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The worldwide COVID-19 pandemic has claimed millions of lives and has had a profound

effect on global life. Understanding the body’s immune response to SARS-CoV-2 infection

is crucial in improving patient management and prognosis. In this study we compared

influenza and SARS-CoV-2 infected patient cohorts to identify distinct blood transcript

abundances and cellular composition to better understand the natural immune response

associated with COVID-19, compared to another viral infection being influenza, and

identify a prognostic signature of COVID-19 patient outcome. Clinical characteristics and

peripheral blood were acquired upon hospital admission from two well characterised

cohorts, a cohort of 88 patients infected with influenza and a cohort of 80 patients infected

with SARS-CoV-2 during the first wave of the pandemic and prior to availability of COVID-

19 treatments and vaccines. Gene transcript abundances, enriched pathways and cellular

composition were compared between cohorts using RNA-seq. A genetic signature

between COVID-19 survivors and non-survivors was assessed as a prognostic

predictor of COVID-19 outcome. Contrasting immune responses were detected with an

innate response elevated in influenza and an adaptive response elevated in COVID-19.

Additionally ribosomal, mitochondrial oxidative stress and interferon signalling pathways

differentiated the cohorts. An adaptive immune response was associated with COVID-19

survival, while an inflammatory response predicted death. A prognostic transcript

signature, associated with circulating immunoglobulins, nucleosome assembly, cytokine
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production and T cell activation, was able to stratify COVID-19 patients likely to survive or

die. This study provides a unique insight into the immune responses of treatment naïve

patients with influenza or COVID-19. The comparison of immune response between

COVID-19 survivors and non-survivors enables prognostication of COVID-19 patients and

may suggest potential therapeutic strategies to improve survival.

Keywords: COVID-19, influenza, adaptive, innate, immune response, blood, transcriptome, survival

INTRODUCTION

Previous studies investigating the differences between patients
with COVID-19 or influenza on admission to hospital found that
both patient groups present with similar systemic inflammation
marker levels including C-reactive protein (CRP), white blood
cell count, neutrophil count and neutrophil/lymphocyte ratio
(1). Once hospitalised, patients with COVID-19 are at a higher
risk of developing respiratory distress, pulmonary embolism,
septic shock and haemorrhagic strokes, had a longer length of
stay in intensive care, and were more likely to require mechanical
ventilation compared to patients with influenza (2). The in-
hospital mortality was found to be roughly three times higher for
COVID-19 compared to influenza (2).

The viral immune response against influenza is well
characterised (3), it involves the innate immune system [e.g.
macrophages, granulocytes and dendritic cells, which release
proinflammatory cytokines and type I interferons (IFN)] to
inhibit viral replication, recruit other immune cells to the site
of infection, and stimulate the adaptive immune response which
consists of a humoral and a cellular mediated immunity, initiated
principally by virus-specific antibodies and T cells. Our current
understanding indicates that COVID-19 severity and duration
are due to a total or early innate immune and IFN response
evasion by SARS-CoV-2 (4–7). While patients infected with
influenza are able to mount an IFN response (1), which
correlates with quicker recovery and decreased disease severity
and mortality (8, 9). Similarly, early administration of IFN-beta
for COVID-19 patients results in a lowered in-hospital mortality
and quicker recovery (10, 11). Pro-inflammatory cytokine
expression occurs for a prolonged time in patients with
COVID-19 at similar levels with influenza patients (1), with
interleukin (IL)-6 and IL-10 (12–14) associated with increased
COVID-19 severity, while it has been observed that the presence
of antibodies, CD4+ and CD8+ T cells are correlated with a
positive patient outcome (15). Therefore, a key question is if an
adaptive immune response differs depending on the disease, and
whether specific prognostic markers can be identified.

To address this, we first compared a cohort of hospitalised
patients infected with influenza virus with an equivalent cohort of
SARS-CoV-2 infected patients identified from individuals
hospitalised during the first wave of the pandemic and prior to
the availability of approved COVID-19 treatments and vaccines.
Secondly, we compared individuals who either survived COVID-
19 or who succumbed to COVID-19. Both analyses provides us
insights to a natural specific antiviral immune response associated
with COVID-19, and with COVID-19 survival. Clinical

parameters were recorded and peripheral blood, used for RNA
sequencing (RNA-seq), were taken at admission to hospital. We
aimed to identify distinct patterns of blood transcript abundances
and cellular composition to better understand the COVID-19
specific antiviral immune response and to identify a prognostic
signature indicative of COVID-19 outcome.

MATERIALS AND METHODS

Recruitment of Patients Positive for
SARS-CoV-2 or Influenza Infection
The study was approved by the South Central - Hampshire A
Research Ethics Committee (REC): REC reference 20/SC/0138
(March 16th, 2020) for the COVID-19 point of care (CoV-
19POC) trial; and REC reference 17/SC/0368 (September 7th,
2017) for the FluPOC trial. Patients gave written informed
consent or consultee assent was obtained where patients were
unable to give consent. The studies were prospectively registered
with the ISRCTN trial registry: ISRCTN14966673 (COV-
19POC) (March 18th, 2020), and ISRCTN17197293 (FluPOC)
(November 13th, 2017).

The COV-19POC study was a non-randomised
interventional trial evaluating the clinical impact of molecular
point-of-care testing (mPOCT) for SARS-CoV-2 in adult
patients. The trial took place during the first wave of the
pandemic, from 20th March to 29th April 2020, and prior to
the availability of approved COVID-19 treatments. Patients (≥
18 years old) were recruited from the Acute Medical Unit
(AMU), Emergency Department (ED) or other acute areas of
Southampton General Hospital when presenting with acute
respiratory illness (ARI), or without ARI but suspected SARS-
CoV-2 infection, or without ARI and not a suspected COVID-19
case, according to Public Health England guidelines, but where
SARS-CoV-2 testing is considered necessary by the clinical team.
ARI is defined as an acute upper or lower respiratory illness or an
acute exacerbation of a chronic respiratory illness. Patients were
excluded who did not meet the inclusion criteria, declined nasal
and/or pharyngeal swabbing, consent declined or whom were
already recruited to the study in the last 14 days (16). For this
comparative study patients were included who were found to be
SARS-CoV-2 positive, according to the QIAGEN QIAstat-Dx
PCR testing platform with the QIAstat-Dx Respiratory SARS-
CoV-2 Panel (17), in the COV-19POC study.

The FluPOC study was a multicentre randomised controlled
trial evaluating the clinical impact of mPOCT for influenza in
hospitalised adult patients with acute respiratory illness, during
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influenza season, using the BioFire FilmArray platform with the
Respiratory Panel 2.1 (18). The trial took place during influenza
seasons over the two winters of 2017/18 and 2018/19. Patients
(≥ 18 years old) presenting with ARI, duration less than 10 days
prior to admission to hospital, were recruited from the AMU and
ED of Southampton General Hospital and Royal Hampshire
County Hospital. Patients were excluded when not fulfilling all
the inclusion criteria, receiving a purely palliative treatment
approach, declining nasal and/or pharyngeal swabbing, consent
declined or whom were previously recruited and re-presented
after 30 days after hospital discharge (19).

All participants were recruited within the first 24 hours of
admission to hospital, and prior to any treatments. Blood
samples including whole blood in PAXgene Blood RNA tubes
(BRT) (Preanalytix) were collected from 80 SARS-CoV-2
positive patients and 88 influenza positive patients, within 24
hours of enrolment, and stored at -80°C. For both cohorts the
demographic and clinical data were collected at enrolment and
outcome data from case note and electronic systems. ALEA and
BC data management platforms were used for data capture
and management.

Comparison of Baseline Clinical
Characteristics
Baseline clinical characteristics of the patient groups were assessed
using R (20) (v4.0.2) and RStudio (21) (v1.3.959) for comparisons
between COVID-19 versus influenza, and COVID-19 survivors
versus non-survivors. Extreme outliers (values < Q1 - 3 interquartile
range, or > Q3 + 3 interquartile range) were identified with the R
package rstatix (22) (v0.7.0) and removed. Statistical testing was
performed including a Shapiro-Wilk test to assess for data
normality followed with either an unpaired parametric T-test
(Shapiro-Wilk test p-value > 0.05) or an unpaired non-parametric
Wilcoxon test (Shapiro-Wilk test p-value < 0.05) for continuous
data, or a Chi-square test for categorical data. The R package table 1
(23) (v1.3) was used to plot the baseline clinical characteristics.

Extraction of RNA From Clinical Samples
and Illumina Sequencing
Total RNA was extracted from PAXgene BRT using the PAXgene
Blood RNA Kit (PreAnalytix), according to the manufacturer’s
protocol at Containment Level 3 in a Tripass Class I hood.
Extracted RNA was stored at -80°C until further use. Following
the manufacturer’s protocols, total RNA was used as input material
into the QIAseq FastSelect–rRNA/Globin Kit (Qiagen) protocol to
remove cytoplasmic and mitochondrial rRNA and globin mRNA
with a fragmentation time of 7 or 15 minutes. Subsequently the
NEBNext® Ultra™ II Directional RNA Library Prep Kit for
Illumina® (New England Biolabs) was used to generate the RNA
libraries, followed by 11 or 13 cycles of amplification and
purification using AMPure XP beads. Each library was quantified
using Qubit and the size distribution assessed using the Agilent
2100 Bioanalyser and the final libraries were pooled in equimolar
ratios. Libraries were sequenced using 150 bp paired-end reads on
an Illumina® NovaSeq 6000 (Illumina®, San Diego, USA). Raw
fastq files were trimmed to remove Illumina adapter sequences

using Cutadapt v1.2.1 (24). The option “−O 3” was set, so that the
3’ end of any reads which matched the adapter sequence with
greater than 3 bp was trimmed off. The reads were further trimmed
to remove low quality bases, using Sickle v1.200 (25) with a
minimum window quality score of 20. After trimming, reads
shorter than 10 bp were removed.

Data QC and Alignment
QC of read data was performed using FastQC (26) (v0.11.9) and
compiled and visualised withMultiQC (27) (v1.5). Samples with <20
million total reads were excluded from further analysis. The STAR
index was created with STAR’s (28) (v2.7.6a) genome Generate
function using GRCh38.primary_assembly. genome.fa and
gencode.v34.annotation.gtf (29) (both downloaded from
GENCODE), with –sjdbOverhang 149 and all other settings as
default. Individual fastq files were aligned using the –twopassMode
Basicflag,withthefollowingparametersspecified(followingENCODE
standard options): –outSAMmapqUnique 60, outFilterType BySJout,
–outFilterMultimapNmax 20, –align SJoverhangMin 8, –
outFilterMismatchNmax 999, –out FilterMismatchNoverReadLmax
0.04, –alignIntronMin 20, –alignIntronMax 1000000, –

alignMatesGapMax 1000000 and all other options as default. For
rMATs (30) (v4.1.0) analysis, STARwas run again as before, but with
the additionof–alignEndsTypeEndToEnd. SamTools (31) (v1.8)was
used to sort and index the aligned data.

Systems Immunology-Based Analysis of
Blood Transcript Modules
BTM analysis was performed with molecular signatures derived
from 5 vaccine trials (32) as a reference dataset, and BTM activity
was calculated using the BTM package (32) (v1.015) in Python
(33) (v3.7.2) using the normalized counts as input. Module
enrichment significance was calculated using CAMERA (34)
(v3.46.0). The significance threshold for the linear model was
set at FDR 0.05 for the comparison between patients with
COVID-19 or influenza.

Differential Gene Expression Analysis
Between Patient Groups
HTSeq (35) (v0.11.2) count was used to assign counts to RNA-seq
reads in the SamTools sorted BAM file using GENCODE v34
annotation. Parameters used for HTSeq were –format=bam, –
order=pos, –stranded=reverse, –type=exon and the other options
were kept at default. EdgeR (36) (v3.30.3) was used for differential
gene expression analysis with R (v4.0.2) in RStudio (v1.3.959).
Genes with low counts across all libraries were filtered out using
the filterByExpr command. Filtered gene counts were normalised
using the Trimmed Mean of M -values (TMM) method. A PCA
graph was constructed based on all differentially expressed genes to
assess sample clustering. Differentially expressed genes were
identified, after fitting the negative binomial models and
obtaining dispersion estimates, using the exact test and using a
threshold criteria of FDR p-value < 0.05 and log2 fold change < -1
and > 1. Genes which were within the threshold criteria were used
for ToppGene gene list enrichment analysis, using the default
settings, and GO biological process terms.
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TABLE 1 | Baseline clinical characteristics and outcomes of hospitalised patients with COVID-19 or influenza.

Baseline demographic data

COVID-19 Influenza P-value

(N = 78) (N = 83)

Sex, n (%)

Female 26 (33.3%) 36 (43.4%) 0.252

Male 52 (66.7%) 47 (56.6%)

Age (years)

Mean (SD) 60.9 (18.0) 57.8 (18.4) 0.367

Ethnic category (Code 2001), n (%)

White - British 47 (60.3%) 79 (95.2%) 1.12×10-05

Asian - Indian 3 (3.8%) 0 (0%)

Black - African 6 (7.7%) 0 (0%)

Black - Caribbean 2 (2.6%) 0 (0%)

Other White background 6 (7.7%) 3 (3.6%)

Other Asian background 13 (16.7%) 0 (0%)

Mixed 0 (0%) 1 (1.2%)

Not stated 1 (1.3%) 0 (0%)

Current smoking status, n (%)

Yes 4 (5.1%) 21 (25.3%) 9.07×10-05

No 67 (85.9%) 62 (74.7%)

Unknown 7 (9.0%) 0 (0%)

Symptom duration (days)

Median [Min, Max] 7.00 [0, 21.0] 4.00 [1.00, 10.0] 1.17×10-05

Comorbidity

COVID-19 Influenza P-value

(N = 78) (N = 83)

Hypertension, n (%)

Yes 29 (37.2%) 20 (24.1%) 0.0142

Unknown 4 (5.1%) 0 (0%)

Cardiovascular disease, n (%)

Yes 16 (20.5%) 14 (16.9%) 0.152

Unknown 3 (3.8%) 0 (0%)

Renal disease, n (%)

Yes 6 (7.7%) 4 (4.8%) 0.141

Unknown 3 (3.8%) 0 (0%)

Liver disease, n (%)

Yes 3 (3.8%) 0 (0%) 0.0363

Unknown 3 (3.8%) 0 (0%)

Diabetes mellitus, n (%)

Yes 19 (24.4%) 8 (9.6%) 0.00644

Unknown 3 (3.8%) 0 (0%)

Active malignancy, n (%)

Yes 6 (7.7%) 6 (7.2%) 0.193

Unknown 3 (3.8%) 0 (0%)

Immunosuppressed, n (%)

Yes 4 (5.1%) 5 (6.0%) 0.111

Unknown 4 (5.1%) 0 (0%)

Other respiratory disease, n (%)

Yes 21 (26.9%) 44 (53.0%) 0.00122

Unknown 3 (3.8%) 0 (0%)

Clinical observations

COVID-19 Influenza P-value

(N = 78) (N = 83)

Heart rate (beats-per-minute)

Mean (SD) 97.3 (17.1) 101 (23.0) 0.39

Systolic blood pressure (mmHg)

Mean (SD) 133 (19.9) 132 (23.6) 0.993

Respiratory rate (breaths-per-minute)

Mean (SD) 26.6 (7.73) 23.8 (5.96) 0.0279

(Continued)
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Unbiased Gene Co-Expression Analysis
Gene co-expression analysis was performed with BioLayout (37)
(v3.4) using a correlation value of 0.95, other settings were kept
at default. Clusters were manually assessed to determine gene
expression differences depending on for example patient cohort.
Gene clusters were subsequently analysed with ToppGene (38)
gene list enrichment analysis, using the default settings, and
Gene Ontology (GO) (39, 40) biological process terms. The
TMM normalised RNA-seq counts were used, together with
the clinical phenotype information, for weighted correlation
network analysis (WGCNA) with the R package WGCNA
(41), using default settings and a power of 3.

Topological Mapping of Global
Gene Patterns
TopMD Pathway Analysis (42) was conducted using the
differential transcript abundances identified by differential gene
expression analysis, generating a map of the differentially

activated pathways between all patients with COVID-19 or
influenza. The TopMD pathway algorithm measures the
geometrical and topological properties of global differential
gene expression embedded on a gene interaction network (43).
This enables plotting and measurement of the differentially
activated pathways through extrapolation of groups of
mechanistically related genes, called TopMD pathways.
TopMD pathways possess a natural hierarchical structure and
can be analysed for enriched GO terms, by chi-square test.

In Silico Immune Profiling
Predicting Immune Cell Levels
Between Patient Groups
Relative abundance of 22 immune cell types and their statistical
significance was deconvoluted from whole blood using the
reference gene signature matrix (LM22) using CIBERSORTx
(44). CIBERSORTx analysis was conducted on the
CIBERSORTx website (45) using 100 permutations. Immune

TABLE 1 | Continued

Clinical observations

COVID-19 Influenza P-value

(N = 78) (N = 83)

Temperature (Celsius)

Mean (SD) 37.4 (1.01) 37.7 (1.13) 0.0822

Oxygen saturation (%)

Mean (SD) 94.3 (3.75) 94.8 (3.41) 0.548

Supplementary O2, n (%)

Yes 37 (47.4%) 21 (25.3%) 0.00681

No 41 (52.6%) 61 (73.5%)

National Early Warning Score 2

Mean (SD) 5.28 (2.78) 4.79 (2.57) 0.171

Laboratory results

COVID-19 Influenza P-value

(N = 78) (N = 83)

White blood cell count (10*9/L)

Mean (SD) 8.73 (4.29) 8.64 (3.89) 0.913

Neutrophil cell count (10*9/L)

Mean (SD) 7.06 (4.07) 6.93 (3.67) 0.895

Lymphocyte cell count (10*9/L)

Mean (SD) 1.01 (0.411) 0.908 (0.541) 0.0276

C-reactive protein (mg/L)

Mean (SD) 131 (110) 80.2 (78.9) 0.00173

Outcomes

COVID-19 Influenza P-value

(N = 78) (N = 83)

Length of stay (days)

Mean (SD) 10.5 (9.51) 3.39 (2.92) 5.51×10-10

Died within 30 days after admission, n (%)

Yes 16 (20.5%) 0 (0%) 4.42×10-05

No 62 (79.5%) 83 (100%)

Comparisons are given between patients with COVID-19 or influenza for baseline demographic data, patient outcome, clinical observations, laboratory results and known patient

comorbidity. Laboratory results were done on peripheral blood taken on admission to hospital. Similarly, clinical observations were recorded on hospital admission. Statistical testing was

done with a Shapiro-Wilk test for data normality followed with either an unpaired parametric T-test or an unpaired non-parametric Wilcoxon test for continuous data, or a Chi-square test for

categorical data.
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cell distribution between the groups were compared by Mann–
Whitney test.

Identification of Immune Signatures as a
Predictor for COVID-19 Outcome
Transcript to transcript gene co-expression network analysis
with BioLayout 3D (v3.4) (Pearson coefficient 0.85, MCL=1.7)
assembled 537 genes differentially expressed (EdgeR, FDR < 0.5
and |log2 fold change > 1|) in blood taken on admission between
patients with COVID-19 who either survived or died of COVID-
19 within 30 days of admission to hospital. Combinations of 100
genes from the top 4 clusters were assessed as predictor variables
for outcome using Boosted Logistic Regression, Bayesian
Generalised Linear and RandomForest models within SIMON
(46) (v0.2.1) installed with Docker (47) (v20.10.2). TMM
normalised gene expression data was centred and scaled.
Covariant features were removed based on correlation analysis.
Samples were randomly split into train:test subsets at the
ratio 75%:25%.

RESULTS

RNA-seq was undertaken for 80 patients with COVID-19 and 88
patients with influenza. Two patients with COVID-19 were
identified as outliers and subsequent assessment revealed
elevated white blood cell and lymphocyte counts caused by
pre-existing chronic lymphocytic leukaemia (Supplementary

Figure 1). Five patients with influenza failed quality control
(QC) (read count < 20M). This left 78 patients with COVID-19,
of whom 62 survived and 16 died within 30 days of hospital
admission, and 83 patients with influenza.

Clinical Differences
Baseline clinical characteristics of the patients with COVID-19 or
influenza were assessed. No differences in sex or age were
detected, however, a higher proportion of patients with
influenza were of White British ethnicity (p-value 1.12x10-05)
and were current smokers (p-value 9.07x10-05). Patients with
COVID-19 more commonly had hypertension (p-value 1.42x10-
02), liver disease (p-value 3.63x10-02) and diabetes mellitus (p-
value 6.44x10-03), whilst underlying chronic respiratory disease
was more common in patients with influenza (p-value 1.22x10-
03). Prior to hospital admission patients with COVID-19 had a
longer duration of symptoms (p-value 1.17x10-05). At hospital
admission a higher respiratory rate (p-value 2.79x10-02), the
administration of supplementary oxygen (p-value 6.81x10-03),
higher levels of CRP (p-value 1.73x10-03) and lymphocytes (p-
value 2.76x10-02) were all associated with COVID-19 and once
admitted a longer length of stay (p-value 5.51x10-10) was
associated with increased 30 day mortality (p-value
4.42x10-05) (Table 1).

An increased 30-day mortality was associated with older
patients (p-value 2.58x10-09) between COVID-19 survivors and
non-survivors. These non-survivors had a shorter duration of
symptoms before being admitted to hospital (p-value 5.38x10-03)

and underlying comorbidities including hypertension (p-value
1.93x10-03), cardiovascular disease (p-value 3.97x10-03), diabetes
mellitus (p-value 2.31x10-02) and respiratory disease (p-value
1.06x10-02). Laboratory results of blood taken at hospital
admission indicated higher levels of white blood cells (p-value
3.83x10-02), total protein (p-value 2.5x10-03), creatinine (p-value
3.87x10-02), alanine aminotransferase (p-value 2.85x10-02),
troponin (p-value 2.37x10-04), tumour necrosis factor a
(TNFa) (p-value 1.43x10-02), IL-6 (p-value 2.78x10-03), IL-8
(p-value 2.24x10-02), IL-1b (p-value 3.78x10-02) and IL-10 (p-
value 7.51x10-02) in patients with COVID-19 who died within 30
days after admission to hospital. Higher admission heart rates
were seen in survivors compared to non-survivors (p-value
9.27x10-03) (Table 2).

Molecular Differences
The median sequencing depths obtained were: 60.4 million reads
for the patients with COVID-19, 58.9 million reads for the
patients with influenza (Supplementary Figure 2A), 55.7
million reads for the COVID-19 non-survivors and 62.6
million reads for the COVID-19 survivors (Supplementary

Figure 2B). Clustering of blood transcriptomes revealed
homogeneity between patients with COVID-19 or influenza
suggesting any variation to be subtle (Supplementary Figure

3A), while a partial separation was found between patients who
survived or died of COVID-19 indicative of a larger variation
(Supplementary Figure 3B).

Contrasting Innate and Adaptive
Immune Programmes
Analysis of blood transcript modules (BTMs) between patients
with COVID-19 or influenza revealed upregulated BTMs in
COVID-19 related to the cell cycle and adaptive immune
response, primarily CD4+ T cells, B cells, plasma cells and
immunoglobulins. In contrast, downregulated BTMs showed
signatures associated with monocytes, inflammatory signalling
and an innate antiviral and type I IFN response (Supplementary

Figure 4). Gene co-expression analysis, on a total of 4,093
transcript abundances, between patients with COVID-19 or
influenza, identified 50 clusters of four or more genes. These
clusters of increased transcript abundances clearly separated
patients with COVID-19 from patients with influenza
(Figure 1 and Table 3). Gene clusters specific for patients with
COVID-19 were involved in adaptive immunity, pointing to
activation/priming of T cells and B cells, including induction of
proliferation (cluster 4, FDR 3.97x10-57), neutrophil
degranulation (cluster 9, FDR 4.33x10-19) and blood
coagulation (cluster 6, FDR 2.84x10-12). While gene clusters
specific for patients with influenza were involved with innate
immunity, including genes expressed in plasmacytoid dendritic
cells (cluster 2, FDR 4.17x10-22) associated with defence response
to virus (cluster 2, FDR 1.34x10-37), and genes associated with
type 1 helper T cell stimulation (cluster 10, FDR 4.53x10-03),
dendritic cell morphogenesis (cluster 11, FDR 1.37x10-02), and
myeloid cell activation (cluster 1, FDR 5.16x10-13 and cluster 8,
FDR 4.15x10-04).
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TABLE 2 | Baseline clinical characteristics and outcomes of hospitalised COVID-19 patients: survivors versus non-survivors.

Laboratory results

COVID-19 non-survivors COVID-19 survivors P-value

(N = 16) (N = 62)

Sex, n (%)

Female 7 (43.8%) 19 (30.6%) 0.488

Male 9 (56.2%) 43 (69.4%)

Age (years)

Mean (SD) 81.6 (10.4) 55.6 (15.6) 2.58×10-09

Ethnic category (Code 2001), n (%)

White - British 14 (87.5%) 33 (53.2%) 0.203

Asian - Indian 1 (6.2%) 2 (3.2%)

Black - African 1 (6.2%) 5 (8.1%)

Black - Caribbean 0 (0%) 2 (3.2%)

Other White background 0 (0%) 6 (9.7%)

Other Asian background 0 (0%) 13 (21.0%)

Mixed 0 (0%) 0 (0%)

Not stated 0 (0%) 1 (1.6%)

Current smoking status, n (%)

Yes 0 (0%) 4 (6.5%) 0.0291

No 12 (75.0%) 55 (88.7%)

Unknown 4 (25.0%) 3 (4.8%)

Symptom duration (days)

Median [Min, Max] 2.00 [0, 14.0] 7.00 [0, 21.0] 0.00538

Comorbidity

COVID-19 non-survivors COVID-19 survivors P-value

(N = 16) (N = 62)

Hypertension, n (%)

Yes 12 (75.0%) 17 (27.4%) 0.00193

Unknown 0 (0%) 4 (6.5%)

Cardiovascular disease, n (%)

Yes 8 (50.0%) 8 (12.9%) 0.00397

Unknown 0 (0%) 3 (4.8%)

Renal disease, n (%)

Yes 3 (18.8%) 3 (4.8%) 0.129

Unknown 0 (0%) 3 (4.8%)

Liver disease, n (%)

Yes 0 (0%) 3 (4.8%) 0.432

Unknown 0 (0%) 3 (4.8%)

Diabetes mellitus, n (%)

Yes 8 (50.0%) 11 (17.7%) 0.0231

Unknown 0 (0%) 3 (4.8%)

Active malignancy, n (%)

Yes 3 (18.8%) 3 (4.8%) 0.129

Unknown 0 (0%) 3 (4.8%)

Immunosuppressed, n (%)

Yes 1 (6.2%) 3 (4.8%) 0.946

Unknown 1 (6.2%) 3 (4.8%)

Other respiratory disease, n (%)

Yes 9 (56.2%) 12 (19.4%) 0.0106

Unknown 0 (0%) 3 (4.8%)

Clinical observations

COVID-19 non-survivors COVID-19 survivors P-value

(N = 16) (N = 62)

Heart rate (beats-per-minute)

Mean (SD) 87.6 (15.1) 99.9 (16.8) 0.00927

Systolic blood pressure (mmHg)

Mean (SD) 132 (29.8) 133 (16.8) 0.853

(Continued)
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TABLE 2 | Continued

Clinical observations

Respiratory rate (breaths-per-minute)

Mean (SD) 27.8 (7.57) 26.3 (7.80) 0.337

Temperature (Celsius)

Mean (SD) 37.3 (1.14) 37.4 (0.978) 0.804

Oxygen saturation (%)

Mean (SD) 93.4 (6.12) 94.6 (2.83) 0.643

Supplementary O2, n (%)

Yes 8 (50.0%) 29 (46.8%) 1

No 8 (50.0%) 33 (53.2%)

National Early Warning Score 2

Mean (SD) 5.40 (2.44) 5.25 (2.88) 0.906

Laboratory results

COVID-19 non-survivors COVID-19 survivors P-value

(N = 16) (N = 62)

Haemoglobin count (g/L)

Mean (SD) 128 (21.3) 138 (20.7) 0.144

White blood cell count (10*9/L)

Mean (SD) 10.4 (4.27) 8.31 (4.23) 0.0383

Platelet count (10*9/L)

Mean (SD) 231 (83.9) 249 (90.0) 0.38

Neutrophil cell count (10*9/L)

Mean (SD) 8.73 (4.15) 6.66 (3.98) 0.063

Lymphocyte cell count (10*9/L)

Mean (SD) 0.900 (0.419) 1.04 (0.409) 0.142

Sodium level (mmol/L)

Mean (SD) 133 (7.01) 136 (3.90) 0.0878

Potassium level (mmol/L)

Mean (SD) 4.15 (0.971) 4.02 (0.473) 0.824

Urea levels (mmol/L)

Mean (SD) 11.6 (5.98) 6.61 (3.32) 0.0025

Creatinine level (µmol/L)

Mean (SD) 128 (66.7) 83.4 (25.2) 0.0387

Albumin level (g/L)

Mean (SD) 33.9 (4.66) 32.8 (4.78) 0.443

Bilirubin level (µmol/L)

Mean (SD) 12.0 (6.06) 11.1 (4.26) 0.965

Alanine aminotransferase level (units/L)

Mean (SD) 37.0 (37.3) 54.1 (43.4) 0.0285

Alkaline phosphatase level (units/L)

Mean (SD) 93.2 (46.0) 95.2 (48.1) 0.922

Total protein level (g/L)

Mean (SD) 72.7 (9.98) 69.9 (6.26) 0.367

Lactate dehydrogenase level (units/L)

Mean (SD) 841 (357) 914 (486) 0.864

Ferritin level (mmol/L)

Mean (SD) 1420 (2020) 974 (794) 0.841

Troponin level (ng/L)

Mean (SD) 164 (194) 9.55 (6.67) 0.000237

C-reactive protein (mg/L)

Mean (SD) 172 (165) 121 (90.7) 0.662

IL-6 level (pg/ml)

Mean (SD) 174 (142) 59.9 (47.8) 0.00278

TNFa level (pg/ml)

Mean (SD) 30.1 (15.6) 19.3 (6.87) 0.0143

IL-8 level (pg/ml)

Mean (SD) 58.6 (29.0) 41.2 (26.5) 0.0224

IL-1B level (pg/ml)

Mean (SD) 0.620 (0.474) 0.378 (0.200) 0.0378

(Continued)
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Topological Mapping of Global
Gene Patterns
Topological analysis was used to define a global map of differentially
activated pathways between COVID-19 and influenza. The first
differentially activated pathway, with peak gene UBA52, was
associated with cytoplasmic ribosomal proteins (FDR 1.55x10-146)
and translation factors (FDR 7.90x10-07). This pathway was also
found to be enriched for genes expressed by transcription factor
Myc against the ChEA 2016 transcription factor database (FDR
7.07x10-53) and of dendritic cells in the ARCHS4 transcription
factors’ co-expression database (FDR 1.34x10-36). Activated Myc
represses IRF7 and a significantly lower abundance of IRF7 was
found in patients with COVID-19 (Supplementary Figure 5). The
second differentially activated pathway, with peak gene NDUFAB1,
was associated with mitochondrial complex I assembly model
OXPHOS system (FDR 2.81x10-66). The third differentially
activated pathway, with peak gene PSMD14, was associated with
proteasome degradation (FDR 1.46x10-64) [Supplementary Figure

6 with full detail in Supplementary File 1 and the global map of
differentially activated pathways available online (48)].

Deconvolution of Cell Subsets Supports
Innate and Adaptive Immune
Response Differences
Levels of different predicted immune cell types were assessed between
patients with COVID-19 or influenza. Patients with COVID-19 had
significantly higher levels of M0 macrophages (p-value 3.63x10-06),
plasma cells (p-value 5.05x10-04), cytotoxic CD8+ T cells (p-value
4.58x10-03), regulatory T cells (p-value 7.30x10-03) and resting natural
killer cell (p-value 8.90x10-03). While patients with influenza had
significantly higher levels of activated dendritic cells (p-value
2.23x10-02) (Figure 2A and Supplementary Figure 7A). Predicted
immune cell type levels between COVID-19 survivors and non-

survivors indicated an increase of neutrophils (p-value 2.84x10-04)
in patients who died of COVID-19 indicative of an elevated innate
immune response. In contrast, an increase of naïve CD4+ T cells (p-
value 1.92x10-03), M0 macrophages (p-value 1.20x10-02), M2
macrophages (p-value 1.48x10-02), naïve B cells (p-value 1.57x10-02)
and naïve cytotoxic CD8+T cells (p-value 2.31x10-02), were identified
in patients who went on to survive COVID-19 indicative of an
adaptive immune response (Figure 2B and Supplementary

Figure 7B).

Adaptive Immune Response Associates
With Patient Survival in COVID-19
After filtering out transcripts with low counts a total of 20,542 gene
transcript abundancemeasures were obtained between patients with
COVID-19 or influenza, and 23,850 gene transcript abundance
measures between COVID-19 survivors and non-survivors. After
further filtering (FDR < 0.05, log2 fold change < -1 or > 1) the
following number of transcripts were found at a higher abundance:
71 transcripts in patients with influenza, 126 transcripts in patients
with COVID-19 (Figure 3A and Supplementary File 2), 265
transcripts in COVID-19 survivors and 272 transcripts in
COVID-19 non-survivors (Figure 3B and Supplementary File 3).
The transcripts with increased abundance in patients with COVID-
19 were associated with humoral immune response, complement
activation and B cell mediated immunity (Figure 3C), and the
majority of these COVID-19 specific transcripts (83/126) were
immunoglobulin genes, associated with an adaptive immune
response, and were present at a higher abundance in primarily
patients with COVID-19 (Supplementary Figure 8). This adaptive
immune response, including complement activation, B cell
mediated immunity and a humoral immune response mediated
by circulating immunoglobulins, was associated specifically with
COVID-19 survivors (Figure 3D). While the transcripts specific for

TABLE 2 | Continued

Laboratory results

GM-CSF level (pg/ml)

Mean (SD) 2.08 (2.61) 1.48 (0.972) 0.753

IFNg level (pg/ml)

Mean (SD) 35.3 (71.7) 26.6 (55.5) 0.313

IL-10 level (pg/ml)

Mean (SD) 39.5 (36.7) 15.7 (9.35) 0.00181

IL-33 level (pg/ml)

Mean (SD) 0.543 (0.387) 0.340 (0.277) 0.0751

Outcomes

COVID-19 non-survivors COVID-19 survivors P-value

(N = 16) (N = 62)

Length of stay (days)

Mean (SD) 4.93 (2.34) 11.9 (10.1)

Died within 30 days after admission, n (%)

Yes 16 (100%) 0 (0%) <2.00×10-16

No 0 (0%) 62 (100%)

Comparisons are given between COVID-19 survivors and non-survivors for baseline demographic data, patient outcome, clinical observations, laboratory results and known patient comorbidity.

Laboratory results were done on peripheral blood taken on admission to hospital. Similarly, clinical observations were recorded on hospital admission. Statistical testing was done with a Shapiro-Wilk

test for data normality followed with either an unpaired parametric T-test or an unpaired non-parametric Wilcoxon test for continuous data, or a Chi-square test for categorical data.
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A B

FIGURE 1 | Top 12 clusters identified with BioLayout. (A) Enrichment of gene clusters in blood of patients with influenza (annotated in red) and COVID-19

(annotated in blue). Increased abundances of gene transcripts in influenza patients are involved with an innate immune response, while in COVID-19 clusters are

involved with an adaptive immune response, blood coagulation and neutrophil degranulation. (B) After TMM normalisation a significant difference in gene clusters

between patients with influenza or COVID-19 was detected. The abundance of gene transcripts involved with an innate immune response and plasmacytoid dendritic

cell were observed to be higher in influenza patients. In contrast, the abundance of gene transcripts involved with an adaptive immune response and neutrophil

degranulation was higher in COVID-19 patients.

TABLE 3 | Summary of the top 12 BioLayout clusters.

Cluster No. of genes Cell type Top biological process Disease

(FDR) (FDR)

1 362 Myeloid Cell activation Influenza

(1.20x10-24) (5.16x10-13)

2 264 Plasmacytoid dendritic cell Defence response to virus Influenza

(4.17x10-22) (1.34x10-37)

3 166 Erythroblast Erythrocyte differentiation Influenza

(5.31x10-20) (1.70x10-05)

4 140 Progenitor B cell/T cell Mitotic cell cycle COVID-19

(1.28x10-131) (3.97x10-57)

5 100 Progenitor pluripotent cells Translation COVID-19

(1.38x10-02) (8.48x10-04)

6 96 Megakaryocytes/platelets Blood coagulation COVID-19

(3.30x10-92) (2.84x10-12)

7 64 Plasma cells Response to stress COVID-19

(1.27x10-28) (6.41x10-09)

8 29 Myeloid cells Myeloid leukocyte activation Influenza

(2.57x10-03) (4.15x10-04)

9 20 Neutrophils Neutrophil degranulation COVID-19

(1.11x10-03) (4.43x10-19)

10 18 Antigen presenting cells Th1 stimulation Influenza

(2.21x10-03) (4.53x10-03)

11 16 Dendritic cells Cell morphogenesis Influenza

(4.32x10-04) (1.37x10-02)

12 14 Not specified Histone modification Influenza

(3.55x10-02)

Gene clusters were identified with BioLayout (r=0.85, MCL = 1.7). For each cluster the number of genes, predicted cell type and top biological process are given and whether that cluster

was enriched in patients with COVID-19 or influenza.
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COVID-19 non-survivors were associated with an inflammatory
response including interleukin signalling, neutrophil activation and
neutrophil degranulation (Figure 3E).

Clinical Covariates and Their Correlation
With the Abundance of Different Gene
Transcript Clusters
Weighted gene co-expression network analysis (WGCNA)
identified 23 modules of co-expressed gene transcripts, and

these were assessed with GO analysis to identify the associated
biological processes terms. Furthermore, the correlation between
these gene transcripts modules and the known clinical covariates
was determined to investigate the potential drivers of the
differences in gene transcript abundances (Supplementary

Figure 9). The gene module which had the highest positive
correlation (0.51, p-value 3x10-12) with the type of viral
infection, was found to be involved with complement activation
via the classical pathway. This gene module was characterised by a

A

B

FIGURE 2 | Differences in immune response indicated by predicted cell types in patients with COVID-19, who either survived or died, and patients with influenza.

(A) M0 macrophages, resting natural killer (NK) cells, plasma cells, cytotoxic CD8+ T cells and regulatory T cells were found to be significantly higher in COVID-19

patients. In influenza patients a significantly higher proportion of activated dendritic cells was detected. (B) A statistically significant higher count of neutrophils in

COVID-19 patients who died after 30 days indicating the presence of an elevated innate immune response. While an adaptive immune response was detected in

COVID-19 survivors as can be seen by the statistically significant higher count of naïve B cells, and CD4+ and CD8+ T cells.
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weaker positive correlation (0.34, p-value 1x10-05) with the
duration of symptoms before hospital admission, lymphocyte
count (0.33, p-value 2x10-05), and a negative correlation with the
presence of other underlying chronic respiratory disease (-0.37, p-
value 1x10-06). Additionally, B cell activation was negatively
correlated with e.g. age (-0.32, p-value 4x10-05) and death within
30 days of hospital admission (-0.25, p-value 1x10-03). While
neutrophil degranulation and myeloid leukocyte activation were
positively correlated among others with oxygen supplementation
(r=0.26, p-value 1x10-03), and death within 30 days of admission
(r=0.25, p-value 1x10-03) respectively. The type of viral infection
was furthermore the biggest driver for differences in blood
coagulation (r=0.39, p-value 2x10-07), cellular response to
interleukin-13 (r=0.38, p-value 5x10-07). In contrast, positive
regulation of chemokine production was negatively correlated
with the type of viral infection (r=-0.28, p-value 3x10-04) (Table 4).

Immune Signatures as Predictors of
COVID-19 Outcome
A distinct immune signature was selected and assessed for
prediction accuracy in stratifying patients with COVID-19 for
disease outcome. This signature consists of 47 genes (Figure 4A),
representative of the four biggest gene clusters associated with
COVID-19 survival or fatality. These gene clusters are associated
with humoral immune response mediated by circulating
immunoglobulin (FDR p-value 2.23x10-46), nucleosome
assembly (FDR p-value 5.46x10-19), regulation of T-helper 1

cell cytokine production (FDR p-value 4.24x10-03) and
regulation of T cell activation (FDR p-value 4.51x10-04)
(Supplementary Figure 10). This gene signature was highly
predictive for outcome, with a maximum specificity of 75%
and sensitivity of 93% (Figures 4B, C).

DISCUSSION

This study demonstrated important immune differences between
hospitalised adults with COVID-19 and influenza and between
COVID-19 survivors and non-survivors, using samples taken
from COVID-19 patients obtained in the first SARS-CoV-2
wave, and prior to the use of treatments and vaccines.

Known COVID-19 prognostic mortality and severity
variables (49) were compared between patients with COVID-
19 or influenza. We found more active smokers and underlying
respiratory disease among influenza patients. Among patients
with COVID-19 a higher CRP [which has previously been
reported to be similar upon admission to hospital between
patients with COVID-19 or influenza (1)], and a higher
proportion of patients with hypertension, liver disease [which
has been classified as a low or very low certainty predictor (49)],
and diabetes was found compared to those with influenza.
Similar to what has been previously reported (1) upon
admission to hospital both patients with COVID-19 or
influenza presented with similar white blood cell and

A B
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FIGURE 3 | Adaptive immune response associated with COVID-19 and a positive patient outcome. Volcano plots (A) between patients with COVID-19 or influenza

and (B) between COVID-19 survivors and non-survivors, threshold criteria used FDR < 0.05 and log2 fold change < -1 or >1, transcript which met criteria were used

for enrichment analysis with ToppGene. (C) Enrichment analysis of the transcripts with an increased abundance in patients with COVID-19 identified an increased

adaptive immune response which was also detected in (D) patients with COVID-19 who were still alive 30 days after hospital admission. (E) Increased innate

immune response in patients who died of COVID-19 after 30 days of hospital admission. Percentage in annotation is the ratio of the input query genes overlapping

with the genes in the pathway annotation.
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neutrophil counts, and although we detected a difference in
lymphocytes between patients with COVID-19 or influenza,
there was no difference in the neutrophil/lymphocyte ratio.
Similar to Piroth et al. (2), we found that the average length of
stay was higher for patients with COVID-19 and more patients
with COVID-19 needed supplementary oxygen compared to
influenza. Piroth et al. (2) previously reported a roughly three
times higher relative risk of death for COVID-19 however in our
cohort no influenza patients died whilst admitted to hospital and
so this could not be assessed. As reported, we found that high
certainty prognostic variables for mortality and/or severity of
increased age, hypertension, cardiovascular disease, diabetes,
underlying respiratory disease and high white blood cell levels
(49) in COVID-19 non-survivors. Here we also report the
findings of an increased heart rate in COVID-19 survivors, but
further research is needed to confirm that this is independently
associated with survival. While it has previously been reported
that CRP and neutrophil/lymphocyte ratio were elevated in
critically ill patients with COVID-19 (1), we detected no
difference in CRP, neutrophil count and lymphocyte count
between COVID-19 survivors and non-survivors.

Several differentially activated gene pathways were detected
between COVID-19 and influenza. One differentially activated
pathway was enriched for genes related to ribosomal pathways
indicating the possible impact on translational machinery.
Furthermore, the pathway was enriched for genes transcribed
by Myc. Activated Myc represses IRF7 which regulates type I IFN

production (50), and correspondingly a significant lower IRF7
expression and a lower IFN response was detected in patients
with COVID-19. This impaired IFN response in COVID-19 may
be due to the virus avoiding or delaying an intracellular innate
immune response to type I and type III IFNs (4–7). A pathway
involved with the mitochondrial complex I assembly model
OXPHOS system was differentially activated supporting
reported increased COVID-19 severity due to SARS-CoV-2
being able to highjack and disrupt mitochondrial dynamics of
immune cells (51). Cellular ubiquitin-proteasome pathways
which are known to play important roles in coronavirus
infection cycles were found to be differentially activated (52),
these pathways might reflect increased viral replication and
suppression of host IFN signalling pathways, including
increased degradation of IkBa which suppresses the IFN-
induced NF-kB activation pathway. However, PSMD14 the
peak marker of this pathway prevents IRF3 autophagic
degradation and therefore permits IRF3-mediated type I IFN
activation (53).

An impaired immune response to viruses and IFN signalling
in patients with COVID-19 was detected, as previously
reported (4–7), compared to patients with influenza, which
are known to produce strong IFN responses (1). Furthermore,
in accordance with evidence of aberrant blood clotting in
COVID-19 (54, 55), transcripts expressed by megakaryocytes
and platelets associated with blood coagulation were at a higher
abundance in COVID-19 patients. Innate immune response

TABLE 4 | Clinical covariates and their correlation with different gene transcript clusters.

GO biological process (FDR) No. of

genes

Negative correlation Positive correlation

(R value < -0.20, p-value) (R value > 0.20, p-value)

Complement activation (classical pathway)

(1.48x10-65)

63 Other underlying chronic respiratory disease

(-0.37, 1x10-06)

Viral infection (0.51, 3x10-12)

Symptom duration (days) (0.34, 2x10-05)

Lymphocyte count (0.33, 2x10-05)

B cell activation (2.40x10-09) 13 Other underlying chronic respiratory disease

(-0.34, 1x10-05)

Lymphocyte count (0.36, 2x10-06)

Age (-0.32, 4x10-05)

Neutrophil count (-0.28, 3x10-04)

Died within 30 days of admission (-0.25, 1x10-03)

White blood cell count (-0.23, 4x10-03)

Neutrophil degranulation (1.27x10-18) 53 C-reactive protein level (0.54, 1x10-13)

Neutrophil count (0.47, 4x10-10)

White blood cell count (0.45, 3x10-09)

O2 supplementation (0.26, 1x10-03)

Myeloid leukocyte activation (3.66x10-21) 54 Lymphocyte count (-0.25, 1x10-03) Neutrophil count (0.47, 2x10-10)

White blood cell count (0.41, 6x10-08)

C-reactive protein level (0.34, 1x10-05)

Died within 30 days of admission

(0.25, 1x10-03)

Positive regulation of chemokine production

(6.85x10-04)

6 Type of viral infection (-0.28, 3x10-04) Other underlying respiratory disease (0.46, 9x10-10)

Blood coagulation (1.78x10-22) 55 Type of viral infection (0.39, 2x10-07)

Symptom duration (days) (0.27, 6x10-04)

Cellular response to interleukin-13 (1.88x10-02) 2 Other underlying respiratory disease(-0.32, 5x10-

06)

Type of viral infection (0.38, 5x10-07)

White blood cell count (-0.35, 5x10-06) Symptom duration (days) (0.25, 1x10-03)

Neutrophil count (-0.38, 6x10-07)

Weighted correlation network analysis was performed to assess the correlation between different clinical covariates, given are the correlation values and the p-values, and the expression of

specific gene transcript clusters. These gene transcript clusters underwent GO analysis which revealed the associated biological process which is given together with the FDR p-value, and

the number of genes from the input.
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related gene pathways were found to be associated with
influenza, and an adaptive immune response and an increase
of a wide range of immunoglobulin transcripts for patients with
COVID-19, which is consistent with previous findings (56).
This adaptive immune response was found to have a stronger
positive correlation with the type of viral infection as opposed
to the difference in duration of symptoms between the patients
before admission to hospital. An increase in gene pathways
involved with an adaptive immune response and increase in
predicted CD4+ and CD8+ T cells and naïve B cells was
detected and associated with young COVID-19 survivors,
highlighting the importance of an efficient adaptive immune
response as previously reported (15). Predicted naïve CD4+ T
cells were higher compared to predicted CD8+ T cells
indicating an increased CD4+ T cell response to SARS-CoV-
2, supporting previous observations (15, 57), which has been
found to control primary SARS-CoV-2 infection (58).
Predicted CD8+ T cells were mostly seen in COVID-19
survivors which has been associated with a positive COVID-
19 outcome (58, 59).

An enrichment of pathways involved with the negative
regulation of lymphocyte activation and increased neutrophil
activation and degranulation, a significant decrease in predicted
naïve B cells and naïve CD4+ and CD8+ T cells, and an increase
of the neutrophil cells was detected in COVID-19 non-

survivors. Similar to previous studies reporting elevated
neutrophil levels in blood (60) and lungs (61–64) in severe
COVID-19. The activation and degranulation of neutrophils
were positively correlated with patients receiving oxygen
supplementation and who eventually died within 30 days of
hospital admission. Additionally, gene pathways associated
with inflammatory response and cytokine signalling, a higher
transcript abundance of several IL genes (IL1-RAP, IL-10, IL1-
R1, IL1-R2, IL18-R1 and IL18-RAP) and increased levels of
TNFa, IL-1b, IL-8, IL-33, IL-6 and IL-10 in blood were
detected in COVID-19 non-survivors. This is similar to
findings of positive regulation of genes encoding the
activation of innate immune system, viral and IFN response
(1), increase of proinflammatory macrophages (65) and
elevated IL-6 and IL-10 in severe COVID-19 cases (12–14).

It appears that, and as Sette and Crotty (66) summarised, that
COVID-19 severity is largely due to an early virus-driven evasion
of innate immune recognition leading to a delayed adaptive
immune response with a fatal COVID-19 outcome, as shown by
Lucas et al. (67), where the innate immune response is ever-
expanding due to an absence of a rapid T cell response. In
accordance with a delayed T cell response, we noticed a decrease
of dendritic cells in patients with COVID-19 potentially leading to
impaired T cell priming. A delayed adaptive immune response can
occur in the elderly due to a scarcity of naïve T cells caused by
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FIGURE 4 | Receiver Operating Characteristic (ROC) curves showing prediction accuracy COVID-19 survivors and non-survivors. (A) Genes identified with EdgeR

and gene co-expression analysis and used for subsequent modelling. (B) ROC curves according to the three models used [Boosted Logistic Regression

(LogitBoost), Bayesian Generalised Linear (Bayesglm) and RandomForest (rf)]. (C) In total three different models were used [RandomForest (rf), Boosted Logistic

Regression (LogitBoost) and Bayesian Generalised Linear (Bayesglm)]. The 47 genes identified with gene co-expression and differential gene expression analysis

were used as input. The highest sensitivity obtained was 75% and for specificity 93%.
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aging (68–70) placing them at an increased risk of death (58). The
association of age and COVID-19 severity is already known, for
example, as of April 15th 2021 in the United States 95.4% of
COVID-19 deaths occurred in 50-year-olds and older, and 59.3%
in 75-year-olds and older (71). In our cohort, patients who
survived COVID-19 were younger, had a longer duration of
symptoms before admission to hospital and higher levels of
predicted naïve CD4+ T cells and naïve B cells.

Taken together, in this comparative study we implemented a
variety of different bioinformatic analyses on whole blood RNA-seq
between a cohort of patients infected with SARS-CoV-2, during the
first wave of the COVID-19 pandemic, and patients infected with
influenza, with samples taken before treatments for both groups.
An increased innate immune response was found to be associated
with patients infected with influenza, while an increased adaptive
immune response was associated with patients infected with SARS-
CoV-2. This early increased adaptive immune response was
indicative of patient survival, thus illustrating the importance of
an adequate adaptive immune response in successfully countering
SARS-CoV-2 infection, while an increased proinflammatory
response was seen in COVID-19 non-survivors. Distinct
prognostic immune signature genes were identified in whole
blood from untreated patients infected with SARS-CoV-2 which
can used upon patient admission to hospital to differentiate
between COVID-19 patients likely to survive or not.

LIMITATIONS

The authors acknowledge that the inherent characteristics of the
dataset being a moderate sample size, sampling time differences
between symptom onset and admission to hospital, underlying
comorbidities, and the retrospective design could have a direct
impact upon the range of immune signature differences observed.
However, the gene clusters identified with an adaptive immune
response was primarily positively correlated with the type of viral
infection, and was weaker correlated to the duration of symptoms
before admission to hospital. The comparison between patients
with influenza versus patients whom survived COVID-19 was
outside the current study’s analytical framework and future work
could be directed in this direction.
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