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Significant progress has been made in recent years in the use of
AI and Machine Learning (ML) for catalyst discovery and
optimisation. The effectiveness of ML and data science
techniques was demonstrated in predicting and optimising
enantioselectivity and regioselectivity in catalytic reactions
through optimisation of the ligands, counterions and reaction
conditions. Direct discovery of new catalysts/reactions is more
difficult and requires efficient exploration of transition metal

chemical space. A range of computational techniques for
descriptor generation, ranging from molecular mechanics to
DFT methods, have been successfully demonstrated, often in
conjunction with ML to reduce computational cost associated
with TS calculations. Complex aspects of catalytic reactions,
such as solvent, temperature, etc., have also been successfully
incorporated into the ML optimisation and discovery workflow.

Introduction

Automated chemical space exploration with the help of AI/
Machine Learning (ML) is a highly important methodology in
modern chemical discovery. Progresses in this area with organic
compounds have resulted in the first AI discovered Active
Pharmaceutical Ingredient (API) entering Phase II trials.[1,2] The
same benefits can be extended to catalyst discovery through
chemical space exploration of organometallic compounds.
However, this is significantly more challenging due to the
additional constraints, e.g. coordination geometry, and com-
plexity, e.g. spin state, catalyst stability and selectivity, etc.
Evaluating the desired function of catalysts for in silico screen-
ing is also more computationally demanding compared to API
discovery, due to the need to calculate and/or estimate
properties of excited states and transition states. In homoge-
neous catalysis, additional dimensions such as solvent, temper-
ature and additives can have a significant impact on reaction
outcome and need to be included in the evaluation method-
ology. Synthetic catalytic reactions often involves chemo- and
stereoselectivity, competing side reactions, and multiple possi-

ble mechanistic pathways,[3–9] depending on the substrate and
catalyst (Figure 1).[10–13]

These complex and demanding challenges led to the need
for of AI/ML models which can predict catalytic activity. This

[a] S. Mace, B. N. Nguyen
Institute of Process Research & Development
School of Chemistry, University of Leeds
Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
E-mail: b.nguyen@leeds.ac.uk

[b] Y. Xu
GoldenKeys High-tech Materials Co., Ltd.
Building 3, Guizhou Industrial Investment Technology Industrial Park
Gui’an New District, Guizhou Province, 550008, China
E-mail: goldenkeys9996@thegoldenkeys.com.cn

© 2024 The Authors. ChemCatChem published by Wiley-VCH GmbH. This is
an open access article under the terms of the Creative Commons Attribution
Non-Commercial License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited and is not used
for commercial purposes.

Figure 1. An example mechanism of the Ullmann-Goldberg coupling reac-
tion, with a reaction condition dependent deactivation pathway and
multiple possible mechanisms for the rate determining step (RDS).[17]
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approach can be particularly powerful for complex and difficult
substrates, which tend to occur in high value chemical syn-
thesis. Unfortunately, experimental data on catalytic activity in
this area is scarce, with the majority of the literature containing
reaction yields instead of reaction rates (due to the cost of
labour and resources for collecting kinetic data).[14] While
successes have been reported with statistical analysis of small
datasets,[15,16] the demand for training data for advanced AI/ML
models necessitates accurate and low-cost molecular modelling
tools for data generation.

This is an unique area of research which requires advance-
ment in both cheminformatics and high throughput molecular
modelling. A typical workflow for screening catalytic candidates
will start with either experimental or computational data of a
relatively small set of ligands/catalysts. This dataset is then used
to train a ML model to predict the desired catalytic properties
and performance (Figure 2). The model can then be used to
extrapolate the performance of a much larger set of ligands/
catalysts generated in silico.

Excellent and recent reviews from practitioners in the field
have discussed predicting organic reactivity with ML,[18] general
computational discovery of transition metal complexes,[19]

descriptors for ML in catalysis,[20] quantum methods for
computational catalysis,[21] mechanism-based models,[22] practi-
cal tutorial with code,[23] and a road-map on machine learning
in electronic structure.[24] In this review, we will focus on recent
peer-reviewed publications since 2020 in AI/ML-enabled orga-
nometallic catalyst discovery and optimisation, tackling the
following challenges: (i) automated exploration of ligand space;
(ii) computational methods for data generation; and (iii) dealing
with complex aspects of catalysis such as selectivity, reaction
conditions and competing pathways. Other exciting approaches

based on data science, e.g. volcano plots,[25–27] or process
optimisation will not be included.

Automated exploration of ligand space

Chemical space exploration is a cornerstone of AI/ML-guided
chemical discovery. In the context of catalyst, it is essential for
exploring both the ligand space/prediction stage (Figure 2) and
the data generation stage if the data is generated computation-
ally. For catalyst optimisation, limited exploration of similar
chemical space may be sufficient. However, catalyst discovery
requires highly efficient sampling of a wider chemical space or
a closed-loop optimisation approach to chemical space sam-
pling. Ultimately, this needs to be balanced with the synthetic
viability of the generated catalysts and ligands to ensure their
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Figure 2. A typical workflow for ML-guided catalyst discovery and optimisa-
tion.
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expeditious experimental validation. While the field is still far
from achieving these lofty goals, recent progresses have shown
these are attainable if expertise in cheminformatics can be
leveraged.

The term “ligand space” has previously been used by Fey
and co-workers to describe the relative positions of phosphine
and C/N/O ligands in Principal Component Analysis maps based
on their electronic and steric descriptors.[28–33] In the context of
AI/ML-guided exploration, a more structurally oriented concept
is normally adopted. This is the result of cheminformatics tools,
often employed in building the structure of ligands and
catalysts in silico. Nevertheless, the advanced techniques for
exploring chemical space in medicinal chemistry, e.g. variations
of autoencoders,[34–37] have yet to be adapted for catalysis. There
are obvious difficulties associated with this, particularly main-
taining and varying coordination numbers, geometry of the
complexes, and the oxidation state and spin state of the metal
centre. Instead, a simpler high throughput combinatorial
approach has been adapted by most researchers in the field.

Kulik group developed an approach which uses a small
number of ligands (typically <1000) with reasonably high
symmetry to generate training data. The new ligands and
complexes (>1M) are then generated from combinations of
structural fragments of these training complexes. Properties
were predicted using Artificial Neural Networks (ANNs) models
and achieving a Mean Absolute Error (MAE)=4.5–6 kcal ·mol� 1

for ΔEHAT and ΔErelease, the barriers for the two steps in the
catalytic cycles (Figure 3).[38] Macrocyclic ligands are particularly
suitable for this approach as they do not have multiple suitable
conformers for coordination. This was further expanded into

the concept of ligand additivity by inferring heteroleptic
properties from a stoichiometric combination of homoleptic
complexes, which led to an interpolation scheme, which
includes cis and trans isomer effects. The interpolated adiabatic
high-spin to lowspin splitting (as a weighted average of the
spin splitting of the parent homoleptic complexes) and HOMO
energy. ΔEH-T, was found to match with the DFT derived values
(B3LYP/LACVP*, LANL2DZ effective core potential for transition
metals and the 6-31G* basis for all other atoms) for Fe(II)
complexes with pairs of any of the three ligands: CH3CN, H2O,
and CO, giving MAEs up to 2.6 kcal ·mol� 1 and 0.11–0.25 eV,
respectively.[39]

A different study by Gensch, Sigman and Aspuru-Guzik
employed the same combinatorial approach to generate and
predict properties of >300000 monophosphine ligands.[40] DFT
descriptors, calculated with PBE0(D3BJ)/def2-TZVP//PBE0(D3BJ)/
6-31+G(d,p) method, were generated for 1558 ligands, which
were subsequently used to train highly accurate machine
learning models to predict properties of new monophosphine
ligands (Figure 4). This led to kraken, a discovery platform of
190 physicochemical descriptors for monodentate phosphine
ligands (https://kraken.cs.toronto.edu). Importantly, all thermally
accessible conformers of the ligands were considered, due to
their non-chelating nature. kraken was then used to select a set
of 32 commercially available ligands that samples the entire
covered chemical space evenly.[41] This was achieved through
dimensionality reduction of 190 condensed descriptors per
ligand (78 descriptors for each conformer including Boltzmann
weight average of the highest and lowest value of each
property across all conformers). k-Means clustering algorithm,
which clusters ligands with similar features together, in 4D
space was used to select a diverse set of ligands for screening,
leading to identification of the optimal ligands in Suzuki-
Miyaura coupling reactions of aryl chlorides and aryl triflates, i.e.
highest yields. It is worth noting that depending on how the
descriptors are derived, relative position of ligands to each
other in their chemical space can be significantly different.[42]

This highlights the need for a consistent approach to featurisa-
tion of ligands, particularly within a single class, e.g. mono-
phosphine, diphosphine, or salen ligands.

The main limitation in these early successes is the lack of
quantification of transition metal chemical space. Building
predictive ML models trained on relatively small datasets
presents uncertainties upon extrapolation into wider chemical
spaces. Recent work in Kulik group investigated how to quantify
uncertainty in their ML models,[43,44] and to define distance in
chemical space through a set of 25 mixed continuous and
discrete features around the metal centre (i.e. MCDL-25).[44,45]

ANN models based on these descriptors achieved a root-mean-
square error (RMSE) of around 3 kcal ·mol� 1 in predicting spin-
state energies, ΔEH-L, against DFT values (B3LYP). Feature sets
such as nuclear charge, electronegativity, or covalent radius on
the molecular graph, which are geometry-free, have been found
to be even more effective than MCDL-25 in accurately
predicting redox and ionisation potential, spin-state-dependent
metal-ligand bond length, and ΔEH-L for transition metal
complexes (Figure 5).[45] However, the performance of ANN

Figure 3. Combinatorial approach by Kulik group to explore methane-to-
methanol catalyst based on porphyrin ligands (reprinted with permission
from ACS).[38]
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models (used to explore a space of 5600 complexes, of which
2% was used as training data), predictably deteriorates for
complexes with high feature – space distances to training data.

Coordination number and geometry are important aspects
of transition metal space, particularly in catalysis. Analysis by
Kulik based on >240000 mononuclear complexes in the
Cambridge Structural Database (CSD) showed that approxi-
mately one third of them are octahedral and often contain
monodentate ligands which can dissociate to leave empty
coordination sites for catalysis.[47] Thus, the authors proceeded
with a design of square-planar tetradentate ligands, leaving two
coordination sites for labile monodentate ligands. This went
against conventional mechanistic understanding of metal
catalysed coupling reactions. However, the targeted reactions in
this case were fundamentally different, typically involving redox
or electro/photochemical processes.

A possible solution for inefficient coverage of transition
metal chemical space is through the use of active learning. Kulik
group applied this approach to discover 3d6 Fe(II)/Co(III)
chromophores. A consensus in predictions among 23 DFT
methods across “Jacob’s ladder”, an established order of DFT
methods with increasing accuracy and computational cost,
benchmarked for large datasets of organic compounds, was
used (from BP86 to DSD-PBEP6-D3BJ).[48,49] An algorithm which
sampled new chemical space for additional training data based
on each iteration of the prediction model led to efficient
optimisation in 2D-chemical space, based on Δ-SCF gap and

multi-reference character (Figure 6). Candidates with high like-
lihood (i.e. >10%) of being a chromophores were used to
validate and retrain the ML models so the ML models were
actively improved, leading to a 1000-fold acceleration com-
pared to random sampling.[50] This led to the identification of
Co(III) complexes with large, strong-field ligands with more
saturated bonds as potential transition-metal chromophores.

Nguyen group adopted a different approach to leverage the
wide chemical space covered by the Cambridge Structural
Database (CSD), using both organic and organometallic
structures, and to avoid the question of synthetic viability of
the ligands.[51] Two closed-shell TS of the rate-determining-step
(RDS) of the Ullmann-Goldberg coupling reactions were opti-
mised with DFT (DLPNO-CCSD(T)/def2-TZVP). These TS struc-
tures were used as template to create the catalophores with the
desired geometry and empty space for the Cu(I) cation and the
substrates. Searching the CSD with these catalophores identified
32000 of possible ligands (Figure 7). Their corresponding ΔG�

values (TPSS/def2-TZVP//GFN2-xT) were used to develop ML
models that can predict ΔG� values based on non-TS-related
descriptors. The best models, using ExtraTrees and Scaled
Vector Machine algorithms, gave RSME=3.5–6.0 kcal ·mol� 1 and
75–87% of the predicted ΔG�’s within �4.0 kcal ·mol� 1 of the
DFT values (the accuracy limit of the training data against those
calculated using DLPNO-CCSD(T)/def2-TZVP).

Lastly, the efficient exploration of chemical space for
organometallic catalysts requires the development of chem-

Figure 4. Mean absolute error (MAE) for (top) redox and ionisation potential in eV, (middle) low-spin (LS) metalligand bond length in pm, and (bottom) EHL in
kcal ·mol� 1. Comparisons are for the MCDL-25/ANN from Ref. [44] along with KRR models trained with RAC-155, a feature-selected (FS) RAC subset for each
property from Ref. [46], and the best-overall-performing “universal” URAC 26 feature set in Ref. [46]. These results highlight how the systematic RAC-155
outperforms ad hoc MCDL-25. (Reprinted with permission from ACS).[45]
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informatics tools which can build and modify complexes in 3D,
compared to 2D tools based on only connectivity for organic
compounds. MolSimplify has seen widespread use for this
purpose, despite its original design for geometrically rigid
ground state complexes.[52,53] Modifications has been made to
MolSimplify to enable it to build TS with asymmetrical geometry
and unusual coordination numbers.[51] Alternatively, the CSD
Python tool is also a highly flexible tool and for our own
purposes used it to build organometallic complexes.[54] The CSD
python API loads the molecule as a class object and can build
and edit molecules, such as adding, removing bonds and
atoms, and normalising charges and hydrogens. The API can be
used to add a metal centre to ligands downloaded from CSD
CrossMiner for rapid building of organometallic compounds.[55]

Computational methods for data generation

The accuracy of any ML predictive model is ultimately limited
by the quality of the training data, and while experimental data
are highly valuable, currently, truly large volume of data is only
accessible computationally. Thus, the quality of experimental
data and the “rung” on “Jacob’s ladder” of the DFT method for
data generation are an integral part of developing AI/ML-
assisted catalytic workflow. The larger the training dataset, the
more limits are placed on the DFT method. Usually, lower level
molecular modelling methods are employed to generate their
training and validation data, after benchmarking against higher
level DFT methods to establish their accuracy. This is even more
challenging when TS properties are used as training data,[51] as
optimisation of TS demands much more CPU time than
optimisation of stable intermediates, ligands and starting
materials. Furthermore, optimisation of TS is also more prone to
errors and failures, which can lead to large amount of
unproductive CPU time. On the other hand, predicting TS
properties based on those of intermediates can be difficult, as
famously demonstrated in the case of rhodium-catalysed
asymmetric hydrogenation.[56]

In this context, the study of Balcells and Aspuru-Guzik,
which used ML algorithms to predict ΔG� for oxidative addition
of Ir-complexes to H2 directly is intriguing.[57] Instead of
descriptors derived from molecular modelling, full autocorrela-
tion features, which represented the connectivity and atomic
properties (electronegativity, atomic number, coordination
number and size) of the atoms at the centre of analogues of
Vaska’s complex, were employed. The results were bench-
marked against values calculated with PBE/def2-SVP for
1947 TS, obtaining the best MAE=1.74 kcal ·mol� 1 using a Deep
Neural Network (four layers with 584, 94, 41 and 20 neurons,
respectively) with very significant reduction of computational
time once the model is trained.

The Transition State Force Field (TSFF) technique, developed
by Wiest and Norrby using the quantum-guided molecular
mechanics (Q2MM) method,[58,59] is another approach which
targets computational cost. It leverages very fast and computa-
tionally inexpensive force field calculations to model transition
states, which traditional force fields are not capable of doing.

Figure 5. Regression performance of machine learning models. Illustrative
performance of all seven types of ML models from this study for the
prediction of Vmin (Boltz). BoS=Bag of Substituents; FP= fingerprint
representation: circular fingerprints, radius=2, folded to 1024 dimensions;
red FP= reduced fingerprints representation: 100 most important fingerprint
dimensions based on the feature importance of the GBR FP model.
(Reprinted with permission from ACS).[40]

Figure 6. DFT-computed rND vs Δ-SCF gap for base complexes in gen-0 to
gen-3. For each complex, the average Δ-SCF gap over all DFAs is shown as a
circle sized by the corresponding standard deviation (std. dev.) over all DFAs.
The range of values sampled in each generation is indicated by a convex
hull. The target zone is shown as a rectangle with dashed lines. Normalized
stacked marginal histograms for Δ-SCF gap and rND are also shown.
(Reprinted with permission from ACS).[50]
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The TSFF needs to be developed/trained for each specific
reaction, based on DFT generated descriptors of a small number
of reactions. The descriptors required to train the models are
geometry related: bond lengths, bond angles and torsion
angles. Wiest and co-workers employed TSFF models to predict
enantioselectivity of different palladium catalysts in an asym-
metric redox relay Heck reaction, through the stereodetermin-
ing migratory insertion step, with R2=0.89 and Mean Unsigned
Error (MUE)=1.8 kJ ·mol� 1 against 151 experimentally deter-
mined stereoselectivities (Figure 8).[60] The preferred absolute
stereochemistry was correctly predicted in every case, suggest-
ing the use of TSFF for rapid prediction of absolute stereo-
chemistry for a class of reactions. Their TSFF model was trained
on 12 separate transition states (M06-GD3/LANL2DZ(Pd) or
6-31+G* (other atoms)). Importantly, conformational search
was carried out and the predicted stereoselectivity was
calculated from the Boltzmann averaged conformations. Analy-
sis of a small set of outliers linked the poor predictions to the
unsatisfactory representation of π-stacking in the underlying
MM3* force field.

Virtual Chemist is a software platform developed by Norrby
and Moitessier, which employ Q2MM or Asymmetric Catalyst
Evaluation (ACE) to predict stereoselectivity in asymmetric
catalysis.[61–64] Due to its speed, four different usages were
proposed: one-by-one design, library screening, hit optimisation
and substrate scope evaluation. The organic catalyst candidates
can be screened in hours and accuracies within 1.0 kcal ·mol� 1

for ΔG�, although the tool has not been demonstrated with
transition metal catalysts.

In spite of the low cost of TSFF, DFT methods are much
more frequently employed in generating data for AI/ML
applications in catalysis. Semi-empirical methods have also
found extensive use in pre-optimisation of complexes and

Figure 7.Workflow for generation of a catalophore from a transition state reference structure and identification ligands in the CSD to generate ligand sets
ligands_CSD_Pip_set and ligands_CSD_Pyr_set. Hydrogens are excluded for clarity. (Reprinted with permission from RSC).[51]

Figure 8. Comparison of 184 predicted and experimental selectivities.
Stereochemistry (R/S) is indicated by + /� values, respectively. The MUE of
the magnitudes of the selectivity, omitting absolute configuration, is
included in parentheses. (reprinted with permission from ACS).[60]
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transition states. Buttar successfully used GFN2-xTB for con-
formational sampling of TS for 449 SNAr reactions, before
optimisation with ωb97xd/6-31+G(d) with SMD solvation
model with MAE=2.93 kcal ·mol� 1 against experimental reac-
tion rates.[65] In this case, a hybrid mechanism-based Gaussian
Process Regression (GPR) model using reaction rate data, using
B3LYP/6-31+G(d) generated descriptors, predicted ΔG� values
with R2=0.87 and MAE=0.80 kcal ·mol� 1, performing better
than ωb97xd/6-31+G(d) in predicting ΔG�.

The accuracy of DFT training data, commonly accepted to
be about 2–3 kcal ·mol� 1,[66] is an obvious limitation of using
computational data for AI/ML models. Ab initio methods, such
as CCSD(T), give much higher accuracy, but with prohibitive
computational costs for high throughput calculations. Tucker-
man, Müller and Burke reported a way to overcome this,[66]

using ML to calculate coupled-cluster energies from DFT
densities with errors below 1.0 kcal ·mol� 1 on the MD17 dataset
(1500 geometries and energies of small molecules in gas
phase).[67–69] This approach, known as Δ-DFT, reduces the
amount of training data required. This allows for accurate DFT-
based molecular dynamics simulations even in cases where
standard DFT methods fail and may see wider application in
catalysis in the future.

The combination of B97-3c//GFN2-xTB techniques, i.e.
optimisation with GFN2-xTB followed by energy calculation
with B97-3c, has been developed by Grimme for high
throughput optimisation of transition metal complexes.[70,71] The
method was extended to intermediates and TS in Cu(I)-
catalysed Ullmann-Goldberg coupling reactions by Nguyen
group.[51] Restriction on the atoms coordinating to Cu(I) was
required for pre-optimisation, before successful optimisation of
the TS with each ligand. The ΔG� values obtained with B97-3c//
GFN2-xTB were found to have a MAE=3.9 kcal ·mol� 1 against
those calculated with DLPNO-CCSD(T)/def2-TZVPP (Figure 9).
This level of noise in the training data compared well with
predictions made by ML models using descriptors based on the
catalytic intermediates before the TS: RMSE=3.5–6.1 kcal ·mol� 1

and 73–88% of predictions within �4 kcal ·mol� 1 of the DFT

calculated ΔG�. Importantly, the ML models avoid DFT
optimisation and energy calculation of new TS, reducing the
CPU time by up to 90%. Thus, higher level DFT methods, e.g.
TPSS/def2-TZVP//GFN2-xTB or PBE0/def2-TZVP//GFN2-xTB, were
used to generate descriptors for the ML models, leading to
significant improvement to their accuracy while still reducing
the CPU time by a factor of 4 when compared to direct
calculation of ΔG� through optimising the TS. A similar
approach was employed by Ess and co-workers to automate
the building and optimisation of TS for Pt-catalysed C� H
activation of methane.[72] A Random Forrest (RF) model, which
predicted the ΔG� value, was built based on DFT data of 900 TS
(PBE0-D3/Def2-SVP), but did not perform well with a validation
set (R2=0.29).

Lastly, optimisation of all the TS with DFT is prone to failure,
particularly in high throughput mode. Moreover, exploration of
ligand space may lead to unsuitable catalysts, for which TS
optimisation may correctly fail. Thus, a significant amount of
CPU time may be wasted on these jobs. Kulik group solved this
problem by introducing a dynamic classifier which monitors
geometry optimisation on the fly and terminates those which it
predicts to be unproductive.[73,74] This classifier is based on a
convolutional neural network, and makes decisions based on
the evolving geometric and electronic structure and features
such as energy gradient and Mulliken bond orders. This
approach led to >50% reduction in CPU time while having
negligible false-negative predictions (<2%) for 300 potential
Mn/Fe catalysts for oxidation of methane to methanol.

Complex aspects of catalysis

Practical protocols for catalytic reactions include temperature,
solvent, catalyst loading, ratio of ligand(s) to metal, a base
(which is often inorganic and has varying partial solubility in
different solvents at different temperatures), and possible
additives. Thus, the actual catalytic reactions can be very
complex mixtures, which are challenging to describe with
descriptors for AI/ML. The last challenge to overcome is that the
majority of available data for catalytic reactions in the literature
are reaction yields, which cannot be easily linked to ΔG� due to
interference from side reaction and unreliable reported reaction
times, i.e. reactions are often left for a fixed time rather than
monitored kinetically. These make the practical application of
AI/ML chemical space exploration and prediction models for
transition metal catalysed reactions uniquely challenging.

Nevertheless, a number of successful studies in the last
three years have shown that some of these problems can be
overcome with innovative approach and care while applying
ML algorithms. The prevalent approach focuses on reaction
optimisation, through predicting and optimising selectivity,
particularly stereoselectivity. This has the advantage of avoiding
the unreliable reaction yield and reaction time data. The ΔΔG�

value is linked to the two TS giving the two stereoisomers and
the observed stereoselectivity under kinetic control. The ΔΔG�

value can be predicted with an appropriate regression ML
algorithm, based on the amount of available data and the

Figure 9. Scaled B97-3c activation energies of 68 TSOA and 83 TSSig
transition states from ligands_lit_set, compared to their DLPNO-CCSD(T)/
def2-TZVPP calculated activation energies. The red lines represent
3.9 kcal ·mol� 1 (the MAE in the calculations) (reprinted with permission from
RSC).[51]
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number of descriptors which can be fed into the algorithm. The
main challenge is the high computational cost of calculating
the TS with sufficient accuracy to predict enantioselectivity (a
ΔΔG� value of 2.1 kcal ·mol� 1 would translate to a selectivity of
>99% e.e.).

Thus, methods to approximate DFT results of TS with lower
computational cost are essential. This was demonstrated by
Wiest and Norrby in predicting stereoselectivity for the Pd-
catalysed 1,4-conjugate addition of aryl boronic acids to
enones.[75] A TSFF model was developed for the reaction, based
on Q2MM calculations and MM3* force field and training TS
data generated with M06/LANL2DZ/6-31+G*.[76] The TSFF
model was then incorporated into CatVS tool to carry out a
conformational search.[59] Boltzmann averages for all of the
conformers of the four different TS for each catalyst were used
to calculate the enantiomeric ratio of the products against
experimental values. The predictions were validated experimen-
tally using an automated screen of 9 ligands, 38 aryl boronic
acids, and 22 enones, leading to a mean unassigned error
(MUE) of 1.8 kcal ·mol� 1 and a R2 value of 0.88 over 82 examples
(Figure 10). This TSFF model was then used to carry out a virtual
screen with 27 ligands and 59 enones. Selected results for 6-
substituted pyrox ligands, which were not part of the training
set, showed discrepancies against DFT calculations. Unfortu-
nately, experimental validation was hampered by the synthesis-
ability of the ligands. Relatively similar accuracy was previously
observed when CatVS was applied to OsO4-catalysed cis-
dihydroxylation and Rh-catalysed asymmetric hydrogenation.[59]

An alternative approach is making predictions on ΔΔG�

based on the properties of the catalytic intermediates or
starting materials, rather than those of the TS. This has the
benefit of avoiding costly and error-prone DFT optimisation and
frequency calculation of TS, which can account for >90% of
the total CPU time of a campaign.[51] However, care must be
taken to ensure that the generated regression models are
robust in extrapolation beyond the training set. The standard
practice of having a separate training set, test set and validation
set is strongly recommended, although practical limitations
often prevent it. Sigman and Toste has demonstrated the
effectiveness of this approach, using the MO, vibrational and
steric descriptors (generated with M06-2X/def2-TZVP//M06-2X/
6-31+G(d,p)) of the chiral phosphoric acid counterion and the
nucleophile to predict enantioselectivity in a Pd-catalysed

intramolecular allylic substitution.[77] Multivariate Linear Regres-
sion (MLR) models were built with up to 35 descriptors for 16
experimental data points. These interpretable models led to
mechanistic insights on the origin of enantioselectivity through
multiple noncovalent interactions in this dual catalytic system.
Another study was reported by Hong and Ackermann, used ML
to design and optimise chiral carboxylic acids for cobalt-
catalysed C� H alkylations.[78] While the R2 and MAE values (using
Linear Support Vector Regression algorithm) are not as good as
those reported by Sigman and Toste, the catalyst, chiral
carboxylic acids, reactants and reaction temperature (108
descriptors including buried volume, Sterimol, Fukui function,
charge, bond dissociation energies, etc. for 59 reactions) were
all included with 3D descriptors generated with rdkit (steric)
and GFN2-xTB (charge, bond order and MOs). The models were
used to predict carboxylic acids which give high enantioselec-
tivity and yield, which were successfully validated experimen-
tally. A very similar approach was used to predict enantiose-
lectivity in a pallada-electrocatalysed C� H activation reaction
based on 127 experimental datapoints.[79] A total of 119
descriptors were used, including 13 for the experimental
conditions (e.g. properties of solvent, electrolyte, temperature
and current), and ET algorithms was found to be the most
effective, giving R2=0.91 and MAE=0.236 kcal ·mol� 1.

An additional benefit of using descriptors based on the
catalyst and starting materials is that some, if not all, the
descriptors for different reactions can be reused. This is
particularly true with ligand/metal combinations which have
rigid structures around the metal regardless of the other
ligands. One example is Cu-bisoxazoline (BOX) catalysts, which
have been used as catalysts for enantioselective cyclopropana-
tion, Diels-Alder cycloadditions, and difunctionalisation of
alkenes. Sigman group showed that mechanism-specific cate-
gorisation of curated data sets and parameterisation of reaction
components allow for simultaneous analysis of disparate
organometallic intermediates such as carbenes and Lewis acid
adducts.[15] Experimental data were curated from the literature
on carbene, Lewis acid and radical-based transformations, i.e.
68 data points from 10 publications spanning a selectivity
window of 0–99% e.e. (0.0–3.1 kcal/mol). Comparison of ligand
descriptors (M06-2X/def2-TZVP//B3LYPD3BJ/6-31(d,p)/
LANL2DZ(Cu)) and their weighted contribution in each model
reveals the relevant structural requirements necessary for high
selectivity. The prediction errors ranged from 0.15�0.10 to
0.79�0.42 kcal ·mol� 1 (most predictions within 10% e.e.),
depending on the reaction (Figure 11). The scarcity of high
quality experimental data is a key obstacle in applying AI/ML to
catalysis, and this work showcased a possible workflow to
combine experimental data for related ligand classes in catalytic
reactions with similar stereo-inducing mechanistic steps. While
the model for Cu catalysts cannot be directly applied to Fe/Ni/
Mg/Pd-BOX catalysts, a separate unified MLR model was found
to work on a new combined data set of 24 data points for these
metals and showed similar accuracy.

Outside stereoselectivity, Sigman and Nozaki applied the
methods described above to optimise phosphine-sulfonate
ligands in Pd-catalysed copolymerisation of ethylene and meth-

Figure 10. TSFF prediction of enantioselectivity in Pd-catalysed 1,4-conjugate
addition of aryl boronic acids (reprinted with permission from ACS).[75]
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yl acrylate.[80] The data was filtered based on reaction temper-
ature (80 °C for homopolymerisation, 80–100 °C for copolymer-
isation). A total of 62 descriptors were used with 112
experimental data points to predict the log(MW) of the polymer
products, which depends more on the stability of the catalyst
than on its activity. The models were built with PLS and LASSO
algorithms, and led to the identification of ligand features
which has high impacts on the MW of the product, such as the
size of substituents on the phosphorus atom, the electron
density and dz2 occupancy of the Pd atom, and the bite angle
of the ligand. A MLR model for reaction yield of a Pd-Catalysed
cyanation of aryl boronic acids based on mono- and diphos-
phine ligands was also reported based on the kraken dataset.[81]

A wider substrate scope was accommodated, with tolerance for
boronic acids bearing electron-withdrawing substituents.

On the other hand, Ess group reported an interesting study
in which DFT-calculated TS and ML were combined to identify
important features for selective olefin oligomerisation with Cr-
catalysts.[82] A Random Forrest model was built to predict

chemoselectivity in oligomerisation of ethylene into 1-octene vs
1-hexene (ΔΔG�) with RMSE=0.344 kcal ·mol� 1, based on
105 TS with Cr(P,N) catalysts and 14 molecular descriptors, i.e.
bond lengths, angles, dihedrals, percent volume buried, and Cr
metal center distance out pocket. Feature importance analysis
of the model identified Cr� N distance, Cr� α distance (distance
from Cr to an agostic C� H), and distance out of pocket (distance
to the line between two ligating atoms of the ligand) as the
most important features in enhancing selectivity for 1-octene,
which informed subsequent catalyst designs.

In addition, Aspuru-Guzik, Hein and Sigman developed a
closed-loop system to optimise a Suzuki-Miyaura coupling
reaction on a vinyl tosylate substrate with stereoretention in
batch (Figure 12a).[83] The process parameters included temper-
ature, amount of boronic acid, palladium loading, ligand/
palladium ratio, and the ligand as a discrete parameter. The
Phoenics and Gryffin algorithms were employed to maximise
the yield of the E-product and to minimise the palladium
loading and aryl boronic acid equivalents.[84,85] Commercially

Figure 11. (a) Grouping of substrates based on proposed intermediates and subsequent classification using PEOE14 descriptor. (b) Multivariate regression
analysis of Cu-BOX-catalyzed reactions (68 reactions). Plot of cross-validation [LOO and k-fold (k=4)] and external validation (predR

2) by pseudorandom 50 :50
partitioning of data into training set: validation set. (c) Plot of carbene-based reactions (32 reactions) being removed and held as a validation set. (d) Plot of six
individual publications being removed (48 total reactions) and held as a validation set (L6RO= leave six reactions out). (Reprinted with permission from
ACS).[15]
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available monodentate phosphines (365 ligands) were used to
define the chemical space through a set of DFT descriptors
which were subsequently condensed into 4 principal compo-
nents. Subsequently, k-means clustering was carried out on
these to divide the ligand chemical space into 24 regions, which
were used to guide the ligand selection process for screening. A
total of 192 experiments were required to optimise the
outcome of the reaction, which compared well with the
traditional approach using Design of Experiments (DoE), which
will likely require 33×23 ligands=621 experiment to achieve the
same objectives.

Mack and Sigman demonstrated another multi-objective
optimisation, i.e. for yield and selectivity, of two sequential
catalytic reactions: an asymmetric Pd-catalysed Hayashi-Heck
reaction and an asymmetric Rh-catalysed hydroformylation
through optimisation of the biphosphine ligands (Figure 12b).[16]

These reactions are the first two steps of the synthesis of a
TRPA1 inhibitor and were optimised separately in this study.[86]

In addition to the previously employed steric and electronic
descriptors, quadrant-specific descriptors for ligands containing
different symmetry elements were included, e.g. the percent
buried volume (Vbur).

[87,88] Application of a classification algo-
rithm to the high throughput experimental data of the Hayashi-
Heck reaction strongly linked reactivity with the phosphorus
lone pair occupancy of the ligand, in agreement with estab-
lished mechanistic understanding.[89] Application of a logistic
regression classifier on the hydroformylation step identified the
buried volume and total ligand dipole as important descriptors.
For regioselectivity of the first step, an MLR algorithm found
strong correlation to two parameters, the computed anisotropic
phosphorus NMR shielding and the occupancy of the σ* orbitals
of the P� C bonds. After removal of some outliers, a two-term

MLR model was found for hydroformylation regioselectivity
using an electronic parameter PC occupancy and a steric
parameter %VburNE. This Vbur descriptor was also found to be
linked to enantioselectivity. Taken together, the workflow led to
the identification of the less often used ligands (S)-HexaMeO-
BIPHEP and Walphos W003 for the two steps, which were
validated experimentally to give the final product in excellent
yield and purity.

Conclusions and Outlook

Application of AI and ML to transition metal catalysis is a rapidly
evolving field of research with unique challenges. Recent
publications have shown that it is possible to predict ΔG� and
ΔΔG� with ML to reduce the resources required for direct TS
calculations. They included a wide range of catalytic reactions,
including coupling reactions, 1,4-addition of boronic acids to
enones, cyclopropanation and oxidation of methane to meth-
anol. Many of these successes focused on optimisation of the
catalyst or catalytic process with relatively small experimental
datasets. In this context, the applicable ML algorithms are
somewhat limited, and the most advanced neural networks are
often excluded. Thus, the scarcity of high quality experimental
data, particularly kinetic data, is a key obstacle which needs to
be addressed in order to progress the field.[90]

Chemical space exploration for transition metal catalysts has
been effectively demonstrated using a combinatorial approach
with monophosphines and porphyrin-type ligands. Wider
chemical space exploration may be supported using the CSD, or
drug-design cheminformatics techniques. Some recent publica-
tions have also reported guided exploration, instead of a
randomised approach, of transition metal chemical space to
achieve more efficient coverage.

Lastly, the complexity of transitional metal catalysis led to
highly complex chemical systems which need to be addressed
with reliable conformational searches, 3D structural and elec-
tronic descriptors and DFT methods which balance between
computational cost and accuracy. These are unique challenges
and are where exciting innovations and discoveries will be
made in this area of research. In this regard, the work of Balcells
group, including their recent publication on predicting organo-
metallic properties with natural quantum graphs,[91] and the
autonomous reaction network exploration in catalysis by Reiher
indicate exciting developments in computational catalysis in
the near future.[92]
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ligand optimisation.[16]
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