of this section is to show that
the central bag for the collection of all twin wheel forcers of a clean graph G does not contain a terminal twin wheel.

Let G be a clean C_{4}-free odd-signable graph. The following two lemmas describe the behavior of twin wheels in G. Lemma 5.1 follows from the proof of Lemma 8.4 in [12] and Lemma 5.2 follows from the proof of Theorem 1.5 in [12]. For completeness we include their proofs.

Lemma 5.1. ([12]) Let G be a clean C_{4}-free odd-signable graph. Let (H, x) be a twin wheel contained in G. Let $x_{1}-x_{2}-x_{3}$ be the subpath of H such that $N(x) \cap H=\left\{x_{1}, x_{2}, x_{3}\right\}$. Suppose there exists a vertex $u \in V(G)$ such that $N(u) \cap(H \cup x)=\left\{x, x_{1}, x_{1}^{\prime}\right\}$, where x_{1}^{\prime} is the neighbor of x_{1} in $H \backslash x_{2}$. Then, (H, x) is x_{2}-poor.

Proof. Let $x_{1}-p_{1}-\ldots-p_{k}-x_{3}$ be the long sector of (H, x), and let $P=p_{1}-\ldots-p_{k}$. Suppose that (H, x) is x_{2}-rich. Then there exists a path $Q=q_{1}-\ldots-q_{l}$ in $G \backslash\left(N[x] \backslash\left\{x_{2}\right\}\right)$ from x_{2} to P. We may assume that Q is chosen to be the minimal such path. Then, q_{l} has a neighbor in P, x_{1} and x_{3} are the only nodes of H that may have a neighbor in $Q \backslash q_{l}, x_{2}$ is adjacent to q_{1}, and x_{2} does not have a neighbor in $Q \backslash q_{1}$. Let p_{i} (resp. $p_{i^{\prime}}$) be the neighbor of q_{l} in P with lowest (resp. highest) index.
(1) Both u and x_{1} have a neighbor in Q.
$N(u) \cap Q \neq \emptyset$, else $Q \cup\left\{p_{1}, \ldots, p_{i}, x_{1}, x_{2}, u, x\right\}$ induces a proper wheel with center x_{1}, contradicting the assumption that G is clean. Now suppose that $N\left(x_{1}\right) \cap Q=\emptyset$. Let H^{\prime} be the hole induced by $Q \cup\left\{p_{1}, \ldots, p_{i}, x_{1}, x_{2}\right\}$. Since G is clean, $\left(H^{\prime}, u\right)$ is a twin wheel, and hence $i=1$ and $N(u) \cap Q=\left\{q_{l}\right\}$. Since $\left\{u, x, x_{3}, q_{l}\right\}$ cannot induce a $C_{4}, x_{3} q_{l}$ is not an edge. Since $\left\{u, x, x_{2}, q_{1}\right\}$ cannot induce a $C_{4}, l>1$. Suppose $i^{\prime}=1$. If $N\left(x_{3}\right) \cap Q=\emptyset$, then $Q \cup H$ induces a theta. So $N\left(x_{3}\right) \cap Q \neq \emptyset$. Let q_{s} be the node of $N\left(x_{3}\right) \cap Q$ with highest index. Then $\left\{q_{s}, \ldots q_{l}, p_{1}, x_{1}, x, x_{3}, u\right\}$ induces a proper wheel with center u, a contradiction. So $i^{\prime}>1$. But then $\left\{q_{l}, p_{i^{\prime}}, \ldots, p_{k}, u, x_{1}, x_{2}, x_{3}, x\right\}$ induces a proper wheel with center x, a contradiction. This proves (1).

(2) $N\left(x_{3}\right) \cap Q=\emptyset$.

Suppose x_{3} has a neighbor in Q. By (1), let q_{s} (resp. q_{t}) be the node of Q with the lowest index adjacent to x_{1} (resp. u). If $s \leq t$, then $\left\{q_{1}, \ldots, q_{t}, u, x, x_{1}, x_{2}\right\}$ induces a proper wheel with center x_{1}. So $s>t$. In particular, $t<l$ and $s>1$. If x_{3} has a neighbor in $Q \backslash q_{l}$, then $\left(Q \backslash q_{l}\right) \cup P \cup\left\{u, x, x_{3}\right\}$ contains a theta between u and x_{3}. So x_{3} has no neighbor in $Q \backslash q_{l}$, and hence $N\left(x_{3}\right) \cap Q=\left\{q_{l}\right\}$. Let H^{\prime} be the hole induced by $Q \cup\left\{x_{2}, x_{3}\right\}$. Since $H^{\prime} \cup x_{1}$ cannot induce a theta, $\left(H^{\prime}, x_{1}\right)$ is a wheel. Since $s>1,\left(H^{\prime}, x_{1}\right)$ is a proper wheel or a short pyramid, contradicting that G is clean. This proves (2).

By (1), let q_{s} (resp. q_{t}) be the node of Q with lowest index adjacent to x_{1} (resp. u). If $s=1$ then $\left\{q_{1}, \ldots, q_{t}, x, x_{2}, x_{1}, u\right\}$ induces a proper wheel with center x_{1}, a contradiction. So $s>1$. By (2), $Q \cup\left\{p_{i^{\prime}}, \ldots, p_{k}, x_{2}, x_{3}\right\}$ induces a hole H^{\prime}. But then, since $s>1$, either $H^{\prime} \cup x_{1}$ induces a theta, or $\left(H^{\prime}, x_{1}\right)$ is a proper wheel or a short pyramid, a contradiction.

Lemma 5.2. ([12]) Let G be a clean C_{4}-free odd-signable graph. Let (H, x) be a twin wheel contained in G, let $N(x) \cap H=\left\{x_{1}, x_{2}, x_{3}\right\}$, where x_{2} is the clone of x in H, and suppose $\left(H, x, x_{2}\right)$ is not a terminal twin wheel. Then, there exists a path $P=p_{1}-\ldots-p_{k}$ in $G \backslash(H \cup x)$ such that $N\left(p_{1}\right) \cap(H \cup x)=\{x\}, N\left(p_{k}\right) \cap(H \cup x)$ is an edge of $H \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$, and P^{*} is anticomplete to $H \cup x$. Similarly, there exists a path $Q=q_{1}-\ldots-q_{j}$ in $G \backslash(H \cup x)$ such that $N\left(q_{1}\right) \cap(H \cup x)=\left\{x_{2}\right\}, N\left(q_{j}\right) \cap(H \cup x)$ is an edge of $H \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$, and Q^{*} is anticomplete to $H \cup x$.

Proof. Since (H, x) is not terminal, it follows that (H, x) is x-rich and x_{2}-rich. Let $x_{1}-q_{1}-\ldots-q_{l}-x_{3}$ be the long sector of (H, x), and let Q be the path $q_{1}-\ldots-q_{l}$. Then by Lemma 5.1, there does not exist a node u such that $N(u) \cap(H \cup x)=\left\{x, x_{1}, q_{1}\right\}$, and by symmetry, there does not exist a node u such that $N(u) \cap(H \cup x)=\left\{x, x_{3}, q_{l}\right\}$. Since (H, x) is x-rich, there exists a path $P=p_{1}-\ldots-p_{k}$ in $G \backslash\left(N\left[x_{2}\right] \backslash\{x\}\right)$ from x to Q. We may assume that P is chosen to be the minimal such path. Then, p_{k} has a neighbor in Q, x_{1} and x_{3} are the only nodes of H that may have a neighbor in $P \backslash p_{k}$, and $N\left(p_{1}\right) \cap(H \cup x)=\{x\}$. Let q_{i} (resp. $q_{i^{\prime}}$) be the neighbor of p_{k} in Q with lowest (resp. highest) index.
(1) $\left\{x_{1}, x_{3}\right\}$ is anticomplete to P.

Suppose that one of x_{1}, x_{3} has a neighbor in P. Since $\left\{x_{2}, x_{2}, x_{3}, p_{k}\right\}$ does not induce a C_{4}, not both x_{1}, x_{3} are adjacent to p_{k}. Since $H \cup\left(P \backslash p_{k}\right)$ does not contain a theta between x_{1} and x_{3}, it follows that at least one of x_{1}, x_{3} is anticomplete to $P \backslash p_{k}$. It follows (exchanging the roles of x_{1}, x_{3} if necessary) that we may assume that x_{3} has a neighbor in P, and x_{1} is anticomplete to $P \backslash p_{k}$.

Since $\left\{x_{1}, p_{1}, x_{3}, x_{2}\right\}$ does not induce a C_{4}, it follows that if $k=1$, then x_{1} is non-adjacent to p_{k}. Consequently, $P \cup\left\{x_{1}, x, q_{1}, \ldots, q_{i}\right\}$ induces a hole H^{\prime}. Since $H^{\prime} \cup x_{3}$ does not induce a theta or a strong forcer, x_{3} is adjacent to p_{1} and $N\left(x_{3}\right) \cap H^{\prime} \subseteq N\left(p_{1}\right) \cap H^{\prime}$. If $N\left(x_{3}\right) \cap H^{\prime}=\left\{x, p_{1}\right\}$, then $H^{\prime} \cup\left\{x_{2}, x_{3}\right\}$ induces a proper wheel with center x. So $N\left(x_{3}\right) \cap H^{\prime}=N\left(p_{1}\right) \cap H^{\prime}$.

Let $H^{\prime \prime}$ be the hole induced by $\left(H^{\prime} \backslash\left\{x, p_{1}\right\}\right) \cup\left\{x_{2}, x_{3}\right\}$. Then $\left(H^{\prime \prime}, x\right)$ is a twin wheel, and $N\left(p_{1}\right) \cap\left(H^{\prime \prime} \cup x\right)=\left\{x, x_{3}, x_{3}^{\prime}\right\}$, where x_{3}^{\prime} is the neighbor of x_{3} in $H^{\prime \prime} \backslash x_{2}$. Since (H, x) is x_{2}-rich, there is a path R in $G \backslash\left(N[x] \backslash x_{2}\right)$ from x_{2} to Q. It follows $R \cup\left\{q_{i^{\prime}}, \ldots, q_{l}\right\}$ contains a path showing that $\left(H^{\prime \prime}, x\right)$ is x_{2}-rich. But Lemma 5.1 (with p_{1} playing the role of u) implies that ($\left.H^{\prime \prime}, x\right)$ is x_{2}-poor, a contradiction. This proves (1).

If $k=1$ then (since by (1) $\left\{x_{1}, x_{3}\right\}$ is anticomplete to $\left.P\right)\left(H \backslash x_{2}\right) \cup P \cup x$ induces a theta or a strong forcer. So $k>1$. If $i=i^{\prime}$ or $p_{i} p_{i^{\prime}}$ is not an edge, then the graph induced by $\left(H \backslash x_{2}\right) \cup P \cup x$ contains a theta between x and either $p_{k}\left(\right.$ when $\left.i \neq i^{\prime}\right)$ or $p_{i}\left(\right.$ when $\left.i=i^{\prime}\right)$. So $p_{i} p_{i^{\prime}}$ is an edge. By symmetry between x and x_{2}, the result follows..

We now use 5.2 to show that twin wheel forcers can be used in a way similar to strong forcers.

Theorem 5.3. Let δ, d be positive integers, let $f(2, \delta)=2(\delta+1)^{2}+1$, let $c \in\left[\frac{1}{2}, 1\right)$, and let $m \in$ $[0,1]$, with $d>2 f(2, \delta) \delta+2 \delta$ and $(1-c)+\left[m+f(2, \delta) \delta 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Let G be a connected clean C_{4}-free odd-signable graph with maximum degree δ, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$ and $w^{\max } \leq m$, and suppose G does not have a (w, c, d)-balanced separator. Let \mathcal{T} be the set of all twin wheel forcers in G and let $\left(\beta_{1}, w_{1}\right), \ldots,\left(\beta_{2 k+1}, w_{2 k+1}\right)$ be $a \mathcal{T}$-decomposition of G. Then, $\beta_{2 k+1}$ does not contain a terminal twin wheel.

Proof. Let $\beta_{0}=G$.
(1) For $i \in\{1, \ldots, 2 k+1\}$, if $\left(H, x, x_{2}\right)$ is a terminal twin wheel in β_{i}, then $\left(H, x, x_{2}\right)$ is a terminal twin wheel in β_{i-1}.

Let (H, x, x_{2}) be a terminal wheel in β_{i}, with $N(x) \cap H=\left\{x_{1}, x_{2}, x_{3}\right\}$, and suppose (H, x, x_{2}) is not a terminal wheel in β_{i-1}. Since (H, x, x_{2}) is not a terminal twin wheel in β_{i-1}, by Lemma 5.2 there exists a path $P=p_{1}-\ldots-p_{m}$ in β_{i-1} such that $N\left(p_{1}\right) \cap(H \cup x)=\left\{x_{2}\right\}, N\left(p_{m}\right) \cap(H \cup x)$ is an edge of $H \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$, and P^{*} is anticomplete to $H \cup x$. Similarly, there exists a path $Q=q_{1}-\ldots-q_{t}$ in β_{i-1} such that $N\left(q_{1}\right) \cap(H \cup x)=\{x\}, N\left(q_{t}\right) \cap(H \cup x)$ is an edge of $H \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$, and Q^{*} is anticomplete to $H \cup x$. Since (H, x, x_{2}) is a terminal twin wheel in β_{i}, we may assume that $V(P) \nsubseteq V\left(\beta_{i}\right)$. If i is odd, then by the definition of \mathcal{T}-decomposition, β_{i} is the clique-free
bag of β_{i-1}. By the definition of the clique-free bag, it follows that β_{i} is an induced subgraph of β_{i-1} obtained by decomposing β_{i-1} with clique cutsets. Since $H \cup x \cup P$ does not have a clique cutset, it follows that $H \cup x \cup P$ is contained in β_{i}, a contradiction. Therefore, i is even, and so by the definition of \mathcal{T}-decomposition, β_{i} is the central bag for a tree decomposition corresponding to a laminar collection of proper star separations in β_{i-1}. Let $p_{0}=x_{2}$ and let p_{m+1} be a neighbor of p_{m} in H. Let $\ell \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, m+1\}$ be such that $\ell<j, p_{\ell-1}, p_{j} \in \beta_{i}$, and $p_{s} \notin \beta_{i}$ for $\ell \leq s<j$. It follows that $p_{\ell-1}$ and p_{j} have neighbors in a connected component of $\beta_{i-1} \backslash \beta_{i}$. Since β_{i} is the central bag for a tree decomposition corresponding to a collection of star separations in β_{i-1}, it follows that $p_{\ell-1}$ and p_{j} are in a star cutset of β_{i-1}. In particular, there exists $v \in \beta_{i}$ such that $p_{\ell-1}, p_{j} \in N[v]$. Since P^{*} is anticomplete to $H \cup x$, it follows that $v \notin H$.

Since there does not exist a path from x_{2} to $H \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$ in β_{i} not containing a neighbor of x, it follows that v is adjacent to x, and thus $p_{\ell-1}, p_{j} \neq v$. Let $N\left(p_{m}\right) \cap(H \cup x)=\left\{h_{1}, h_{2}\right\}$, where h_{1} is on the path from x_{1} to h_{2} through $H \backslash x_{2}$. We may assume that if v is adjacent to one of h_{1}, h_{2}, then v is adjacent to h_{1} and $h_{1}=p_{m+1}$. Let R be the path from h_{1} to x_{1} not containing h_{2} in H. Consider the hole H^{\prime} given by $x_{1}-x_{2}-p_{1}-P-p_{m}-h_{1}-R-x_{1}$. Then, v has two non-adjacent neighbors $p_{\ell-1}$ and p_{j} in H^{\prime}. Since G is clean and theta-free, it follows that $\left(H^{\prime}, v\right)$ is a twin wheel. Since v is adjacent to both $p_{\ell-1}$ and p_{j}, and $p_{\ell-1} p_{j}$ is not an edge, and (H^{\prime}, v) is a twin wheel, either all the neighbors of v in H^{\prime} are contained in $R \cup x_{2}$, or they are all contained in $P \cup\left\{p_{0}, p_{m+1}\right\}$. Since v has at least 2 neighbors in $P \cup\left\{p_{0}, p_{m+1}\right\}$, it follows that either $p_{j}=h_{1}=p_{m+1}, p_{\ell-1}=p_{0}$, and $N(v) \cap(H \cup P)=\left\{x_{1}, x_{2}, h_{1}\right\}$, where $h_{1} x_{1}$ is an edge and v has no other neighbors in H because G is clean; or $j=\ell+1$ and $N(v) \cap H^{\prime}=\left\{p_{\ell-1}, p_{\ell}, p_{\ell+1}\right\}$. In the first case, $h_{2} \in H \backslash N[v]$ and $p_{m} h_{2}$ is an edge, so P and $H \backslash N[v]$ are in the same connected component of $\beta_{i-1} \backslash N[v]$. Since $H \subseteq \beta_{i}$, it follows that $P \subseteq \beta_{i}$, a contradiction. Therefore, the second case holds. Now, consider the hole $H^{\prime \prime}$ given by $x_{1}-x_{2}-p_{1}-P-p_{\ell-1}-v-p_{j}-P-p_{m}-h_{1}-R-x_{1}$. Then, $N(x) \cap H^{\prime \prime}=\left\{x_{1}, x_{2}, v\right\}$, and since G is clean, $\left(H^{\prime \prime}, x\right)$ is not a short pyramid. Therefore, $p_{\ell-1}=x_{2}=p_{0}$.

Let S be the path from h_{2} to x_{3} in $H \backslash\left\{h_{1}\right\}$. Since $N(v) \cap H^{\prime}=\left\{p_{0}, p_{1}, p_{2}\right\}$, it follows that v has no neighbors in $P \backslash\left\{p_{1}, p_{2}\right\}$. Further, since v has three neighbors x_{2}, p_{1}, p_{2} in the hole given by $x_{2}-x_{3}-S-h_{2}-p_{m}-P-p_{1}-x_{2}$, it follows that v has no neighbors in S. Therefore, let $H^{\prime \prime \prime}$ be the hole given by $x-v-p_{2}-P-p_{m}-h_{2}-S-x_{3}-x$. Then, $\left(H^{\prime \prime \prime}, x_{2}\right)$ is a twin wheel, where x is the clone of x_{2} in $H^{\prime \prime \prime}$. Furthermore, there is a path contained in $Q \cup\left(P \backslash p_{1}\right) \cup\left(H \backslash x_{2}\right)$ from x to $H^{\prime \prime \prime} \backslash\left\{v, x, x_{3}\right\}$ containing no neighbor of x_{2} other than x, so $\left(H^{\prime \prime \prime}, x_{2}\right)$ is x-rich. But $N\left(p_{1}\right) \cap\left(H^{\prime \prime \prime} \cup x_{2}\right)=\left\{p_{2}, v, x_{2}\right\}$, contradicting Lemma 5.1. This proves (1).

Suppose that $\beta_{2 k+1}$ contains a terminal twin wheel (H, x, x_{2}). By (1), it follows that (H, x, x_{2}) is a terminal twin wheel in G, so we may assume that $F=(H,\{x\})$ is a twin wheel forcer in G. Then, by Theorem 4.10, F is not active for $\beta_{2 k+1}$, a contradiction. Therefore, $\beta_{2 k+1}$ does not contain a terminal twin wheel.

The following lemma shows that if G is a graph with no balanced separator, no clique cutset, and no forcer, then G has no star cutset.

Lemma 5.4. Let $c \in\left[\frac{1}{2}, 1\right)$. Let G be a theta-free graph, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$ and $w^{\max } \leq m$, and suppose that G has no ($w, c, 1$)-balanced separator, G has no clique cutset, and G has no forcer. Then G has no star cutset.

Proof. Suppose G has a star cutset C^{\prime} centered at v and let $\left(A^{\prime}, C^{\prime}, B^{\prime}\right)$ be a star separation such that $A^{\prime}, B^{\prime} \neq \emptyset$. Let (A, C, B) be the canonical star separation for $\{v\}$. Since G has no ($w, c, 1$)-balanced separator, $G \backslash N[v] \neq \emptyset$, and therefore $B \neq \emptyset$. Without loss of generality let $B \subseteq B^{\prime}$. Then, $A^{\prime} \subseteq A$, and therefore $A \neq \emptyset$.

Let A^{*} be a component of A. Since G does not have a clique cutset, it follows that there exist $u_{1}, u_{2} \in N\left(A^{*}\right)$ such that $u_{1} u_{2} \notin E(G)$. Let P be a path from u_{1} to u_{2} through B and let Q be a shortest path from u_{1} to u_{2} through A^{*}. Let H be the hole given by $u_{1}-Q-u_{2}-P-u_{1}$. Then, v has two non-adjacent neighbors in H. Because G is clean and theta-free, it follows that (H, v) is not a proper wheel or a short pyramid. Therefore, (H, v) is a twin wheel, and since by definition of canonical star separation v has no neighbor in $B, Q=u_{1}-a-u_{2}$ for some vertex $a \in A^{*}$, and a is the clone of v in H. Since every path from a to B intersects $N[v]$, it follows that (H, v) is a-poor, so (H, v, a) is a terminal twin wheel in G, a contradiction.

6. Graphs with no star cutset

In this section, we show that if G is a C_{4}-free odd-signable graph with bounded degree and no star cutset, then G has bounded treewidth. A partition $\left(X_{1}, X_{2}\right)$ of the vertex set of a graph G is a 2 -join if for $i=1,2$ there exist disjoint nonempty $A_{i}, B_{i} \subseteq X_{i}$ satisfying the following:

- A_{1} is complete to A_{2}, B_{1} is complete to B_{2}, and there are no other edges between X_{1} and X_{2};
- for $i=1,2, G\left[X_{i}\right]$ contains a path with one end in A_{i}, one end in B_{i} and interior in $X_{i} \backslash\left(A_{i} \cup B_{i}\right)$ and $G\left[X_{i}\right]$ is not a path.
We say that ($X_{1}, X_{2}, A_{1}, B_{1}, A_{2}, B_{2}$) is a split of the 2-join (X_{1}, X_{2}). A long pyramid is a pyramid all of whose three paths are of length at least 2. An extended nontrivial basic graph R is defined as follows:
- $V(R)=V(L) \cup\{x, y\}$.
- L is the line graph of a tree T.
- x and y are adjacent, and $\{x, y\} \cap V(L)=\emptyset$.
- L contains at least two maximal cliques of size at least 3 .
- The vertices of L corresponding to the edges incident with vertices of degree 1 in T are called leaf vertices. Each leaf vertex of L is adjacent to exactly one of $\{x, y\}$ and no other vertex of L is adjacent to a vertex of $\{x, y\}$.
- These are the only edges in R.

We observe that in order to prove the decomposition theorem for C_{4}-free odd-signable graphs, extended nontrivial basic graphs are defined in a more complicated way in [12], but for what we want to prove here the above definition suffices. Let \mathcal{B}^{*} be the class of graphs that consists of cliques, holes, long pyramids and extended nontrivial basic graphs.
Theorem 6.1. ([12]) A C_{4}-free odd-signable graph either belongs to \mathcal{B}^{*} or it has a star cutset or a 2-join.

Let G be a graph and $\left(X_{1}, X_{2}, A_{1}, B_{1}, A_{2}, B_{2}\right)$ a split of a 2 -join of G. The blocks of decomposition of G with respect to (X_{1}, X_{2}) are graphs G_{1} and G_{2} defined as follows. Block G_{1} is obtained from $G\left[X_{1}\right]$ by adding a marker path $P_{2}=a_{2}-\ldots-b_{2}$ of length 3 such that a_{2} is complete to A_{1}, b_{2} is complete to B_{1}, and these are the only edges between P_{2} and X_{1}. Block G_{2} is obtained analogously from $G\left[X_{2}\right]$ by adding a marker path $P_{1}=a_{1}-\ldots-b_{1}$.

The following lemma follows from the proofs of Lemmas 3.5 and 3.7 in [22].
Lemma 6.2. ([22]) Let G be a C_{4}-free graph with no star cutset, let $\left(X_{1}, X_{2}\right)$ be a 2-join of G, and G_{1} and G_{2} the corresponding blocks of decomposition. Then G_{1} and G_{2} do not have star cutsets.

Below, we prove that if G is a C_{4}-free odd-signable graph and ($X_{1}, X_{2}, A_{1}, B_{1}, A_{2}, B_{2}$) is a split of a 2-join of G, then the blocks of decomposition of G with respect to (X_{1}, X_{2}) are also C_{4}-free odd-signable.
Lemma 6.3. Let G be a C_{4}-free odd-signable graph with no star cutset, let $\left(X_{1}, X_{2}\right)$ be a 2-join of G, and G_{1} and G_{2} the corresponding blocks of decomposition. Then G_{1} and G_{2} are C_{4}-free odd-signable.

Proof. By constructions of the blocks, clearly G_{1} and G_{2} are C_{4}-free. So by Theorem 1.7 it suffices to show that if G_{1} contains an even wheel, theta or a prism Σ, then G contains an even wheel, theta or a prism. Let ($X_{1}, X_{2}, A_{1}, B_{1}, A_{2}, B_{2}$) be the split of (X_{1}, X_{2}), and let $P_{2}=a_{2}-\ldots-b_{2}$ be the marker path of G_{1}. We may assume that $\Sigma \cap P_{2} \neq \emptyset$, since otherwise we are done. Suppose that A_{2} is complete to B_{2}. By definition of 2-join, either $X_{2} \backslash\left(A_{2} \cup B_{2}\right) \neq \emptyset$, or, without loss of generality, $\left|B_{2}\right| \geq 2$. So for $u \in B_{2}, S=A_{2} \cup B_{1} \cup\{u\}$ is a star cutset in G separating $X_{1} \backslash B_{1}$ from $X_{2} \backslash\left(A_{2} \cup\{u\}\right)$. Therefore, A_{2} is not complete to B_{2}, so let $a \in A_{2}$ and $b \in B_{2}$ be such that $a b$ is not an edge. By definition of 2-join, there exists a path Q_{2} in $G\left[X_{2}\right]$ whose one end is in A_{2}, the other in B_{2} and whose interior is in $X_{2} \backslash\left(A_{2} \cup B_{2}\right)$.

First suppose that $\Sigma=(H, x)$ is an even wheel. If $H \subseteq X_{1}$ then without loss of generality $x=a_{2}$, and hence (H, a) is an even wheel in G. So we may assume that $H \cap P_{2} \neq \emptyset$. It follows that without loss of generality, $H \cap P_{2} \in\left\{\left\{a_{2}\right\},\left\{a_{2}, b_{2}\right\}, P_{2}\right\}$. It follows that $x \in X_{1}$. If $H \cap P_{2}=\left\{a_{2}\right\}$ then let $H^{\prime}=\left(H \backslash\left\{a_{2}\right\}\right) \cup\{a\}$; if $H \cap P_{2}=\left\{a_{2}, b_{2}\right\}$ then let $H^{\prime}=\left(H \backslash\left\{a_{2}, b_{2}\right\}\right) \cup\{a, b\}$; and if $H \cap P_{2}=P_{2}$ then let $H^{\prime}=\left(H \backslash P_{2}\right) \cup Q_{2}$. Then clearly $\left(H^{\prime}, x\right)$ is an even wheel in G.

Now assume that Σ is a theta or a prism. Let R_{1}, R_{2}, R_{3} be the three paths of Σ. Note that any two of the paths induce a hole, and assume up to symmetry that out of the three holes so created, the hole $H=R_{1} \cup R_{2}$ has the largest intersection with P_{2}. Then without loss of generality $H \cap P_{2}=\left\{a_{2}\right\},\left\{a_{2}, b_{2}\right\}$ or P_{2}. If $H \cap P_{2}=\left\{a_{2}\right\}$ then let $H^{\prime}=\left(H \backslash\left\{a_{2}\right\}\right) \cup\{a\}$; if $H \cap P_{2}=\left\{a_{2}, b_{2}\right\}$ then let $H^{\prime}=\left(H \backslash\left\{a_{2}, b_{2}\right\}\right) \cup\{a, b\}$; and if $H \cap P_{2}=P_{2}$ then let $H^{\prime}=\left(H \backslash P_{2}\right) \cup Q_{2}$. Then clearly H^{\prime} is a hole in G. By the choice of H it follows that $\left|R_{3} \cap P_{2}\right| \leq 1$ and hence either $R_{3} \subseteq X_{1}$, or $H \cap P_{2}=\left\{a_{2}\right\}$ and $R_{3} \cap P_{2}=\left\{b_{2}\right\}$. In the first case clearly $\overline{H^{\prime}} \cup R_{3}$ is a theta or a prism, so assume that $H \cap P_{2}=\left\{a_{2}\right\}$ and $R_{3} \cap P_{2}=\left\{b_{2}\right\}$. Then, up to symmetry, $a_{2} \in R_{2}$. But then it follows that the hole $R_{2} \cup R_{3}$ has a larger intersection with P_{2} than H, a contradiction.

Let G be a graph. A flat path in G is a path of G of length at least 2 whose interior vertices all have degree 2 in G and whose ends do not have a common neighbor outside this path. A leaf in a graph is a vertex of degree at most 1 . Let \mathcal{D} be a class of graphs and $\mathcal{B} \subseteq \mathcal{D}$. Given a graph $G \in \mathcal{D}$, a rooted tree T_{G} is a 2-join decomposition tree for G with respect to \mathcal{B} if the following hold:

- Each vertex of T_{G} is a pair (H, \mathcal{M}) where H is a graph in \mathcal{D} and \mathcal{M} is a set of vertexdisjoint flat paths of H.
- The root of T_{G} is (G, \emptyset).
- Each non-leaf vertex of T_{G} is $\left(G^{\prime}, \mathcal{M}^{\prime}\right)$ where G^{\prime} has a 2-join $\left(X_{1}, X_{2}\right)$ such that the edges between X_{1} and X_{2} do not belong to any flat path in \mathcal{M}^{\prime}. Let \mathcal{M}_{1} (respectively \mathcal{M}_{2}) be the set of all flat paths of \mathcal{M}^{\prime} that belong to $G\left[X_{1}\right]$ (respectively $G\left[X_{2}\right]$). Let G_{1} and G_{2} be the blocks of decomposition of G^{\prime} with respect to 2-join (X_{1}, X_{2}) with marker paths P_{2} and P_{1} respectively. The vertex $\left(G^{\prime}, \mathcal{M}^{\prime}\right)$ has two children, which are $\left(G_{1}, \mathcal{M}_{1} \cup\left\{P_{2}\right\}\right)$ and ($\left.G_{2}, \mathcal{M}_{2} \cup\left\{P_{1}\right\}\right)$.
- Each leaf vertex of T_{G} is $\left(G^{\prime}, \mathcal{M}^{\prime}\right)$ where $G^{\prime} \in \mathcal{B}$.

The following theorem follows from Lemma 4.6 in [22].
Theorem 6.4. ([22]) Let G be a graph and let \mathcal{M} be a set of vertex-disjoint flat paths of G. Then one of the following holds:
(i) G has no 2-join.
(ii) There exists a 2 -join $\left(X_{1}, X_{2}\right)$ of G such that for every path $P \in \mathcal{M}, P \subseteq X_{1}$ or $P \subseteq X_{2}$.
(iii) G or a block of decomposition with respect to some 2-join of G has a star cutset.

The following lemma shows that C_{4}-free odd-signable graphs with no star cutset have 2-join decomposition trees with respect to \mathcal{B}^{*}.
Lemma 6.5. If G is a C_{4}-free odd-signable graph with no star cutset then G has a 2-join decomposition tree with respect to \mathcal{B}^{*}.

Proof. If G is a C_{4}-free odd-signable graph that has no star cutset then, by Lemmas 6.2 and 6.3, blocks of decomposition of G with respect to every 2 -join are C_{4}-free odd-signable and have no star cutset. So by repeated application of Theorem 6.4 there is a 2 -join decomposition tree for G in which the leaves correspond to C_{4}-free odd-signable graphs that have no star cutset and no 2-join, and hence by Theorem 6.1 are graphs from \mathcal{B}^{*}, i.e. the result holds.

The rankwidth of a graph G, denoted by $\operatorname{rw}(G)$, is a property of G similar to treewidth. The definition of rankwidth can be found in [18] (where it was first defined). The following theorem bounds the rankwidth of graphs that have a 2 -join decomposition tree with respect to \mathcal{B}^{*}.
Theorem 6.6. ([16,17]) If \mathcal{D} is a class of graphs such that every $G \in \mathcal{D}$ has a 2-join decomposition tree with respect to \mathcal{B}^{*}, then $r w(G) \leq 3$.
Corollary 6.7. If G is a C_{4}-free odd-signable graph with no star cutset then $r w(G) \leq 3$.
Proof. Follows from Theorem 6.6 and Lemma 6.5.
The following theorem bounds the treewidth of G by a function of the rankwidth of G for graphs G with no subgraph isomorphic to $K_{r, r}$, where $K_{r, r}$ is a complete bipartite graph with r vertices in both sides of the bipartition.
Theorem 6.8. ([13]) If G is a graph that has no subgraph isomorphic to $K_{r, r}$, then $t w(G)+1 \leq$ $3(r-1)\left(2^{r w(G)+1}-1\right)$.

Finally, we show that the treewidth of G is bounded by a function of δ.
Corollary 6.9. If G is a C_{4}-free odd-signable graph with maximum degree δ and no star cutset then $t w(G) \leq 45 \delta-1$.
Proof. Follows from Corollary 6.7 and Theorem 6.8.

7. Balanced separators in C_{4}-Free odd-signable graphs

Let δ be a positive integer and let G be a C_{4}-free odd-signable graph with maximum degree δ. In this section, we prove Theorem 1.5, showing that G has a balanced separator. We begin by stating a helpful lemma showing that if G has bounded treewidth, then G has a balanced separator.

Lemma 7.1 ([10], Lemma 7.19). Let G be a graph with treewidth at most k and let $w: V(G) \rightarrow$ $[0,1]$ be a weight function of G with $w(G)=1$. Then, G has a $\left(w, \frac{1}{2}, k+1\right)$-balanced separator.

Now, we prove that if G is a clean C_{4}-free odd-signable graph with maximum degree δ, then G has a balanced separator.
Theorem 7.2. Let δ, d be positive integers, let $c \in\left[\frac{1}{2}, 1\right)$, let $m \in[0,1]$, and let $f(2, \delta)=$ $2(\delta+1)^{2}+1$, with $d \geq 47 \delta+2 f(2, \delta) \delta-2$, and $(1-c)+\left[m+2 f(2, \delta) \delta 2^{\delta}(1-c)+(\delta-1) 2^{\delta}(1-\right.$ $c)]\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Let G be a connected clean C_{4}-free odd-signable graph with maximum degree δ and let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$ and $w^{\max } \leq m$. Then, G has a (w, c, d)-balanced separator.
Proof. Suppose that G does not have a (w, c, d)-balanced separator. Let \mathcal{T} be the set of all twin wheel forcers in G and let $\beta_{2 k+1}$ be the terminal bag of a \mathcal{T}-decomposition of G, with $k \leq f(2, \delta)$. It follows from Theorem 4.10 that $\beta_{2 k+1}$ does not have a clique cutset or a ($w^{\prime}, c, d-2 k \delta-2(\delta-1)$)balanced separator for some weight function w^{\prime} with $w^{\prime}\left(\beta_{2 k+1}\right)=1$ and $w^{\prime \max } \leq w^{\max }+$ $f(2, \delta) \delta 2^{\delta}(1-c)+(\delta-1) 2^{\delta}(1-c)$. By Theorem 5.3, $\beta_{2 k+1}$ does not contain a terminal twin wheel.

By Lemma 5.4, $\beta_{2 k+1}$ has no star cutset. Since $\beta_{2 k+1}$ has no star cutset, it follows from Corollary 6.9 that $\operatorname{tw}\left(\beta_{2 k+1}\right) \leq 45 \delta-1$. By Lemma $7.1, \beta_{2 k+1}$ has a ($w^{\prime}, \frac{1}{2}, 45 \delta$)-balanced
separator. Since $d-2 k \delta-2(\delta-1) \geq d-2 f(2, \delta) \delta-2(\delta-1) \geq 45 \delta$ and $c \geq \frac{1}{2}$, it follows that $\beta_{2 k+1}$ has a $\left(w^{\prime}, c, d-2 k \delta-2(\delta-1)\right)$-balanced separator, a contradiction.

Finally, we prove Theorem 1.5.
Theorem 1.5. Let δ, d be positive integers. Let G be a connected C_{4}-free odd-signable graph with maximum degree δ and let $w: V(G) \rightarrow[0,1]$ be a weight function such that $w(G)=1$. Let $f(2, \delta)=2(\delta+1)^{2}+1$, and let $c \in\left[\frac{1}{2}, 1\right)$. Assume that $d \geq 49 \delta+4 f(2, \delta) \delta-4$ and $(1-c)+\left[w^{\max }+3 f(2, \delta) \delta 2^{\delta}(1-c)+2(\delta-1) 2^{\delta}(1-c)\right]\left(\delta+\delta^{2}\right)<\frac{1}{2}$. Then, G has a $(w, c, d)-$ balanced separator.

Proof. Suppose that G does not have a (w, c, d)-balanced separator. Let \mathcal{F} be the set of all strong forcers of G and let $\beta_{2 k+1}$ be the terminal bag for an \mathcal{F}-decomposition of G, with $k \leq f(2, \delta)$. By Theorem 4.10, $\beta_{2 k+1}$ is connected and does not have a ($w^{\prime}, c, d-2 k \delta-2(\delta-1)$)-balanced separator for some weight function w^{\prime} with $w^{\prime}\left(\beta_{2 k+1}\right)=1$ and $w^{\prime \max } \leq w^{\max }+f(2, \delta) \delta 2^{\delta}(1-$ $c)+(\delta-1) 2^{\delta}(1-c)$, and by Theorem 4.11, $\beta_{2 k+1}$ is connected and clean. Since $\beta_{2 k+1}$ is clean, it follows from Theorem 7.2 that $\beta_{2 k+1}$ has a $\left(w^{\prime}, c, d-2 k \delta-2(\delta-1)\right)$-balanced separator, a contradiction.

Acknowledgment

We thank Cemil Dibek for reading and providing feedback on this paper.

References

[1] Aboulker, P., Adler, I., Kim, E. J., Sintiari, N. L. D., and Trotignon, N. On the tree-width of even-hole-free graphs. European Journal of Combinatorics 98, 103394 (2021).
[2] Abrishami, T., Chudnovsky, M., Dibek, C., Hajebi, S., Rzążewski, P., Spirkl, S., and Vušković, K. Induced subgraphs and tree decompositions ii. toward walls and their line graphs in graphs of bounded degree. arXiv:2108.01162 (2021).
[3] Addario-Berry, L., Chudnovsky, M., Havet, F., Reed, B., and Seymour, P. Bisimplicial vertices in even-hole-free graphs. Journal of Combinatorial Theory, Series B 98, 6 (2008), 1119-1164.
[4] Adler, I., and Harwath, F. Property testing for bounded degree databases. In STACS 2018: 35th Symposium on Theoretical Aspects of computer Science (2018), pp. 6:1-6:14.
[5] Bodlaender, H. L. Dynamic programming on graphs with bounded treewidth. Springer, Berlin, Heidelberg, 1988, pp. 105-118.
[6] Chang, H.-C., and Lu, H.-I. A faster algorithm to recognize even-hole-free graphs. Journal of Combinatorial Theory, Series B 113 (2015), 141-161.
[7] Conforti, M., Cornuéjols, G., Kapoor, A., and Vušković, K. Even and odd holes in cap-free graphs. Journal of Graph Theory 30, 4 (1999), 289-308.
[8] Conforti, M., Cornuéjols, G., Kapoor, A., and Vušković, K. Even-hole-free graphs part I: Decomposition theorem. Journal of Graph Theory 39, 1 (2002), 6-49.
[9] Conforti, M., Cornú́jols, G., Kapoor, A., and Vušković, K. Even-hole-free graphs part II: Recognition algorithm. Journal of Graph Theory 40 (2002), 238-266.
[10] Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., and Saurabh, S. Parameterized algorithms. Springer, 2015.
[11] da Silva, M. V., And Vušković, K. Triangulated neighborhoods in even-hole-free graphs. Discrete Mathematics 307, 9-10 (2007), 1065-1073.
[12] da Silva, M. V., and Vušković, K. Decomposition of even-hole-free graphs with star cutsets and 2-joins. Journal of Combinatorial Theory. Series B 103, 1 (2013), 144-183.
[13] Gurski, F., and Wanke, E. The tree-width of clique-width bounded graphs without $K_{n, n}$. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2000), vol. 1928, Springer Verlag, pp. 196-205.
[14] Harvey, D. J., and Wood, D. R. Parameters Tied to Treewidth. Journal of Graph Theory 84, 4 (2017), 364-385.
[15] Lai, K. Y., Lu, H. I., and Thorup, M. Three-in-a-tree in near linear time. In STOC 2020: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (2020), pp. 1279-1292.
[16] Le, N. K. Detecting and Coloring some Graph Classes. PhD thesis, 2017.
[17] Le, N. K. Coloring even-hole-free graphs with no star cutset. arXiv:1805.01948 (2018).
[18] Oum, S.-I., and Seymour, P. Approximating clique-width and branch-width. Journal of Combinatorial Theory, Series B 96 (2006), 514-528.
[19] Robertson, N., and Seymour, P. D. Graph minors. X. Obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B 52, 2 (1991), 153-190.
[20] Silva, A., da Silva, A. A., and Sales, C. L. A bound on the treewidth of planar even-hole-free graphs. Discrete Applied Mathematics 158 (2010), 1229-1239.
[21] Sintiari, N. L. D., and Trotignon, N. (Theta, triangle)-free and (even hole, K_{4})-free graphs. Part 1 : Layered wheels. Journal of Graph Theory 97 (2021), 475-509.
[22] Trotignon, N., and Vušković, K. Combinatorial optimization with 2-joins. Journal of Combinatorial Theory. Series B 102, 1 (2012), 153-185.
[23] Vušković, K. Even-hole-free graphs: A survey. Applicable Analysis and Discrete Mathematics 4 (2010), 219-240.

[^0]: *Princeton University, Princeton, NJ, USA
 ${ }^{* * \ddagger}$ School of Computing, University of Leeds, UK
 ${ }^{\S}$ Supported by NSF Grant DMS-1763817 and NSF-EPSRC Grant DMS-2120644.
 ${ }^{\dagger}$ Supported by NSF Grant DMS-1763817. This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U. S. Army Research Office under grant number W911NF-16-1-0404.
 ₹ Partially supported by EPSRC grant EP/N0196660/1.
 Date: February 2, 2022.

