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Abstract

We describe our formalisation in the interactive theorem

prover Isabelle/HOL of the Balog–Szemerédi–Gowers The-

orem, a profound result in additive combinatorics which

played a central role in Gowers’s proof deriving the first

effective bounds for Szemerédi’s Theorem. The proof is of

great mathematical interest given that it involves an inter-

play between different mathematical areas, namely appli-

cations of graph theory and probability theory to additive

combinatorics involving algebraic objects. This interplay is

what made the process of the formalisation, for whichwe had

to develop formalisations of new background material in the

aforementioned areas, more rich and technically challeng-

ing. We demonstrate how locales, Isabelle’s module system,

can be employed to handle such interplays in mathematical

formalisations. To treat the graph-theoretic aspects of the

proof, we make use of a new, more general undirected graph

theory library developed by Edmonds, which is both flexible

and extensible. In addition to the main theorem, which, fol-

lowing our source, is formulated for difference sets, we also

give an alternative version for sumsets which required a for-

malisation of an auxiliary triangle inequality. We moreover

formalise a few additional results in additive combinatorics

that are not used in the proof of the main theorem. This

is the first formalisation of the Balog–Szemerédi–Gowers

Theorem in any proof assistant to our knowledge.

CCS Concepts: • Mathematics of computing → Com-

binatorics; Graph theory; • Theory of computation →
Logic and verification; Automated reasoning.

Keywords: interactive theorem proving, proof assistant, for-

malisation of mathematics, Isabelle/HOL, additive combina-

torics, graph theory, probabilistic method.
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1 Introduction

The area of formalisation of mathematics with proof assis-

tants has in recent years seen a considerable increase in activ-

ity, attracting both computer scientists and mathematicians.

This interest is motivated not only by verification purposes,

but also by the need to gain new insights on proofs, test the

limitations of our available tools, and expand the libraries of

formal proofs by enriching them with advanced, research-

level mathematics. This thus paves the way for the future

creation of tools which – with the promising assistance of

AI technology – would support research mathematicians in

their creative work.

Significant formalisation work in combinatorics and addi-

tive number theory has recently been achieved in numerous

proof assistants. The formalisation of the solution to the

Cap Set Problem (a 2017 result by Ellenberg and Gijswijt

[15]) by Dahmen, Hölzl and Lewis [8] in Lean constitutes

one important milestone. Many other profound, albeit less

recent, theorems in this area involving arithmetic progres-

sions, Ramsey-type results and extremal graph theory have

also been recently formalised. These include: Szemerédi’s

Regularity Lemma and Roth’s Theorem on Arithmetic Pro-

gressions formalised by Edmonds, Koutsoukou-Argyraki and

Paulson in Isabelle/HOL [11–13] – simultaneously and in-

dependently formalised in Lean by Dillies and Mehta [9];

the Hales-Jewett Theorem formalised in Isabelle/HOL by

Sulejmani, Eberl and Kreuzer [37], building on a recent for-

malisation of van derWaerden’s Theorem in Isabelle/HOL by

Kreuzer and Eberl [22]; the same two results in Lean’s math-

lib contributed byWärn by deriving van derWaerden’s Theo-

rem as a corollary of the more general Hales-Jewett Theorem.

Furthermore, in extremal combinatorics, the Kruskal-Katona

theorem has been formalised by Mehta in Lean [23] and the

Sunflower Lemma of Erdős and Rado has been formalised

by Thiemann in Isabelle/HOL [39].

Specifically, material in additive combinatorics involving

the study of the size of sumsets of finite subsets of abelian

This work is licensed under a Creative Commons Attribution-

NonCommercial 4.0 International License.
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groups, that is more directly related to the present formali-

sation, has been recently formalised in Isabelle/HOL. In par-

ticular, Koutsoukou-Argyraki and Paulson have formalised

the Plünnecke–Ruzsa Inequality [21] and Khovanskii’s Theo-

rem [20]. Bakšys and Koutsoukou-Argyraki have formalised

Kneser’s Theorem, also deriving the Cauchy–Davenport The-

orem as a Corollary [2].

The Balog–Szemerédi–Gowers Theorem, whose formali-

sation we present in this paper, is a profound result in this

area and its proof moreover involves tools from extremal

graph theory and probability theory. This is the first for-

malisation of the Balog–Szemerédi–Gowers Theorem in any

proof assistant to our knowledge. We give some background

information on the theorem below. Before presenting the

statement, we start by introducing the following basic defi-

nitions.

Definition 1.1. LetA,B be finite subsets of an abelian group.

The sumset A+B is the set {a+b | a ∈ A,b ∈ B}.Analogously,
the difference set A − B is the set {a − b | a ∈ A,b ∈ B}.

Definition 1.2. Let G be an abelian group. An additive
quadruple in G is a quadruple (a,b, c,d) ∈ G4 such that

a + b = c + d . The additive energy of a subset A of G is the

number of additive quadruples in A4 divided by |A|3.

A deep result shown by Balog and Szemerédi in 1994 at-

tests that every finite subset A (of given additive energy) in

an abelian group must contain a subset A′ of A (the cardinal-

ity of A′ depending on the additive energy of A) so that the

cardinality of A′ is large but the cardinality of the sumset

A′
+A′ is small [6]. In 2001, Gowers gave a new proof of this

result with much better bounds on the cardinalities. This

constituted a key ingredient of his work on a new proof of

the celebrated Szemerédi’s Theorem on arithmetic progres-

sions, where he also derived the first effective bounds for

Szemerédi’s Theorem [16]. The latter bounds provide an esti-

mate on the cardinality of subsets of the naturals that contain

no k-term arithmetic progressions. Gowers’s resultant key

improvement of the Balog–Szemerédi Lemma has thus since

been known as the Balog–Szemerédi–Gowers Theorem.

The Balog–Szemerédi–Gowers Theorem is today recog-

nised in additive combinatorics for both its proof, which

introduced several new incredibly useful techniques, and

as a valuable tool in its own right in current research. Tao

and Vu’s book [38] offer many examples of its early appli-

cations to various proofs. Various different expositions –

as well as different versions and refinements – of the Ba-

log–Szemerédi–Gowers Theorem are available in the liter-

ature, e.g. by Zhao [41], and Sudakov, Szemerédi and Vu

[36]. For our formalisation, we followed a proof presented in

the 2022 lecture notes by Gowers "Introduction to Additive

Combinatorics" for Part III of the Mathematics Tripos taught

at the University of Cambridge, which are freely available

online [17]. The main statement as we formalised it (cor-

responding to Corollary 2.19 in the aforementioned notes)

reads:

Theorem 1.3. Let A be a finite subset of an abelian group.
Suppose that A has additive energy 2c for some c > 0. Then
A has a subset A′ so that |A′ | ≥ c2 |A|/4 and |A′ − A′ | ≤
2
30 |A|/c34.

We moreover show and formalise an analogous version

of the above result for the cardinality of the sumset |A′
+A′ |

instead of the difference set |A′ −A′ |.
The proof assistant of our choice for this formalisation

is Isabelle/HOL [24, 29, 30], an interactive theorem prover

encoding higher-order logic which features the formal proof

language Isar [40] that admits structured proofs. It supports

powerful automation through the Sledgehammer proof au-

tomation interface [31], as well as counterexample-finding

tools. Locales, Isabelle’s module system [3], are ideal for for-

malising mathematical objects and contexts, providing per-

sistent contexts consisting of parameters and assumptions,

which can be extended on, combined, and indirectly inher-

ited. Built on the Isabelle libraries, the Archive of Formal

Proofs (AFP) contains an extensive collection of formalised

material in mathematics, computer science, and logic. As

of November 30 2022, the AFP contains 714 entries corre-

sponding to over 3.668.600 lines of code in the above areas

combined.

The interplay between different mathematical areas in the

proof of the Balog–Szemerédi–Gowers Theorem, namely ap-

plications of graph theory and probability theory to additive

combinatorics, is of profound mathematical interest. At the

same time this makes the formalisation process more inter-

esting, rich and technically challenging. As such, in addition

to the formalisation of the Balog–Szemerédi–Gowers The-

orem – an essential tool for formal combinatorics libraries

in its own right – this work also presents a number of other

contributions. This includes additions to libraries on additive

combinatorics, probability theory and significant work on

graph theory in Isabelle/HOL. In particular, as wewill discuss

in detail in Section 2, a new undirected graph theory library

which is both flexible and extensible was developed by Ed-

monds [10] with the incentive of this work. Furthermore, we

provide a number of interesting contributions to the broader

context of the formalisation process for mathematics. No-

tably, this includes the development of probabilistic methods

in Isabelle/HOL – more specifically the Dependent Random
Selection Method that will be employed in the proof – and a

case study on the use of locales, Isabelle’s module system, to

manage the interplay between different mathematical con-

texts.

Our formal proof development can be found on theArchive

of Formal Proofs [19]. This paper gives an outline of our for-

malisation and is organised as follows: in Section 2, we dis-

cuss the new background material that we formalised for the
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needs of the main proof; in Section 3, we present the main

ideas of Gowers’s proof of the Balog–Szemerédi–Gowers

Theorem commenting on our formalisation in parallel; in

Section 4, we present the final argument for the completion

of the proof of the main statement as well as the analogous

statement on sumsets; in Section 5, we provide some supple-

mentary, related results of interest that we formalised and

which were not required for the main proof; finally, in Sec-

tion 6, we discuss the broader contributions of this work from

the perspective of the formalisation process, with a specific

focus on locales to treat the interplay between mathematical

contexts, before concluding in Section 7.

2 New Background Material Formalised

As we have seen, the main statement that we formalise con-

cerns sumsets of finite subsets of an abelian group. Our de-

velopment builds on the first basic development of sumset

theory recently formalised by Koutsoukou-Argyraki and

Paulson [21], which, in turn, builds on Ballarin’s algebra

development [4].

The proof, however, also makes use of graph-theoretic

and probabilistic arguments, in addition to further required

background material in additive combinatorics. We therefore

had to develop formalisations of a considerable amount of

new background material in these areas, which this section

describes.

2.1 A Triangle Inequality for Sumsets

As it can be seen in our code [19], the assumption thatG is an

abelian group throughout our formalisation is implemented

within the locale additive_abelian_group. In particular, we fix

G to be the abelian group with chosen symbols for addition

and zero. Here we present the Isabelle code that defines this

locale:

locale additive-abelian-group = abelian-group G (⊕) 0
for G and addition (infixl ⊕ 65) and zero (0)

The main proof of the Balog–Szemerédi–Gowers Theo-

rem as presented in Gowers’s notes [17] made use of the

Ruzsa triangle inequality [17, 32, 33] (already formalised by

Koutsoukou-Argyraki and Paulson [21]), which attests the

following:

Lemma 2.1. Let A,B,C be finite subsets of an abelian group
G. Then,

|A| |B −C | ≤ |A − B | |A −C |.

As we will explain in more detail in Section 4 and the end

of Section 5, for an alternative version of the main statement

for sumsets instead of difference sets, we made use of the

following triangle inequality for sumsets that does not di-
rectly follow from the Ruzsa triangle inequality. We present

it together with its formalisation:

Lemma 2.2. Let A,B,C be finite subsets of an abelian group
G. Then,

|A| |B +C | ≤ |A + B | |A +C |.
lemma triangle-ineq-sumsets:

assumes finite A and finite B and finite C and A ⊆ G and

B ⊆ G and C ⊆ G

shows card A ∗ card (sumset B C) ≤
card (sumset A B) ∗ card (sumset A C)
For its formalisation, we followed a proof presented in

Zhao’s book [41] (see Remark 7.2.2, Corollary 7.3.6 [41]). As

in Zhao’s book, we deduced the above lemma using a simple

application of the following lemma (corresponding to Lemma

7.3.4 [41]), which we present alongside its formalisation:

Lemma 2.3. LetX and B be finite subsets of an abelian group

G with X , ∅. Suppose that |Y+B |
|Y | ≥ |X+B |

|X | for all nonempty

subsets Y ⊆ X . Then, for any nonempty finite subset C of the
abelian group,

|X +C + B |
|X +C | ≤ |X + B |

|X | .

lemma triangle-ineq-sumsets-aux:

fixes X B Y ::
′a set

assumes finite X and finite B and X ⊆ G and B ⊆ G and

X , {} and∧
Y . Y ⊆ X =⇒ Y , {} =⇒

card (sumset Y B) / card Y ≥ card (sumset X B) / card X and

finite C and C , {} and C ⊆ G

shows card (sumset X (sumset C B)) / card (sumset X C) ≤
card (sumset X B) / card X

The argument to prove the above lemma involves an induc-

tion on the cardinality ofC , which we were able to naturally

translate into Isabelle/HOL. Nevertheless, we found that on

a few occasions, we had to treat the case of the empty set

separately, which was omitted from our source. The formal

proof spans around 240 lines (versus around 32 in the book

exposition), hence its de Bruijn factor can be estimated at

around 7.5.

2.2 More Material in Additive Combinatorics

A considerable amount of useful technical results in addi-

tive combinatorics were formalised, such as a number of

basic facts and technical lemmas on the notions of additive

quadruples and additive energy and their properties. Here

we present the formalised definitions (recall Definition 1.2)

definition additive-quadruple:: ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ bool where

additive-quadruple a b c d ≡ a ∈ G ∧ b ∈ G ∧ c ∈ G ∧ d ∈ G ∧
a ⊕ b = c ⊕ d

definition additive-energy:: ′a set ⇒ real where

additive-energy A ≡ card (additive-quadruple-set A) / (card A)^3
The intuition behind the definition of the additive energy

is that the cube of the cardinality of the set is a trivial upper

bound on the number of additive quadruples in the set, be-

cause for every triplet of elements (a,b, c) in the set, there is

clearly at most one element d in the set such that (a,b, c,d)
will be an additive quadruple. Indeed:
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lemma additive-energy-upper-bound: additive-energy A ≤ 1

Much of the new material introduced within the area of

additive combinatorics in this development was rather proof-

specific, i.e. catered to the needs of the main proof of the

Balog–Szemerédi–Gowers Theorem. In particular, we will

make use of the following auxiliary function fdif f as well as

the notion of a θ -popular difference. These definitions, along

with their formalisations, are given below:

Definition 2.4. Let A be a finite subset of an abelian group

G. For each d ∈ G define fdif f (d) to be the number of pairs

(a,b) ∈ A × A such that a − b = d . We say that d ∈ G is a

θ -popular difference if fdif f (d) ≥ θ |A|.
definition f-diff ::

′a ⇒ ′a set ⇒ nat where

f-diff d A ≡ card {(a, b) | a b. a ∈ A ∧ b ∈ A ∧ a ⊖ b = d}
definition popular-diff ::

′a ⇒ real ⇒ ′a set ⇒ bool where

popular-diff d ϑ A ≡ f-diff d A ≥ ϑ ∗ of-real (card A)
Analogous such notions for sums were introduced as well.

We moreover include a considerable number of lemmas on

various properties of these objects.

2.3 A New Graph Theory Library

As we will see in the sketch of the proof in Section 3, a

key argument of the proof uses a graph-theoretic auxiliary

construct. In particular, a bipartite graph fulfilling certain

properties is defined, so that each one of its parts is a copy

of a finite subset of an abelian group. This means that the

vertices of each part are seen as the elements of the finite

subset of the abelian group.

There are multiple existing formalisations of graph the-

ory in the Isabelle AFP. Of note, this includes Noschinski’s

undirected graph theory basics in the Girth Chromatic AFP

development [26], a general purpose directed graph theory li-

brary [28], and formalisations specific to various algorithms,

such as Dijkstra’s [25]. However, none of these are suitable

for this project. Formalisations of directed graph theory in-

crease the complexity of proofs in undirected graph theory

due to the use of more complex Isabelle structures (such as

records). Alternatively, the existing undirected graph theory

formalisations form part of specific theory developments,

and as such are limited in their definitions. For example,

formalisations such as Noschinski’s undirected graph basics

for the Girth Chromatic Theorem [26], have successfully

been built on to formalise notable results in graph theory

– such as Szemerédi’s Regularity Lemma [12, 13]. However,

it has a foundational restriction as vertices are defined as

type synonyms of natural numbers. A key argument of this

work requires an auxiliary graph-theoretic construct where

vertices must be seen as elements of a generic abelian group.

Hence, it is clear that a formalisation with a notable restric-

tion on vertex type cannot be used in this context.

To overcome this type constraint and treat the graph-

theoretic aspects of the proof, we thus employ a new undi-

rected graph theory library developed by the third author

with this incentive [10]. The new graph theory library does

not impose any type restrictions on the vertices, thus pro-

viding the flexibility with respect to vertex type that we

require. It further aims to maintain the simplicity of the

set-based representation of undirected edges, with many

definitions inspired by those in Noschinski’s development

[26], while being much more flexible and extensible than

past smaller formalisations. This is done by utilising a locale-

centric approach, similar to previous work by Ballarin [5],

and Edmonds and Paulson [14]. By using this approach, we

were able to model multiple types of graphs as locales, in-

cluding those necessary for the Balog–Szemerédi–Gowers

development.

The library [10] includes many different core graph theory

definitions, beyond those needed for this specific develop-

ment [19], with the aim that it could serve in the future as

a general purpose library for undirected graph theory de-

velopments. In total, it consists of approximately 2600 lines

of code. We provide further detail on some of the specifics

relevant to this development in the remainder of this section.

2.3.1 On Graphs with Loops. A notable observation

when first examining the use of graph theory in the proof

of the Balog–Szemerédi–Gowers Theorem is the use of an

undirected graph with loops. This provided a further moti-

vation for the development of a more flexible graph theory

library, as previous work [26] strictly modelled an edge as a

set of size two, which clearly cannot represent loops.

We first introduce a basic graph system locale, which does

not yet restrict the edge size, but simply introduces the well-

formed assumptions on edges. Edges are modelled as subsets

of the vertex set, hence the ’a edge type is simply a type

synonym for a set of elements of a generic fixed type.

locale graph-system =

fixes vertices :: ′a set (V )
fixes edges :: ′a edge set (E)
assumes wellformed: e ∈ E =⇒ e ⊆ V

When using the primary set-based representation of graph

edges, we model loops as singleton sets. Hence, the locale

now restricts the graph edges to size one or two.

locale ulgraph = graph-system +

assumes edge-size: e ∈ E =⇒ card e > 0 ∧ card e ≤ 2

This approach enables us to define many basic properties

of a graph with no particular adjustments, so that they can

also be used in a simple graph setting. Hence the majority

of basic properties were defined in this locale context. This

includes anything from neighbourhood to connecting paths

to edge density (i.e. the number of edges between two vertex

subsets divided by the product of their cardinalities). The

one exception of this is degree, which intuitively refers to the

number of edge ends attached to a vertex. In a simple graph

context, this simply means the number of vertices a vertex

is incident to. For classic lemmas such as the Handshake

Lemma to be maintained, each loop must contribute two to
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the degree count, hence a modification was required (in the

following, sedges refers to simple edges, that is, edges with

no loops):

definition degree :: ′a ⇒ nat where

degree v ≡ card (incident-sedges v) + 2 ∗ (card (incident-loops v))
lemma degree-no-loops[simp]: ¬ has-loop v =⇒
degree v = card (incident-edges v)
A simple graph also directly builds the graph system lo-

cale, with the more constrained parameter restricting the

cardinality of the edge set to two. It is simple to show this

satisfies the more general assumption of a graph with loops:

sublocale sgraph ⊆ ulgraph V E

by (unfold-locales)(simp add: two-edges)
By proving this relation indirectly, we simplify the assump-

tions the simple graph locale carries around, while ensuring

it inherits all of the definitions and lemmas previously de-

fined for the more general class of graphs with loops.

2.3.2 Bipartite Graphs. A bipartite graph is defined by

the following locale, using the existing all-bi-edges definition
which defines the set of all possible edges between two vertex

sets:

locale bipartite-graph = graph-system +

fixes X Y ::
′a set

assumes partition: partition-on V {X , Y }
assumes ne: X , Y

assumes edge-betw: e ∈ E =⇒ e ∈ all-bi-edges X Y

We choose to model the graph using two explicit parame-

ters for the partition of the vertex set. This generally simpli-

fied both the definition and theorem statements so that they

better reflected the pen-and-paper source text, however it

meant that statements could not be easily generalised as to

apply to either set. We were able to establish an easy pat-

tern for symmetric reasoning on bipartite graph properties

to overcome this, including for "without loss of generality"

statements, by using locale interpretations. These interpre-

tations made use of the basic fact that swapping the vertex

sets will still result in a bipartite graph instance:

lemma bipartite-sym: bipartite-graph V E Y X

A bipartite graph can be shown to be a simple graph indi-

rectly, again ensuring that it inherits all the earlier defined

properties of simple graphs and graphs with loops:

sublocale bipartite-graph ⊆ sgraph

Gowers [17] defines a number of concepts on bipartite

graphs. The codegree d(x ,x ′) of two vertices is defined to

be the number of vertices joined to both x and x ′, and the

normalised codegree δ (x ,x ′) given two vertices in X is their

codegree multiplied by |Y |−1. By definition, for a bipartite

graph, these definitions will be equal to 0 if given two vertices

from different partition sets. Note that Gowers [17] uses δ

singularly to represent density, whereas δ (x ,y) represents
the normalised codegree.We use the same notation to remain

consistent with the source material. The codegree definition

is straightforward to formalise (note as we are doing this in

a bipartite, and therefore simple, graph environment, there

is no need to consider loops):

definition codegree:: ′a ⇒ ′a ⇒ nat where

codegree v u ≡ card {x ∈ V . vert-adj v x ∧ vert-adj u x}
The normalised codegree requires slightly more work, as

it has two analogous definitions depending on whether the

vertices are in Y or X . As such, we first define a general

definition given a set S and then we are able to show the

form of the definition specific to X or Y .

definition codegree-normalized:: ′a ⇒ ′a ⇒ ′a set ⇒ real where

codegree-normalized v u S ≡ codegree v u / card S

2.4 Probability Theory

Probability theory is well-developed in the main Isabelle li-

braries, with a vast amount ofmeasure theory formalised that

in turn is used by many existing AFP entries. This includes

two specific entries in combinatorics, which, to our knowl-

edge, are the only existing formalisations of the probabilistic

method in combinatorics currently available in any proof

assistant. Noschinski proved the classic Girth Chromatic

Theorem [27], followed by a formalisation of the Random

Graph Subgraph Threshold Theorem for graph properties

by Hupel [18].

In the Girth Chromatic development [27], Noschinski de-

veloped a locale-based theory on edge spaces, however this

proved unnecessary in the context of the Balog–Szemerédi–

Gowers development. Here, we only require a much simpler

probability measure: a uniform count measure over the ver-

tex set of a graph. There are some basic probability facts in

the Random Graphs development [18] which we use in this

context.

For this development, we formalise a number of further

auxiliary facts on probability theory which are applicable

generally. These facts are all in the context of the prob-space
locale, within whichM is a parameter representing the mea-

sure of the probability space. It further specifies a number

of useful abbreviations within the locale context, such as

expectation, which is defined as the Lebesgue integral over

the measureM .

Firstly, the probabilistic method in combinatorics enables

us to use inequalities on the expectation of a function, to

show that there must exist a concrete object for which that

inequality holds. As such, we prove an "obtains" lemma to

enable easy formal reasoning on such statements in a proof:

lemma expectation-obtains-ge:

fixes f ::
′a ⇒ real

assumes M = uniform-count-measure X and finite X

assumes expectation f ≥ c

obtains x where x ∈ X and f x ≥ c

Lemma 3.1 requires a variation on the Cauchy–Schwarz

inequality detailed in Gowers’s notes [17]: given a random

variable X , for the expected value we have EX 2 ≥ (EX )2.
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We first show this variation using assumptions regarding

integrable measures. However, in our main formalisation we

only require the simpler context of uniform count measures.

A simple lemma attests that a uniform count measure is

always integrable on a finite space. As it can be seen in the

Isar proof below, this can be used to discharge integrability

assumptions before applying the original cauchy-schwarz-
ineq-var lemma to prove a simpler lemma statement.

lemma cauchy-schwarz-ineq-var-uniform:

fixes X ::
′a ⇒ real

assumes M = uniform-count-measure S

assumes finite S

shows expectation (λ x . (X x)^2) ≥ (expectation (λ x . (X x)))^2
proof −
have borel: X ∈ borel-measurable M using assms by simp

have integrable M X using assms

by (simp add: integrable-uniform-count-measure-finite)
then have integrable M (λ x . (X x)^2) using assms

by (simp add: integrable-uniform-count-measure-finite)
thus ?thesis using cauchy-schwarz-ineq-var borel by simp

qed

Lastly, we formalise a number of basic facts on expectation

over discrete random variable distributions. In many cases,

a version of these facts was already available in the measure

theory library. However these again had complex assump-

tions on integrable functions and Bochner integrals, which

made the main proofs in the discrete context unnecessarily

complex. As such, we use these general facts to formalise

variations specifically for uniform count measures. Similar

to the Cauchy–Schwarz uniform variation above, this effec-

tively hides unnecessary assumptions and complex notation,

which both significantly simplifies later proofs and presents

the lemmas in a more recognisable form for a combinatorial

setting. One such example is given below:

lemma expectation-uniform-count:

assumes M = uniform-count-measure X and finite X

shows expectation f = (∑ x ∈ X . f x) / card X

3 Towards the Proof: Sketch of Gowers’s
Main Argument

After having introduced the preliminary definitions, we are

now ready to sketch the main ideas of the proof and how

these interplay in the formalisation.

As we have mentioned before, the proof will rely on an

ingenious "detour" via graph theory. Other resources dis-

cussing the Balog–Szemerédi–Gowers Theorem, such as

Zhao’s book [41], sometimes even present the last lemma

of this section, Lemma 3.6, as the "graphical" version of the

theorem. Key to the proof of this lemma is an auxiliary bi-

partite graph construct based on the structure of the group,

which enables us to translate the graph-theoretic results to

group theory.

Following Gowers’s exposition, we will start with the

graph-theoretic parts of the proof, Lemma 3.1 and Lemma

3.2, which utilise probabilistic arguments. Lemma 3.2 does

this via separate technical probabilistic lemmas this section

also presents, Lemma 3.3 and Lemma 3.4. The reader will

then be able to see the connection of these graph-theoretic

argumentswith the structure of abelian groups aswe proceed

with the later parts of the proof sketch. This includes a purely

group-theoretic property, Lemma 3.5, before concluding with

the key lemma mentioned above, Lemma 3.6.

We start with the following graph-theoretic lemma on the

existence of a subset with certain properties in suitably dense

bipartite graphs. Its proof utilises the Dependent Random
Selection Method, a powerful example of the Probabilistic

Method [1] in combinatorics. We begin by introducing the

lemma and some relevant definitions, before exploring this

technique in more detail.

Lemma 3.1. (Lemma 2.13 [17]) Let H be a bipartite graph
with finite vertex setsX , Y and density δ . Then, for every c > 0

there exists a subset X ′ of X such that |X ′ | ≥ δ |X |/
√
2 and

the proportion of pairs (x ,x ′) ∈ X ′ × X ′ such that for the
normalised codegree we have δ (x ,x ′) < c is at most 2cδ−2.

For our Isabelle formalisation, as is also done within Gow-

ers’s original proof, we defined the notion of a bad pair to
characterise pairs of vertices with the chosen restriction on

their normalised codegree as described in the above lemma.

Furthermore, bad-pair-set is defined as the set of all bad pairs
in a vertex set. By formalising the definition of a bad pair

outside the proof context, we were able to further prove a

number of basic facts to make the formalisation more mod-

ular. Additionally, note that density is just an abbreviation

for edge-density introduced in the Bipartite Graphs theory.

Here density and edge-density are used interchangeably as

in a bipartite graph the number of edges between the two

vertex subsets coincides with the total number of edges of

the graph. The Isabelle formalisation of the above lemma

thus reads:

lemma (in fin-bipartite-graph)
proportion-bad-pairs-subset-bipartite:

fixes c::real

assumes c > 0

obtains X ′where X ′ ⊆ X and

card X ′ ≥ density ∗ card X / sqrt 2 and
card (bad-pair-set X ′ Y c) / (card X ′)^2 ≤ 2 ∗ c / density^2
Gowers describes the Dependent Random Selection Method

as follows [17]: suppose we have a set with certain properties

andwewant to find a subset with better properties. Choosing

that subset purely at random will not necessarily be helpful.

Instead, we may be able to find a different distribution on

the subsets that is both linked to the structure of the original

set and favours the desired improved properties. In this case,

instead of picking a purely random subset of X which would

not be useful to do, we want to pick some y ∈ Y at random

first. We then let X ′ be a subset which is the neighbourhood

of y, and proceed to show it has the desired properties. The
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formalisation closely mirrors the proof, however requires

more specific details. For example, to "pick some y ∈ Y at

random", we must first establish a probability space P , which

we do via interpretation of the prob-space locale using a

uniform-count-measure. Rather than explicitly picking a y,

we instead show the required fact on the expectation of the

size of X ′ directly, for which we are able to utilise the earlier

formalised variation on the Cauchy–Schwarz inequality and

the uniform count measure lemmas on expectation. The

setup process and method for stating facts on expectation

provide an example of a template for applying probabilistic

techniques in Isabelle/HOL.

The second half of the proof deals with some complex

inequalities, for which the formal proof required many more

intermediate steps than the original source. Notably, the

inequality on the expected number of bad pairs in X ′ is pre-
sented in a single sentence in Gowers’s notes [17], intuitively

making use of facts on the linearity of expectation. In order

to apply these facts formally, we represented the cardinality

of a set as the summation over the indicator functions of

elements of a superset, and were then able to reason formally

using multiple applications of linearity. The existing formal-

isation of indicator functions in Isabelle proved valuable to

this end, as a number of probabilistic methods on indicator

functions had previously been formalised.

A helpful observation, which we utilise later in our for-

malisation, is that the codegree d(x ,x ′) equals the number

of paths of length two between the vertices x and x ′:

lemma codegree-is-path-length-two:

codegree x x ′
= card {p . connecting-path x x ′ p ∧

walk-length p = 2}

By this observation, Lemma 3.1 can be interpreted to guar-

antee that, given a dense bipartite graph, we can restrict one

of its vertex sets to a large subset in which almost all pairs
of vertices are joined by many paths of length two. Lemma

3.1 together with the above lemma is not yet strong enough

for our purposes. We will, however, use it to prove a similar

statement which guarantees the existence of a large number

of walks of length three. It is important to note the transition

from paths to walks here in our development. By the con-

ventions of our undirected graph theory library, which we

introduced in Section 2.3, a walk on a graph is defined as a list

of vertices, where consecutive vertices are connected by an

edge, whereas a path is defined to be a non-self-intersecting

walk or a cycle. In our formalisation source notes, Gowers

uses paths throughout all of the proofs without giving a for-

mal definition. We initially set out to prove all of the results

for paths, however quickly realised that they only held for

our definition of a walk with a few minor exceptions (e.g.

codegree-is-path-length-two because in our bipartite graph

context walks of length two are also paths). With this in

mind, we will now seek to prove a lemma which attests the

existence of many walks of length three between all pairs

where, this time, each member of a pair is in a large subset

of a different part of the bipartite graph:

Lemma 3.2. (Lemma 2.16 [17]) Let H be a bipartite graph
with finite vertex setsX ,Y and density δ . Then there are subsets
X ′ ⊆ X , Y ′ ⊆ Y with |X ′ | ≥ δ 2 |X |/16 and |Y ′ | ≥ δ |Y |/4
such that for every x ∈ X ′ and y ∈ Y ′, the number of walks of
length three between x and y in H is at least δ 6 |X | |Y |/213.
lemma (in fin-bipartite-graph)
walks-of-length-3-subsets-bipartite:

obtains X ′ and Y ′where X ′ ⊆ X and Y ′ ⊆ Y and

card X ′ ≥ (edge-density X Y )^2 ∗ card X / 16 and
card Y ′ ≥ edge-density X Y ∗ card Y / 4 and
∀ x ∈ X ′

. ∀ y ∈ Y ′
.

card {p. connecting-walk x y p ∧ walk-length p = 3} ≥
(edge-density X Y )^6 ∗ card X ∗ card Y / 2^13
Initially, we found a variation of Gowers’s proof of Lemma

3.2 that does not require the observation given as codegree-is-
path-length-two lemma above but rather given a pair (x ,y) ∈
X ′ × Y ′ explicitly constructs the required walks of length

three from x toy. From here, a simple unfolding of the defini-

tion of the codegree allowed us to finish the proof. It must be

noted that the alternative version of the proof was found sim-

ply because it was easier to carry out the formalisation using

sets rather than walks (which are defined as lists). Ultimately,

we decided to rework the proof to more closely follow the

source to make it more readable and modular. This utilised

the auxiliary codegree-is-path-length-two lemma to build up

walks of length three by appending an extra element to paths

of length two and resulted in a more modular and general

formalisation approach.

The proof of Lemma 3.2 is probabilistic in its essence as

we will need to employ two technical probabilistic lemmas,

Lemma 3.3 and Lemma 3.4 (in addition to Lemma 3.1). These

two technical probabilistic lemmas will give us a way to turn

probabilistic statements into lower bounds on the cardinal-

ity of certain sets, which we will directly apply to obtain

large dense subsets of graphs. We present the two technical

probabilistic lemmas below along with their formalisations:

Lemma 3.3. (Lemma 2.14 [17]) Let X be a finite set and let
f : X → [0, 1]. Assume Ex f (x) ≥ δ . Then there are at least
δ |X |/2 many elements x ∈ X such that f (x) ≥ δ/2.
lemma (in prob-space) expectation-condition-card-1:
fixes X :: ′a set and f :: ′a ⇒ real and δ ::real

assumes finite X and ∀ x ∈ X . f x ≤ 1 and

M = uniform-count-measure X and expectation f ≥ δ

shows card {x ∈ X . (f x ≥ δ / 2)} ≥ δ ∗ card X / 2

Lemma 3.4. (Lemma 2.15 [17]) Let X be a finite set and let
f : X → [0, 1] be a function with Ex f (x) ≥ 1 − α for some
α > 0. Then for every β > 0 the number of x ∈ X such that
f (x) ≥ 1 − β is at least (1 − α/β)|X |.
lemma (in prob-space) expectation-condition-card-2:
fixes X :: ′a set and β ::real and α ::real and f :: ′a ⇒ real
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assumes finite X and
∧

x . x ∈ X =⇒ f x ≤ 1 and

β > 0 and α > 0 and expectation f ≥ 1 − α and

M = uniform-count-measure X

shows card {x ∈ X . f x ≥ 1 − β} ≥ (1− α / β) ∗ card X

For the formalisation of these probability theory lemmas

we used the exact same underlying measure as described

in Section 2.4 and we naturally followed the pen-and-paper

proof. For both proofs we employed the lemma expectation-
uniform-count, presented in Section 2.4.

As we have outlined above, for the proof of Lemma 3.2,

we needed to combine graph-theoretic results in the form of

Lemma 3.1 with probabilistic results in the form of Lemmas

3.3 and 3.4 – all this while simultaneously passing to multiple

auxiliary graphs. To do all this in the proof context, we heav-

ily relied on locales. Using them, we were able to seamlessly

define certain auxiliary structures and prove their member-

ship to a particular locale, which allowed us to naturally

apply all previous theory on these auxiliary constructions.

A good example of this is the following interpretation of the

uniform-count-measure probability space over one side X of

the finite bipartite graph:

interpret P1: prob-space uniform-count-measure X

by (simp add: X-not-empty partitions-finite(1)
prob-space-uniform-count-measure)

Following the above interpretation, using Lemma 3.3 we

are able to find a large subset ?X1 ofX with large normalised

degree. From here, the pen-and-paper proof restricts the

given finite bipartite graph to one with vertex sets ?X1 and

Y . In order to reason about this induced graph, we once again

use an interpretation:

interpret H :

fin-bipartite-graph (?X1 ∪ Y ) {e ∈ E. e ⊆ (?X1 ∪ Y )} ?X1 Y

We note that to distinguish between the finite bipartite graph

fixed by the locale context of the main body of the proof, and

the induced finite bipartite graph, we have given our inter-

pretation the name H . This allows us to distinguish between

definitions and lemmas relating to each of the graphs by

using dot notation. Having interpreted the aforementioned

induced graph, we still need a way to transport information

across these structures. A good example of such a transfer is

a straightforward claim that neighbourhoods and degree of

vertices in ?X1 are unchanged:

have neighborhood-unchanged: ∀ x ∈ ?X1.

neighbors-ss x Y = H .neighbors-ss x Y

using neighbors-ss-def H .neighbors-ss-def vert-adj-def

H .vert-adj-def by auto

then have degree-unchanged: ∀ x ∈ ?X1. degree x = H .degree x

using H .degree-neighbors-ssX degree-neighbors-ssX by auto

Our formal proof required multiple such statements, which

transport information across different structures to deduce

the final statement – something almost no author would

write down in a pen-and-paper proof. Another interesting

use case of an interpretation in this proof, which also in-

spired us to develop our undirected graph theory library as

discussed in Section 2.3, is one of a graph with loops:

let ?E-loops = mk-edge ‘ {(x, x ′) | x x ′
. x ∈ X2 ∧ x ′ ∈ X2 ∧

(H .codegree-normalized x x ′ Y ) ≥ ?δ ^ 3 / 128}
interpret Γ: ulgraph X2 ?E-loops

Here, we first define the edge set denoted by ?E − loops on

the set X2, which we obtained by extracting a large subset

of ?X1 that has a small number of bad pairs with respect to

H . Noting that for the graph with loops Γ the expectation

of normalised degree is high, we finally use Lemma 3.4 to

obtain a large subset X ′ of X2 whose vertices all have high
normalised degree in Γ. From here, the proof straightfor-

wardly follows the pen-and-paper proof by finding a large

subset Y ′ of Y with all vertices having high normalised de-

gree into X ′ and constructing the required number of walks

of length three by unfolding the definitions of the auxiliary

graphs H and Γ.

It is now time to turn to the group-theoretic aspects of

the proof. We proceed with the following lemma1 (recall

Definition 2.4):

Lemma 3.5. (Lemma 2.17 [17]) Let A be a finite subset of an
abelian group G and suppose that the additive energy of A is
2c for some c > 0. Then the number of c-popular differences
d ∈ G is at least c |A|.

lemma popular-differences-card: fixes A:: ′a set and c::real

assumes finite A and A ⊆ G and additive-energy A = 2 ∗ c
shows card (popular-diff-set c A) ≥ c ∗ card A
Remark: Note that in Lemmas 3.5 and 3.6 and thus in the

final result presented in Section 4, we have set the additive

energy to be equal to 2c for some c > 0, and we are accord-

ingly considering θ -popular differences where θ = c so that

we are consistent with the original proof where θ is chosen

to be the half of the additive energy of A. The appearing

numerical discrepancy between the bounds in the notes and

in our formalisation is thus only artificial.

For the proof of Lemma 3.5, we made use of certain proper-

ties of the function fdif f (recall the definition in Section 2.2)

in relation to the cardinality of A and the additive energy of

A (recall Definition 1.2). In particular, among others, we used

lemmas f-diff-le-card and f-diff-card-quadruple-set-additive-
energy and f-diff-card, which we give below:

lemma f-diff-le-card:

assumes finite A and A ⊆ G

shows f-diff d A ≤ card A

lemma f-diff-card-quadruple-set-additive-energy:

assumes A ⊆ G and finite A

shows (∑ d ∈ differenceset A A. (f-diff d A)^2) =
additive-energy A ∗ (card A)^3

1To avoid confusion, we note that there is a typographical error in the

statement of Lemma 3.5 in the online notes [17]: the square should be

missing.
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lemma f-diff-card:

assumes A ⊆ G and hA: finite A

shows (∑ d ∈ (differenceset A A). f-diff d A) = (card A)^2
Note that in the original source, the lemmas f-diff-card-

quadruple-set-additive-energy and f-diff-card correspond to

slightly different statements. In particular, they read: for a

finite subset A of an abelian group G,
∑
d ∈G fdif f (d) = |A|2

and
∑
d ∈G (fdif f (d))2 equals the number of additive quadru-

ples in A (i.e. the additive energy of A multiplied by |A|3: re-
call Definition 1.2). While the versions of these lemmas found

in Gowers’s notes are correct mathematically, we could not

translate them verbatim into Isabelle/HOL. This is because

in the main library, summation over an infinite set is defined

to be equal to 0 and the abelian group G is not restricted to

be finite. Hence, we had to restrict our indexing set to the

difference set, which is finite and simultaneously contains

the support of fdif f . This indexing restriction meant that we

had to make repeated use of the fact that the difference set

here is finite:

lemma finite-differenceset: finite A =⇒ finite B =⇒
finite (differenceset A B)
The following lemma is the key argument of the main

proof. Within its proof, the results from probabilistic graph

theory previously presented get introduced to the study of

difference sets/sumsets which is our ultimate purpose:

Lemma 3.6. (Lemma 2.18 [17]) Let A be a finite subset of an
abelian group G and suppose that the additive energy of A is
2c for some c > 0. Then A has subsets B and A′ with |B | ≥
c4 |A|/16 and |A′ | ≥ c2 |A|/4 so that |A′ − B | ≤ 2

13 |A|/c15.
lemma obtains-subsets-differenceset-card-bound:

fixes A:: ′a set and c::real

assumes finite A and c>0 and A , {} and A ⊆ G and

additive-energy A = 2 ∗ c
obtains B and A ′where B ⊆ A and B , {} and
card B ≥ c^4 ∗ card A / 16 and A ′ ⊆ A and A ′

, {} and
card A ′ ≥ c^2 ∗ card A / 4 and

card (differenceset A ′ B) ≤ 2^13 ∗ card A / c^15
The proof of Lemma 3.6 makes use of the following aux-

iliary graph-theoretic construct (where A is as above). We

define a bipartite graphH in the following fashion: the vertex

sets X and Y of H are defined to be copies of A, and vertices

a and b are connected by an edge if and only if b − a is a

c-popular difference. To implement this formally, we had

to interpret H as a finite bipartite graph within the proof

context, so that we could apply Lemma 3.2. This meant that

we had to prove that the copies ofA are disjoint and partition

the vertex set, hence we made the design decision to work

with A × {0} and A × {1} as our copies of A. We present an

excerpt of the above construction and interpretation below:

let ?X = A × {0:: nat}
let ?Y = A × {1:: nat}
let ?E = mk-edge ‘ {(x, y)| x y. x ∈ ?X ∧ y ∈ ?Y ∧
(popular-diff (fst y ⊖ fst x) c A)}

interpret H : fin-bipartite-graph ?X ∪ ?Y ?E ?X ?Y

Further, using Lemma 3.5, we deduce that the density of

H must thus be at least c2. Applying Lemma 3.2 we can now

obtain subsets B ⊆ A, A′ ⊆ A of cardinalities bounded from

below by c4 |A|/16 and c2 |A|/4, respectively, such that for

every x ∈ B and y ∈ A′, the number of walks of length three

between x and y in H is at least c13 |A|2/213. The number of

walks of length three translates into a number of choices

so that certain differences of elements in A would all be

c-popular. Specifically, this means that for each difference

a′−b ∈ A′−B, we can find c13 |A|2/213 many (z,w) ∈ A2 such

that z − b, z −w and a′ −w are all c-popular. Although this

deduction is very short on pen-and-paper, we found that its

formal proof was lengthy, which was also the case for other

arguments involving transitions across different structures.

In our development the above statement reads:

have card-ineq1:
∧

x y. x ∈ ?B =⇒ y ∈ ?C =⇒
card ({(z, w) | z w. z ∈ A ∧ w ∈ A ∧
popular-diff (z ⊖ x) c A ∧ popular-diff (z ⊖ w) c A ∧
popular-diff (y ⊖ w) c A}) ≥ (c^12) ∗ ((card A)^2) / 2^13

It is important to note that in the formal environment, we

firstly obtained subsets ?B and ?C of A × {0} and A × {1},
respectively, which we had to project down to subsets of

A to obtain B and A′, respectively. And although this claim

occupied only a sentence in the original source, it spanned

113 lines of Isar code in our formalisation.

To finish the proof sketch, observe that for each sextuple

(p,q, r , s, t ,u) ∈ A6 such that p − q = z − b and r − s = z −w

and t −u = a′−w , we can recover z andw uniquely for fixed

a′ and b. From here, by a straightforward pen-and-paper

computation one finds at least c15 |A|5/213 such sextuples in

A6 for each d ∈ A′ − B, which finally gives us the desired

bound on the cardinality ofA′−B. In the formal environment,

we note that the c-popular condition on certain differences in

a connected walk of length three naturally gives rise to many

triples of pairs ((p,q), (r , s), (t ,u)) ∈ A2 ×A2 ×A2 satisfying

the above properties. In order to transfer our information

into claims for sextuples, we locally defined an auxiliary

bijection between A6 and A2 ×A2 ×A2 as presented below:

define f :: ′a × ′a × ′a × ′a × ′a × ′a ⇒
( ′a × ′a) × ( ′a × ′a) × ( ′a × ′a) where

f ≡ (λ (p, q, r, s, t, u). ((p, q), (r, s), (t, u)))

We then proved that f is injective and maps the appropriate

sextuples into triplets of pairs with the required properties,

which allowed us to deduce the final claim.

4 Completing the Proof of the
Balog–Szemerédi–Gowers Theorem

The proof of the main result Theorem 1.3 (which is pre-

sented as Corollary 2.19 in the notes [17]) is now a matter

of the direct application of the Ruzsa triangle inequality,

i.e. Lemma 2.1 (available from [21]) to Lemma 3.6. This is
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achieved simply by observing that the Ruzsa triangle in-

equality gives |B | |A′ −A′ | ≤ |A′ − B |2. The bounds for |B |,
|A′ − B | are obtained from Lemma 3.6, i.e. lemma obtains-
subsets-differenceset-card-bound, which thus gives the de-

sired estimate. The main statement, as we formalised it in

Isabelle/HOL, reads (recall the remark in Section 3):

theorem Balog-Szemeredi-Gowers: fixes A:: ′a set and c::real

assumes afin: finite A and A , {} and c>0

and additive-energy A = 2 ∗ c and ass: A ⊆ G

obtains A ′where A ′ ⊆ A and card A ′ ≥ c^2 ∗ card A / 4 and
card (differenceset A ′A ′) ≤ 2^30 ∗ card A / c^34

proof−
obtain B and A ′where bss: B ⊆ A and bne: B , {} and
bge: card B ≥ (c^4) ∗ (card A)/16 and

a2ss: A ′ ⊆ A and a2ge: card A ′ ≥ (c^2) ∗ (card (A))/4 and

hcardle: card (differenceset A ′ B) ≤ 2^13 ∗ card A / c^15
using assms obtains-subsets-differenceset-card-bound by metis

have bg0: (card B :: real) > 0 ⟨proof⟩
have (card B) ∗ card (differenceset A ′A ′) ≤
card (differenceset A ′ B) ∗ card (differenceset A ′ B)
using afin a2ss bss infinite-super ass Ruzsa-triangle-ineq1

card-differenceset-commute subset-trans sumset-commute

by (smt (verit, best))
then have card B ∗ card (differenceset A ′A ′) ≤
(card (differenceset A ′ B))^2 ⟨proof⟩

then have (card (differenceset A ′A ′)) ≤
(card (differenceset A ′ B))^2/card B ⟨proof⟩

moreover have (card (differenceset A ′ B))^2 ≤
((2^13) ∗ (1/c^15)∗(card A))^2 using hcardle by simp

ultimately have (card (differenceset A ′A ′)) ≤
((2^13) ∗ (1/c^15)∗(card A))^2/(card B) ⟨proof⟩

moreover have (c^4) ∗ (card A)/16 >0 ⟨proof⟩
moreover have ((2^13) ∗ (1/c^15) ∗ (card A))^2/(card B) =
((2^13)∗ (1/c^15)∗(card A))^2 ∗ (1/(card B)) by simp

moreover have ((2^13)∗(1/c^15)∗(card A))^2∗(1/(card B))≤
((2^13)∗(1/c^15)∗(card A))^2/((c^4)∗(card A)/16) ⟨proof⟩

ultimately have (card (differenceset A ′A ′)) ≤
((2^13) ∗ (1/c^15) ∗ (card A))^2/ ((c^4) ∗ (card A)/16)
by linarith

then have (card (differenceset A ′A ′)) ≤
(2^30) ∗ (card A)/(c^34)
using card-0-eq assms by (simp add: power2-eq-square)
then show ?thesis using a2ss a2ge that by blast

qed

In the source material [17], the proof of the main theorem

is only three lines long. While this is notably longer, from the

Isar proof above we can clearly see how the formalisation fol-

lows the pen-and-paper proof: the obtain statement is where

Lemma 3.6 is applied, the second have statement is where the

Ruzsa triangle inequality, i.e. Lemma 2.1 is applied, and the

remaining have statements provide calculation-based detail

to reach the required inequality. We can further see where

the bound from the obtain statement, hcardle, is employed

in one of these steps via simp. All other calculation-based
steps were proven using standard numeric/algebraic lemmas

and tactics, hence the one-line proof details are replaced by

⟨proo f ⟩ in this paper. This is a classic example of a formal

proof requiring a much more detailed series of steps, where

on pen-and-paper the leap from one form of an inequality

to another is seen as obvious.

We moreover formalise a version of the main theorem for

sumsets, that is:

theorem Balog-Szemeredi-Gowers-sumset:fixesA:: ′a set and c::real
assumes afin: finite A and A , {} and c>0 and

additive-energy A = 2 ∗ c and ass: A ⊆ G

obtains A ′where A ′ ⊆ A and card A ′ ≥ c^2 ∗ card A / 4 and
card (sumset A ′A ′) ≤ 2^30 ∗ card A / c^34
The formalisation has a similar structure to the previous

theorem, however, instead of using the Ruzsa triangle in-

equality, i.e. Lemma 2.1, we applied the different triangle

inequality for sumsets, i.e. Lemma 2.2 to obtains-subsets-
differenceset-card-bound, i.e. Lemma 3.6 in an analogous way.

In particular, Lemma 2.2 gives |B | |A′
+A′ | ≤ |A′ − B |2 and

the bounds for |B |, |A′ − B | are again obtained from obtains-
subsets-differenceset-card-bound, which thus gives the desired
estimate.

5 Supplementary Results Formalised

In addition to the Balog–Szemerédi–Gowers Theorem (two

versions), we also formalised the proof of some related, sim-

ple, supplementary results which were not used in the proofs

but we find worth mentioning here. In particular, using an

appropriate version of the Cauchy–Schwarz inequality:

lemma Cauchy-Schwarz-ineq-sum2:

fixes f g:: ′a ⇒ real and A:: ′a set
shows (∑ d ∈ A. f d ∗ g d) ≤
(∑ d ∈ A. (f d)^2) powr (1/2) ∗ (∑ d ∈ A. (g d)^2) powr (1/2)

we formalised the proof of a lower bound on additive energy

(corresponding to Proposition 2.11 [17]), attesting that for a

finite, nonempty subsetA of an abelian group with |A+A| ≤
C |A| for some real constant C , the additive energy of A is at

least 1/C:
proposition additive-energy-lower-bound-sumset:

fixes C::real

assumes finite A and A ⊆ G and

(card (sumset A A)) ≤ C ∗ card A and card A , 0

shows additive-energy A ≥ 1/C
We also show that we can reach the same conclusion as

above using the alternative assumption |A −A| ≤ C |A| (the
proof is analogous with the only difference being the use of

the function f-diff instead of the analogous f-sum within the

proof).

Finally, we show two more additional lemmas. In particu-

lar, we formalise a lemma analogous to popular-differences-
card (Lemma 3.5), referring to the analogous function f-sum
instead of f-diff :

lemma popular-sums-card:

fixes A:: ′a set and c::real

assumes finite A and additive-energy A = 2 ∗ c and A ⊆ G

shows card (popular-sum-set c A) ≥ c ∗ card A
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Similarly, we formalise a lemma analogous to the key lemma:

obtains-subsets-differenceset-card-bound (Lemma 3.6):

lemma obtains-subsets-sumset-card-bound:

fixes A:: ′a set and c::real

assumes finite A and c>0 and A , {} and A ⊆ G and

additive-energy A = 2 ∗ c
obtains B and A ′where B ⊆ A and B , {} and
card B ≥ c^4 ∗ card A / 16 and A ′ ⊆ A and A ′

, {} and
card A ′ ≥ c^2 ∗ card A / 4 and

card (sumset A ′ B) ≤ 2^13 ∗ card A / c^15

The latter follows from lemma popular-sums-card in the

same way lemma obtains-subsets-differenceset-card-bound
follows from lemma popular-differences-card and by substi-

tuting f-diff with the analogous function for sums f-sum ,

popular differences with the analogous notion for popular

sums, and interchanging ⊕ with ⊖. The interest here lies

in the observation of the duality between sumsets and dif-

ference sets. Exploiting this duality was actually facilitated

by the formal proofs, as making the above described sub-

stitutions in the formal proofs of popular-differences-card
and obtains-subsets-differenceset-card-bound to obtain the

analogous versions for sumsets, i.e. popular-sums-card and

obtains-subsets-sumset-card-bound respectively was straight-

forward. This method, however, could not be directly applied

to obtain the sumset version of the main result, as already

explained in Section 4. Rather, an application of the different

triangle inequality in the proof, i.e. Lemma 2.2 was necessary

for the sumset version due to the parity behaviour (please

see Comment 7.2.2 [41]).

Note that the difference set version of the main result the-

orem Balog-Szemeredi-Gowers (i.e. Theorem 1.3) could also

have been alternatively shown with the sumset version of

Lemma 3.6 above, i.e. with obtains-subsets-sumset-card-bound.
This would give bounds for |B |, |A′

+ B | via the inequality
|B | |A′ −A′ | ≤ |A′

+ B |2 which would again follow from the

Ruzsa triangle inequality, i.e. Lemma 2.1. In fact, the differ-

ence set version of the main theorem Theorem 1.3 could be

shown with either version of Lemma 3.6 (for sumsets or dif-

ference sets) but would require the Ruzsa triangle inequality

(Lemma 2.1), while the sumset version of the main theo-

rem Theorem 1.3 could also be shown with either version of

Lemma 3.6 (for sumsets or difference sets) but would require

the alternative triangle inequality for sumsets (Lemma 2.2).

6 Discussion

The formalisation process for the Balog–Szemerédi–Gowers

Theorem presented some interesting technical challenges,

however, thanks to the proof assistant language and tools,

it remained relatively straightforward to complete. This is

notable for a result of such mathematical significance. In

this section, we discuss some of the key contributions of the

formalisation beyond the successful formal proof of the final

theorem statement.

As discussed throughout Section 2 and 3, we handled the

interplay between the different mathematical areas that con-

tributed different elements of the proof, namely graph theory

(also considering graphs with loops), probability theory and

additive combinatorics, by implementing an appropriate use

of locales, which provide a practical module system. Firstly,

locales were central to the formalisation of the new undi-

rected graph theory library presented in Section 2.3. This

library provides another example of a locale-centric formali-

sation of a mathematical hierarchy, along the lines of earlier

work in both combinatorics and algebra [5, 7, 14]. As noted

in prior work, this approach again proved to be both flexible

and extensible, while also enabling natural mathematical no-

tation of different structures. Notably, the bulk of this graph

theory library [10] was completed in under two weeks and

was easily integrated into the existing sketch of the formali-

sation of the Balog–Szemerédi–Gowers Theorem which was

already in progress. This further demonstrates the ease of

working with locales to both build such a library, and ex-

press and prove various statements in an applied theorem.

Secondly, locales continued to be essential in managing the

interplay of different mathematical areas. Throughout the

proof sketch, we were simultaneously working with locales

that represented additive abelian groups, different types of

graphs and a probability space. Typically, usage of locales

previously has focused on working with one locale at a time,

either in its context or on a single instance of a locale. In

this formalisation, we have demonstrated how we can use

multiple different interpretations of different locale struc-

tures to transport results across different contexts, with key

examples detailed in Section 3 in the proofs of both Lemma

3.2 and Lemma 3.6. This highlights the power of local inter-

pretations inside proof contexts when using locales, as well

as how locale-specific definitions and theorems can be easily

used outside of their locale context, further supporting lo-

cales as the structure of choice when defining mathematical

objects and hierarchies.

Notably, as detailed in Section 3, this formalisation also

provides several examples of the application of the proba-

bilistic method to combinatorics in a formal environment,

which has only been explored in two other earlier formalisa-

tions to the best of our knowledge [18, 27]. We highlight how

interpreting (potentially many) instances of the prob-space
locale, enable us to set up a proof such that we can utilise the

powerful previous developments on measure and probability

theory in Isabelle’s libraries. In combinatorics, the choice

and setup of a probability space is usually implicit in a pen-

and-paper text, and as such we aim to provide an example

of the basic set up that the formal environment requires to

follow the same such reasoning.

Isabelle’s advanced automation significantly assisted us

during the formalisation process; indeed, as the reader would

easily notice by inspecting our theory file, there are many

instances of Sledgehammer-generated proofs, e.g. proofs by
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metis or by smt. Additionally, the Isar proof language proved
to be very user-friendly during the formalisation process,

enabling us to structure the proof in an easily readable and

accessible way. This was particularly important given that

there were three contributors to the project with different

backgrounds. Moreover, as seen in the formal proof provided

in Section 4, it also enabled us to complete many parts of the

formalisation in line with the original pen-and-paper proof.

It is also worth mentioning that, especially in the first stages

of the project, we made frequent use of the search engine

for the Isabelle libraries and AFP, SErAPIS2 [34, 35], which

proved to be of valuable help.

Keeping the new graph theory library [10] separate3, the

full proof of the Balog–Szemerédi–Gowers Theorem spanned

around 1900 lines of Isar code. This line estimate includes

all necessary preliminaries developed e.g. on graphs with

loops, bipartite graphs, probability space theory, various sim-

ple technical lemmas, definitions and elementary material

in additive combinatorics, and excludes the supplementary

material and results shown that were not required for the

main proof of the Balog–Szemerédi–Gowers Theorem such

as these mentioned in Section 5, the alternative version of

the main theorem (for sumsets) and the proof of the triangle

inequality for sumsets, i.e. Lemma 2.2 that was used for it.

Considering around 137 lines (around 4 pages) of mathe-

matical text in Gowers’s notes [17] restricted to covering

the proof of the Balog–Szemerédi–Gowers Theorem, the de

Bruijn factor of our formalisation can thus be estimated at

around 13.9.

Notably, the project to formalise the proof of the Balog–

Szemerédi–Gowers Theorem was completed in less than

two months in total (including the separate graph theory

library). All three authors worked on the formalisation, in-

cluding equal contributions from the second author who was

completely new to Isabelle at the initial stage. Hence this

two-month period also includes the time it took the second

author to become familiar with Isabelle.

7 Concluding Comments

We have described our formalisation in Isabelle/HOL of the

Balog–Szemerédi–Gowers Theorem, a profound result in

additive combinatorics with many significant applications

– most notably in an effective version of the celebrated Sze-

merédi’s Theorem. Our formalisation, the first of this result

in any proof assistant to our knowledge, moreover moti-

vated the development of useful formalisations of essential

background material in graph theory, probability theory and

additive combinatorics that could become useful in relevant

future developments. The successful completion of this work

2h�ps://behemoth.cl.cam.ac.uk/search/
3but including the special graph-theoretic prerequisites introduced in the

Balog–Szemerédi–Gowers Theorem development itself

is an indication that Isabelle/HOL has the capacity for formal-

ising modern and advanced mathematical material involving

a combination of different mathematical areas. Such an inter-

play, as we explained, can be implemented very efficiently

by the use of Isabelle’s locales in a modular and flexible way.

We have moreover demonstrated that this can be achieved

within a reasonable time span and even by authors without

much prior experience: Isabelle’s ecosystem, which includes

its advanced automation, the Isar formal proof language as

well as efficient search features, makes formalisation of math-

ematics smooth and accessible. At the same time, the Isabelle

libraries and the AFP currently offer a rich, robust collection

of formalised material that we can build on, so the time is

ripe for the formalisation of more advanced mathematics.

Acknowledgements

Angeliki Koutsoukou-Argyraki is funded by the ERC Ad-

vanced Grant ALEXANDRIA (Project GA 742178) funded

by the European Research Council and led by Lawrence C.

Paulson (University of Cambridge, Department of Computer

Science and Technology). Mantas Bakšys received funding

for his internship supervised by Koutsoukou-Argyraki by the

Cambridge Mathematics Placements (CMP) Programme and

by the ALEXANDRIA Project. Chelsea Edmonds is jointly

funded by the Cambridge Trust (Cambridge Australia Schol-

arship) and a Cambridge Department of Computer Science

and Technology Premium Research Studentship. We thank

the anonymous referees for their useful comments that sig-

nificantly improved the presentation of the paper.

References
[1] Noga Alon and Joel H. Spencer. 2016. The Probabilistic Method (4th

ed.). Wiley, Hoboken, N.J.

[2] Mantas Bakšys and Angeliki Koutsoukou-Argyraki. 2022. Kneser’s

Theorem and the Cauchy–Davenport Theorem. Archive of Formal

Proofs (November 2022). h�ps://isa-afp.org/entries/Kneser_Cauchy_

Davenport.html, Formal proof development.

[3] Clemens Ballarin. 2010. Tutorial to Locales and Locale Interpretation.

In Contribuciones Científicas en Honor de Mirian Andrés Gómez. Uni-

versity of Rioja, 123–140. Online at h�ps://dialnet.unirioja.es/servlet/

articulo?codigo=3216664.

[4] Clemens Ballarin. 2019. A Case Study in Basic Algebra. Archive of

Formal Proofs (August 2019). h�ps://isa-afp.org/entries/Jacobson_

Basic_Algebra.html, Formal proof development.

[5] Clemens Ballarin. 2020. Exploring the Structure of an Algebra Text

with Locales. Journal of Automated Reasoning 64, 6 (August 2020),

1093–1121. h�ps://doi.org/10.1007/s10817-019-09537-9

[6] Antal Balog and Endre Szemerédi. 1994. A statistical theorem of set

addition. Combinatorica 14 (1994), 263–268. h�ps://doi.org/10.1007/

BF01212974

[7] Anthony Bordg, Lawrence C. Paulson, and Wenda Li. 2022. Simple

Type Theory is not too Simple: Grothendieck’s Schemes Without

Dependent Types. Experimental Mathematics 31, 2 (2022), 364–382.

h�ps://doi.org/10.1080/10586458.2022.2062073

[8] Sander R. Dahmen, Johannes Hölzl, and Robert Y. Lewis. 2019. For-

malizing the Solution to the Cap Set Problem. In 10th International

236



The Balog–Szemerédi–Gowers Theorem in Isabelle/HOL CPP ’23, January 16–17, 2023, Boston, MA, USA

Conference on Interactive Theorem Proving (ITP 2019) (Leibniz Inter-

national Proceedings in Informatics (LIPIcs), Vol. 141), John Harri-

son, John O’Leary, and Andrew Tolmach (Eds.). Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 15:1–15:19.

h�ps://doi.org/10.4230/LIPIcs.ITP.2019.15

[9] Yaël Dillies and Bhavik Mehta. 2022. Formalising Szemerédi’s Regu-

larity Lemma in Lean. In 13th International Conference on Interactive

Theorem Proving (ITP 2022) (Leibniz International Proceedings in In-

formatics (LIPIcs), Vol. 237), June Andronick and Leonardo de Moura

(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 9:1–9:19. h�ps://doi.org/10.4230/LIPIcs.ITP.2022.9

[10] Chelsea Edmonds. 2022. Undirected Graph Theory. Archive of For-

mal Proofs (September 2022). h�ps://isa-afp.org/entries/Undirected_

Graph_Theory.html, Formal proof development.

[11] Chelsea Edmonds, Angeliki Koutsoukou-Argyraki, and Lawrence C.

Paulson. 2021. Roth’s Theorem on Arithmetic Progressions. Archive

of Formal Proofs (December 2021). h�ps://isa-afp.org/entries/Roth_

Arithmetic_Progressions.html, Formal proof development.

[12] Chelsea Edmonds, Angeliki Koutsoukou-Argyraki, and Lawrence C.

Paulson. 2021. Szemerédi’s Regularity Lemma. Archive of Formal Proofs

(November 2021). h�ps://isa-afp.org/entries/Szemeredi_Regularity.

html, Formal proof development.

[13] Chelsea Edmonds, Angeliki Koutsoukou-Argyraki, and Lawrence C.

Paulson. 2022. Formalising Szemerédi’s Regularity Lemma and Roth’s

Theorem on Arithmetic Progressions in Isabelle/HOL. h�ps://doi.

org/10.48550/ARXIV.2207.07499

[14] Chelsea Edmonds and Lawrence C. Paulson. 2021. A Modular First

Formalisation of Combinatorial Design Theory. In Intelligent Computer

Mathematics (Timisoara, Romania), Fairouz Kamareddine and Claudio

Sacerdoti Coen (Eds.). Springer-Verlag, Berlin, Heidelberg, 3–18. h�ps:

//doi.org/10.1007/978-3-030-81097-9_1

[15] Jordan Ellenberg and Dion Gijswijt. 2017. On large subsets of Fnq with

no three-term arithmetic progression. Annals of Mathematics 185, 1

(2017), 339 – 343. h�ps://doi.org/10.4007/annals.2017.185.1.8

[16] William Timothy Gowers. 2001. A New Proof of Szemerédi’s Theorem.

Geometric & Functional Analysis GAFA 11, 3 (2001), 465–588. h�ps:

//doi.org/10.1007/s00039-001-0332-9

[17] William Timothy Gowers. 2022. Introduction to Additive Combina-

torics. Lecture notes for Part III of the Mathematics Tripos taught

at the University of Cambridge, available at h�ps://drive.google.com/

file/d/1ut0mUqSyPMweoxoDTfhXverEONyFgcuO/view.

[18] Lars Hupel. 2014. Properties of Random Graphs – Subgraph Con-

tainment. Archive of Formal Proofs (February 2014). h�ps://isa-

afp.org/entries/Random_Graph_Subgraph_Threshold.html, Formal

proof development.

[19] Angeliki Koutsoukou-Argyraki, Mantas Bakšys, and Chelsea Edmonds.

2022. The Balog–Szemerédi–Gowers Theorem. Archive of Formal

Proofs (November 2022). h�ps://isa-afp.org/entries/Balog_Szemeredi_

Gowers.html, Formal proof development.

[20] Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson. 2022. Kho-

vanskii’s Theorem. Archive of Formal Proofs (September 2022). h�ps:

//isa-afp.org/entries/Khovanskii_Theorem.html, Formal proof devel-

opment.

[21] Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson. 2022. The

Plünnecke-Ruzsa Inequality. Archive of Formal Proofs (May 2022).

h�ps://isa-afp.org/entries/Pluennecke_Ruzsa_Inequality.html, Formal

proof development.

[22] Katharina Kreuzer and Manuel Eberl. 2021. Van der Waerden’s Theo-

rem. Archive of Formal Proofs (June 2021). h�ps://isa-afp.org/entries/

Van_der_Waerden.html, Formal proof development.

[23] Bhavik Mehta. 2022. Formalising the Kruskal-Katona Theorem in Lean.

In Intelligent Computer Mathematics: 15th International Conference,

CICM 2022, Tbilisi, Georgia, September 19–23, 2022, Proceedings (Tbilisi,

Georgia). Springer-Verlag, Berlin, Heidelberg, 75–91. h�ps://doi.org/

10.1007/978-3-031-16681-5_5

[24] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Is-

abelle/HOL: A Proof Assistant for Higher-Order Logic. Springer. Online

at h�p://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf.

[25] Benedikt Nordhoff and Peter Lammich. 2012. Dijkstra’s Shortest Path

Algorithm. Archive of Formal Proofs (January 2012). h�ps://isa-afp.

org/entries/Dijkstra_Shortest_Path.html, Formal proof development.

[26] Lars Noschinski. 2012. A Probabilistic Proof of the Girth-Chromatic

Number Theorem. Archive of Formal Proofs (February 2012). h�ps://isa-

afp.org/entries/Girth_Chromatic.html, Formal proof development.

[27] Lars Noschinski. 2012. Proof Pearl: A Probabilistic Proof for the Girth-

Chromatic Number Theorem. In Interactive Theorem Proving. ITP 2012.

(Lecture Notes in Computer Science, Vol. 7406), Lennart Beringer and

Amy Felty (Eds.). Springer, Berlin, Heidelberg. h�ps://doi.org/10.1007/

978-3-642-32347-8_27

[28] Lars Noschinski. 2015. A Graph Library for Isabelle. Mathematics in

Computer Science 9, 1 (March 2015), 23–39. h�ps://doi.org/10.1007/

s11786-014-0183-z

[29] Lawrence C. Paulson. 1986. Natural Deduction as Higher-Order

Resolution. J. Log. Program. 3, 3 (October 1986), 237–258. h�ps:

//doi.org/10.1016/0743-1066(86)90015-4

[30] Lawrence C. Paulson. 1989. The Foundation of a Generic Theorem

Prover. Journal of Automated Reasoning 5, 3 (September 1989), 363–397.

h�ps://doi.org/10.1007/BF00248324

[31] Lawrence C. Paulson and Jasmin Christian Blanchette. 2012. Three

years of experience with Sledgehammer, a Practical Link Between

Automatic and Interactive Theorem Provers. In IWIL 2010. The 8th

International Workshop on the Implementation of Logics (EPiC Series

in Computing, Vol. 2), Geoff Sutcliffe, Stephan Schulz, and Eugenia

Ternovska (Eds.). EasyChair, 1–11. h�ps://doi.org/10.29007/36dt

[32] Imre Z. Ruzsa. 1978. On the cardinality of A + A and A − A. In

Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. 2.

933–938.

[33] Imre Z. Ruzsa. 2008. Sumsets and structure. Lecture notes, Institute of

Mathematics, Budapest, available at h�ps://www.math.cmu.edu/users/

af1p/Teaching/AdditiveCombinatorics/Additive-Combinatorics.pdf.

[34] Yiannos Stathopoulos, Angeliki Koutsoukou-Argyraki, and

Lawrence C. Paulson. 2020. Developing a Concept-Oriented

Search Engine for Isabelle Based on Natural Language :

Technical Challenges. In 5th Conference on Artificial Intel-

ligence and Theorem Proving (AITP 2020), Aussois, France.

h�p://aitp-conference.org/2020/abstract/paper_9.pdf Informal

proceedings.

[35] Yiannos Stathopoulos, Angeliki Koutsoukou-Argyraki, and

Lawrence C. Paulson. 2020. SErAPIS: A Concept-Oriented

Search Engine for the Isabelle Libraries Based on Natural Language.

In Isabelle Workshop 2020 (in virtual space). h�ps://files.sketis.

net/Isabelle_Workshop_2020/Isabelle_2020_paper_4.pdf Informal

proceedings.

[36] B. Sudakov, E. Szemerédi, and V. H. Vu. 2005. On a question of Erdős

and Moser. Duke Mathematical Journal 129, 1 (2005), 129 – 155. h�ps:

//doi.org/10.1215/S0012-7094-04-12915-X

[37] Ujkan Sulejmani, Manuel Eberl, and Katharina Kreuzer. 2022. The

Hales–Jewett Theorem. Archive of Formal Proofs (September 2022).

h�ps://isa-afp.org/entries/Hales_Jewe�.html, Formal proof develop-

ment.

[38] Terence Tao and Van H. Vu. 2006. Additive Combinatorics. Cambridge

University Press. h�ps://doi.org/10.1017/CBO9780511755149

[39] René Thiemann. 2021. The Sunflower Lemma of Erdős and Rado.

Archive of Formal Proofs (February 2021). h�ps://isa-afp.org/entries/

Sunflowers.html, Formal proof development.

[40] MarkusWenzel. 2002. Isabelle, Isar - a Versatile Environment for Human

Readable Formal Proof Documents. PhD Thesis. Technical University

Munich, Germany.

237



CPP ’23, January 16–17, 2023, Boston, MA, USA Angeliki Koutsoukou-Argyraki, Mantas Bakšys, and Chelsea Edmonds

[41] Yufei Zhao. 2022. Graph Theory and Additive Combinatorics. Online

at h�ps://yufeizhao.com/gtacbook/. book draft.

Received 2022-09-21; accepted 2022-11-21

238


	Abstract
	1 Introduction
	2 New Background Material Formalised
	2.1 A Triangle Inequality for Sumsets
	2.2 More Material in Additive Combinatorics
	2.3 A New Graph Theory Library
	2.4 Probability Theory

	3 Towards the Proof: Sketch of Gowers's Main Argument
	4 Completing the Proof of the Balog–Szemerédi–Gowers Theorem
	5 Supplementary Results Formalised
	6 Discussion
	7 Concluding Comments
	References

