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N,N-Dimethyl Formamide European Restriction Demands
Solvent Substitution in Research and Development

James Sherwood,*[a] Fernando Albericio,[b] and Beatriz G. de la Torre[c]

As of December 2023, the use of common solvent N,N-dimethyl

formamide (DMF) will be restricted in the European Union

because of its reproductive health hazard. Industrial facilities

must comply with stricter exposure limits, and researchers are

recommended to find alternative solvents. Here we explain the

restrictions on DMF, which disciplines are affected, and how to

substitute DMF to keep research and development commer-

cially relevant.

Solvent properties

N,N-Dimethyl formamide (DMF) is a dipolar aprotic solvent with

varied uses across the polymer and fine chemical industries.

Known since the nineteenth century,[1] DMF came into wide-

spread use as a solvent in the mid-twentieth century, especially

for the production of polyacrylonitrile fibres.[2] The market for

DMF is currently 20–30 thousand tonnes per annum within the

EU,[3] making it the most commonly used amide solvent, with a

lower price and lower boiling point than the structurally similar

N,N-dimethyl acetamide (DMAc) and N-methyl pyrrolidone

(NMP) (Scheme 1). DMF, DMAc, and NMP are all considered to

be reprotoxic and are labelled with the health hazard statement

‘H360D: May damage the unborn child’.

The physical properties of DMF and the other dipolar

aprotic solvents (liquid range, density, viscosity, surface tension,

water-octanol partition coefficient, flash point, autoignition

temperature, electrical conductivity) are comfortably within the

bounds established by common solvents (see Supporting

Information, Figure S1). What sets dipolar aprotic solvents apart,

making them indispensable to the chemical industries, is their

polarity (Figure 1). Dipolar aprotic solvents are defined by their

high relative permittivity and are also non-protogenic.[4]

Described in terms of the Hansen solubility parameters, the

dipolarity (δP) of dipolar aprotic solvents is greater than other

categories of solvents. Only chlorinated and aromatic solvents

have greater dispersion (δD) forces, and their hydrogen bonding

(δH) interactions are the strongest of the aprotic solvents. These

characteristics make DMF capable of dissolving polar substan-

ces including salts and functionalised polymers. The Kamlet–

Abboud–Taft solvatochromic parameters describe solvent polar-

ity in relation to chemical phenomena such as reaction rate
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Scheme 1. The chemical structure of N,N-dimethyl formamide (DMF) and

related solvents. DMAc, N,N-dimethyl acetamide; NMP, N-methyl pyrrolidone;

DMSO, dimethyl sulphoxide; MeCN, acetonitrile; GVL, γ-valerolactone. Polar-
Clean is methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate.
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constants. High dipolarity (π*) and high hydrogen bond accept-

ing ability (β) is observed for DMF and the other dipolar aprotic

solvents. Thus, reactions that require the stabilisation of

electronic charges or protogenic species benefit from the

polarity of dipolar aprotic solvents.

Dipolar aprotic solvent health hazards

Although the benefits of DMF are significant, it’s reproductive

toxicity is well established.[5,6] Damage to the liver is another

health concern associated with exposure to DMF.[2,7] This has

led to regulatory action being implemented to restrict the use

of DMF. Since its introduction in 2007, the European REACH

regulation has introduced stricter controls over the use of

hazardous substances. One of the chemical categories that has

been under scrutiny is solvents.[8,9] It is already illegal for DMF to

be present in consumer products e.g. paint removal

products,[10] and stricter exposure limits are being introduced

for professional settings.[11] From 12th December 2023, DMF shall

not be manufactured, used, or marketed unless exposure is

limited to 6 mg/m3 (2 ppm) for exposure by inhalation and

1.1 mg/kg/day for dermal exposure. These thresholds are lower

(and therefore stricter) than previous national exposure limits.[7]

The EU restriction on DMF use follows the principles used in the

restriction of NMP,[9] namely the introduction of stricter

exposure limits rather than prohibiting its use. This is because

of the perception that the only valid substitutes for DMF are the

similarly reprotoxic amides DMAc and NMP etc.[12] Eventually, all

the amide solvents are likely to be restricted within the EU in a

similar way to DMF and NMP.[13] Conversely, no such action is

scheduled for the UK,[14] and DMF is not amongst the ongoing

or completed risk evaluations under the USA Toxic Substances

Control Act (TSCA).[15]

Academic and R&D uses of DMF

Efforts must be made to avoid using DMF in discovery phase

chemistry to avoid regulatory issues or late-stage solvent

substitution at pilot scale or beyond. To identify the chemistries

most affected by restrictions on the use of DMF, a survey of

solvent use in selected journals was conducted with SciFindern

(see Supporting Information, Figure S2).[16] This exercise re-

vealed that DMF is commonly used at discovery chemistry level,

especially in the multi-step synthesis of bioactive molecules. A

reaction in DMF is reported within articles published in Journal

of Medicinal Chemistry and European Journal of Medicinal

Chemistry at a rate of 4–10 reactions per paper and is increasing

The use of DMF is less common in ChemSusChem (which

publishes sustainable chemistry) but has tripled over ten years

(Figure 2). At larger scales (ascertained via the journal Organic

Process Research & Development), DMF use remains quite

common despite the optimisation required to move processes

towards pilot plant stage.

To better understand how DMF is used as a solvent in

discovery chemistry, a more detailed literature search was

conducted (using SciFindern), organised by reaction category.

Covering the years 2013–2022, examples of DMF being used as

a solvent in reaction chemistry exceeded 2 million instances.[16]

This is comparable to the frequency that DMAc, NMP,

acetonitrile and DMSO combined were used over the same

time period. Carbonyl addition was found to be the most

common type of transformation, especially amidations which

Figure 1. Solvent polarity maps. (a) Hansen solubility parameters. (b) Kamlet-

Abboud-Taft solvatochromic parameters. Key: 1, propylene carbonate; 2, γ-
valerolactone; 3, Cyrene; 4, N-butyl pyrrolidone; 5, PolarClean; blue: DMF;

cyan: other dipolar aprotic solvents (DMAc, NMP, dimethyl sulphoxide,

acetonitrile); green: hydrocarbon solvents; orange: chlorinated solvents; red:

aprotic oxygenated solvents; magenta: protic oxygenated solvents. Data is

tabulated in the Supporting Information.
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accounted for 28% of reported DMF use (Figure 3). A reliance

on DMF for peptide synthesis is suggested, including protection

and deprotection strategies, with transamidation and amide

hydrolysis also amongst the most frequent applications of DMF.

Nucleophilic substitution is also a common use of DMF, roughly

equal between SNAr (and related) reactions, nucleophilic

substitution by nitrogen nucleophiles and nucleophilic substitu-

tion by oxygen nucleophiles.[17] To a lesser extent, cross

couplings are also a popular use of DMF,[18] especially the

Suzuki–Miyaura reaction.

It is important to know whether DMF is the main solvent

option in the transformations it is commonly used for, which

makes the investigation of alternative solvents important, or if

there are more common solvent choices, in which case DMF

substitution is trivial. DMF is the most popular solvent for

amidations and transamidations, typical SN2 reactions, and

amide alkylations (Figure 4). Only for ester hydrolysis (excess

water being preferred, not shown in Figure 4) and Suzuki-

Miyaura type cross couplings (which are tolerant of many

solvents) is DMF a minor solvent.[19] It is interesting that DMF is

far more commonly used than DMAc or NMP, even at small

scale where cost is less of an issue. DMSO is relatively common

for SNAr reactions and acetonitrile (MeCN) is used across many

reactions, but still DMF use is much more prevalent. With a

much lower boiling point and weaker hydrogen bonding,

synthetic methods may need to be adjusted to accommodate

MeCN as a replacement for DMF.

Through the analysis presented in Figure 3 and Figure 4, it

can be surmised that DMF substitution in research and develop-

ment is best focused on amidation and related chemistries.

Carbonyl additions are accelerated by low polarity, non-hydro-

gen bonding solvents,[20] so actually DMF will only need to be

used in amidations when solubility is paramount. Most

importantly, this includes Solid Phase Peptide Synthesis (SPPS).

The SPPS strategy involves the use of a polymeric (solid)

protecting group for the C-terminal carboxylic group. The

solvent must solvate this peptide-resin and cause sufficient

swelling to permit access of the free amino termini of the resin-

bound peptide chains by the reactants.[21] Low solvent viscosity

is important for the efficient diffusion of the solvent into the

Figure 2. Reaction survey reporting DMF (and DMSO in solid blue) use by

average occurrence in reactions per article published in ChemSusChem.

Rolling average shown as line. Data for 2022 was incomplete at the time of

the survey. See the Supporting Information for further details.

Figure 3. Relative frequency of DMF use in different chemical transforma-

tions, grouped by type of transformation.

Figure 4. The relative popularity of solvents for the most common uses of

DMF in synthetic chemistry (sourced from SciFindern). Bubble area represents

the number of reported uses compared to DMF between 2013 and 2022.

Nucleophilic substitution is divided into amine (N) and alcohol (O)

nucelophiles. Literature search definitions are given in the Supporting

Information.
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solid support. Then, the amino acid sequence can be elongated

by repetitive amidation of the incoming amino acid with the α-
amino temporally protected with a 9-fluorenymeth-

yloxycarbonyl (Fmoc) group. Removal of the Fmoc group is

then necessary to continue the peptide synthesis.[22]

Since the implementation of SPPS with cross-linked poly-

styrene resins, the amidation steps have typically been carried

out in DMF (and to a lesser extent NMP). The preferred Fmoc

removal protocol usually requires 20% piperidine-DMF/NMP,

and intermediate washings of the resin to remove excess

reagents is performed with neat DMF/NMP.[23] So far, a single

solvent able to replace DMF/NMP has not been identified, the

mixtures of ethyl acetate (EtOAc) with N-butyl pyrrolidone or

DMSO being the most promising candidates.[24–26]

Industry uses of DMF

N,N-Dimethyl formamide accounts for over half of conventional

dipolar aprotic solvent use reported in patents (see Supporting

Information, Figure S3). The major industry uses of DMF include

pharmaceuticals, the production of polyurethane materials, and

the spinning of synthetic fibres. Polyurethane coating processes

and membrane fabrication have an extra year to comply with

the DMF REACH restriction, and the dry and wet spinning of

synthetic fibres (e.g. polyacrylonitrile) has a 2 year extension.[11]

Within pharmaceuticals, the production of peptide-based Active

Pharmaceutical Ingredients (APIs) is very susceptible to regu-

lation controlling the use of DMF because SPPS is the method

of choice for essentially all peptide drug discovery projects

through to manufacturing. Although water would be the ideal

solvent from the perspective of safety and environmental

impact, its use in SPPS has been limited to the synthesis of

short peptides in an academic context.[27–29] Its implementation

in an industrial setting would require a total change of the SPPS

paradigm with the concourse of a total different set of

protecting groups,[30] and polymeric supports,[31] including the

development of bespoke aqueous surfactants.[32] Instead, a

number of alternative organic solvents have been investigated,

including 2-methyltetrahydrofuran (2-MeTHF),[33] GVL,[34] N-butyl

pyrrolidone,[35,36] propylene carbonate,[37] methyl-5-(dimeth-

ylamino)-2-methyl-5-oxopentanoate (Polarclean),[38] and N-octyl

pyrrolidone.[39] Most of these solvents have showed better

results when used with a polyethylene glycol based solid

support, e.g. TengaGel,[40] and ChemMatrix,[41] that are more

hydrophilic than the standard polystyrene support. The use of

solid supports other than polystyrene has the drawbacks of

higher cost and lesser availability, especially in the large

amounts needed for commercial peptide production. Higher

temperatures are also commonly required to reduce the

otherwise high viscosity of the alternative SPPS solvents, adding

further practical and economic limitations on the use of

alternative solvents at larger scales. However, pharmaceutical

manufacturing (and petrochemicals) are already understood to

operate within the new DMF exposure limits, and so will not be

required to take additional action.[42]

The use of water as a solvent has been resurgent for the

preparation of small molecules, especially for micellar reactions.

Cross-coupling reactions form the backbone of many small

compounds and are often performed in dipolar aprotic solvents

such as DMF.[18] Kilogram-scale Suzuki–Miyaura cross-coupling

reactions have been successfully performed in water using the

surfactant TPGS-750-M to create a hydrophobic micellar

environment.[43,44] To avoid reaction solvent altogether, the use

of mechanochemistry for aromatic nucleophilic substitution has

been developed by the AbbVie pharmaceutical company,[45]

meaning the use of dipolar aprotic solvents once synonymous

with this class of reaction can be avoided. A ball mill can be

used to combine the reactants, sometimes with novel

reactivity,[46] and for production scale, reactive extrusion can

permit continuous flow mechanochemistry.[47]

Dry and wet spinning of synthetic fibres involves dissolving

a polymer in a solvent, then extruding it to form fibres. Dry

spinning uses hot air to dry the fibres while wet spinning fibres

are extruded into a non-solvent. DMF is the standard solvent for

producing polyacrylonitrile fibres by both dry and wet spinning

techniques. Polyacrylonitrile fibres are used to make textiles

and the majority of carbon fibres.[48,49] It appears that the

substitution of DMF in the production of polyacrylonitrile fibres

is not viable. The sector is prepared to provide respiratory

protective equipment for workers in order to comply with the

new exposure limits.[3,42] Various arguments have been provided

by manufacturers against the substitution of DMF, including

supply chain disruption and cost.[50] Dimethyl sulphoxide

(DMSO) has been tested as an alternative to DMF, preferred to

the traditional sodium thiocyanate solutions,[51] but ultimately

there were insurmountable problems caused by the higher

boiling point and viscosity of DMSO, as well as coagulation of

the polymer solution.[42] However, academic research indicates

that DMSO is suitable for the (wet) spinning of polyacrylonitrile

fibres,[52] especially if the moisture content is limited to improve

solubility.[53]

The fabrication of productive polyurethane coatings and

polyurethane membranes commonly uses DMF as the casting

solvent.[12] The relevant regulatory dossiers do not contain

much information on why DMF is used and whether there is an

alternative.[42] Academic research has identified a number of

viable solvents,[54] including blends of solvents tailored to suit

different commercial polyurethane products.[55] Some commer-

cial polyurethane coatings are already produced with water-

borne coating technologies.[56,57] Bio-based dipolar aprotic

solvents Cyrene and γ-valerolactone (GVL) can be used as co-

solvents for polyurethane dispersions in water.[58] Conversely,

some new, renewable alternatives to standard polyurethane

materials continue to use DMF as a processing solvent.[59]

Solvent substitution

It is important to understand the hazards associated with

potential DMF replacements to avoid unsatisfactory solvent

substitutions. For example, the use of DMAc to replace DMF

(temporarily) avoids regulatory control, but because both are
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reprotoxic a hazard to health remains. The safety, health

hazards, and environmental impact of solvents can be illus-

trated with a solvent selection guide. The CHEM21 solvent

selection guide has been used here (Figure 5).[60] Various

properties are considered to create a score in each category,

with low scores being preferable. Dipolar aprotic solvents tend

to have high flash points that reduces safety risks. Alternatives

to DMF (propylene carbonate, Cyrene, GVL, PolarClean, N-butyl

pyrrolidone) also have high flash points. None of the solvents

have any particular environmental hazards (aside from the

consequences of being VOCs), and so the environmental impact

is derived from the energy cost to distil the solvent for recovery.

Dipolar aprotic solvents tend to have high boiling points and

energy intensive distillations due to their strong intermolecular

interactions. The CHEM21 solvent selection guide considers the

neoteric dipolar aprotic solvents to be problematic because of

their high boiling points. More importantly, valid substitutes for

DMF shall not be reprotoxic or possess equally dangerous

hazards. The alternative solvents included in Figure 5 only have

minor health hazards, such as eye irritation.

Changes to methodologies may be needed to accommo-

date solvent substitutions, and this should be pursued, instead

of dismissing safer solvents as inferior when reactions have

been optimised in DMF or another undesirable solvent.[61–65]

Newer technologies, such as micellar reaction

environments,[66–67] or solvent-free systems such as powder

coatings,[68] are proven but widespread adoption seems to be

hindered by the need for initial investment and new expertise.

In the context of peptide synthesis, the development or

binary or even ternary solvents is seen as the most promising

approach.[24–26] The use of solvent mixtures may improve

reaction performance but solvent recovery and separation may

be compromised and so it remains important to evaluate the

impact of solvent substitution from cradle to grave. Telescoped

reactions have also been devised to reduce solvent use,

minimising risk and waste.[69] Furthermore, the development of

the so-called Liquid-Phase Peptide Synthesis (LPPS) method-

ology, where a soluble tag is used instead of the solid support,

retains the advantages of SPPS but with a great reduction in

solvent consumption.[70] Advantageously, LPPS is much more

flexible with respect to solvent selection because all reaction

stages take place in solution without needing to consider resin

swelling.

Generally, the integrated optimisation of a reaction proce-

dure, evaluating solvent and other reaction parameters con-

currently, must be performed to arrive at the most advanta-

geous conditions.[71] The greater availability of machine learning

and other computational methods is making reaction optimisa-

tion easier and more reliable than ever before,[72] and max-

imising solvent suitability and greenness must be at the

forefront of these endeavours.
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PERSPECTIVE

Time for a change. The use of N,N-

dimethyl formamide (DMF) will be re-

stricted in the European Union from

December 2023 because of its repro-

ductive health hazard. Now is the

time to replace DMF in fundamental

research so that future processes are

not reliant on an obsolete, hazardous

solvent.

Dr. J. Sherwood*, Prof. F. Albericio,

Prof. B. G. de la Torre
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