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Investigating the response of landslide activity to climate change is crucial for
understanding the disastrous effects of climate change on high mountains.
However, the lack of long-term, spatial–temporal consistent measurement of
landslide activity prohibits the study of this relationship. In this work, we used two
methods to derive the time series of a landslide’s deformation and study its
relationship with precipitation in the northeastern Tibetan Plateau. The small
baseline subset-interferometric synthetic aperture radar (SBAS-InSAR) method
with Sentinel-1A images is first applied to derive time series of the landslide’s
deformation from 2020 to 2021. A recently developed method to derive
cumulative deformations of optical images was used with Landsat 5 and
Sentinel-2 images to derive the long-term deformation time series from
1986 to 2023. Centimeter-scale deformations detected by using the InSAR
method are mainly located in the upper and eastern parts of the landslide,
whereas meter-scale deformations detected by using the optical method are
in the middle of the landslide. Time-series results from both methods show that
intra-annual initiations of the landslide’s deformation occurred in rainy months
(from July to October). Although there seems to be no direct relations between
inter-annual deformations and precipitation, significant displacements since
2020 occurred after exceptionally wet years from 2018 (with a record-
breaking precipitation year in 2020). With optical images, we found that the
maximum cumulative deformation of the landslide has been >35m since
1986 with major deformations (>20m) found after 2020, which may indicate
an imminent risk to the Lijie town near the toe of the landslide. With climate
change, increased precipitation is expected in future, which may trigger more
similar landslides in the vicinity of this region. This work demonstrates an
executable framework to assess landslide hazard risk under climate change.
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1 Introduction

Landslide hazards are major threats to mountain communities
(Froude and Petley, 2018). Due to complex topography, landslides
usually act as the initiators of mountain disaster chains (Cook et al.,
2018; Qi et al., 2021). For example, the 2000 Yigong landslide in
Tibet blocked the Yigong River, forming a giant lake, the dam-
breaking flood of which affected downstream regions of hundred
kilometers (Delaney and Evans, 2015). In July 2016, another
landslide in Tibet triggered the collapse of a moraine lake, which
led to a flood disaster of the Sunkoshi River in Nepal and damaged
downstream infrastructures such as roads and hydropower plants
(Cook et al., 2018). In October and November 2018, the two Baige
landslides dammed the Jinsha River and resulted in two mega floods
in Yunnan province (Fan et al., 2019; Ouyang et al., 2019; Zhang
et al., 2020). In February 2021, the Chamoli ice–rock avalanche in
Uttarakhand, India, scraped glacial moraine, triggered a landslide-
glacial debris flow (mountain torrent) disaster chain, destroyed two
hydropower stations, and caused nearly 200 casualties (Qi et al.,
2021). With ongoing climate change and increased human activities
in mountains, similar disasters may become common phenomena.

1.1 Studying the impacts of climate change
on landslide activities is challenging

The topic of climate change’s impact on landslide activities has
long been recognized (Gruber et al., 2004; Crozier, 2010). More
landslide activities have been expected with higher temperature and
intense rainfall under climate change (Ozturk et al., 2022). Although
theories have been formulated to explain the mechanisms of
landslide due to climate change (Huggel et al., 2012; Ozturk
et al., 2022), existing works mainly rely on statistics of regional
landslide inventories of a few years (Pei et al., 2023). There are some
limitations to use these landslide inventories: 1) most landslides are
usually small in size and can only be recognized in very high spatial
resolution (VHR) optical images (finer than 1 m), which became
widely available in 2000s and not long enough to assess the impact of
climate change (Deroin et al., 2012). In addition, frequent
acquisitions (e.g., yearly) of VHR images for many years in
remote mountains are expensive and very rare, and interpreting
landslides from optical images of different spatial resolution could
not generate temporally consistent landslide inventories. 2)
Establishing regional landslide inventories is labor- and time-
consuming. 3) Mapping of landslides is rather subjective
depending on the interpreter’s’ personal experience (Galli et al.,
2008; Van Westen et al., 2008). Therefore, there is a lack of long-
term, temporally consistent observations of landslide activities that
can be used to quantify the impacts of climate change (Patton
et al., 2019).

In contrast, measurements of a slow, long-lasting, creeping
landslide’s deformation could result in more frequent, longer-
term observations. In addition, landslide deformation is simpler
to study, with all influencing variables being constant (e.g., local
slope and lithology), except for climate.

1.2 Synthetic use of optical feature tracking
and interferometric synthetic aperture radar
(InSAR) has been rarely applied for the
same landslide

Based on the principle of radar phase interference, the
interferometric synthetic aperture radar (InSAR) algorithm
can identify landslide deformation of a few millimeters to
centimeters (Meng et al., 2015; Zhang et al., 2020). However,
the radar phase interferometry method has the following
problems: 1) it is greatly affected by vegetation, and it is
difficult to find the same point in densely vegetated areas; 2)
the temporal interval between two phase-coherent synthetic
aperture radar (SAR) images cannot be too long; otherwise,
coherent imaging cannot be obtained; 3) it has difficulty in
detecting surface deformation that exceeds a single wavelength
in image pairs; 4) the monitoring accuracy is significantly
affected by atmosphere conditions, and it is necessary to find
a stable area to remove the atmospheric effect (Yang et al., 2018).
The small baseline subset (SBAS) technique with multi-SAR
images is frequently used to overcome some of the drawbacks
of InSAR and to derive time series of surface deformation
(Intrieri et al., 2018). Despite this, the deformation detected
by using the radar phase interferometry method is a one-
dimensional deformation in the radar line of sight (LOS)
direction, and it may lead to omissions in complex terrains
with single-orbit data.

The sub-pixel offset tracking (POT) of optical images is
another commonly used method to invert landslide deformation
based on the brightness information of remote sensing images (Liu
et al., 2020). POT is simpler to operate when compared to the
InSAR method. It could use image pairs of longer time intervals
and is better at extracting larger displacement deformation (Yang
et al., 2020b). The monitoring accuracy of this method is related to
the spatial resolution of the imagery used (Stumpf et al., 2017). In
recent years, high spatial resolution remote sensing data have
become easier to access, and applications of POT (such as the
Co-registration of Optically Sensed Image and Correlation (COSI-
Corr) and MicMac) have become more common (Leprince et al.,
2007; Bradley et al., 2019; Lacroix et al., 2020). A time series
inversion method has recently been proposed to reduce
background noise in optical POT results (Bontemps et al.,
2018). However, most previous works used either InSAR or
optical POT to derive landslide deformation, and few works
compared both methods.

In this work, we used SBAS-InSAR and optical POT to study the
spatial and temporal deformation of the Beishan landslide in
northeast Tibet. Synthetic use of both methods could unveil a
holistic picture of the landslide’s dynamics and its long-term
deformation history and prompt a better understanding of its
response to climate change. Our objectives are 1) to reveal and
compare the surface deformations of the landslide with SBAS-
InSAR and optical POT methods; 2) to analyze deformation
dynamics in relation to climate drivers; and 3) to simulate
potential disastrous scenarios for a nearby town.
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2 Study area

In the eastern mountains of the Qinghai–Tibet Plateau, landslide
hazards are very active because of the following reasons: 1) deep
canyons incised by major rivers are pervasive; 2) tectonic activities
are very active, and earthquakes occur frequently; and 3) local lithology
is fragmented and fragile (Zhang et al., 2021). The study area is in the
northeastern Tibetan Plateau. The study area has a monsoon climate,
and the multi-year Global Precipitation Measurement (GPM) shows
that the average annual precipitation of the study area is 598.5 mm.

The Beishan landslide in Zhouqu County, Gansu, China, is
studied. The Bailong River runs through the study area, and the
landslide occurred on the northern bank of the river. The Lijie town
is located at the foot of the landslide along the Bailong River (Figure 1).
The elevations of the landslide head and the toe are ~2,473 and
~1,582 m, respectively. The aspect of the landslide ranges from

135° to 219°, and the mean aspect is 178°. The landslide body has
three major lithologies. The upper part of the landslide is Devonian
limestone. The middle part of the landslide is Quaternary loess, and
the lower part of the landslide is the Silurian slate and phyllite
(Zhong et al., 2022). The surface of the landslide area is covered by
sparse xerocolous grass and shrubs. Landslide scarps are clearly
visible in optical images of earlier than 2017. The landslide had been
reported in previous work, but its deformation was not well-studied
(Zhong et al., 2022). The landslide has been slowly moving for a long
time. In the past 40 years, it reactivated several times and transferred
into debris flows during heavy rains in 1978, 1992, 2010, and 2018.
In 1978, reactivation of the landslide damaged many cottages, and
the local authorities displaced more than 100 threatened families
(Wang et al., 2022). Since August 2020, the landslide has partly
reactivated and caused some road collapses in Beishan village near
the landslide head.

FIGURE 1
Study area (A–C), the Beishan landslide aspect distribution (D), and the field photos (E–G).
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During 14–20 August 2022, we carried out field work in the
study area and took some photos of the Beishan landslide. By
interviewing residents, we found some people in the west part of
the Lijie town had already moved to other places in awareness of the
landslide hazard. Constructions have been implemented by the
government at the landslide head to try to stabilize the
slope since 2021.

3 Materials and methods

3.1 Rainfall data for 1986 to 2022 and the
Mann–Kendall test

In this work, three sets of precipitation data were used. The first
set of precipitation data is the GPM. It is a joint satellite mission by
the National Aeronautics and Space Administration (NASA) and
the Japanese Aerospace Exploration Agency (JAXA) to measure rain
and snow every 3 hours globally. GPM data are produced with
microwave and infrared precipitation estimates of satellite and
precipitation gauge estimates. using the Integrated Multi-satellitE
Retrievals for GPM (IMERG) algorithm (Fang et al., 2019). The
monthly GPM v6 data used in this work are downloaded from
Google Earth Engine, and the data have a spatial resolution of
11,132 m. The monthly GPM v6 data from June 2000 to September
2021 are available. Annual GPM data from 2001 to 2020 were
summed from the monthly GPM v6 data.

The second set of precipitation data is the Climate Hazards Group
InfraRed Precipitation with Station (CHIRPS) data. It is a quasi-global
rainfall dataset from 1981 to the present day. CHIRPS combines 0.05°

resolution satellite imagery with field station data to create gridded
rainfall time series for trend analysis and seasonal drought monitoring.
The CHIRPS rainfall data are daily rainfall data, and we obtained
monthly rainfall data from 1986 to 2022 through the Google Earth
Engine (GEE). The third set of precipitation data is from a
meteorological station in the Zhouqu city, which is ~30 km east of
the landslide area. Monthly precipitation data from 1986 to
2021 measured by this station are also used as a reference.

The Mann–Kendall (M-K) test is often used to analyze long-
term, inter-annual, and seasonal trends and mutations in
meteorology and hydrology (Pei et al., 2023). In this work, we
mainly obtain the trend and p-value test of three sets of different sets
of rainfall data through the trend analysis of the M-K test.

First, we defined time-series data as X1, X2, X3, . . . , Xn, where ni
denotes the cumulative number of samples. Among them, Xj is greater
than Xi in the time series (1≤i≤j). The statistic Sk is defined as follows:

Sk � ∑k

i�1ni. (1)

Under the assumption that the time-series data are randomized
and independent, the mean and variance of the statistic are
expressed as E (Sk) and Var (Sk), respectively. They can be
represented as follows:

E Sk( ) � k k − 1( )
4

, (2)

Var Sk( ) � k k − 1( ) 2k + 5( )
72

. (3)

Then, we normalize the statistic Sk and obtain the U(Sk).

U Sk( ) � SK − E(Sk)�������
Var Sk( )√ . (4)

3.2 Surface deformation by SBAS-InSAR

We used a total of 46 scenes of Sentinel-1A single-look
complex (SLC) images under the descending orbit and
59 scenes of ascending orbit data from April 2020 to April
2022 to derive surface deformation using SBAS-InSAR (https://
search.asf.alaska.edu/), and the orbit correction is performed
through the precise orbit file (https://scihub.copernicus.eu/)
corresponding to the time. By setting a temporal baseline
threshold of 60 days and a spatial baseline threshold of 20%,
261 and 219 interferometric pairs were generated for the ascending
and descending track images, respectively. The image parameters
are shown in Table 1. Among them, the maximum spatial
thresholds in the descending track and ascending track image
pairs are 228 and 218 m, respectively. Connections of SAR images
are shown in Figure 2.

Adaptive filtering functions were used for improving interferogram
quality, and unwrapping of the phase was done by using the minimum
cost flow (MCF) algorithm (Werner et al., 2003; Pepe and Lanari, 2006).
After these processes, we used SRTM-DEM (https://dwtkns.com/) data
for terrain correction (Zhang et al., 2021).We set ground control points
(GCPs) based on the selection of a relatively stable region. To estimate
and remove the remnant constant phase, these points are used to do
refinement and reflattening. We inverse the first deformation rate to
flatten the resulting interferogram by selecting the linear model. Based
on the result of the first deformation rate, we remove atmosphere phase
delay by using a temporal high-pass filter and a spatial low-pass filter to
separate the phase components. Finally, the singular value
decomposition (SVD) method was used to obtain LOS deformation
results from the unwrapped phase (Chen et al., 2021; Berardino et al.,
2002). The SBAS-InSAR operation steps of this work are implemented
in the ENVI/SARscape package. A 1:4 multi-look operation is used for

TABLE 1 Parameters of SAR images.

Radar satellite Sentinel-1A

Wavelength (m) 0.056

Polarization mode VV

Orbital direction Ascending Descending

Path number 62 479

Frame number 55 107

Time span April 2020–April 2022

Spatial resolution (m) 5*20

Number of images 59 46

Number of composing image pairs 261 219

Heading (°) 347.07 192.92
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the range and azimuth direction, and the final output image resolution
is 20*20 m.

3.3 Deformation derived by pixel offset
tracking and time-series inversion

Sentinel-2 images with POT were first used to derive the surface
deformation of the landslide. The Multi-Spectral Instrument (MSI)
onboard Sentinel-2 images is a push-broom sensor. There are two
Sentinel-2 satellites at space, 2A and 2B, both of which are phased at
180° to each other. For each satellite, the revisit time at the equator is
10 days. The constellation of two satellites can view the equator every
5 days. At mid to low latitude, the revisit time is even shorter (<5 days).
There are 13 bands with a spatial resolution of 10, 20, and 60 m. Near-
infrared (NIR), red, green, and blue are four bands with 10 m in spatial
resolution. The 10-m red band is themost frequently used data to detect
surface deformation (Yang et al., 2020a; Qi et al., 2021).

We downloaded 135 Sentinel-2 red band images (t0, t1, . . . t134)
from 27November 2015 to 24May 2023 (Table 2) and 94 Landsat-5 red
band images from 1986 to 2011 (Table 3). For this work, we selected
images that were least affected by clouds. We used the COSI-Corr
software, which was developed by a team in the California Institute of
Technology (Leprince et al., 2007) and is a frequently used sub-pixel
offset tracking method to derive surface deformation in Sentinel-2
images (Bontemps et al., 2018; Lacroix et al., 2018; 2020; Yang et al.,
2020a; Qi et al., 2021). To derive surface deformation with the software,
we must compose a pair of two images acquired at different dates. The
principle of the COSI-Corr is to use sliding windows to find the
difference between the earlier or the master image and the later
image, also known as the slavery image. By taking the image of
Sentinel-2 as an example, we composed 2069 image pairs with
these 135 images.

A �

1 0 . . .
0 0 /

0 0 0
0 0 0

/ / /
0 0 /
0 0 /

/ / /
−1 0 1
0 −1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

Matrix A is a two-dimensional matrix. It has 2069 rows and
135 columns.

The rank of A is 135, which is the same as that of
unknown variables.

X � x0−1 x0−2 x0−3/x0−44 x0−142[ ]. (6)

Vector X is a one-dimensional vector. It has 135 rows and one
column. Elements in X, such as x0−j (j=1, 2, . . . 134), represent the
cumulative displacement from the date of the first image (t0). The
vector X is the target of the function.

b � b0−1 b0−2 b0−3/b0−143[ ]. (7)
AX � b. (8)

As we have 2069 equations and 135 unknowns, we used the singular
value decomposition (SVD) method to find a solution. Because A is
not a square matrix, it can be decomposed into three other matrices.

A � USVT, (9)
where U and V are square matrices. The columns of U are the
eigenvectors of AAT, and the columns of V are the eigenvectors of
ATA. S is a diagonal matrix with singular values of A
([diag (σ1, σ1, . . . , σn)]).

A−1 � V diag σ−11 , σ−12 , . . . , σ−1n( )[ ]UT. (10)

We also processed the inversion twice with a similar form of
weights (Bontemps et al., 2018). In the first SVD inversion, we took
the surface deformations within the stable area and calculated the
reciprocal of the standard deviation as the weight. In the second
inversion, we used the reciprocal of the residual error from the first
SVD inversion as the weight.

3.4 Landslide simulation by MassFlow

MassFlow is a two-dimensional finite difference scheme
developed to model mass movements in mountainous regions
(Ouyang et al., 2013). The software has been used to simulate the
collapse of the Beishan landslide (Zhong et al., 2020). In this work,

FIGURE 2
Descending (A) and ascending (B) InSAR pairs used in this work.
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TABLE 2 Dates of all 135 Sentinel-2 optical images used in this work.

20151127 20171211 20181002 20190425 20200209 20200827 20210223 20211115 20220504 20221215

20151227 20171216 20181101 20190525 20200219 20201021 20210315 20211125 20220509 20221220

20160126 20171221 20181201 20190704 20200224 20201110 20210330 20211130 20220708 20221230
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20170219 20180219 20181226 20191012 20200320 20201220 20210524 20220109 20220807 20230203
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20171101 20180515 20190311 20191211 20200603 20210129 20210921 20220310 20221110 20230429
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we used MassFlow to model the potential collapses of the main
deformation area. The spatial extents of the simulated landslide were
from displacement >5 m by POT. To better meet the conditions of
field hydrogeology and other conditions, we used the same
simulation parameters as in the previous paper (Zhong et al.,
2020). The simulation parameters used in this paper are a
friction coefficient of 0.65 and cohesion of 6 Kpa. The shear
shrinkage effect of the sliding soil and the fragmentation of
particles caused by shearing make the pores of the sliding soil
smaller, generating pore water pressure, and the shear strength
completely or partially disappears. The pore water pressure
coefficient in this work (used by Zhong et al. (2020)) is 0.05.
However, they were simulated during January 2021 (dry
wintertime), when the pore water pressure coefficient was at its
lowest condition, which means that the same value of the parameter
cannot represent the situations throughout the year, especially in
rainy months. So we set up three gradients (0.05, 0.1, and 0.15) for
this parameter to simulate three scenarios for the landslide.

4 Results

4.1 Deformation results derived from optical
POT and SBAS-InSAR

The optical POT method was used to inverse the deformation
results of the slope for nearly 8 years from November 2015 to May
2023. It was found that the deformation in the middle part of the
landslide has the largest deformation (Figure 3A). Maximum
deformation of this part of the landslide is >15 m during the
studied period. The white border represents the deformation area
greater than 5 m, which has an area of ~196,094 m2, accounting for
31% of the entire landslide (Figure 3C). Figure 3B shows the
directions of landslide movement. The dominant moving
directions of the landslide are from northeast to southwest along
the slope.

Figures 4A, B show the spatial pattern of the surface
deformation in the LOS direction of landslides monitored by
SBAS-InSAR under the descending and ascending orbits. From
the SBAS-InSAR results of the descending orbit, discernible larger
surface deformations (<-20 mm ± 4.06 mm) are found to the east
and upper parts of the landslide (Figure 4A). From the results of
the ascending orbit, large surface deformations (<-20 mm ±
3.61 mm) are only discerned on the upper part of the landslide
(Figure 4B). The maximum deformation in the LOS direction
detected by the descending and ascending tracks is of the same
magnitude (close to 50 ± 4 mm). In the detected deformation, the
uncertainty of these displacements was assessed using standard
deviations of the InSAR and POT displacement results in the
stable area.

4.2 Relations between precipitation and
deformations of the Beishan landslide

Figure 5 shows the deformation time series of three points on the
middle (P1), upper (P2), and east (P3) parts of the landslide (P1, P2,
and P3 are shown in Figures 3 and 4) derived from optical POT andT
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ascending/descending InSAR from April 2020 to April 2022. The
two vertical black dashed lines represent accelerated deformations of
the landslide in the rainy months of 2020 and 2021. Figure 5A shows
the cumulative deformation of P1 at the middle part of the landslide.
For this point, only deformations measured by optical POT are valid
because deformations of P1 derived from ascending/descending

SBAS-InSAR are non-monotonic. Time series of its deformation
increased rapidly by 4.76 m within 3 months from 8 July 2020 to
21 October 2020, with a deformation rate of 0.04 m/d, which is
immediately after the rainy months of the year.

Deformation time series of P2 is valid for both ascending and
descending SBAS-InSAR, but not for the optical POT. For the

FIGURE 3
Derived displacement between 27 November 2015 and 24 May 2023 (A), the directions of landslide movement derived from POT (B), and the
histogram of deformation distribution (C).

FIGURE 4
Slope deformation derived from descending and ascending SBAS-InSAR methods (A, B). Selected points from the middle (P1), upper (P2), and east
sides (P3) of the landslide.
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descending result, the deformation rate from August to October
2021 reached nearly 0.3 mm/d, far exceeding the annual average
deformation rate of 0.07 mm/d. Figure 5C shows that the
deformation of P3 is valid only in the descending InSAR result.
The deformation velocities from August to October in 2020 and

2021 are 0.14 mm/d and 0.15 mm/d, respectively, much larger than
the annual average deformation velocity of 0.07 mm/d from April
2020 to April 2022. The fast-moving deformations for both
ascending and descending SBAS-InSAR also occurred
immediately after rainy months.

FIGURE 5
Optical POT- and SBAS-InSAR-derived cumulative displacements for P1 (A), P2 (B), and P3 (C) (labeled in Figures 3 and 4) and monthly rainfall from
CHIRPS (D). The shaded area is the standard deviation of the deformation monitored using the optical POT and InSAR methods within the stable zone. In
Figure 6, the title of the figure was changed to: The deformation time-series in 35 years (1986–2023) (A), precipitation change and distribution in 42 years
(1981–2022) from three datasets, and the shadings are 95% confidence intervals for the linear models (B).

Frontiers in Earth Science frontiersin.org09

Liu et al. 10.3389/feart.2023.1304969

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1304969


Figure 6A shows the deformation time-series curve from 1986 to
2023. It can be found that the displacement velocities in 1986–2011
(phase 1) and November 2015–July 2020 (phase 2) are 0.59 m/year
and 0.96 m/year, respectively. The slope of the two-stage fitting
curve is equivalent. It shows that the displacement velocities in the
two phases are roughly the same, and the deformation is stable. After
July 2020, the deformation suddenly accelerated. The displacement
velocity of phase 3 (July 2020–May 2023) is 6.3 m/year, nearly
10 times that of the previous stages (phase 1 and phase 2).

To explore the relationship between the trend of deformation
and rainfall, we fitted the trend graphs of three sets of rainfall data
(Figure 6B). Different rainfall data show that the annual rainfall in
the past 20–30 years has an upward trend (except for the weather
station data, the p-values of all other data after Mk testing are less
than 0.05). Although the rainfall data of the weather station are
approximately 150 mm lower than those of the satellite rainfall
(GPM and CHIRPS) on average, the rainfall trend of the two is
consistent. This may be caused by differences in the locations of
weather stations and monitoring methods. The two sets of satellite
rainfall data (GPM and CHIRPS) agree well with each other in the
20 years from 2001 to 2021. In addition, all three datasets show that
the rainfall increased sharply after 2018 and peaked in 2020, which is

very likely to be the reason for the sudden accelerated deformation in
summer 2020.

4.3 Potential risks of the Beishan landslide

We simulated the collapse of the pore water pressure at three
different intensities. The houses and buildings in the Lijie town
(the white area is the interpreted building area) will be possibly
damaged with landslide collapse. The collapse of the landslide
gradually increases with the increase in the pore water pressure
(Figure 7). When the pore water pressure is 0.05, the collapse of the
landslide has a less impact on the built-up area (Figure 7A). When
the pore water pressure is 0.1, the collapsed material of the
landslide begins to affect the northwest part of the urban
area (Figure 7B).

When the pore water pressure is 0.15, the buried area of the
landslide accumulation core is the largest (partial area>20 m). The
buried area above 1 m reaches 39,664 m2, accounting for 18% of the
construction area (the total construction area of the north and south
areas of the river reaches 224,503 m2). In addition, the average
buried depth of this area reaches 9.54 m (Figure 7C).

FIGURE 6
The deformation time-series in 35 years (1986–2023) (Figure 6A), precipitation change and distribution in 42 years (1981–2022) from three datasets,
and the shadings are 95% confidence intervals for the linear models.
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5 Discussion

5.1 What are the differences between SBAS-
InSAR and optical POT in measuring
landslide deformation?

The SBAS-InSAR and optical POT techniques are two
commonly used remote sensing methods to extract regional
landslide deformation (Hu et al., 2018; Handwerger et al.,
2019). Although one recent work compared InSAR and optical
POT results, they did not derive time series of landslide
deformation (Kuang et al., 2023). The recently developed time-
series inversion model can significantly remove spatial noises and
is indispensable to uncover landslide dynamics over time
(Bontemps et al., 2018). Our work is the first to compare time
series of deformations between SBAS-InSAR and optical POT for
the same landslide.

Our results show that spatial deformation patterns of both
methods are distinct from each other (Figures 3 and 4). This is
because the POT is excellent in detecting larger deformations (>1 m)
in the horizontal direction (Yang et al., 2021), whereas InSAR is
better in detecting smaller deformations (centimeter scale) in the
LOS direction of the satellite (Zhang et al., 2020). The smallest
deformation that POT can detect relies upon the spatial resolution of
the used optical images (Stumpf et al., 2017; Bontemps et al., 2018).
With time series of POT results from 10-m resolution images, we are
confident to say that we detected deformation signals of >1 m. These

distinct results from both methods indicate that the onefold use of
either InSAR or optical POT would underestimate the extent of the
landslide’s spatial deformation. The spatial pattern of a landslide’s
deformation is an important reference to assess the magnitude (e.g.,
detaching volume, moving speed, potential deposition area, and
depositing depth) of a landslide hazard, which is the most important
part for quantifying landslide risks. The complete spatial pattern of
the landslide’s deformation unveiled by integration of both methods
is also crucial for assessing the risks of other similar slow-moving
landslides.

In this work, the maximum deformation detected by SBAS-
InSAR is ~50 mm, whereas the POT-derived deformation is >20 m.
This is consistent with the findings of previous works that POT is
excellent in detecting larger deformation (>1 m) in the horizontal
direction (Yang et al., 2021) and InSAR is better in detecting smaller
deformation (centimeter scale) (Zhang et al., 2020). In addition,
InSAR detects deformation in the LOS direction (Zhang et al., 2020),
which explains different performances between the ascending and
descending track results shown in Figure 4. Deforming slopes with
the west and east aspects are easier to detect by Sentinel-1A SAR
images of ascending and descending orbits, respectively. The InSAR
method is sensitive to the vertical deformation but not sensitive to
the north–south deformation (Chen et al., 2023; Tian et al., 2023). In
theory, InSAR cannot detect moving slopes with aspects to SAR
tracks. This may have caused the SBAS-InSAR method to fail to
effectively monitor the deformation in the central part of
the landslide.

FIGURE 7
Collapse simulations for the main deformation area of the Beishan landslide.
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5.2 How dangerous is the Beishan landslide?

Deformations of a landslide can be used to help issue early
warnings. Laboratory experiments and numerical models show that
there are three creeping regimes before the collapse of a landslide:
primary creep with decreasing velocity, secondary creep with
constant slow velocity, and tertiary creep with accelerations
(Main, 2000; Amitrano and Helmstetter, 2006). The last two
schemes are frequently reported before paroxysmal collapses of
some famous landslides (Intrieri et al., 2018; Liu et al., 2020).
Our results of the deformation time series from 1981 to
2023 seem to follow those of the secondary creep and early stage
of the tertiary creep. The landslide seems to be deforming with
constant velocity, whereas accelerations were observed since 2020.
Although the deforming velocity in 2022 is slower than that in
2020 and 2021, it is still larger than velocities before 2019. Similar to
the famous Baige landslide (Liu et al., 2020), long-term deformation
time series indicates that the middle part of this landslide is highly
active and that it could be susceptible to collapse in the future.

A previous work simulated the collapse of the landslide and
found that it had little influence on the nearby Lijie town (Zhong
et al., 2022). However, their model used the pore water pressure
parameter in wintertime, during which it was at its lowest level. Our

results show that major deformations of the landslide occur in rainy
months when pore water pressure is at its maximum. The most
conservative scenarios in this work serve a baseline for the
landslide’s impact. Our modeling indicates that collapse of the
middle part of the landslide may cause destructions to the Lijie town.

5.3 What is the relationship between
landslide deformation and precipitation?

Our results that deformation time series from both methods of
SBAS-InSAR and Sentinel-2 POT shows accelerations in rainy
months indicate that precipitation is likely to be the major driver
for intra-annual landslide dynamics. Although measurements of
Landsat 5 are very coarse and sparse with high uncertainties, it is
possible that intra-annual landslide deformations from 1986 to
2011 also followed similar temporal patterns. During our study
period, there is no seismicity with Modified Mercalli Intensity
(MMI) larger than IV, and the deformation correlates well with
precipitation. Consistent with others, these findings indicate that
intra-annual acceleration of this landslide is initiated by
precipitation (Handwerger et al., 2022; Liu et al., 2022). As the
slope continues to slide down, the threshold to accelerate the moving
of the slope may continue to decrease.

On an inter-annual time scale, our findings indicate that the
relation between the landslide’s deformations and annual
precipitation since 1986 has been complex. All precipitation data
show that annual precipitations are among the highest in record
from 2018 to 2020, overlying with significant acceleration of the
landslide in 2020. These abnormally high precipitation years may
cause the transition of the landslide from the second creep regime to
the tertiary creep regime, indicating the impact of climate warming
on landslide stability.

To investigate the correlation between rainfall and deformation,
we conducted analysis of daily rainfall spanning from 1 November
2016 to 30 August 2023. During this period, we identified the

TABLE 4 The 10 days with the highest daily rainfall (CHIRPS) from
1 November 2016 to 30 August 2023.

Date Precipitation
(mm)

Date Precipitation
(mm)

20190728 75.899 20210709 48.028

20170607 75.006 20200713 46.077

20180710 56.075 20180701 44.748

20210725 55.475 20170505 42.333

20190721 54.556 20200710 41.39

FIGURE 8
Deformation time series from 27 November 2015 to 24 May 2023 obtained by Sentinel-2 inversion and dates of the 10 wettest days from
1 November 2016 to 30 August 2023.
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10 days with the highest recorded rainfall. Notably, a significant
majority of these extreme rainfall events were observed in the month
of July each year, constituting 80% of the total dates under
consideration (Table 4). In July 2020, there were 2 days of
extremely intense rainfall, which is highly likely to be associated
with the substantial deformation observed during the summer of
2020 (Figure 8). An escalation in the occurrence of extreme rainfall
events in alpine regions can intensify the occurrence of landslides
(Shah et al., 2023). Beyond the direct erosive impact of rainfall,
extreme precipitation can also induce landslides by influencing the
hydrology of the watershed (Zhu et al., 2021).

Most landslides in this part of the plateau are triggered by
rainfall (Li et al., 2023; Peng et al., 2015). Based on the >40 years
(1981–2022) of annual precipitation record, the climate in this
region found getting wetter. In addition, as estimated in Coupled
Model Intercomparison Project Phase 6, precipitation in this region
will continue to increase with more extremity (Thackeray et al.,
2022). Increasing annual precipitations may lead to more landslide
activities in this part of the plateau in future. With ongoing climate
change, there may be more similar landslides as this area becomes
unstable. Frequent landslides will provide erosive loose materials in
this semi-arid region of poor vegetation cover, potentially feeding
more debris flows during extreme precipitations.

6 Conclusion

In this work, we studied deformations of a landslide in
northeast Tibetan Plateau with SBAS-InSAR and optical POT.
Deformations detected using both the methods are very different.
Optical POT is sensitive to meter-scale deformations in the
middle part of the landslide, where SBAS-InSAR is invalid.
From 1986 to 2023, the middle part of the landslide
moved >35 m. In contrast, SBAS-InSAR is more sensitive to
centimeter-scale deformations in upper and east parts of the
landslide, which is ineffective for optical POT to monitor. It is
possible that sections of landslides with centimeter-scale
deformations may be at its earlier stage toward meter-scale
deformations in future. Based on theoretical landslide
deformation regime and previous collapsing landslides, we
speculate that the landslide may be at its final tertiary creep
regime, meaning a partial collapse is susceptible in future.

Time series of deformations from both SBAS-InSAR and POT
with Sentinel-2 images can detect seasonal deformation signals
related to rainy months every year. However, inter-annual
landslide deformation is not directly related to multiyear
precipitations. The significant acceleration of the middle part of
the landslide in 2020 may be related to the extraordinary wetting
years from 2018 to 2020. With climate change, precipitation in this
region will continue to increase, potentially posing more slopes
unstable in future.
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